
ISA-20 Proceedings @LREC-COLING-2024, pages 82–92
20 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

82

Less is Enough: Less-Resourced Multilingual AMR Parsing

Bram Vanroy, Tim Van de Cruys
KU Leuven

Oude Markt 13, Leuven, Belgium
bram.vanroy@kuleuven.be, tim.vandecruys@kuleuven.be

Abstract
This paper investigates the efficacy of multilingual models for the task of text-to-AMR parsing, focusing on English,
Spanish, and Dutch. We train and evaluate models under various configurations, including monolingual and
multilingual settings, both in full and reduced data scenarios. Our empirical results reveal that while monolingual
models exhibit superior performance, multilingual models are competitive across all languages, offering a more
resource-efficient alternative for training and deployment. Crucially, our findings demonstrate that AMR parsing
benefits from transfer learning across languages even when having access to significantly smaller datasets. As
a tangible contribution, we provide text-to-AMR parsing models for the aforementioned languages as well as
multilingual variants, and make available the large corpora of translated data for Dutch, Spanish (and Irish) that we
used for training them in order to foster AMR research in non-English languages. Additionally, we open-source the
training code and offer an interactive interface for parsing AMR graphs from text.
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1. Introduction

Abstract Meaning Representation (AMR, Sec-
tion 2; Banarescu et al., 2013) is a meta-language
for describing the semantic content of natural lan-
guage sentences. It is agnostic to surface form
(syntactic and lexical) and attempts to capture the
meaning of a sentence in its most abstract form.
While nodes are technically labelled with a linguis-
tic form (typically a lemma optionally with a sense
ID), these may as well be represented as an ar-
bitrary identifier because they refer to a “mean-
ing” rather than a lexical realisation of a mean-
ing. Thanks to its machine-readable data format
(as a directed, rooted graph, or as a sequence of
triples) AMR has been employed for a variety of
natural language processing (NLP) purposes (Sec-
tion 3). However, the application of AMR to lan-
guages other than English has been stymied by
the scarcity of large, annotated datasets that are
suitable in size for training deep learning systems.
AMR corpora exist, notably the English AMR 3.0
corpus (Knight et al., 2020), but manual annota-
tion is costly and time-consuming. This means that
AMR data sources are scarce, particularly for non-
English languages.

The issue of resource scarcity is not only con-
fined to languages that are commonly considered
low-resource. Even languages like Dutch, which
enjoys a relatively higher degree of digital pres-
ence and is spoken by around 24 million people,
face challenges in annotated data for specialised
tasks such as AMR. Even for Spanish, the fourth
most spoken language in the world, there is a lack
of suitable datasets for building deep learning sys-
tems for this task. In terms of task-specific re-

sources, such languages are still less-resourced –
their mid-to-high resource nature in the traditional
sense unfortunately does not transfer to a high
availability of annotated data for all NLP tasks. Ad-
dressing this scarcity in terms of data availability,
models, and research is crucial for the democrati-
sation of NLP technologies and to ensure that the
benefits of automating semantic AMR parsing is
not confined to English.

In this context, to seek alternative approaches
for performant, non-English text-to-AMR systems,
multilingual models offer a promising avenue for
exploration. Not only are these models com-
putationally more efficient (training one multilin-
gual model is more economical than training mul-
tiple monolingual ones); they also offer the ad-
vantage of easier deployment, as a single model
can handle multiple languages. This efficiency
is particularly salient in scenarios where compu-
tational resources are limited, a common situa-
tion in academic research and in deployments in
less-resource environments. Moreover, multilin-
gual models can be less data-hungry when train-
ing for each individual language, thereby partially
mitigating the issue of data scarcity, which is the
main topic of this paper.

This paper aims to investigate the efficacy of
multilingual models in the task of text-to-AMR pars-
ing, focusing particularly on English, Dutch, and
Spanish. English serves as a well-resourced
Germanic language, boasting a large, human-
annotated AMR corpus (around 60,000 entries;
Knight et al., 2020). In contrast, Dutch (also
Germanic) and Spanish (Romance) are “less-
resourced languages” in terms of AMR resources.
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While both languages are widely spoken, they
lack annotated and sizeable AMR corpora suitable
for machine learning. However, their otherwise
higher-resource status does allow for high-quality,
automated machine translation (MT). We therefore
make use of state-of-the-art MT systems to gener-
ate silver datasets for these languages, which we
can then use to train deep learning systems (Sec-
tion 4). We make available these datasets for other
researchers as a tangible contribution.

We empirically and statistically evaluate multilin-
gual (English, Spanish, Dutch) models under vari-
ous configurations and compare them with mono-
lingual counterparts to understand the trade-offs
involved in terms of performance on the one hand
and computational and data efficiency on the other.
Specifically, we gauge how large the performance
gap is between monolingual, full-resource models
compared to artificially limited-resource, multilin-
gual ones that have been trained on a subset of
the data, and other multilingual models that were
trained on the combined, full datasets of all lan-
guages. Our objective therefore is not to set new
state-of-the-art results, although to the best of our
knowledge our Dutch models are the best single-
model text-to-AMR parsers for Dutch. Instead we
offer insights into the advantages and disadvan-
tages of multilingual text-to-AMR parsing and scru-
tinise the impact of data scarcity.

We provide valuable resources for the broader
research community by publishing the models
(monolingual models for English, Spanish and
Dutch, as well as multilingual ones), the translated
datasets for Dutch, Spanish, and Irish Gaelic (the
latter not used in this paper but mentioned be-
cause it is part of our data release), the training
and processing code, and an online interface to
generate graphs from text.1

2. Abstract meaning representation

AMR describes the meaning of a sentence in terms
of “who does what to whom”, in an abstract form
that is not bound by lexical or syntactic overt
realisations. Therefore different sentences with
the same meaning should have the same AMR
realisation. AMR can be written as a directed,
rooted graph (Figure 1a), e.g. the meaning of a
sentence such as “The boy wants to go.” can
be denoted with variables that can be used for
(co)reference, such as w, b and g. Leaves in the
graph are concepts so that the variable g refers
to the concept go-01. These concepts are En-
glish words, special entities, or PropBank frame-
sets (Kingsbury and Palmer, 2002), identifiable by

1All resources can be found here:
https://github.com/BramVanroy/
multilingual-text-to-amr

their sense identifiers, such as want-01, which
refers to the first meaning of want in the Prop-
Bank.2 Special entities that are specific to AMR in-
clude concepts such as phone-number-entity
and world-region. For an exhaustive descrip-
tion of AMR, see the annotation guidelines.3

w

want-01
b

g

boy go-01

ins
tan

ce ARG
0

ARG1

ARG0

ins
tan

ce

instance

(a) Graph notation

(w / want-01
:ARG0 (b / boy)
:ARG1 (g / go-01

:ARG0 b))

(b) PENMAN notation

( <P1> want-01 :ARG0 ( <P2> boy )
:ARG1 ( <P3> go-01 :ARG0 <P2> ) )

(c) Depth-first linearisation following Bevilacqua et al.
(2021) (cf. Section 4.1)

Figure 1: AMR notations for the sentence “The
boy wants to go.”. Adapted from Banarescu et al.
(2013)

The edges in an AMR graph are labelled with the
relationships between two nodes, or, rather, the
role of the targeted node. Such relationships can
be frame arguments that follow PropBank (such as
the ARGn roles); general semantic roles such as
:condition or :accompanier; quantities such
as :quant or :unit; date entities like :day or
:decade; and enumerations of different operators
in :op roles.

An AMR graph can be considered as logical
triples of the following types of information: re-
lationships, variables and concepts. Each triple
is of the type role(source, target) (e.g.
instance(w, want-01) or :ARG0(w, b).

While the graph notation (and the underlying log-
ical triples) is intended for computational readabil-
ity, AMR can also be written in PENMAN notation
(Matthiessen and Bateman, 1991), which makes it
easier to read and write (Figure 1b).

3. Related research

3.1. Datasets
The English-oriented AMR 2.0 and 3.0 corpora
(Knight et al., 2017, 2020) have been the corner-
stone of much progress in English AMR genera-
tion and parsing. These datasets have been made

2https://github.com/propbank/
propbank-frames/tree/main/frames

3https://github.com/amrisi/
amr-guidelines/blob/master/amr.md

https://github.com/BramVanroy/multilingual-text-to-amr
https://github.com/BramVanroy/multilingual-text-to-amr
https://github.com/propbank/propbank-frames/tree/main/frames
https://github.com/propbank/propbank-frames/tree/main/frames
https://github.com/amrisi/amr-guidelines/blob/master/amr.md
https://github.com/amrisi/amr-guidelines/blob/master/amr.md
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available through the Linguistic Data Consortium.4
AMR 2.0 contains 39,260 AMR annotations within
the domain of news and weblog data. AMR 3.0 ex-
pands on that with 59,255 annotations in total, con-
taining broadcasts and weblogs but also literary
translations and Wikipedia articles. For multilin-
gual purposes, the test set of the AMR 2.0 corpus
has been partially translated to Spanish, German,
Italian and Chinese Mandarin (1371 sentences
per language; Damonte and Cohen, 2020), specif-
ically for cross-lingual parsing. In this corpus, de-
scriptively called “AMR 2.0 – Four Translations”,
only the English source sentences were translated
– the AMR structures remained unchanged. While
such resource has been proven useful in multi-
lingual research on AMR, its small size prohibits
larger-scale experimentation and applicable.

In this work, we are interested in generating
AMR for English but also for Dutch and Spanish.
To the best of our knowledge, manually created
or verified AMR corpora do not exist for Dutch.
For Spanish, in addition to the limited translated
AMR 2.0 partition mentioned above, laudable,
manual efforts exist to create language-specific
corpora. For instance, Migueles-Abraira (2017)
annotated 50 sentences from Antoine de Saint-
Exupéry’s novella The Little Prince translated into
Spanish. Wein et al. (2022), on the other hand,
defined annotation guidelines for Spanish and ap-
plied those guidelines to 486 Spanish sentences
from the aforementioned “Four Translations” cor-
pus to create a small but manually annotated gold
corpus of Spanish AMR.

To collect multilingual data for AMR-to-text gen-
eration, Fan and Gardent (2020) were inspired by
the methodology of Damonte and Cohen (2018)
to make use of Europarl to create synthetic multi-
lingual data. Europarl is very domain-specific and
contains sentence-aligned parliamentary debates
for English and many EU languages. The authors
first automatically generate AMR from English sen-
tences in the corpus with an existing text-to-AMR
system for English. Because the corpus is aligned
on the sentence level, this means that the same
AMR of an English sentence, is also compatible
with the same sentence in the other languages.
The resulting, domain-specific, synthetic dataset is
not publicly available.

The annotation efforts above are noteworthy
and have had a positive impact on the field. How-
ever, on the one hand deep learning experiments
often require a significantly larger dataset than the
manual annotations in Spanish have provided so
far, and on the other hand one may prefer general-
domain AMR annotations over domain-specific

4AMR 2.0: https://catalog.ldc.upenn.edu/
LDC2017T10; AMR 3.0: https://catalog.ldc.
upenn.edu/LDC2020T02

ones for broad applicability. An AMR dataset for
Dutch simply does not exist yet.

3.2. AMR parsing
In research on automated text-to-AMR parsing,
most work has focused on English – which in part
can be attributed to the availability of large corpora,
suitable for machine learning, such as the AMR
2.0 and 3.0 corpora described above (Knight et al.,
2017, 2020). Performance of automated systems
has increased markedly in the last years thanks to
innovations such as the Transformer architecture
(Vaswani et al., 2017), transfer learning where a
pretrained language model is finetuned on the task
of AMR parsing, and the use of automatically cre-
ated, synthetic data for training (also called “silver”
data in contrast to manually created “gold” data).

Bevilacqua et al. (2021), for instance, presented
SPRING, a text-to-AMR and AMR-to-text model in
English that was finetuned on a pretrained BART
model (Lewis et al., 2020), outperforming previ-
ous approaches. They also showed that, in their
set up, incorporating silver data did not positively
affect the system’s performance. Following up
on that, Bai et al. (2022) went a step further by
also exploring pretraining a unified model in all
directions: text-to-AMR, AMR-to-text, text-to-text,
and AMR-to-AMR for English. Similarly, Cheng
et al. (2022) proposed to unify AMR-to-text and
text-to-AMR tasks but instead of using silver data
they employed Bayesian multi-task learning. Also
within the Bayesian paradigm, researchers at IBM
(Lee et al., 2022) suggested that relying on self-
supervised training with silver data in itself is not
sufficient to push parsers’ performance higher any-
more. In addition, they suggest the use of ensem-
bling multiple system outputs together in combi-
nation with distillation for improved performance
and efficiency. Noteworthy here is that they also
apply their findings on Chinese, German, Italian
and Spanish models where they set a new state-
of-the-art on the “Four Translation” dataset. Their
work relies heavily on earlier findings of Zhou et al.
(2021), who explicitly integrated structural informa-
tion of the AMR graph into pretrained language
models. In a similar vein, most recently, Vasylenko
et al. (2023) also modify the aforementioned Trans-
former architecture with adapters that are tailored
to contain structural graph information, achieving
state-of-the-art results as a non-ensemble system
through distillation without the use of additional
data.

To the best of our knowledge language-specific
models for general-purpose Dutch-to-AMR pars-
ing do not exist. Prior work has been done on se-
mantic parsing for Dutch, but as noted in Wang and
Bos (2022), no annotated AMR corpora exist for
Dutch, so research for Dutch is focused on other

https://catalog.ldc.upenn.edu/LDC2017T10
https://catalog.ldc.upenn.edu/LDC2017T10
https://catalog.ldc.upenn.edu/LDC2020T02
https://catalog.ldc.upenn.edu/LDC2020T02
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semantic paradigms, such as Discourse Repre-
sentation Graphs in multilingual settings (Wang
et al., 2023). As mentioned before, some datasets
have been created for Spanish AMR, but they are
relatively small in size for extensive deep learning
experimentation or they are not publicly available
(Fan and Gardent, 2020), which leads to little re-
search in text-to-AMR for Spanish specifically ex-
cept for the work that was already referred to above
due to their data creation efforts and broader re-
search on multilingual systems.

In the aforementioned work of Lee et al. (2022),
multilinguality is achieved through the use of
machine translation as a data augmentation tech-
nique. This is common practice in other research
as well in an attempt to automatically create siz-
able AMR corpora. Mitreska et al. (2022), for
instance, establish text-to-AMR and AMR-to-text
pipelines for Macedonian, German, Italian, Span-
ish and Bulgarian. The AMR parsing and genera-
tion itself is tailored to English, but they then use
machine translation to translate the input or output
to the relevant language. Using machine transla-
tion to translate English sentences while keeping
the same AMR to create synthetic AMR data for
other languages has been introduced and proved
effective since Damonte and Cohen (2018), who
showed a significant boost of performance in their
multilingual AMR parsing when using machine-
translated data.

While prominent in its descriptive nature for lin-
guistic purposes, AMR’s increase of utility should
also be mentioned. In the past year, AMR has
been applied to NLP tasks ranging from ma-
chine translation (Song et al., 2019; Li and Flani-
gan, 2022) to the realm of multimodal research
on the meaning and representation of gestures
(Brutti et al., 2022) and images (Abdelsalam et al.,
2022). The recent interdisciplinary endeavours un-
derscore the broad exploration of AMR’s applica-
bility. However, the impediments of data scarcity
across various languages and the absence of au-
tomated systems in non-English linguistic domains
pose substantial barriers to the advancement of re-
search in this field.

4. Methodology

4.1. Model

In this work, all our models are finetuned from the
same base model mBART (Liu et al., 2020), specif-
ically its checkpoint mbart-large-cc25, to en-
sure a fair comparison. Note that despite the base
model being multilingual for all our models, in our
methodology we often refer to our “monolingual”
and “multilingual” models to indicate we finetuned
them. This Transformer-based (Vaswani et al.,

2017) encoder-decoder model was pretrained on
the denoising objective of sequences (recovering
an input text that had been scrambled, noised,
deleted or otherwise modified) for 25 languages,
including English, Spanish and Dutch. The data
was resampled so that each language is equally
represented in the training data of mBART. If we
were to use different base models for each model,
e.g. language-specific base models vs. multilin-
gual base models, that would not be a fair compar-
ison and it would not be clear whether the perfor-
mance difference is caused by the amount of data
or the quality of the base model. Therefore, for all
of our models, we start from the same base model.
Although we created Irish-Gaelic translations for
other parts of our research, we did not include it in
our model training. The reason is because mBART
was not pretrained on Irish-Gaelic so the quality
would not be fair compared to the other languages.
We began working on this topic in mid-2022, but
Heinecke and Shimorina (2022) demonstrated that
the mT5 base model (Xue et al., 2021) is a suitable
language model that covers Irish-Gaelic. We were
not able to redo our work given computational and
time constraints but hope that publishing our Irish-
Gaelic data alongside the Spanish and Dutch vari-
ants enables other researchers to use the insights
of Heinecke and Shimorina (2022) together with
our data to create Irish-Gaelic AMR parsers.

Due to computational restrictions and because
the base models are the same for all models
(mBART), we did initial hyperparameter tuning for
one model (en+es+nl-part) and its hyperpa-
rameters were then used to train other models as
well. All models were trained for 25 epochs with
early stopping.5 In the remainder of this paper we
will make use of our translated AMR 3.0 dataset
for training and evaluation.

Because mBART is a sequence-to-sequence
model, our input (text) and output (AMR) data has
to be formatted as a sequence of tokens. The
graphs in the datasets are therefore linearised
and delinearised back into a PENMAN repre-
sentation with a reimplementation of SPRING’s
(de)linearisation methods (Bevilacqua et al., 2021).
They suggest to linearise a graph in a depth-first
manner by slightly modifying the PENMAN repre-
sentation. An example of this process is given
in Figure 1c. As much content as possible is re-
tained, such as opening and closing brackets, re-
lations, and concepts. However, instead of vari-
able names they add special tokens to the vo-
cabulary, called pointer tokens. Instance relation-
ships are made implicit by removing the forward
slash (/). Concepts and relationships are also
added to the vocabulary explicitly instead of rely-

5Exact hyperparameters will be given in an appendix
in the camera-ready version.
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ing on the model’s subword tokenizer to ensure
that the model learns about those tokens explicitly.
When delinearising a model’s prediction back into
a graph, SPRING uses an iterative graph restora-
tion method to fix potential issues if the predicted
tokens could not be readily reconstructed into a
graph, which they show works robustly.

4.2. Data
A valuable contribution of our work is the paral-
lel, multilingual dataset that we provide for Span-
ish, Dutch and Irish Gaelic (Irish not used in this
paper). We base our data collection methodol-
ogy on the premise that “AMR annotations can
be successfully shared across languages” (Da-
monte and Cohen, 2018, p. 1147). Unlike Da-
monte and Cohen (2020), who translated a rela-
tively small portion of the AMR 2.0 corpus, we em-
ploy the more extensive AMR 3.0 corpus (Knight
et al., 2020) and automatically translate all par-
titions (train, development, test) to make it us-
able for deep learning experiments. This corpus
comprises 59,255 parallel AMR structures and En-
glish sentences, partitioned into canonical training
(55,635), development (1,722), and test (1,898)
sets. Unlike the domain-specific Europarl corpus
used by Fan and Gardent (2020), AMR 3.0 spans
a wider array of domains, including discussion fo-
rums, Wikipedia, news broadcasts, and literary
works. For translation, we opted for Google Trans-
late API v3, which was consulted on September
11th, 2023.6 All 59,255 sentences were translated
into Dutch, Spanish, and Irish Gaelic and manu-
ally corrected with regard to formal issues such
as unexpected white-spaces or wrongly encoded
characters. Similar to previous works mentioned
above the AMR side remains unchanged for all lan-
guages - only the English source text was automat-
ically translated. This process yields a large, par-
allel multilingual corpus with aligned AMR annota-
tions that is sufficiently large and diverse in domain
for multilingual machine learning experimentation.
We make this dataset available with the same li-
cense as the original AMR 3.0 corpus on the LDC
website under the name “AMR 3.0 - Dutch, Irish,
and Spanish Machine Translations”.7

As described before, the goal of this study is
to gauge the performance of multilingual systems
compared to their monolingual counter-parts, pay-
ing particular attention to the amount of data per-

6A sample of Dutch translations was manually ver-
ified for quality. For the other languages, we specif-
ically selected Google Translate for its high-quality
translations, corroborated by the report, “The State
of Machine Translation, 2023” (https://inten.to/
machine-translation-report-2023/).

7The data submission is accepted by the LDC and its
release is planned for the second part of 2024.

language that the model is trained on. To do so
we train monolingual models for English, Spanish
and Dutch as the baselines, where each model is
trained on their respective full dataset of 55,635
training instances. We also train multilingual mod-
els, with English, Spanish and Dutch, and with only
Spanish and Dutch. We are mostly interested in
the multilingual models that were trained on a sub-
set of the data so that the multilingual model has
seen the same number of training samples in total
as the monolingual models but distributed across
languages. Furthermore, for reference, we also
train multilingual models that are trained on the full
dataset for each language to see how well mul-
tilingual models fare. This data distribution and
corresponding models has been illustrated in Ta-
ble 1. We thus control our training strictly on data
size: the baseline models are trained on their full,
monolingual dataset (*-only), the partial multilin-
gual models (*-part) are only trained on a sub-
set per language, and the full multilingual mod-
els (*-full) are trained on the full dataset of all
languages combined. The hypothesis is that the
baseline, monolingual models will perform better
than the full multilingual models, which in turn will
perform better than the partial multilingual models.
A small difference would justify the compute effi-
cient (one multilingual model) and data efficient
(multilingual model trained on partial datasets) util-
ity of multilingual AMR parsing.

model
lang. en es nl

en-only 55 635 0 0
es-only 0 55 635 0
nl-only 0 0 55 635
en+es+nl-part 18 545 18 545 18 545
es+nl-part 0 27 818 27 817
en+es+nl-full 55 635 55 635 55 635
es+nl-full 0 55 635 55 635

Table 1: Contents of the training set for each
model. The row sections represent monolin-
gual models (*-only), multilingual models that
have been trained only on part of the data per-
language (*-part), and multilingual models that
were trained on the full dataset for each language
(*-full).

4.3. Evaluation
For text-to-AMR parsing, it is common to use
Smatch scores (Cai and Knight, 2013), which cal-
culate the precision, recall and Smatch F1 scores
on matching the triples of the predicted graph with
the reference graph. We report Smatch F1 scores
as calculated by smatchpp (Opitz, 2023), partic-
ularly its ILP solver rather than the hill climber ap-

https://inten.to/machine-translation-report-2023/
https://inten.to/machine-translation-report-2023/
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proach for the best result. We report pairwise sig-
nificance levels on the differences between sys-
tems based on this F1 score, by sorting systems
best to worst and bootstrapping (n = 1000).8 For
brevity we show compact tables in the paper that
only contain smatch f1 scores and, for the coarse-
grained results, their significance compared to the
lower performing systems. In addition, we discuss
more fine-grained evaluation scores that are com-
mon in AMR research, following Damonte et al.
(2017). The following categories are reported:

• Unlabeled: Smatch score without consider-
ing the edge labels (the relation between two
items)

• No WSD: Smatch score without word sense
disambiguation (go instead of go-01)

• Concepts: score of correctly predicting con-
cepts

• Named entities: score of correctly predicting
named entities (:name)

• Negations: score of correctly predicting nega-
tions and polarity (:polarity)

• Wiki: score of correctly predicting linked
Wikipedia entries (:wiki)

• Reentrancy: some nodes can be reentering,
for instance due to coreference (so they have
more than one parent; like b in Fig. 1a).

• SRL: Smatch score for semantic role labelling,
i.e., only considering ARGn relations to identify
predicate-argument constructions

5. Results

In Tables 2, 4, and 6, we provide for all systems
their smatch F1, precision and recall scores. All
tables are sorted from worst to best according to
the smatch F1 score. For each system the sig-
nificance compared to only the previous system
above it is given for conciseness reasons; other
important significant differences as well as over-
lapping confidence intervals are described in the
text. Bold fonts indicate best systems for a given
metric. Note that we trained a multilingual model
on Spanish and Dutch only to see whether leaving
out English as a high-resource language would im-
pact the results for the other languages. Therefore,
the English results contain fewer systems than the
other two languages.

Detailed scores on specific categories are given
in Tables 3, 5, and 7, for English, Spanish and
Dutch respectively. Here we report only the F1
scores (multiplied by 100). Digits after the decimal
points are not reported for the fine-grained analy-
sis due to the limited decimal precision in the fine-
grained evaluation framework.

8https://github.com/mdtux89/
amr-evaluation/

smatch f1 smatch p smatch r
en+es+nl-full 79.07 79.92 78.24
en+es+nl-part 80.14** 81.52 78.81
en-only 81.30** 82.34 80.29

Significant differences with the previous row are marked
as ∗∗p < 0.01

Table 2: Smatch F1, precision and recall scores
on the English test set

en+es+nl-full en+es+nl-part en-only
unlabeled_f 82 83 84
no_wsd_f 79 81 82
concepts_f 85 87 88
ner_f 84 85 85
negations_f 63 66 69
wiki_f 74 74 75
reentrancies_f 68 69 71
srl_f 78 79 80

Table 3: Fine-grained evaluation results for the En-
glish test set (F1 score only)

smatch f1 smatch p smatch r
en+es+nl-part 73.04 74.59 71.56
es+nl-part 73.36* 74.76 72.79
es+nl-full 73.99 74.97 73.02
en+es+nl-full 74.10 74.99 73.24
es-only 74.56 75.85 73.30

Significant differences with the previous row are marked
as ∗p < 0.05

Table 4: Smatch F1, precision and recall scores
on the Spanish test set

en+es+nl
part

es+nl
part

es+nl
full

en+es+nl
full

es
only

unlabeled_f 77 78 78 78 78
no_wsd_f 73 74 74 74 75
concepts_f 76 77 77 77 78
ner_f 83 83 83 83 84
negations_f 52 58 55 55 59
wiki_f 71 72 73 73 73
reentrancies_f 62 62 62 62 63
srl_f 70 71 71 71 72

Table 5: Fine-grained evaluation results for the
Spanish test set (F1 score only)

smatch f1 smatch p smatch r
es+nl-part 73.09 74.15 72.07
en+es+nl-part 73.37 74.72 72.07
en+es+nl-full 73.45 74.24 72.66
es+nl-full 74.07 74.92 73.24
nl-only 74.36 75.60 73.15

No significant differences between successive rows

Table 6: Smatch F1, precision and recall scores
on the Dutch test set

https://github.com/mdtux89/amr-evaluation/
https://github.com/mdtux89/amr-evaluation/


88

es+nl
part

en+es+nl
part

en+es+nl
full

es+nl
full

nl
only

unlabeled_f 77 77 77 78 78
no_wsd_f 73 73 73 74 74
concepts_f 76 76 76 77 78
ner_f 82 84 84 84 84
negations_f 51 54 52 54 57
wiki_f 72 72 73 73 73
reentrancies_f 60 61 61 62 62
srl_f 69 70 70 71 71

Table 7: Fine-grained evaluation results for the
Dutch test set (F1 score only)

6. Discussion

The central hypothesis of this study posited that
monolingual systems en-only, es-only, and
nl-only would outperform multilingual systems
in terms of F1 Smatch scores. The empirical data
affirm this hypothesis, revealing a consistent pat-
tern where monolingual models surpass their mul-
tilingual counterparts across all three languages
investigated. However, a nuanced interpretation
of the statistical significance tests offers some
promising insights.

English For coarse-grained results on English
(Table 2), the monolingual model was found to be
significantly better than both multilingual models.
In absolute terms, however, this difference is small:
the difference between the multilingual model that
was only trained on part of the dataset for each
language, and the monolingual model is only 1.2
Smatch F1, and on top of that their confidence in-
tervals overlap. Interestingly, training on the full
datasets with all languages combined yields signif-
icantly worse performance. This seems to indicate
that for English, training on more non-English data
deteriorates performance. This is unexpected be-
cause the assumption is that training on more data
as a whole should yield better results, but given the
significant difference between en+es+nl-full
and en+es+nl-part that is not the case for En-
glish, i.e., added languages to an English dataset
make results significantly worse regardless of the
size of the data.

Digging deeper in the English results in Table 3,
we find that there is a relatively small increase
in scores across categories for each model, with
the exception of the “negations” category, where a
larger differences can be noted between all mod-
els. Negation, or rather the “polarity” of an utter-
ance, has been proven difficult for automatic AMR
parsers in earlier work, so much so that it has been
suggested to post-process the AMR graph with a
heuristic algorithms to re-apply negation based on
polarity words in the input (Zhang et al., 2019).
Such methods can positively impact performance;
however, in this study we are interested in the ef-
fect of different data distributions on training re-

sults without any other modifications. In terms of
negation, we see that mixing in other languages
has a strong, negative impact.

Spanish Looking at the main results for Span-
ish (Table 5), the story changes in some respect.
The differences between the monolingual model
on the one hand and the full multilingual model
en+es+nl-full and partial en+es+nl-part on
the other are significant, with a difference in score
of only 0.5 and 1.6 respectively. It is clear that
the difference between the Spanish monolingual
model and the full multilingual model of 0.5 is small
and their confidence intervals overlap greatly. This
is in sharp contrast with English, where – even
though there also was small overlap between con-
fidence intervals – the difference in Smatch score
was larger with 1.2. Unlike English as well we
see that the multilingual model trained on partial
datasets performs significantly worse than all other
models, including the multilingual model trained
on all data. So unlike for English, training on full
datasets with a lot of data from different languages
improves the result, which was expected because
that means the model has “seen” more diverse
Spanish data as a whole. Scrutinising the bilin-
gual models that were trained on only Spanish
and Dutch, we find that the performance between
them does not differ significantly. In fact, neither of
them differ significantly from the second best per-
forming system, the multilingual model trained on
the full datasets en+es+nl-full. This sentiment
is compounded when looking at the monolingual,
best model and the worst bilingual model that was
trained only on part of the data. While these mod-
els differ significantly, the difference is 1.2 Smatch
and their confidence intervals overlap. The bilin-
gual model trained on full datasets does not differ
significantly from the monolingual model. So for
Spanish, multi/bilingual models trained on the full
dataset are viable. Furthermore, while the differ-
ences between the partial models and the mono-
lingual one are significant, their differences are rel-
atively small (1.6 and 1.2), and the confidence in-
terval of the Spanish-Dutch model overlap with the
one of the monolingual model, which indicates that
training on non-English languages together with a
Germanic language (Dutch) in limited data avail-
ability still yields good results that may be sufficient
under data and compute constraints.

In the fine-grained results (Table 5), we see the
same tendencies as for English. For all categories
there is a slight increase in scores across sys-
tems. In many cases scores are even identical
across systems, such as for all but the worst sys-
tem for the unlabeled category, which indicates
that the models are all similarly good at predict-
ing the structure of the AMR graph and that a dif-
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ference in performance is therefore mostly linked
to how well they can predict the relations between
nodes. Noteworthy, again, is the large difference
in how well negations can be predicted. The mono-
lingual model greatly outperforms the multilingual
models in this respect but also the bilingual model
es+nl-part performs well compared to the oth-
ers, indicating that training on balanced, partial
datasets without English seems to work well.

Dutch In Dutch we observe similarities with
Spanish (Table 6). Multi/bilingual models trained
on only a portion of the data perform worse than
the monolingual model but absolute differences
are small as we hypothesised: the gap between
the worst and best model is only 1.3 Smatch.
Whereas for Spanish the monolingual model did
not differ significantly from the full multi/bilingual
models, the monolingual model does differ from
en+es+nl-full significantly, but only with p =
0.046, an absolute difference of 0.9 Smatch F1,
and overlapping confidence intervals. Going back
to the main interest, the models trained on partial
data sets, we find that while the -part models
differ significantly from the monolingual model (as
expected) this is only 1.3 and 1 Smatch F1 respec-
tively and in both cases the confidence intervals
overlap. This indicates that for Dutch, training on
partial datasets, even combined with a Romance
language, yields competitive results compared to
a monolingual model.

Dutch fine-grained results are consistent with
our earlier findings (Table 7). Performance across
categories is similar across all systems with the
exception of negations. There, the monolingual
model is again greatly outperforming the other sys-
tems. However, whereas es+nl-part yielded
good results in the negation category for Spanish,
it performs poorly in this category for Dutch.

7. Conclusion

Our findings suggest that our hypothesis is partially
confirmed. For non-English languages, multilin-
gual and even bilingual models achieve good qual-
ity. The gap between the worst and best model is
2.2 Smatch F1 for English, but only 1.6 for Spanish
and 1.3 for Dutch. If annotated data is scarce for a
language, or computational resources are limited
to train or deploy multiple language-specific mod-
els, it is viable to instead train a single multilingual
model with a small trade-off in performance.

Interestingly and unexpectedly, for English,
adding too much data of other languages deteri-
orates model performance. A potential explana-
tion might be that AMR concepts correspond to an
English lemmas and training on a mix of plenty of

non-English and English data might “confuse” the
model.

For all models and languages we confirm the
findings of other researchers that polarity predic-
tion is a hard task. We note that this category
of errors alone seems to greatly impact perfor-
mance across all models: in most of the fine-
grained categories the performance difference be-
tween models is small but for “negations” it is fairly
large. Therefore, using techniques such as the
post-processing polarity algorithm by Zhang et al.
(2019) could close the gap between multilingual
and monolingual models even further.

By publishing our detailed findings, our models
as baseline references, our multilingual dataset,
and our training code, we hope to catalyse addi-
tional research in multilingual AMR parsing.

8. Limitations

Our work provides tangible language resources in
the form of a multilingual AMR dataset and text-
to-AMR models, and also offers insights into ad-
vantages and disadvantages of less-resource mul-
tilingual models. However, we also acknowledge
limitations of our work.

To create our dataset, we make use of Google
Translate, one of the best commercial MT systems
available. However, we did not post-edit the trans-
lations or verified their translation in detail. Sec-
ondly, in our study we contrasted full monolingual
models with partial and full multilingual models. In
this study we did not include additional configura-
tions, such as monolingual models with a subset
of the dataset, or other data quantity variations.
These were not feasible for us in terms of compute
and time but could provide useful insights. Finally,
we have based our methodology of training models
mostly on the work of Bevilacqua et al. (2021). We
have not made use of more recent work, nor used
techniques such as multi-task learning, Bayesian
learning or distillation. The impact of all those tech-
niques on multilingual AMR parsing with machine-
translated data could be promising.

By providing our models as a baseline alongside
a multilingual dataset and training code, we aim to
engage additional research that addresses these
limitations that were out of scope for the current
paper but that are noteworthy to investigate further.
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