@inproceedings{vanroy-van-de-cruys-2024-less,
title = "Less is Enough: Less-Resourced Multilingual {AMR} Parsing",
author = "Vanroy, Bram and
Van de Cruys, Tim",
editor = "Bunt, Harry and
Ide, Nancy and
Lee, Kiyong and
Petukhova, Volha and
Pustejovsky, James and
Romary, Laurent",
booktitle = "Proceedings of the 20th Joint ACL - ISO Workshop on Interoperable Semantic Annotation @ LREC-COLING 2024",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.isa-1.11/",
pages = "82--92",
abstract = "This paper investigates the efficacy of multilingual models for the task of text-to-AMR parsing, focusing on English, Spanish, and Dutch. We train and evaluate models under various configurations, including monolingual and multilingual settings, both in full and reduced data scenarios. Our empirical results reveal that while monolingual models exhibit superior performance, multilingual models are competitive across all languages, offering a more resource-efficient alternative for training and deployment. Crucially, our findings demonstrate that AMR parsing benefits from transfer learning across languages even when having access to significantly smaller datasets. As a tangible contribution, we provide text-to-AMR parsing models for the aforementioned languages as well as multilingual variants, and make available the large corpora of translated data for Dutch, Spanish (and Irish) that we used for training them in order to foster AMR research in non-English languages. Additionally, we open-source the training code and offer an interactive interface for parsing AMR graphs from text."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vanroy-van-de-cruys-2024-less">
<titleInfo>
<title>Less is Enough: Less-Resourced Multilingual AMR Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bram</namePart>
<namePart type="family">Vanroy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Van de Cruys</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th Joint ACL - ISO Workshop on Interoperable Semantic Annotation @ LREC-COLING 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Harry</namePart>
<namePart type="family">Bunt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nancy</namePart>
<namePart type="family">Ide</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kiyong</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Volha</namePart>
<namePart type="family">Petukhova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurent</namePart>
<namePart type="family">Romary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper investigates the efficacy of multilingual models for the task of text-to-AMR parsing, focusing on English, Spanish, and Dutch. We train and evaluate models under various configurations, including monolingual and multilingual settings, both in full and reduced data scenarios. Our empirical results reveal that while monolingual models exhibit superior performance, multilingual models are competitive across all languages, offering a more resource-efficient alternative for training and deployment. Crucially, our findings demonstrate that AMR parsing benefits from transfer learning across languages even when having access to significantly smaller datasets. As a tangible contribution, we provide text-to-AMR parsing models for the aforementioned languages as well as multilingual variants, and make available the large corpora of translated data for Dutch, Spanish (and Irish) that we used for training them in order to foster AMR research in non-English languages. Additionally, we open-source the training code and offer an interactive interface for parsing AMR graphs from text.</abstract>
<identifier type="citekey">vanroy-van-de-cruys-2024-less</identifier>
<location>
<url>https://aclanthology.org/2024.isa-1.11/</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>82</start>
<end>92</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Less is Enough: Less-Resourced Multilingual AMR Parsing
%A Vanroy, Bram
%A Van de Cruys, Tim
%Y Bunt, Harry
%Y Ide, Nancy
%Y Lee, Kiyong
%Y Petukhova, Volha
%Y Pustejovsky, James
%Y Romary, Laurent
%S Proceedings of the 20th Joint ACL - ISO Workshop on Interoperable Semantic Annotation @ LREC-COLING 2024
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F vanroy-van-de-cruys-2024-less
%X This paper investigates the efficacy of multilingual models for the task of text-to-AMR parsing, focusing on English, Spanish, and Dutch. We train and evaluate models under various configurations, including monolingual and multilingual settings, both in full and reduced data scenarios. Our empirical results reveal that while monolingual models exhibit superior performance, multilingual models are competitive across all languages, offering a more resource-efficient alternative for training and deployment. Crucially, our findings demonstrate that AMR parsing benefits from transfer learning across languages even when having access to significantly smaller datasets. As a tangible contribution, we provide text-to-AMR parsing models for the aforementioned languages as well as multilingual variants, and make available the large corpora of translated data for Dutch, Spanish (and Irish) that we used for training them in order to foster AMR research in non-English languages. Additionally, we open-source the training code and offer an interactive interface for parsing AMR graphs from text.
%U https://aclanthology.org/2024.isa-1.11/
%P 82-92
Markdown (Informal)
[Less is Enough: Less-Resourced Multilingual AMR Parsing](https://aclanthology.org/2024.isa-1.11/) (Vanroy & Van de Cruys, ISA 2024)
ACL