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Abstract

This paper presents the FBK contribution to
the IWSLT-2024 “Test suites” shared sub-
task, part of the Offline Speech Translation
Task. Our contribution consists of the MuST-
SHEIWSLT24 benchmark evaluation, designed
to assess gender bias in speech translation.
By focusing on the en-de language pair, we
rely on a newly created test suite to investi-
gate systems’ ability to correctly translate fem-
inine and masculine gender. Our results in-
dicate that – under realistic conditions – cur-
rent ST systems achieve reasonable and com-
parable performance in correctly translating
both feminine and masculine forms when con-
textual gender information is available. For
ambiguous references to the speaker, how-
ever, we attest a consistent preference towards
masculine gender, thus calling for future en-
deavours on the topic. Towards this goal we
make MuST-SHEIWSLT24 freely available at:
https://mt.fbk.eu/must-she/

1 Introduction

In today’s interconnected world, speech transla-
tion technology stands as a cornerstone of global
communication, facilitating seamless interactions
across linguistic barriers. Indeed, the last few years
have seen notable advancements for the task of
speech-to-text translation (ST), which has made
strides in generic performance (Bentivogli et al.,
2021; Anastasopoulos et al., 2021, 2022; Agarwal
et al., 2023). Also, the emergence massively mul-
tilingual solutions has greatly expanded the lan-
guage coverage of competitive “one-model-fits-all”
speech models (Radford et al., 2022; Communica-
tion et al., 2023; Peng et al., 2024; Pratap et al.,
2024).

Amid such advancements, there arise the increas-
ing need to pair traditional overall quality assess-
ments of ST with more fine-grained analyses by
accounting for relevant aspects of translations. It
is within this context that the IWSLT Test Suites

shared task emerges, aiming to provide a dedicated
evaluation framework for specific dimensions of
the ST output, which are otherwise overlooked with
generic test sets and holistic metrics.

In light of the above, our contribution is dedi-
cated to the critical themes of gender bias in au-
tomatic translation (Costa-jussà, 2019; Savoldi,
2023; Vanmassenhove, 2024).1 Given the large-
scale deployment of ST, biased translations are not
only relevant from a technical perspective, where
gender-related errors negatively impact the accu-
racy of automatic translation. Rather, biased and
non-inclusive systems can pose the concrete risk of
under/misrepresenting gender minorities by over-
producing masculine forms and reinforcing gen-
dered stereotypes (Blodgett et al., 2020; Sun et al.,
2019). Indeed, gendered linguistic expressions af-
fect the representation and perception of individu-
als (Stahlberg et al., 2007; Corbett, 2013; Gygax
et al., 2019), and are actively used as a tool to ne-
gotiate the social, personal, and political reality
of gender (Hellinger and Motschenbacher, 2015).
A such, models that systematically favor mascu-
line over feminine forms fail to properly recognize
women, can reduce feminine visibility, and offer
an unequal service quality (Crawford, 2017).

This paper presents the FBK participation in the
Test Suites shared task by conducting evaluations
on the MuST-SHEIWSLT24 en-de dataset. It rep-
resents the newly created speech-to-text extension
of the English→German textual-only portion of
MuST-SHE (Savoldi et al., 2023), a multilingual
gender bias benchmark (Bentivogli et al., 2020).

In the hereby presented evaluations, we obtained
translations of our test suites by systems that are
part of the Offline Speech Translation Task of the
21st International Conference on Spoken Language

1Its relevance is also attested by the creation of dedicated
workshops on theme of gender bias and inclusivity, such as
GeBNLP (Hardmeier et al., 2022) and GITT (Vanmassenhove
et al., 2023).
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Form Category 1: Ambiguous first-person references Speaker

Fem. src The other hat that I’ve worn in my work is as an activist... She
RefDe Der andere Hut, den ich bei meiner Arbeit getragen habe, ist der<den> Ak-

tivistin<Aktivist>...

Masc. src I mean, I’m a journalist. He
RefDe Ich meine, ich bin Journalist <Journalistin>.

Category 2: Unambiguous references with gender cue in context

Fem. src A college classmate wrote me a couple weeks ago and she said ... He
RefDe Eine<Ein> Kommilitonin<Kommiliton> hat mir vor ein paar Wochen geschrieben und

gesagt...

Masc. src I decided to pay a visit to the manager [...] and he pointed ... She
RefDe Also entschied ich mich den<die>Filialleiter<Filialleiterin> zu besuchen [...]

Table 1: Textual portion of MuST-SHE (Savoldi et al., 2023), with annotated segments organized per category. For
each gender-neutral word referring to a human entity in the English source sentence (SRC), the reference translation
(REF) shows the corresponding gender-marked (Fem/Masc) forms, annotated with their wrong <gender-swapped>
forms. The last column provides information about the speaker’s gender.

Translation (IWSLT 2024). Specifically, we evalu-
ated 13 systems for MuST-SHEIWSLT24 en-de.

2 MuST-SHEIWSLT24

MuST-SHEIWSLT24 is a test suite designed to eval-
uate the ability of ST systems to correctly translate
gender. It is composed of 200 segments that re-
quire the translation of – at least – one English
gender-neutral word into the corresponding mascu-
line or feminine target word(s) in German.2 The
test suite is created as an extension of MuST-SHE,
a multilingual, natural benchmark built on TED
talks data (Bentivogli et al., 2020). The original
corpus comprises ∼3,000 (audio, transcript, trans-
lation) triplets annotated with qualitatively differen-
tiated gender-related phenomena for thee language
pairs: English→ French/Italian/Spanish. Recently,
MuST-SHE was also extended to English→ Ger-
man for the MT task – i.e. MuST-SHEWMT23

(Savoldi et al., 2023). However, since it only con-
sists of a textual portion (transcript, translation), it
does not allow for the evaluation of ST models.

Here, we introduce the expansion of MuST-SHE
English→ German for the ST task, by incorpo-
rating the additional speech input portion so as to
obtain (audio, transcript, translation) triplets.

2.1 Audio Portion Creation

To ensure conformity, the dataset audio portion was
obtained by following the same automatic proce-
dures used for MuST-SHE and other TED-based

2See §5 for a discussion on the use of (binary) gender as a
variable.

resources, as reported in (Cattoni et al., 2021). Ac-
cordingly, from the official TED website we down-
loaded the videos of the talks included in the tex-
tual portion of MuST-SHE English→ German. On
this basis, i) audio tracks were extracted from the
videos, and ii) an alignment procedure was applied
to split talks into segments and generate aligned
(audio, transcript, translation) triplets. Since this
automatic procedure generates 90% of properly
aligned triples on average (Cattoni et al., 2021),
we performed qualitative checks. Two evaluators
– both students proficient in the German language
and with a background in Applied Linguistics3 –
reviewed all the extracted audios and corrected any
audio-text misalignment.4 Hence, we ensured the
quality of all audio segments included in MuST-
SHEIWSLT24, and the exact alignment of each (au-
dio, transcript, translation) triplet.

2.2 Dataset Features
MuST-SHE is designed to evaluate the translation
of a source English neutral word into its corre-
sponding target gender-marked one(s) in the con-
text of human referents, e.g. en: the good friend,
de: der/die gute Freund/in. To allow for fine-
grained analyses, each segment in MuST-SHE is
enriched with the following annotations:
· GENDER, which allows to distinguish results for
Feminine (Fem) and Masculine (Masc) forms, thus
revealing a potential gender gap.
· CATEGORY, which differentiates between CAT1

3Their work was carried out during an internship at FBK.
4We relied on the ELAN annotation tool: https://

archive.mpi.nl/tla/elan.
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– first-person references to be translated according
to the speakers’ linguistic expression of gender5

(e.g. I am a teacher) – and CAT2 – references
to any participant, to be translated in agreement
with gender information available in the sentence
(e.g. He/she is a teacher). These categories allow
analysing models’ behaviour across unambiguous
and ambiguous gender translation instances.6

· GENDER-SWAPPED WORDS, providing, for each
target gender-marked word annotated in MuST-
SHE reference translations, a corresponding wrong
form swapped in the opposite gender (e.g. en:
she is a friend; de: Sie ist eine<ein> Fre-
undin<Freund>). As described in §3.2, such pairs
of annotated target gender-marked words are a
key feature of MuST-SHE, which enables gender-
focused evaluations.

All above-mentioned dimensions are already
provided with the textual portion of MuST-SHE
English→ German, and are consequently also in-
cluded in MuST-SHEIWSLT24. In Table 1, we
show examples of annotated (transcript, transla-
tion) segments from the corpus. Overall dataset
statistics are provided in Table 2.

CAT1 CAT2
Fem. 23 (35) 77 (121)
Masc. 23 (38) 77 (155)

Tot. 200 (349)

Table 2: MuST-SHEIWSLT24 statistics: number of sen-
tences and (gender-marked target words).

3 Experimental Settings

3.1 Models

The test suite evaluation is carried out on the sys-
tems that were submitted to the IWSLT Offline
Speech Translation tasks. Overall, four different
participants – i.e. HW-TSC, CMU, NYA, and KIT
– submitted a total of 13 models. Of those, six mod-
els were presented as primary system submission,
while the other 7 models are additional, contrastive
models. All systems contributions are built upon

5Speaker’s gender information is provided for each seg-
ment. Note that gender has been labeled based on the personal
pronouns the speakers used to describe themselves in their
publicly available personal TED section.

6For direct ST solutions that directly translate from the au-
dio input without intermediate textual representations, CAT1
can also reveal whether such models leverage speakers’ voice
as an unwanted cue to translate gender. See Gaido et al.
(2020).

cascade architectures, which resolve the ST task as
pipelined ASR+MT solutions.

Since the participants (with the only exception
of NYA) segmented the sentences before generat-
ing the outputs, we isolated the predicted transla-
tion for each reference sentence by means of the
mWERSegmenter tool (Matusov et al., 2005). This
procedure mirrors what is done in the standard eval-
uation of the offline task (Agarwal et al., 2023).

3.2 Evaluation
Following the original MuST-SHE evaluation pro-
tocol described in Gaido et al. (2020), MuST-
SHEIWSLT24 evaluation allows to focus on the
gender realization of the target gender-marked
forms, which are annotated in the reference trans-
lations together with their wrong, gender-swapped
form (see Table 1). The evaluation is carried out
in two steps, and by matching the annotated (cor-
rect/wrong) gender-marked words against the ST
output. Accordingly, we first calculate the Term
Coverage as the proportion of gender-marked
words annotated in the MuST-SHE references (ei-
ther in the correct or wrong form) that are actually
generated by the system, on which the accuracy of
gender realization is therefore measurable. Then,
we define Gender Accuracy as the proportion of
correct gender realizations among the words on
which it is measurable. This evaluation method7

has several advantages. On one side, term cover-
age unveils the precise amount of words on which
systems’ gender realization is measurable. On the
other, gender accuracy directly informs about sys-
tems’ performance on gender translation and re-
lated gender bias: scores below 50% indicate that
the system produces the wrong gender more often
than the correct one, thus signalling a particularly
strong biased behaviour.

4 Results

In Table 3 we present the MuST-SHEIWSLT24

results of the 13 IWSLT Offline ST cas-
cade models. Starting from coverage
scores (All-Cov), all models achieve over-
all positive results, which range from ∼70%
(HW-TSC_CONSTRAINED-wLLM.primary) to
74.79% (HW-TSC_CONSTRAINED.primary).
Hence, these models produce a good amount of

7The evaluation script is publicly available at:
https://github.com/hlt-mt/FBK-fairseq/blob/
master/examples/speech_to_text/scripts/gender/
mustshe_gender_accuracy.py.
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Model All-Cov All-Acc F-Acc M-Acc 1F-Acc 1M-Acc 2F-Acc 2M-Acc

HW-TSC_CONSTRAINED.primary 74.79 82.99 84.44 81.70 68.18 85.71 87.61 80.80
HW-TSC_UNCONSTRAINED.primary 73.93 82.52 82.96 82.12 65.22 85.71 86.61 81.30
HW-TSC_UNCONSTRAINED.contrastive 75.07 81.72 81.16 82.24 56.52 85.71 86.09 81.45
CMU_mbr_ensemble_all_50+50+50.primary 73.07 81.36 80.00 82.73 50.00 80.00 87.50 83.33
CMU_beam_5.contrastive 74.21 80.56 79.58 81.51 52.00 76.00 85.47 82.64
CMU_mbr_50.contrastive 73.93 80.21 80.14 80.28 55.17 70.83 86.61 82.20
NYA.contrastive3 72.21 79.72 77.37 81.94 39.13 86.96 85.09 80.99
HW-TSC_CONSTRAINED-wLLM.primary 70.49 79.70 78.63 80.71 45.45 79.17 85.32 81.03
NYA.contrastive1 72.49 79.64 77.54 81.69 39.13 86.96 85.22 80.67
NYA.primary 72.49 79.64 77.54 81.69 39.13 86.96 85.22 80.67
NYA.contrastive2 73.35 79.51 78.99 80.00 45.83 76.00 85.96 80.83
KIT.primary 71.92 77.70 78.03 77.40 43.48 65.38 85.32 80.00
KIT.contrastive1 71.92 77.42 78.20 76.71 40.91 65.38 85.59 79.17

standard dev. ±.1.3 ±.1.6 ±.2.1 ±.1.8 ±.9.4 ±.7.8 ±.0.8 ±.1.0

Table 3: MuST-SHEIWSLT24 results for en-de. Systems are ranked based on overall Gender Accuracy (All-Acc).
Primary model submissions in violet color.
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Figure 1: MuST-SHEIWSLT24 accuracy results across categories 1 and 2 per each gender (F/M).

gender-marked words that can be evaluated with
regards to the accuracy of their gender realization.

Moving onto the overall accuracy scores (All-
Acc), we can see that – while there is still room
for improvement – all of the evaluated ST sys-
tems achieve reasonable results, by being able to
correctly translate gender with an accuracy of at
least 77.42% (KIT.contrastive1) up to 84.44%
for HW-TSC_CONSTRAINED.primary. Similar ac-
curacy ranges are attested also by disaggregating
results across feminine (F-ACC) and masculine
(M-Acc) genders. Interestingly, such results show
that none of the models exhibit perfectly equal per-
formance across both genders. Still, the divide is
fairly limited, with i) a comparable number of ST
systems achieving slightly higher results on either
the feminine or masculine set of MuST-SHE, and
ii) little variation in scores across the 13 models,
as attested in terms of standard deviation. If we go

more fine-grained into disaggregated results, how-
ever, we unveil a higher degree of variation.

In Figure 1, we report results across categories
for masculine (1M and 2M) and feminine gen-
der realizations (1F and 2F). On the one hand,
for unambiguous gender translation from CAT2,
systems are slightly better in performing feminine
gender translation. Instead, results on CAT1 un-
veil a wide gender gap, where feminine accuracy
is consistently lower compared to its masculine
counterpart. In fact, most models tend to gener-
ate the correct feminine form in less than 50%
of the cases, namely below random chance. The
ST model HW-TSC_CONSTRAINED-wLLM.primary,
which overall emerges as the best system for gender
translation, still remains at 68.18%.

To conclude, our results show that – when con-
fronted with ambiguous source sentences – current
ST models tend to favour the generation of mas-
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culine forms in the German target language. We
acknowledge that the phenomena subject to our
analysis (gender bias) are not currently accounted
for in the design of ST systems, which are rather
designed with the goal of optimizing overall trans-
lation quality. Towards the creation of fairer ST
technology, however, we hope that our evaluation
will raise awareness in the community, and encour-
age the development of capable models, which can
equally accommodate feminine and masculine lan-
guage.

5 Conclusion

This paper summarizes the results of our IWSLT-
2024 Test Suites evaluation, which focused on
gender bias in translation. To this aim, we have
introduced the speech expansion of the en-de
MuST-SHE test set. Overall, results on MuST-
SHEIWSLT24 show that the evaluated ST systems
are reasonably good at translating gender under
realistic conditions, achieving comparable results
across feminine and masculine gender translation.
Also, all models are quite robust, and show a simi-
lar behaviour for translation of unambiguous gen-
der phenomena, where they can rely on contextual
gender information. However, for ambiguous cases
where the input sentence does not inform about the
gender form to be used in translation, we confirm
a strong skew where all systems favour masculine
generation almost by default. This finding calls
for further research endeavours and evaluation ini-
tiatives to counter gender bias in ST and measure
future advances.

Limitations

The main limitation of this work concerns the lim-
ited size of data points (i.e. gender-marked words)
available for evaluation. As such, even in the case
of gender performance parity, the dataset does not
allow to make conclusive statements about the ab-
sence of bias in the assessed models. Despite its
restricted size, however, MuST-SHEIWSLT24 pro-
vides a first glimpse into understanding and mon-
itoring en-de systems’ behaviour with respect to
gender bias and translation.

Ethics Statement

The use of gender as a variable in this paper war-
rants some reflections. Namely, when working on
the evaluation of speaker-related gender translation
for MuST-SHE (i.e. Category 1) we solely focus

on the rendering of their reported linguistic gender
expressions. No assumptions about speakers’ self
determined identity (GLAAD, 2007) – which can-
not be directly mapped from pronoun usage (Cao
and Daumé III, 2020; Ackerman, 2019) – has been
made.

Also, in our diagnosis of gender bias we only ac-
count for feminine and masculine linguistic forms,
which are those traditionally in use and the only rep-
resented in the used data. However, we stress that –
by working on binary forms – we do not imply or
impose a binary vision on the extra-linguistic real-
ity of gender, which is rather a spectrum (D’Ignazio
and Klein, 2020). Also, we acknowledge the cur-
rent challenges faced for grammatical gender lan-
guages like German in fully implementing neu-
tral language (Paolucci et al., 2023), and support
the rise of both non-binary language (Shroy, 2016;
Gabriel et al., 2018; Conrod, 2020) and translation
technologies (Lauscher et al., 2023; Gromann et al.,
2023).
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