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Abstract

The IWSLT low-resource track encourages in-
novation in the field of speech translation, par-
ticularly in data-scarce conditions. This paper
details our submission for the IWSLT 2024 low-
resource track shared task for Maltese-English
and North Levantine Arabic-English spoken
language translation using an unconstrained
pipeline approach. Using language models, we
improve ASR performance by correcting the
produced output. We present a 2 step approach
for MT using data from external sources show-
ing improvements over baseline systems. We
also explore transliteration as a means to further
augment MT data and exploit the cross-lingual
similarities between Maltese and Arabic.

1 Introduction

There are a variety of challenges inherent in spoken
language translation for low-resource languages.
By definition, these languages have very limited
data available to use for natural language process-
ing (NLP) tasks. The majority of current work
on NLP targets just 20 out of the approximately
7,000 languages used worldwide, leading to a sig-
nificant gap in research and negative impacts on
excluded speech communities (Joshi et al., 2020;
Magueresse et al., 2020). While most machine
learning tasks are performed using vast amounts of
data, models for low-resource languages must be
adapted to work with less data or other strategies
must be employed to augment the existing data.

In this paper, we present our submission for the
2024 IWSLT low-resource shared task. Concretely,
we submit two systems for speech translation to
English, from Maltese and North Levantine Arabic.
The main motivation for focusing on these two
languages is their similarity to one another which
we aim to exploit to improve the performance of
our pipeline speech translation system.

As a well-known case of diglossia, the Arabic
language has a notable distinction between the for-
mal variety used in written communication, politi-
cal speech, and the educational system – known as
Modern Standard Arabic (MSA) – and the informal
varieties primarily used in spoken communication
– collectively referred to as Dialectal Arabic (DA).
These dialects exhibit considerable diversity influ-
enced by geographical and socio-economic factors,
diverging significantly from MSA in phonology,
morphology, lexicon, and syntax (Zbib et al., 2012).
On the other hand, Maltese is a Semitic language
derived from Siculo-Arabic (Borg and Azzopardi-
Alexander, 1997), with a notable mutual intelligi-
bility with Tunisian DA (Čéplö et al., 2016). Its
evolution independently from the Arab world – par-
ticularly its substantial influence from Italian and
English and its use of a modified Latin alphabet
– makes it a distinct language and not an Arabic
dialect.

We split the task of spoken language translation
into two sequential tasks consisting of automatic
speech recognition (ASR) and machine translation
(MT). This process transforms speech in a low-
resource language into text in a high-resource lan-
guage, namely English for this shared task. At the
same time, splitting the task into ASR and MT al-
lows us to exploit existing multilingual models and
source larger corpora for each sub-task to improve
their performance in the target language. All of our
code is made publicly available.1

2 Related Work

In order to examine past approaches to low-
resource spoken language translation, this literature
review includes an overview of previous IWSLT
low-resource track submissions and our ASR and

1https://github.com/saranabhani/
iwslt-2024-um-pipeline
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MT systems as well as our innovative approach to
data augmentation through transliteration.

2.1 Previous IWSLT Low-Resource Track
Approaches

For the 2023 IWSLT Shared Task (Agarwal et al.,
2023), Williams et al. (2023a) submitted five sys-
tems for Maltese-English spoken language trans-
lation as part of the low-resource track in the un-
constrained setting. This marked the first time that
Maltese was included in the IWSLT low-resource
track campaign, with this submission being the
sole entry in its category, making it a unique ap-
proach in this context. All of the systems employed
a pipeline approach, making use of XLS-R (Con-
neau et al., 2020) for ASR and mBART-50 (Tang
et al., 2020) for MT, fine-tuned using various train-
ing data. In their primary approach, their model
was exclusively fine-tuned on Maltese data result-
ing in a BLEU score of 0.6. Contrasting with the
Maltese-only model, they explored four alternative
approaches by incorporating corpora from Arabic,
French, Italian, or a combination of all three in
conjunction with the Maltese data. The most suc-
cessful configuration, with a BLEU score of 0.7,
was achieved by fine-tuning the ASR system on a
combination of Maltese data with 50 hours each of
Arabic, French, and Italian data from the Common-
Voice speech corpus (Williams et al., 2023a).

While our submission utilizes a pipeline ap-
proach, the alternative is an end-to-end system
where a single neural network is trained to jointly
perform both ASR and MT (Sethiya and Maurya,
2023). This approach offers several advantages by
significantly reducing training time, allowing for
quicker development of models, and necessitating
lower memory resources compared to other meth-
ods, which can be particularly beneficial for envi-
ronments with constraints on computational pro-
cessing power. Additionally, by integrating ASR
and MT into an end-to-end system, it mitigates
the risk of errors propagating from the ASR out-
put to the MT input, which is a common problem
in pipeline systems (Sethiya and Maurya, 2023).
However, speech translation systems that operate
end-to-end require parallel data containing both
speech audio signals on the source side and trans-
lated transcriptions on the target side. Acquiring
such parallel data can pose challenges, even for
languages with readily available components for
pipeline-based systems. Consequently, the pipeline
approach is often deemed more feasible and realis-

tic (Alves et al., 2020).
For the 2023 IWSLT Quechua-Spanish speech

translation task in the low-resource track, E. Or-
tega et al. (2023) utilized a variety of systems
both constrained and unconstrained, with one of
the few pipeline-based methods submitted for this
task. The primary constrained system employed
a direct speech translation model based on the
Fairseq speech-to-text (S2T) framework (Wang
et al., 2020). To create audio representations, this
system made use of log mel-scale filter banks for
features and a transformer for translations. With
a BLEU score of 1.25, their primary system sur-
passed the performance of the pipeline alternatives
in the constrained setting. On the other hand, the
primary unconstrained system employed a pipeline
approach on the additional 60 hours of speech data
made available, where speech transcriptions were
generated using a pretrained XLS-R based multi-
lingual model augmented by a fine-tuned language
model (Park et al., 2019), and translations were
generated using the fine-tuned Flores-101 model
from Guzmán et al. (2019). The unconstrained
pipeline approach performed much better with a
BLEU score of 15.36 for the primary model. Their
findings reveal that the use of a pretrained language
model with fine-tuning is necessary for cascaded
spoken language translation (ASR and MT com-
bined in a pipeline) in low-resource scenarios for
Quechua to Spanish translation. This work further
demonstrates the immense value of access to addi-
tional data, which yielded nearly 14 BLEU points
improvement for the unconstrained task when ap-
plied to both ASR and MT systems compared to the
limited data used in the constrained setting (E. Or-
tega et al., 2023). Accordingly, our approach also
utilizes an unconstrained pipeline of an XLS-R-
based ASR model and a fine-tuned pretrained MT
model considering it was found to have the best
results for this submission.

2.2 Automatic Speech Recognition
Due to their extensive multilingual pretraining,
Wav2Vec 2.0 models (Baevski et al., 2020) are able
to acquire and utilize cross-lingual speech represen-
tations to improve accuracy for ASR. The XLS-R
model presented by Babu et al. (2022) underwent
pretraining of Wav2Vec 2.0 models for as many
as 128 distinct languages including Maltese, using
436,000 hours of unannotated speech data from di-
verse sources including the Mozilla Common Voice
(Ardila et al., 2020), BABEL (Gales et al., 2014),
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and Multilingual LibriSpeech (Pratap et al., 2020)
speech corpora. Specifically, this system incorpo-
rates 9,000 hours of unannotated Maltese speech
sourced from the Voxpopuli corpus (Wang et al.,
2021). Notably, the largest model is pretrained
using a cumulative total of 56 thousand hours of
speech data (Conneau et al., 2020). This repre-
sents an increase in both the amount of data and
the languages covered.

A common practice in the field of ASR is to
use a language model to reduce errors in the gen-
erated transcription. This technique was used in
the development of Wav2Vec 2.0 (Baevski et al.,
2020) and Deepspeech 2 (Amodei et al., 2016).
Leveraging an external language model trained on
domain-specific textual data has the potential to in-
crease the accuracy of ASR systems by minimizing
errors in content.

Moreover, due to the scarcity of high-quality la-
belled data in DA, the models based on XLS-R
emerge as optimal solutions for leveraging avail-
able datasets and adapting ASR to distinct Arabic
variants through fine-tuning, as highlighted by Wa-
heed et al. (2023) in their work on VoxArabica.
These models not only capitalize on existing re-
sources but also offer the adaptability to accommo-
date the nuances of various Arabic dialects, thus
addressing the challenges associated with the lim-
ited availability of labelled data for DA.

2.3 Machine Translation
Past approaches to multilingual neural machine
translation treat it as a sequence-to-sequence task,
where an encoder is utilized to process an input
sequence in the source language and a decoder is
used to generate the corresponding output sequence
in the target language. With massively multilingual
translation, a model undergoes training on multiple
translation directions simultaneously. While this
approach can facilitate advantageous cross-lingual
transfer among related languages, it also carries the
risk of amplifying interference between unrelated
languages.

In this work we make use of the NLLB model
(NLLB Team et al., 2022) for MT. It uses a single
SentencePiece model to tokenize the text sequences
by training it across all languages using a total of
100M sentences sampled from primary bitext data.
For equitable representation of low-resource lan-
guages, high-resource ones are downsampled and
low-resource ones are upsampled, using a sampling
temperature of five. The resulting vocabulary size

of the trained SentencePiece model is 256,000, en-
suring comprehensive representation across the di-
verse range of supported languages. The choice of
this model is highly motivated by its inclusion of
a large number of languages, notably Maltese and
North Levantine Arabic (NLLB Team et al., 2022).

2.4 Transliteration

From a simplified linguistic perspective, Maltese
can be regarded as a variant of Arabic with a sig-
nificant level of code-switching to Italian and a
modified Latin alphabet. Past work suggests that
transliterating Maltese could serve as a viable strat-
egy for benefiting from cross-lingual similarities
with Arabic (Micallef et al., 2023). In the approach
taken by Micallef et al. (2023), the transliteration
process involves two main steps: mapping and rank-
ing. Initially, Maltese text tokens and characters in
Latin script are mapped to one or more correspond-
ing alternatives in Arabic script. Subsequently, a
separate component either ranks these alternatives
or employs a deterministic hard-coded baseline.

This approach is further developed in Micallef
et al. (2024) by taking a mixed pipeline and integrat-
ing a combination of transliteration and translation
based on the etymology of Maltese words. This is
motivated by the results of Micallef et al. (2023),
where the advantages of transliterating Arabic-
origin words were limited by the corresponding dis-
advantages of distancing Italian and English-origin
words from their etymological source through
transliteration. A mixed pipeline gave promising
results on downstream tasks, establishing the tech-
nique as a competitive approach for Maltese NLP
tasks.

3 Automatic Speech Recognition

3.1 Data Sources

For Maltese, we use the training sets provided by
the shared task namely Common Voice 7.0 (Ardila
et al., 2020) and MASRI (Hernandez Mena et al.,
2020). The speech corpus is made up of around 50
hours of Maltese speech data.

To train our Arabic ASR system, we opted to use
a 50-hour subset from the Common Voice project
(Ardila et al., 2020), as this would contain roughly
the same data that we used for Maltese ASR. While
a training set for North Levantine Arabic would
have been preferred, there was no data provided for
the shared task, nor were we able to find ASR data
for North Levantine Arabic. Furthermore, even
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though a Tunisian Arabic training set could be used,
we did not make use of this to train, since North
Levantine Arabic is more closely related to MSA
than Tunisian Arabic (Kwaik et al., 2018).

3.2 Approach
For the ASR component of the pipeline, we con-
tinue to build off of previous work done for both
DA and Maltese ASR. As concluded in Williams
et al. (2023b), fine-tuning the Wav2Vec 2.0 XLS-R
model (Babu et al., 2022) with around 50 hours
of Maltese speech data produces the best Maltese
ASR model to date and was used in the IWSLT
2023 submission by Williams et al. (2023a). A
similar XLS-R based ASR model is employed for
DA by leveraging data for MSA.

In addition, for Maltese, we incorporate lan-
guage models with the ASR system to get more
accurate speech transcriptions. For this we use n-
gram models built using the KenLM language mod-
elling toolkit (Heafield, 2011), which assign scores
to sequences of words. This aids in selecting the
best candidates through beam search for improved
ASR output. We use KenLM mainly as it has been
used for other state-of-the-art ASR publications as
well as in previous work on Maltese in particular.
We make use of the 6-gram word-level LM pro-
duced by Hernandez Mena et al. (2020) as a base-
line to compare our own KenLM n-gram models
which was trained on Korpus Malti v3.0 (Gatt and
Čéplö, 2013). We produce 2 additional word-level
n-gram language models for Maltese: a 3-gram and
a 4-gram, both trained on the Korpus Malti v4.1
Shuffled train dataset2 (Micallef et al., 2022). We
note that Korpus Malti v4 used here is substantially
larger than the v3 used for the 6-gram baseline.

3.3 Results and Discussion
Table 1 shows the WER score for all languages
considered on the shared task development set. For
both Maltese and North Levantine Arabic, a single
model is trained, but for Maltese we show the mod-
els’ performance without adding a language model
as well as incorporating each language model.

For Maltese, we see that all models perform com-
parably, but models using a language model give
better results. In addition, when using the 3-gram
and 4-gram models, these give better results than
the 6-gram model, which we attribute to the larger
data used to train the former models.

2https://huggingface.co/datasets/MLRS/korpus_
malti/tree/4.1.0/data/shuffled

Data Language Model Dev Set
WER ↓

CV+MASRI - 0.12
CV+MASRI 3-gram 0.10
CV+MASRI 4-gram 0.10
CV+MASRI 6-gram 0.11

(a) Maltese

Data Language Model Dev Set
WER ↓

Common Voice - 1.08
(b) North Levantine Arabic

Table 1: Speech Recognition Results

The overall performance of our Arabic approach
was limited by the lack of North Levantine Arabic
speech data, which severely impacted the accuracy
of the ASR system when tested on Levantine data.
We provide a brief qualitative error analysis of the
Arabic ASR outputs to highlight this.

We looked at a sample of the ASR output gener-
ated from North Levantine Arabic audio data using
our model trained on MSA. The analysis of specific
examples reveals various errors that significantly
impact the usability of the ASR system for Lev-
antine speech recognition. Table 2 shows a few
examples of the output, highlighting various incon-
sistencies with the reference text.

Phonetic errors were a common issue across the
examples. For instance, in Sample 2c, the system
outputted “ �IÓX


A�” for “ �IÓY�® 	̄” (I applied) likely

due to the similar pronunciation of “�” and “ 	¬” at
the start of word, and the dialect-specific pronunci-
ation of “ ��” (qaf) as a glottal stop [P] in Levantine

Arabic, which is similar to “Z” (hamza). Addition-
ally, in Sample 2a, segmentation errors featured
prominently, as seen where “ 	àA¾J
J
ë” should have

been segmented into “ 	àA¿ ù
 ë” (she was). In Sample

2d, “PñÓ

BAK
ñ ���� �� ÉJ.ÓA 	JË AJ. K
P


A�K” exemplifies improper

segmentation, where “ø
 ñ
��” (a little) and “PñÓB@”

(matters) were incorrectly merged as “PñÓ

BAK
ñ ���� ��".

Lexical errors were evident, particularly in Sam-
ple 2b, where “ 	á�
J
ºJ
 ����Ë @” (the Czechs) was incor-

rectly outputted as “Õæ
º ����", missing both the prefix

“È@” (the) and misinterpreting the main noun due to

a phonetic mix-up of “Ð” and “ 	à”, which are both
nasal consonants. Phonetic confusion also occurred
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Reference ÉJ
 	ª ���� �é�®K. A�Ó AêÖÞ� @ 	àA¿ ù
 ë
Transcription [tSaGi:l] [musa:baPat] [Pisme:ha] [ka:n] [hiyye]
ASR Output ÉJ
 	ª ���� �éÒ�JÓ AÖÞ� @ 	àA¾J
J
ë
Transcription [tSaGi:l] [maTmat] [Pisma] [hiyyeka:n]

(a)

Reference 	á�
J
ºJ
 ����Ë @ 	á« ú
¾k@ h@P ��Ó
Transcription [ittSi:kijji:n] [Qan] [Paèki] [ra:è] [miS]
ASR Output Õæ
º ���� 	á« ½gQÓ
Transcription [tSaki:m] [Qan] [marèak]

(b)

Reference AîD
Ê« �IÓY�® 	̄
Transcription [Qalejha] [faqaddamat]

ASR Output ú
Î«
�IÓX


A�

Transcription [Qali] [saPaddamat]

(c)

Reference A��K
Pñ� ú

	̄ PñÓ


B@ ø
 ñ

�� �I ��ÊK. AJ. K
Q�®�K AÓ
Transcription [su:rja] [fi:] [ilPumu:r] [Swayy] [ballaSat] [taqri:ban] [ma]

ASR Output �é��K
Pñ� ú
G. PñÓ

BAK
ñ ���� �� ÉJ.Ò 	JË AJ. K
P


A�K AÓ

Transcription [su:rja] [bi:] [taPri:ba:lnmbal] [SatSwa:ilPumu:r] [ma]

(d)

Table 2: Reference transcription samples compared to the system output produced by our ASR system

in Sample 2d, where “ú

	̄ [fi:]” (in) was replaced

with “ú
G. [bi:]”. In the case of “ AK
Pñ�” (Syria), the

ASR output was “ �éK
Pñ�", only differing by the final
character. These two characters have the same pro-
nunciation in word-final position, so the difference
is just orthographic.

The analysis revealed that the Character Error
Rate (CER) was consistently better than the Word
Error Rate (WER), highlighting that while indi-
vidual characters are often recognized correctly,
the system struggles to assemble these into correct
word forms. This indicates foundational compe-
tence at the character level but significant chal-
lenges in managing the complexity of word forma-
tion, especially considering the morphological and
contextual nuances of North Levantine Arabic.

Whilst some character-level errors seem to be
due to similar phonetic characteristics of different
characters, it is clear that multiple errors can be at-
tributed to Levantine-specific dialectal differences,
most prominently the “ ��” (qaf) and “Z” (hamza) dis-
tinction. These character-level errors impact word-
level recognition and subsequent performance on
the downstream machine translation task.

The prevalence of errors due to dialectal differ-
ences underscores the need to integrate Levantine-
specific training data and develop a dedicated lan-
guage model to handle the nuances brought by di-
alectal variations.

4 Machine Translation

4.1 Data Sources
To train our translation models we make use of a
variety of sources for parallel data including those
provided for the shared task as well as others which
we could find. The datasets used are summarized
in Table 3.

To train our Maltese translation model, we
used a combined dataset of Common Voice (CV)
(Ardila et al., 2020) and MASRI project (Hernan-
dez Mena et al., 2020) (henceforth referred to as
CV+MASRI), both of which were the datasets pro-
vided officially for the shared task. In addition, we
also used OPUS-100, which is a comprehensive
English-focused dataset (Zhang et al., 2020; Tiede-
mann, 2012). The dataset consists of 100 languages
and English is common in every 99 translated lan-
guage pairs. We chose this dataset because of its
vastness, especially considering it offered 1M par-
allel sentences for the English and Maltese pair.
We preprocessed the data to drop any data points
that were empty as well as duplicate instances.

For our Arabic translation systems, we utilized a
range of datasets. Specifically, we used the North
Levantine (APC)-MSA-English textual data pro-
vided for the task (Sellat et al., 2023), along with
the IWSLT 2022 Tunisian Arabic (AEB) speech
translation data (Anastasopoulos et al., 2022). Ad-
ditionally, the MSA data, which was included with
both the Tunisian and Levantine datasets, was also
used. However, since the size of this data was
miniscule, we also incorporated the Arab-Acquis
MSA-English parallel data (Habash et al., 2017).
To further augment the Arabic data, we also incor-
porated the CV+MASRI Maltese dataset, which
was transliterated to match the script of our pri-
mary data as detailed in Section 4.2 (referred to
as MLTARA). We merged datasets from the same
dialect or language obtained from multiple sources
and shuffled them to ensure diversity and random-
ness in our training process.

Since the speech transcriptions do not produce
casing and punctuation information, and the evalu-
ation for the shared task also ignores these features,
we preprocess all translation data as such. For both
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Dataset Train Size Validation Size
CV 3,773 1,235
MASRI 4,811 648
CV+MASRI 8,584 1,883
OPUS-100 672,196 -

(a) Maltese Model

Language/Dialect Train Size Validation Size
APC 99,519 21,081
AEB 173,612 -
MSA 133,074 -
MLTARA 8,886 1,883

(b) Arabic Model

Table 3: Data used to train the MT models and size in number of sentences

languages, preprocessing included text normaliza-
tion such as converting to lowercase and removing
punctuation, while retaining hyphens and apostro-
phes for Maltese datasets, as these characters hold
linguistic significance in Maltese. In addition, for
Arabic we also remove diacritics.

4.2 Transliteration

Following Micallef et al. (2023, 2024), we explored
integrating transliteration of Maltese into Arabic
script, due to the close relationship between Mal-
tese and Arabic as Semitic languages. We took
inspiration from this approach to supplement the
data used for training the Arabic Machine Transla-
tion system. Since Micallef et al. (2024) saw more
promising results when using a mixed pipeline of
transliteration, that involved transliterating Maltese
words of Arabic origin and translating the other
words, we continue with this mixed approach. We
utilize the etymology model and mapping systems
from Micallef et al. (2024). Specifically, we follow
the Xara/Tara pipeline, which transliterates tokens
of Arabic-origin and symbols, translating every-
thing else to Arabic.

However, we make certain modifications to this
to better suit our approach. Firstly, we modify the
translation component by swapping out the pre-
computed word translations from Google Translate
with a pretrained NLLB model (NLLB Team et al.,
2022), as extracting translations using Google
Translate was too expensive, especially consid-
ering the different outputs produced by the ASR
while experimenting. Translation is performed into
Tunisian Arabic (AEB) instead of MSA, using En-
glish as a pivot language. The reason for doing this
is that translating through English generally yields
better results rather than going directly to Arabic,
due to the larger availability of parallel data, and
this is also observed empirically in Micallef et al.
(2024).

Secondly, we merge tokens to more closely re-
flect the way in which Arabic is written, reducing

the signals from Maltese tokenization. For exam-
ple, “u il-kelma” (English ‘and the word’), are writ-
ten together in Arabic script as one word, “ �éÒÊ¾Ë@ð”,

where “ð” is the conjunction corresponding to “u”

(and), “È@” is the definite article corresponding to
“il-” (the), and the rest of the word corresponds
to “kelma” (word). The annotation for such token
mappings from Micallef et al. (2023), includes spe-
cial markers indicating that such words would be
merged in Arabic, so given the 3 tokens u, il-, and
kelma, the system would initially output +ð, +È@,
and �éÒÊ¿, which we merge into a single word. While
Micallef et al. (2023, 2024) ignore this signal as
they mostly deal with token tagging tasks, we use
this signal to merge words. Note that using this
method, punctuation symbols are still space sepa-
rated, but since the data is preprocessed to remove
such symbols, this is not an issue in our case.

We applied the transliteration pipeline to the
Maltese datasets provided for the shared task
(CV+MASRI). The training dataset provided addi-
tional data for training the Arabic MT model. In
addition to the data augmentation benefit of inte-
grating transliterated Maltese (henceforth referred
to as MLTARA) for Arabic-English MT, this also
increases the cross-lingual capacities of our Arabic
MT model, allowing for the evaluation of MLTARA
ASR outputs using the Arabic MT model.

4.3 Approach

We explored various machine translation (MT) sys-
tems for translating North Levantine Arabic and
Maltese into English. Initially, we established a
baseline by fine-tuning the NLLB 1.3B model3

(NLLB Team et al., 2022) on the shared task data,
specifically on the CV+MASRI dataset for Maltese
and the AEB dataset for Arabic.

Subsequently, we experimented with different
fine-tuning strategies. We first attempted a two-

3https://huggingface.co/facebook/nllb-200-1.
3B
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Fine-Tuning Data Dev Set
Stage 1 Stage 2 BLEU ↑

- CV+MASRI 60.3
OPUS-100 - 37.6
OPUS-100 CV+MASRI 60.6

MSA APC+AEB+MLTARA 37.0
(a) Maltese

Fine-Tuning Data Dev Set
Stage 1 Stage 2 BLEU ↑

- APC 34.3
MSA APC 39.5
MSA APC+AEB 37.6
MSA APC+AEB+MLTARA 37.4

(b) Levantine Arabic

Table 4: Machine Translations Results

stage fine-tuning process where we fine-tune with
a large dataset from a different domain or dialect.
For the first stage, we considered the OPUS-100
data for the Maltese model and the MSA data for
the Arabic model, while the second stage included
the same data used for the baseline for both lan-
guages. Additionally, for the Arabic we tested fine-
tuning with a mix of Levantine (APC) and Tunisian
(AEB) data, as well as a combination of Levantine
(APC), Tunisian (AEB), and transliterated Maltese
(MLTARA) data. The training on MLTARA, allows
us to evaluate this system on both the Maltese and
North Levantine development sets.

The same hyperparameters were applied across
both MT systems: a learning rate of 2e-5, and a
weight decay of 0.01. The training was conducted
over three epochs.

4.4 Results and Discussion

Table 4 reports the BLEU scores of the Maltese and
Arabic models on the transcriptions having refer-
ence translations from the respective development
sets for Maltese and North Levantine Arabic.

The results for Maltese are reported in Table 4a.
We see that fine-tuning using OPUS-100 only,
is detrimental compared to the baseline system
trained only on CV+MASRI. However, including
both OPUS-100 and CV+MASRI yields the best
performance. Furthermore, when evaluating the
Arabic model trained on transliterated Maltese, in
addition to other Arabic data, we observe that it is
the worst-performing model. However, the perfor-
mance is quite comparable to that obtained for the
model fine-tuned only on OPUS-100.

Table 4b shows the performance of each of the
experimented machine translation systems on the
APC validation set. Among the experimented meth-
ods, the best performance on the North Levantine
Arabic development set was achieved using the two-
stage fine-tuning process that started with MSA
data followed by Levantine data.

An important observation that arose from our ex-
perimentation was the impact of adding MLTARA
data to the training of the Arabic MT system. We
can see that the system fine-tuned firstly on MSA
data and subsequently on APC, AEB, and MLTARA
gave very competitive results for Arabic MT, with
a difference in dev performance of just 0.2 BLEU
compared to the same system without MLTARA
data. By comparison, the same system performed
comparably to Arabic on the Maltese dev set (after
being transliterated) with a BLEU of 37.0. Whilst
the machine translation systems fine-tuned specif-
ically for Maltese still significantly outperformed
the Arabic system fine-tuned with MLTARA data,
we note that adding MLTARA data in the fine-tuning
of Arabic MT systems can vastly improve the cross-
lingual capacity of the model, with substantial ben-
efits to the performance on Maltese, and very little
impact on the MT performance for Arabic.

5 Speech Translation Pipeline

Following our evaluation on individual tasks in
Sections 3 and 4, we now combine both systems by
first getting the transcription using an ASR system
and then passing this transcription through the MT
system to get the translation. The best-performing
ASR and MT systems on our validation sets were
selected for the pipelines.

For Maltese, we only choose the MT sys-
tem trained with the 2 stage training, OPUS-
100+CV+MASRI (which we refer to as MLTLAT)
and combine it with the ASR systems with the
3-gram, 4-gram, and 6-gram models, to com-
pose our Primary, Contrastive 1, and Contrastive
2 systems, respectively. For North Levantine
Arabic, we use the only trained model for ASR,
paired with all 3 MT systems which made use
of 2 stage training, namely MSA+APC+AEB,
MSA+APC+AEB+MLTARA, and MSA+APC, to
compose our Primary, Contrastive 1, and Con-
trastive 2 systems, respectively. Table 5 sum-
marises the results obtained with these pipelines on
the development and testing sets, on ASR only and
Speech Translation (ASR+MT). For the Arabic test
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Pipeline ASR System MT System Dataset Dev Set Test Set
WER ↓ BLEU ↑ WER ↓ BLEU ↑

Primary 3-gram MLTLAT

CV 0.098 58.4 0.094 60.9
MASRI 0.239 42.9 0.233 43.9
CV+MASRI 0.10 52.1 0.143 52.4

Contrastive 1 4-gram MLTLAT

CV 0.097 58.4 0.094 60.9
MASRI 0.239 42.9 0.233 43.9
CV+MASRI 0.10 52.1 0.143 52.4

Contrastive 2 6-gram MLTLAT

CV 0.096 58.3 0.093 60.9
MASRI 0.238 42.7 0.234 43.7
CV+MASRI 0.11 51.9 0.143 52.3

(a) Maltese

Pipeline ASR System MT System Dev Set Test Set
WER ↓ BLEU ↑ BLEU ↑ COMET ↑ ChrF ↑

Primary Common Voice MSA+APC+AEB 1.08 5.0 4.74 53.69 24.10
Contrastive 1 Common Voice MSA+APC+AEB+MLTARA 1.08 4.8 5.09 53.78 24.50
Contrastive 2 Common Voice MSA+APC 1.08 3.7 3.53 51.96 21.56

(b) North Levantine Arabic

Table 5: Speech Translation Pipeline Results

set, only Speech Translation results were provided.
As seen in Table 5a, all Maltese systems per-

form competitively with each other. Similar to the
findings for the ASR system reported in Section 3,
the Primary and Contrastive 1 systems get the best
results with the 3-gram and 4-gram models, and
the Contrastive 2 system is slightly behind with
the 6-gram model. The best systems obtain 52.4
BLEU on the test set.

The results on the North Levantine Arabic data
are shown in Table 5b. The systems all achieve low
overall BLEU scores, due to the poor performance
on ASR as outlined in Section 3. With a pipeline,
we observe that using APC data only in addition to
MSA performs the worst (Contrastive 2), and that
adding data from other languages and dialects we
achieve better BLEU scores with the Primary and
Contrastive 1 systems.

6 Conclusion

Overall, this paper presented our findings for Mal-
tese and North Levantine Arabic spoken language
translation into English with a pipeline system in
the unconstrained setting for the 2024 IWSLT low-
resource track shared task. For our approach we
fine-tune a Wav2Vec 2.0 XLS-R model for ASR,
and an NLLB model for MT. We enhance the ASR
model by correcting the outputs with a language
model. Moreover, we augment the MT data from

additional sources and employ a two-stage fine-
tuning process to improve performance. Addition-
ally, we exploit the cross-lingual similarities be-
tween Maltese and Arabic by transliterating Mal-
tese to Arabic script, observing interesting perfor-
mance boosts.

In terms of limitations, the lack of training data
for North Levantine Arabic impeded the progress
of our ASR system. By using MSA to train our
Arabic ASR models, the resulting system strug-
gled with non-standard pronunciation and dialect-
specific variation. Furthermore, the absence of test-
ing data for Tunisian Arabic hindered our models
considering its close similarity with Maltese.

More general improvements could be undertaken
in future work such as hyper-parameter tuning and
supplementing currently available data with back-
translation. Rather than relying solely on paral-
lel data, implementing backtranslation with larger
monolingual corpora holds promise for improving
the MT systems discussed in this paper.
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