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Abstract

We propose a pretraining method to use Self-
Supervised Speech (SSS) model to creating
more compact Speech-to-text Translation. In
contrast to using the SSS model for initializa-
tion, our method is more suitable to memory
constrained scenario such as on-device deploy-
ment. Our method is based on Discrete Speech
Units (DSU) extracted from the SSS model. In
the first step, our method pretrains two smaller
encoder-decoder models on 1) Filterbank-to-
DSU (Fbk-to-DSU) and 2) DSU-to-Translation
(DSU-to-Trl) data respectively. The DSU thus
become the distillation inputs of the smaller
models. Subsequently, the encoder from the
Fbk-to-DSU model and the decoder from the
DSU-to-Trl model are taken to initialise the
compact model. Finally, the compact model
is finetuned on the paired Fbk-Trl data. In ad-
dition to being compact, our method requires
no transcripts, making it applicable to low-
resource settings. It also avoids speech dis-
cretization in inference and is more robust to
the DSU tokenization. Evaluation on CoVoST-
2 (X-En) shows that our method has consistent
improvement over the baseline in three met-
rics while being compact i.e., only half the SSS
model size.

1 Introduction

In Speech-to-text Translation (ST), using Self-
Supervised Speech (SSS) models, such as wav2vec
2.0 and HuBERT (Baevski et al., 2020; Hsu et al.,
2021), as model initialization is now common to
obtain the SOTA result (Agarwal et al., 2023). Nev-
ertheless, such model initialisation makes the ST
model less memory-adaptive and could impose a
large memory footprint. These factors hinders on-
device deployment that is crucial for privacy and
useful in the absence of internet connection.

How can we use the SSS model(s) to create
a more compact ST model? When using the
SSS model for initialization, the corresponding ST

model uses the dense representations of the SSS
model for its task. Alternatively, an informative
proxy, which requires less memory to obtain, for
the dense representation may make the ST model
more compact.

Discrete Speech Units (DSU) extracted from the
SSS model can be such a good proxy. DSU are
K-Means clusters of speech representations from
selected layers of the SSS model. It represents
sequence of discrete tokens, which are easier to
model within a text processing architecture (Polyak
et al., 2021; Chou et al., 2023). DSU sequences1

are far smaller than the sequences of dense repre-
sentations. Therefore, a straightforward method
to distill the SSS models is to use DSU as speech
inputs, aka the DSU-to-Translation (DSU-to-Trl)
model. Although using DSU as inputs allows for
transfer learning and a memory-adaptive model, us-
ing them at inference still requires storing and call-
ing the quantization modules, i.e, the SSS model
and the K-Means model.

We thus propose to use DSU for pretraining (PT)
rather than as model input to make ST models more
compact. Our method distils the SSS model by pre-
training smaller models on the corresponding DSU.
More specifically, our method firstly pretrains two
smaller encoder-decoder models on 1) Filterbank-
to-DSU (Fbk-to-DSU) and 2) DSU-to-Trl data re-
spectively. The DSU thus become the distillation
inputs of the smaller models. Subsequently, the en-
coder from the Fbk-to-DSU model and the decoder
from the DSU-to-Trl model are taken to initialise
the compact model. Finally, the compact model is
finetuned on the paired Fbk-Trl data. Under this for-
mulation, (1) we can use the SSS model to create a
ST model that is adaptive to the memory footprint.
(2) Our method requires no transcripts, unlike ASR-
pretraining, making it applicable to low-resource

1In this paper, DSU and DSU sequences are used inter-
changeably. When we need to focus on a few units of the
sequence, we call them DSU tokens.
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settings. (3) Our method avoids using the quanti-
zation modules in inference. (4) Extensive results
also show that our method is more robust to DSU
tokenization than the DSU-to-Trl method.

We evaluate our method on CoVoST-2 (Wang
et al., 2021) X-En language directions (21 in total)
using multilingual ST. By using a HuBERT-Base
model to extract the DSU, our method shows strong
and consistent improvements in three evaluation
metrics with respect to a ST model that is trained
from scratch. Our main contributions are:

• We propose a pretraining method to distil the
SSS model to creating a more compact ST
model. Rather than competing with the SOTA
ST models, adaptability to the memory foot-
print is our key focus.

• Our method uses DSU for pretraining rather
than as model inputs. This lowers the infer-
ence cost, especially for on-device purpose,
by avoiding the quantization modules (storage
and running).

• We conduct extensive analysis to study the
effect of DSU tokenization to both using DSU
as model inputs and as pretraining. Our pre-
training method is found to be more robust to
different tokenizations.

2 Related Work

There are a number of related works that use DSU
to enhance ST. Fang and Feng (2023) and Zhang
et al. (2023b) use DSU to create more training data
in a back-translation fashion. Chang et al. (2023)
and Zhang et al. (2023b) explore the replacement
of Filterbank by DSU as speech input. Further-
more, Yan et al. (2024) proposes a multi-tasking
learning framework with hard parameter sharing,
i.e., using a joint vocabulary for text tokens and
DSU, to improve the speech-text modality gap. In
contrast, we use DSU and its translation model for
pretraining, resulting in a better Fbk-to-Trl model
that has a shorter inference pipeline.

In the case of pretraining, Wu et al. (2023) use
a single Speech-to-DSU model in pretraining for
general speech-to-text purposes whereas we tailor
the use for ST by using a pair of encoder-decoder
models. Zhang et al. (2022b) also decompose ST
into speech-to-unit and unit-to-text tasks. Their
training is based on masked unit prediction, and it
requires an extra unit-encoder module in inference.
In contrast, we resort to supervised training on the

DSU in acoustic pretraining and require no extra
module in inference. More importantly, our goal is
to make (multilingual) ST more compact, aiming
also at low-resource settings where transcripts are
not easily available, rather than learning a joint
semantic space for both transcripts and audios.

3 Method

Figure 1: Illustration of the Fbk-to-DSU model. It is
like an auto-encoding training process, but between a
continuous format (log Mel Filterbank) and its discrete
format (DSU) that is extracted from a HuBERT model.

Our method uses DSU in the form of pretraining
to distil knowledge from the SSS (dense) represen-
tations to creating a more compact ST model.

In the first step, our method pretrains two smaller
encoder-decoder models on 1) Fbk-to-DSU and 2)
DSU-to-Trl data respectively. The Fbk-to-DSU
model takes the log Mel Fbk as the encoder in-
put and predicts the DSU sequence. The model is
trained by an interpolation of Connectionist Tem-
poral Classification (CTC, Graves et al. (2006))
loss that is applied to the last encoder layer and
label-smoothed Cross-Entropy (CE) loss:

LFbk-to-DSU = (1−λα)LCE(U|F)+λαLCTC(Ũ|F)
(1)

where F ∈ RTxD, U ∈ U and Ũ ∈ Ũ =
{U , blank} are the Fbk, DSU and the CTC label
sequences respectively. The CTC vocabulary cor-
respond to an union of the same vocabulary used
in the CE loss and a blank label. The idea is simi-
lar to an autoencoder, but the Fbk-to-DSU model
is trained to map the Fbk inputs to its discrete
form from the SSS model in a multi-task learn-
ing fashion (Figure 1). The DSU-to-Trl model
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learns via CE to predict the translations Y given
U: LDSU-to-Trl = LCE(Y|U). In essence, we use
the DSU to bridge the speech and text modalities.

Next, we use the encoder of the Fbk-to-DSU
model and the decoder (and its output layer) of the
DSU-to-Trl model to initialise the compact model,
followed by finetuning on the paired Fbk-Trl data
using both CE and CTC loss (Gaido et al., 2021;
Zhang et al., 2023a) on the translations:

LFT = (1− λβ)LCE(Y|F) + λβLCTC(Ỹ|F) (2)

where Ỹ ∈ Ỹ = {Y, blank}.

3.1 Tokenization of DSU in different models

Figure 2: Aligning the DSU tokenization of the Fbk-to-
DSU, DSU-to-Trl and compact ST model.

The discrete nature of DSU makes the above
training process similar to the transcripts-based
pretraining. However, DSU is self-supervised,
whereas transcripts require human annotations.
DSU are also much longer and can be represented
with various sets of symbols.

The length issue could be relieved by merging
sequential repetitions (Ao et al., 2022), e.g., ’#1 #1
#1 #456 #456 #23’ becomes ’#1 #456 #23’, where
each DSU token is denoted by a #{integer}. Byte
Pair Encoding (BPE) (Sennrich et al., 2016) could
be applied to reduce the DSU sequence length fur-
ther, e.g., ’#1 #456 #23’ could be split into a single
subword unit: ’#1#456#23’.

Since both Fbk-to-DSU and DSU-to-Trl models
map to different targets, and DSU can be repre-
sented with various set of symbols, we align the
tokenizations (or called vocabularies2) of the two
models. Figure 2 provides an illustration. The vo-
cabulary of the Fbk-to-DSU model (Vocabulary A)
is identical to the source vocabulary of the DSU-to-
Trl model (their weights are not shared since these
two models are trained independently), whereas

2We use vocabulary and tokenization interchangeably,
since we did not apply subword regularisation.

the target vocabulary (Vocabulary B) of the DSU-
to-Trl model is identical to the target vocabulary of
the final compact model (their weights are shared
during initialisation). The DSU-to-Trl model is
similar to a text translation model, so we also ex-
periment of using separate vocabularies or a joint
vocabulary. If a joint vocabulary of English sub-
word units and DSU (BPE or not) is used, all the
three models would have the same vocabulary, and
the weights of the source and target vocabularies
of the DSU-to-Trl model are also tied.

4 Experiments

4.1 Data Preprocessing

We follow standard practices to preprocess the
CoVoST-2 X-En data. For speech inputs using
80-D log Mel Fbk, we computed the features for
every 10ms with a 25ms window and then normal-
ized them using its mean and variance computed
over each channel. We use the BPE implementa-
tion from SENTENCEPIECE (Kudo and Richardson,
2018) and obtain vocabulary of size 8K on the En-
glish target, 16K on the (non-English) transcripts
and 32K on the DSU, unless otherwise specified.

We use HuBERT-Base3 model to extract the
DSU by first downsampling the CoVoST-2 au-
dio to 16KHz. Each audio data utterance is then
converted into the DSU, i.e., the clustering in-
dexes, by applying K-Means clustering (K=1, 000;
MiniBatchKMeans from SKLEARN) on its Hu-
BERT representation from the 6th layer (Lakhotia
et al., 2021). To train the K-Means model, we di-
vide the 21 language pairs into three groups: 1) {ar,
cy, et, id, ja, lv, mn, sl, sv, ta, tr}, 2) {nl, pt, ru,
zh} and 3) {ca, de, es, fa, fr, it}. We then sample
1K instances for each language pair in group 1),
which becomes 3K in group 2) and 12.5K in group
3), to create a multilingual training dataset of 98K
instances for the K-Means model.

4.1.1 On the choice of using HuBERT-Base
Given the rapid advance in the SSS models, there
are many alternatives, such as XLS-R (Babu et al.,
2021) and Wavlm (Chen et al., 2022), for extracting
the DSU for our method. These models are larger
in scale and could be multilingual, thus provid-
ing DSU of higher qualities. The improvement of
our method by using DSU from the HuBERT-Base
would probably be a lower-bound, considering its

3https://github.com/facebookresearch/fairseq/
tree/main/examples/textless_nlp/gslm/speech2unit
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relatively poor qualities to the bigger models. Since
our goal is about compactness via DSU pretrain-
ing rather than comparing the DSU qualities across
the SSS models, we took a simple HuBERT-Base
model to illustrate the idea. Pretraining only on En-
glish audio data could also suggest hints on whether
the DSU and our method could be generalised to
languages that are unseen to the SSS models.

4.2 Model Configuration

All models are based on Transformer (Vaswani
et al., 2017) with implementations from FAIRSEQ

(Ott et al., 2019; Wang et al., 2020). In the Fbk-
to-Token (i.e. transcriptions, DSU, or translations)
models, the encoder has convolutional layers to
downsample the Fbk by a factor of 4. There are
12-6 layers in the transformer encoder-decoder,
whereas the embedding and feed-forward network
(FFN) dimensions are 256 and 4, 096 respectively,
unless otherwise specified. It is worth noting that:
(1) The Fbk-to-DSU model is not trained on the
translations, so it is not directly comparable to the
ST models. Its effect on ST lies on its pretrained en-
coder (Table 2). (2) The DSU-to-Trl model is a ST
model which decoder can be used for initialization.

Scratch is a ST model trained on the paired speech-
translation data without pretraining.

ASR Pretraining refers to a ST model whose en-
coder is initialized by a speech recognition task
with CTC regularisation on the transcripts.

DSU-to-Trl follows the Transformer used in text
translation. We use 6-6 layers in the encoder-
decoder which the dimension of embedding and
FFN is 256 and 2, 048 respectively. In addition, we
use "pre" layer-normalization (Nguyen and Salazar,
2019). Despite its smaller model size, its inference
requires the quantization modules.

Hu-Transformer uses the entire HuBERT as
the speech encoder initialization (Fang and Feng,
2023). For comparison to our DSU-Adapter, its
subsequent encoder-decoder also has 1-6 layers.

DSU-Adapter is our proposed method. To better
align the two pre-trained components, we also ex-
periment with adding an extra encoder layer as a
simple adapter layer after the pre-trained encoder.
Because of the small model size, all model param-
eters are trainable. Since its decoder is initialized
by the DSU-to-Trl method, its decoder FFN dimen-
sion is 2, 048.

Enc-Init is a ST model that has its encoder initial-
ized by the Fbk-to-DSU encoder. EncDec-Init is a
DSU-Adapter model without the adapter layer.

4.3 Training and Inference

It is worth noting that we do not use extra audio
data, e.g., Libri-Light (Kahn et al., 2020) in our
(pretraining) experiments. Furthermore, we apply
the following conditions in (pre-)training:

• We skip training data that are longer than 30
seconds (audio) or 1, 024 target tokens.

• We apply SpecAugment (Park et al., 2019)
with parameters: {F = 30, T = 40,mF =
2,mT = 2} on Filterbank inputs.

• We share the embedding weights when using
a joint vocabulary in the DSU-to-Trl model.

• We set λα and λβ in CTC to 0.3 and the
smoothing parameter to 0.1

• We initialize the encoder (decoder) with the
last (best) checkpoint from the PT model.

• We use Adam optimizer with inverse square
root scheduler for all model training.

• In all Fbk-to-Token models, the effective mini-
batch size, warm-up steps, peak learning rate
and training steps are 32K frames, 25K, 2e−3
and 60K steps respectively.

• Similarly, in all DSU-to-Trl models, we use
80K tokens, 10K, 5e−4 and 50K steps.

• Similarly, in Hu-Transformer, we use 4M
frames, 4K, 1e−4 and 300K steps.

In inference, we average the last 5 checkpoints and
use beam size of 5 in generation. All experiments
are run on Nvidia A100 GPUs. It takes about 1 day
for 2 A100 (40GB) GPUs to complete an experi-
ment that uses Filterbank as speech inputs.

5 Results and Analysis

Before discussing the results, it is worth noting
that (1) Hu-Transformer is not memory-adaptive,
and (2) ASR-Pretraining requires transcripts, un-
like DSU which is self-supervised. Both methods
are introduced for reference purposes of if such
resources are available.

165



AST model (#Params)
BLEU chrF COMET-22-DA

High Mid Low All High Mid Low All High Mid Low All

Scratch (52M) 19.4 7.91 0.73 5.99 43.6 27.2 14.6 23.1 0.605 0.498 0.433 0.481
ASR-Pretraining (52M) 26.5 12.2 1.82 9.00 51.9 32.8 16.4 27.1 0.680 0.537 0.443 0.511
Hu-Transformer (113M) 24.3 11.4 2.18 8.60 49.9 31.9 17.0 26.8 0.650 0.522 0.439 0.499

DSU-Adapter (48M) 26.5 12.9 1.76 9.13 52.1 33.9 16.5 27.4 0.681 0.548 0.442 0.513

Table 1: Results in BLEU, chrF and COMET-22-DA on the test set of CoVoST-2 (X-En) by resource group. In all
metrics, DSU-Adapter is much better than Hu-Transformer, which is 2.3 times larger, in both "High" and "Mid"
groups. DSU-Adapter, which does not requires transcripts in training, is also on a par with ASR-Pretraining. The
best result in each group is denoted by ’_’.

5.1 Improvement brought by DSU-Adapter

We divide the 21 language pairs by resource level
into: 1) "High": {ca, de, es, fr}, 2) "Mid": {fa, it,
pt, ru and zh}, 3) "Low": {ar, cy, et, id, ja, lv, mn,
nl, sl, sv, ta, tr} and 4) "All": the 21 languages pairs.
We report the average BLEU4 and chrF5 over the
test sets of each group using SACREBLEU (Post,
2018). In addition, we also provide the result in
WMT22-COMET-DA (Rei et al., 2022), which the
source inputs are the gold-reference transcripts.

Table 1 compares our DSU-Adapter and the base-
lines. Our DSU-Adapter is 3 BLEU (in the group
"All") higher than the Scratch model. This shows
that our proposed method of using DSU-pretraining
can strengthen direct end-to-end ST without requir-
ing transcripts and remain flexible in memory foot-
print (smaller in size than the HuBERT model).
Furthermore, it is better than Hu-Transformer in
spite of having half the parameters. For "Mid"
and "High", the improvement in BLEU is 1.49 and
2.23 points respectively, but it falls short by 0.42
points for "Low". We also compare to ASR pre-
training, which is not always applicable, e.g., in
low-resource setting or perhaps even in an unwrit-
ten language (Zhang et al., 2022a). Surprisingly,
our adapter is on a par with it, and its BLEU is 0.13
points better. The result remains consistent when it
is measured in chrF and COMET.

5.1.1 Language-specific performance
Figure 3 shows the performance on each language
pair in BLEU, chrF and COMET-22-DA. Our DSU-
Adapter (in green triangles) show consistent im-
provement over the Scratch model (in blue circles)
in all language pairs. Such improvement is rather
surprising since HuBERT-Base was trained solely
on English audio data. We hypothesized that the

4nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1
5nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.3.1

cross-lingual improvement is related to HuBERT’s
ability to capture language independent features,
e.g. phonetic properties (Pasad et al., 2023).

Compared with Hu-Transformer, DSU-Adapter
maintains an evident improvement over most lan-
guage pairs in both "High" and "Mid" groups. Ex-
ceptions are in "fa" and "pt", but the lags are al-
most negligible. In group "Low", Hu-Transformer
is slightly better, especially in "nl" and "sv" pairs.
However, most translation in this group is barely
around 2 BLEU, and the lags are small.

In most language pairs, DSU-Adapter performs
similarly to ASR-pretraining (in red diamonds),
except translating from "ru" audios. The improve-
ment in this "ru-en" pair makes DSU-Adapter to
have an evident advantage of 0.7 BLEU in the
group "Mid".

5.2 Tokenization effect to the DSU-to-Trl
method and the DSU-Adapter method

In this section, we investigate how tokenization,
including BPE, affects the DSU-to-Trl method and
the DSU-Adapter method. We are particularly in-
terested in their robustness toward the tokenization,
especially using BPE on the DSU, since tuning the
quantization process and retraining the subsequent
models is computationally expensive.

In Table 2, the 1st column "Has BPE on DSU?"
indicates if BPE is applied on the DSU. If "Yes",
multiple DSU could be merged into one subword
unit, e.g., ’#1 #456 #23 #999’ could be merged into
’#1#456#23#999’. The 2nd column "|V|" shows
the vocabulary configuration: its size, and if the
model has a joint vocabulary. For example, "1K-
8K" means that we use a vocabulary of size 1K
for DSU and a second vocabulary of size 8K for
English so that the DSU-to-Trl model would have
separate vocabularies for the source (DSU) and
target (English) sides. All results are in BLEU
averaged over all language pairs, i.e., group "All".
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Has BPE |V| DSU Length DSU-to-Trl Enc-Init EncDec-Init DSU-Adapter
on DSU? Length Ratio (20M to 27M) (52M to 70M) (46M to 64M) (48M to 67M)

No

1K-8K 176 12.9 6.73 7.70 7.87 8.54
1K-16K " 14.1 6.36 7.50 8.00 8.43
1K-32K " 14.9 6.30 7.23 7.65 7.94

8K " 12.7 6.88 7.64 8.05 8.26
16K " 14.0 6.33 7.41 7.91 8.17
32K " 14.9 6.26 6.66 7.41 7.68

Yes

1K-8K 221 16.3 4.52 8.23 8.44 8.61
16K-8K 129 9.5 5.06 8.51 8.76 8.95
32K-8K 115 8.5 4.43 8.67 9.02 9.13

8K 150 7.6 7.02 8.33 8.51 8.82
16K 133 7.7 6.50 8.57 8.61 8.93
32K 118 7.8 5.07 8.30 8.44 8.70

Table 2: (DSU) tokenization effect on 4 ST methods. Each ST model’s performance on the CoVoST-2 test set is
measured by BLEU on group "All". All 4 methods could perform better than the Scratch model of 5.99 BLEU as
shown on Table 1. In general, darker (brighter) cells refer to weaker (stronger) models. The best two models apply
both BPE on the DSU and separate vocabularies in PT (cells in yellow).

5.2.1 DSU-to-Trl: robust to tokenization?
When BPE is not applied on the DSU, those 6 DSU-
to-Trl models have 6.48 ± 0.26 BLEU. Despite
having smaller model size (<30M), they are better
than the Scratch model of 5.99 BLEU.

When BPE is applied, the sequence length of
DSU (DSU Length) could be shortened, which
could in turn improve the performance, e.g. the
best DSU-to-Trl model happens at configuration
"8K" with 7.02 BLEU. However, the DSU-to-Trl
method is quite unstable to the use of BPE, as
reflected by the 5.12 ± 0.83 BLEU in the other
5 configurations. The correlation between the DSU
sequence length, the source-target length ratio, and
the ST performance is also not straightforward. For
an example, the "32K" model (DSU length of 118)
is about 2 BLEU behind to the "8K" model (DSU
length of 150). Therefore, applying BPE on the
DSU for length reduction should remain cautious.

5.2.2 The DSU-Adapter is more robust
Unlike DSU-to-Trl method, DSU-Adapter benefits
more when BPE is applied to the DSU. Our pro-
posed method has 8.86 ± 0.19 BLEU (over the 6
corresponding configurations), as opposed to 8.17
± 0.32 BLEU when BPE is not applied. This obser-
vation is opposed to the DSU-to-Trl method which
only scores 5.54 ± 1.07 BLEU (with also larger
variance) when BPE is applied on the DSU but
6.48 ± 0.26 when BPE is not used. The improved
mean score and its smaller variance suggests that

the DSU-Adapter method is more (DSU) tokeniza-
tion robust. We see this as a benefit of introducing
the DSU, i.e., the SSS model knowledge, via PT
rather than as model inputs.

On top of applying BPE on the DSU, using sepa-
rate vocabularies in PT is preferred (the two yellow
cells on Table 2) since it performs slightly better,
and the DSU, which are not needed in the ST out-
put, would not occupy the target vocabulary.

5.2.3 Ablation: initialisation in DSU-Adapter
Having similar model sizes, e.g. about 50M pa-
rameters (Table 2), DSU-Adapter is better than
both EncDec-Init and Enc-Init methods. The trans-
lation performance in BLEU (averaged over the
12 vocabularies) is 8.51 ± 0.44, 8.22 ± 0.51, and
7.99 ± 0.61 respectively. Encoder-initialization
seems more crucial than decoder-initialization, as
reflected by the fact that the best DSU-Adapter
model comes from a combination with the weakest
DSU-to-Trl model of 4.43 BLEU.

5.3 Is CTC applicable also to DSU?

Similar to ST methods that use pretrained compo-
nents, our method could be limited by the pretrain-
ing modality gap (Liu et al., 2020; Le et al., 2023).
Motivated by prior works, we investigate mitigat-
ing it with CTC. A crucial difference to the prior
works is that our method uses DSU for pre-training
rather than transcripts.

We thus study applying CTC in our method at
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Has CTC in High Mid Low AllDSU PT? ST FT?

No No 25.81 9.91 1.46 8.14
No Yes 26.10 11.35 1.69 8.71
Yes No 25.94 10.82 1.51 8.44
Yes Yes 26.12 11.53 1.73 8.74

Table 3: Effect of CTC on Fbk-to-DSU PT and/or ST FT
to the DSU-Adapter method. All results are in BLEU
and the best in each group is denoted by ’_’.

different training stages. Owing to the large num-
ber of vocabulary configurations on Table 2, we
only experiment with: 1) "No-BPE 1K-8K", 2)
"BPE 8K", 3) "BPE 32K" and 4) "BPE 32K-8K".
In each training stage, we report the effect of CTC
to the ST performance (per resource group) by av-
eraging the BLEU of these 4 configurations.

Table 3 presents the analysis of applying CTC
on our DSU-Adapter method. The training con-
dition "Has CTC in DSU PT" refers to the case
of applying CTC on the discrete speech units in
Fbk-to-DSU pretraining, whereas "Has CTC in ST
FT" refers to the case of applying CTC on the
translations in ST finetuning, i.e., on the paired
Fbk-Trl data. Our result shows that CTC helps on
either stage, but the gain is 0.27 BLEU more in ST
finetuning. Using them jointly still helps, but the
marginal gain is barely 0.03 BLEU.

6 Limitations and future works

In the previous sections, we discuss the noticeable
benefits of our DSU-pretraining method in creating
a more compact ST model. In spite of this, there
are several factors that are not thoroughly explored
and could improve the model performance further:

K-Means clustering We did not inspect the clus-
tering size (fixed to 1, 000) and the number of train-
ing instances (only fixed to 98, 000) used in train-
ing the K-Means clustering model. Apart from tun-
ing its hyper-parameters, using other techniques,
such as residual vector quantisation (Zeghidour
et al., 2021; Défossez et al., 2022) and multiple
codebooks (Guo et al., 2023), might bring better
improvement.

Other acoustic encoders We did not experiment
other acoustic encoders, such as conformer (Gulati
et al., 2020; Papi et al., 2023) and E-Branchformer
(Peng et al., 2023). This stronger encoders should
provide further gains for our method since they also
enjoy the benefit of pretraining.

A stronger pretrained decoder Apart from
strengthening the encoder, the DSU-to-Trl model
and hence its decoder (used in initialisation) could
also be improved, e.g. via back-translation, up-
sampling the textual sequence (Yan et al., 2024)
and pretraining with more text data, while main-
taining the small decoder size.

Further analyses In addition to improving our
pretraining method for better model compactness,
there are other related research directions worth
further analyzing. One direction would be how,
in terms of acoustic pretraining, DSU compared
with transcripts (if available in that language) over
different data scales. Another interesting research
direction would be the comparison and analysis of
using DSU or dense features in a large pretrained
model setting, such as Whisper (Radford et al.,
2023) and Large Language Models.

7 Conclusion

In this paper, we consider a memory-constrained
setting for ST. Our proposed method uses DSU in
the form of pretraining to distil the knowledge from
the Self-Supervised Speech model to creating more
compact Speech-to-text Translation. Our compact
model, i.e., the DSU-Adapter, shows strong and
consistent improvements in three evaluation met-
rics over the baselines. In contrast to using DSU
as model inputs, our method does not require quan-
tization modules in inference and shows stronger
robustness to the DSU tokenization. Finally, our
method requires no transcripts, making it also suit-
able for low-resource setting.
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