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Abstract

We created a collection of speech data for 48
low resource languages. The corpus is ex-
tracted from radio broadcasts and processed
with novel speech detection and language iden-
tification models based on a manually vetted
subset of the audio for 10 languages. The data
is made publicly available. 1

1 Introduction

While automatic speech recognition systems have
seen great gains in recognition accuracy, even un-
der challenging acoustic conditions, this success is
highly uneven across the languages in the world.
For many languages in the world, even reliable
audio training data is not easily available.

Motivated by this, we set out to collect and make
publicly available speech data for languages that
fall below the top one hundred languages, broadly
measured by number of speakers and commercial
relevance. We present a novel audio data set for
48 low resource languages. We report on manual
efforts to vet collected audio data as well as auto-
matic methods to extract speech from mixed audio
data (especially discarding music) and language
identification.

We collected this data mostly from radio broad-
casts by recording audio streams available at Ra-
dio Garden2. These audio broadcasts are identi-
fied by location which gives us some guidance to
which broadcasts are likely to contain audio in a
desired language. We record audio snippets of 10–
60 seconds in length. Since much of the audio

1https://huggingface.co/datasets/jhu-clsp/
radio-broadcast

2https://radio.garden/

data contains music, we developed a speech de-
tection model to automatically identify audio files
that consist of speech data and not music or other
non-speech data.

Since there are no reliable speech language iden-
tification models or even identified speech data for
a subset of these languages, we manually vetted
audio data for 10 languages to create a corpus of
about 5 hours of audio per language that has been
verified by native speakers to be speech in each of
the targeted languages.

With these tools in place (speech crawling,
speech detection, speech language identification),
we scaled up the effort to 48 languages. The result-
ing corpus of speech data consists of about 3000
hours of clean raw speech suspected to be in these
low-resourced languages. Upon further filtering
with language identification (LID) systems, this
results in about 450 hours of clean speech.

2 Related Work

Foley et al. (2024) use audio data from Radio
Garden to learn a mapping from speech to a ge-
ographic location. Conneau et al. (2022) create
a dataset of 101 languages by recording audio
from native speakers. The audio recorded stems
from the Flores-101 dataset which consists of En-
glish sentences from Wikipedia translated into 101
languages. Pratap et al. (2023) introduce a mas-
sively multilingual dataset for over 1000+ lan-
guages based on recordings of publicly available
religious texts. They further train self-supervised,
automatic speech recognition, text-to-speech syn-
thesis, and language identification models on this
dataset. Radford et al. (2022) introduce a large-
scale multilingual weakly supervised dataset con-
sisting of about 680k hours of audio for speech
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recognition. They showed that scaling the amount
of data greatly improves the performance and ro-
bustness of speech recognition systems.

Unlabeled speech data has many uses in building
speech applications. Representation learning meth-
ods like HuBERT (Hsu et al., 2021) and w2v-BERT
(Chung et al., 2021) use raw speech data to distill
semantic speech tokens from audio. Large-scale
models such as Whisper (Radford et al., 2022),
MMS (Pratap et al., 2023), or Seamless (Commu-
nication et al., 2023) rely partly on raw speech data
to scale to hundreds of languages.

3 Corpus Collection

The sources of our data are radio broadcasts that are
transmitted freely over the Internet. We use Radio
Garden to discover and identify stations that broad-
cast in languages we target. Radio Garden iden-
tifies radio stations with the location from which
they broadcast — which provides a pool of candi-
date stations for each language, based on the region
where the language is spoken. The broadcasts are
accessible through an API call.

We filter this pool of candidate stations by check-
ing manually if they likely broadcast in the targeted
language (opposed to, say, English) or exclusively
broadcast music. Since this effort often relies on
researchers that are not familiar with the languages,
the process is necessarily imperfect. Another ob-
stacle is that some radio station broadcasts are not
reliably delivered over the Radio Garden platform,
leading to gaps in the data collection.

We break up the audio signal into segments of
different lengths, ranging from 10 to 60 seconds.
The raw audio is also converted to the FLAC files
and re-sampled to 16kHz. We collected this data
throughout 2023 and early 2024.

4 Speech Detection

To filter out audio files containing music, we use
a convolutional recurrent neural network (CRNN)
(Hung et al., 2022) which was trained on a high-
quality dataset (Hung et al., 2022) of speech and
music activity labels. The CRNN model predicts
the probability of music and speech for each audio
frame.

We also use a feature-based model that calcu-
lates the average energy in each chunk of the audio
spectrogram. This energy level indicates the in-
tensity of the audio within that chunk. Chunks

with energy levels higher than 0.5 are classified as
music.

We set the detection threshold of the CRNN
model to 0.9 and that of the feature-based model
to 0.5. Audio files classified as not having music
in them by both models are kept and the rest are
discarded.

5 Manual Vetting

We are addressing several languages for which
we do not have reliable language identification
methods, or even any speech data that is verified to
be in the presumed language. Hence, we engaged
speakers of these languages to verify that speech
audio that we presumed to be in their language was
indeed in their language.

We carried out this manual vetting for Igbo, Luo
(a.k.a. Dholuo), Ganda (a.k.a. Luganda), Nyanja,
Maithili, Marwari, Santali, Meitei (a.k.a. Ma-
nipuri), Yue Chinese, and Central Kurdish. We re-
cruited native speakers of these languages through
language service providers. We carried out this
vetting process through three phases, with increas-
ingly larger quantities and more detailed questions.

Phase 1 Since we collected audio from only a few
radio stations, our first question was to know which
of them are reliable sources of speech data in the
targeted languages. We sampled about a hundred
30-second speech segments per language and asked
the language experts to assess whether those were
indeed in their language. We also encouraged them
to identify other language(s) that may be present in
utterances, as well as the presence of non-speech
or incomprehensible audio. For several languages,
the experts also reported code-mixing with other
languages, especially for Maithili, Marwari, Meitei,
and Santali. Table 1(a) shows the results of the
study. We considered as good those samples that
have at least 90% audio in the targeted language.
For 3 languages, we repeated the exercise since
the first phase did not yield sufficient positively
identified audio segments.

Phase 2 In the second phase, we scaled up the
experiment to more audio samples. Here, the au-
dio samples were of different lengths (10s, 20s,
30s, and 60 seconds). We also asked detailed ques-
tions about music being present in the background,
speech being spontaneous or scripted, and about
the presence of multiple speakers. Table 1(b) shows
the results of the study. For most of the languages,
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(a) Phase 1: Language identification
Language Good Total Other languages detected
Central Kurdish 1+45 67+119 Arabic, Kurdish Bahdini, Kurdish Kurmanji, English
Ganda 47 95 English, Swahili
Igbo 12 90 Nigerian Pidgin English, Latin American Spanish, English-

Spanish (Spanglish), Yoruba, US English, Pidgin, Nigerian
English, British English

Luo 73 94 Swahili, English
Maithili 80 104 Nepali, Hindi, English
Marwari 55+92 120+120 -
Meitei 94 99 Hindi
Nyanja 58 91 English
Santali 0+45 107+120 Bengali, Hindi, English
Yue 59 91 Mandarin

(c) Phase 2: Larger sample, more detailed questions
Language Total Good Music (yes/no) Scripted/Spontaneous Speakers (1/more)
Central Kurdish 640 407 44 363 71 336 190 217
Ganda 645 577 296 281 262 315 306 271
Igbo 636 235 185 50 157 78 96 139
Luo 645 473 463 10 441 32 396 77
Maithili 480 352 31 321 195 157 245 107
Marwari 640 208 176 32 173 35 139 69
Meitei 624 516 89 427 175 341 263 253
Nyanja 644 435 282 153 267 169 256 180
Santali 640 309 105 204 248 61 125 184
Yue 646 354 58 296 24 272 51 248

(c) Phase 3: Scaling up data sizes for some languages with cleaner sources
Language Total Good Music (yes/no) Scripted/Spontaneous Speakers (1/more)
Central Kurdish 240 237 4 213 41 196 131 106
Ganda 105 102 17 85 55 47 60 42
Igbo 216 195 11 184 0 195 145 50
Maithili 337 331 21 263 47 284 72 191
Meitei 222 222 8 213 164 57 172 49
Nyanja 222 216 15 201 138 78 115 101
Santali 640 640 57 573 42 598 380 260
Yue 285 284 4 280 17 267 41 243

Table 1: Manual vetting of speech data by language experts: The goal of this study was to identify 5 hours of vetted
audio in the targeted language to be able to train language identification models.
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FLEURS

C.Kurdish Ganda Igbo Luo Marwari Maithili Meitei Nyanja Santali Yue

MMS 98.3 99.8 98.3 99.6 - - - 95.1 - 99.9
Ours 87.7 88.9 10.6 0.4 - - - 46.3 - 88.5

RADIO BROADCAST

C. Kurdish Ganda Igbo Luo Marwari Maithili Meitei Nyanja Santali Yue

MMS 99.2 62.8 85.1 61.6 - 54.5 43.4 98.1 86.1 99.9
Ours 99.9 92.4 64.7 93.2 - 97.1 99.9 88.7 95.2 99.3

Table 2: Comparing the accuracy of our LID model to the MMS LID model (Pratap et al., 2023) on the FLEURS
and radio broadcasts test sets

Language Hours

Central Kurdish 3.30
Ganda 4.96
Igbo 1.14
Luo 4.00
Maithili 1.95
Manipuri 4.38
Marwari 1.65
Nyanja 3.56
Santali 2.63
Sorani 3.39
Yue 2.96

Table 3: Amount of data per language used to train our
LID models.

there is often some music in the background. The
amount of scripted vs. spontaneous speech as well
the number of speakers in the audio varies by lan-
guage.

Phase 3 Since our goal was to collect at least
5 hours of vetted audio, we repeated the Phase 2
study on additional audio samples using the same
vetting protocol. Table 1(c) shows the results.
Given the feedback from the second phase, we were
able to identify generally cleaner audio sources to
be vetted, resulting in a much larger ratio of them
assessed to be good and without background music.
For logistical reasons, we were not able to do this
for Luo and Marwari.

We will release the audio with meta data from
the annotation effort publicly.

6 Language Identification

The LID system follows Villalba et al. (2023). Es-
sentially, our LID uses log-Mel-filter banks with

64 filters as feature extractor. The features were
short-time mean normalized with a 3-second win-
dow. Silence portions (frames) were removed using
an energy voice activity detector (VAD) based on
Kaldi. This VAD classifies each frame as speech
or non-speech based on the average log-energy in
a window.

The language embedding architecture follows
the x-vector process (Snyder et al., 2017, 2018) as
described by Villalba et al. (2023). It consists of
an encoder that extracts frame-level discriminant
embeddings, a pooling mechanism, and a classifi-
cation head. We used the Res2Net architecture as
the encoder. The system uses the datasets in the
Training Open condition for training the language
embedding. For the backend, the system employs
a linear Gaussian classifier with a single Gaussian
per target language, and a shared-covariance across
languages. The system is trained on about 30 hours
of audio in 10 languages. Table 3 shows the distri-
bution of data per language.

As shown in Table 2, we compare the perfor-
mance of our LID model to the MMS LID model
(Pratap et al., 2023) on the FLEURS (Conneau
et al., 2022) benchmark and a carefully selected
test set comprising radio broadcast recordings.
FLEURS is in a similar domain to the data used
to train the MMS model, and the test set of radio
broadcasts is in the same domain as the data used to
train our model. The MMS LID model was trained
on 1000 times more data as compared to ours.

Luo’s severe performance drop on FLEURS is
due to the difference in the dialects in FLEURS and
radio broadcast test sets. The poor performance of
Igbo on both test sets is due to the small amount of
data in Igbo used in training the LID system. For
most languages, our LID model outperforms the
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MMS model on the radio broadcast data.

7 Corpus

With all the tools in place, we scaled up the effort to
collect audio speech data for all the targeted 48 lan-
guages. Table 4 gives details about the number of
hours of audio data we handled at various process-
ing stages: (1) the number of hours of crawled au-
dio expected to be in the targeted language, (2) the
number of hours after speech detected, and (3) what
remained after a language ID filter.

For the 10 targeted languages (bold in the ta-
ble), we collected substantial amounts of data, rang-
ing from 12.43 hours (Marwari) to 178.55 hours
(Maithili) after music detection and language ID
filtering.

Scaling up to 48 language was challenging as
we could not repeat the expensive first stage of an-
notations to identify radio stations which broadcast
in the languages of interest. We randomly pick ra-
dio stations within locations we believe speak the
languages of interest and collect data from them.
Since we did not run annotations for the new lan-
guages we did not have ground-truth data to train
LID models for those languages. We rely on the
MMS LID model for these languages. Specifically,
we use the variant trained on 4017 languages.

The amount of data collected per language varies
due to the number of radio stations we collected
data from at each time. For some languages, we
identified many radio stations that broadcast in the
language of interest, enabling us to collect hun-
dreds of hours of data. Also, we aggressively fil-
tered the corpus for music, which greatly affected
the amount of data we collected for some languages.
We could not report on the amount of data after LID
for Egyptian, Morrocan, and Pashto as the MMS
model does not support them. Other languages
with no data after LID had none of the top predic-
tions of the audio files to be in the language. This
data was collected from early 2023 to early 2024.

8 Conclusion

We collected a large corpus of speech audio for 48
languages from audio sources. We focused spe-
cial attention to 10 languages for which we built
language identification models based on manually
vetted audio data. We will release all audio data
(manually vetted and automatically filtered) open
source with a liberal license for research and com-
mercial use. We hope that this data fosters research

Languages Crawled Clean LID
Amharic 83.74 20.44 7.94
Armenian 82.35 9.03 2.13
Assamese 85.03 16.77 0.13
Azerbaijani 96.71 4.45 1.79
Belarusian 101.53 0.84 0.10
Bosnian 63.48 3.67 1.29
Cebuano 64.53 1.00 0.02
C. Kurdish 75.53 46.74 23.51
Egyptian 108.19 10.32 -
Galician 75.35 31.60 0.69
Ganda 293.65 125.97 24.25
Georgian 65.25 1.42 0.05
Gujarati 95.99 0.13 0.02
Icelandic 134.99 11.22 5.47
Igbo 137.95 12.12 4.21
Irish 200.41 15.62 0.06
Javanese 25.37 5.97 0.14
Kannada 40.53 1.94 0.96
Kazakh 83.67 4.07 1.58
Khmer 21.99 2.59 2.07
Konkani 72.93 4.01 -
Kyrgyz 51.05 6.75 1.26
Lao 108.27 10.19 1.91
Luo 409.3 243.38 48.46
Macedonian 62.66 0.51 0.24
Maithili 2860.84 1722.91 178.55
Maltese 89.75 14.68 4.51
Meitei 299.50 129.97 18.13
Marathi 139.25 25.06 9.24
Marwari 155.46 118.05 12.43
Mongolian 33.25 2.91 0.66
Moroccan 184.80 11.73 -
Nepali 53.15 3.61 0.81
Nyanja 251.11 79.20 22.41
Odia 106.61 1.20 -
Oromo 117.52 14.77 0.18
Panjabi 45.63 0.57 -
Pashto 40.81 6.58 -
Santali 272.65 120.06 20.45
Shona 70.19 15.71 3.17
Sindhi 33.22 10.38 0.19
Swiss German 584.60 86.86 -
Tajik 26.34 1.21 0.49
Telugu 28.98 0.51 0.10
Uzbek 49.71 5.88 2.44
Welsh 67.29 2.14 0.12
Yue 117.28 101.21 64.70
Zulu 49.51 24.03 0.04

Table 4: Statistics of the collected audio data (in hours).
The focus languages for which we performed manual
vetting and more thorough radio station selection are in
bold.186



in low resource speech technology.

Limitations

The legal status of web crawled data is currently in
a gray area. We argue that the released data set falls
under fair use since we are releasing disconnected
snippets and do not interfere with the commercial
use of the original broadcasts.
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