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Abstract

This paper presents KIT’s submissions to the
IWSLT 2024 dialectal and low-resource track.
In this work, we build systems for translat-
ing into English from speech in Maltese, Be-
mba, and two Arabic dialects Tunisian and
North Levantine. Under the unconstrained con-
dition, we leverage the pre-trained multilin-
gual models by fine-tuning them for the target
language pairs to address data scarcity prob-
lems in this track. We build cascaded and
end-to-end speech translation systems for dif-
ferent language pairs and show the cascaded
system brings slightly better overall perfor-
mance. Besides, we find utilizing additional
data resources boosts speech recognition perfor-
mance but slightly harms machine translation
performance in cascaded systems. Lastly, we
show that Minimum Bayes Risk is effective in
improving speech translation performance by
combining the cascaded and end-to-end sys-
tems, bringing a consistent improvement of
around 1 BLUE point.

1 Introduction

In this paper, we describe KIT’s systems submitted
to IWSLT 2024 Dialectal and Low-resource Track.
We focus on three language pairs: Bemba (ISO
code: bem) to English, Maltese (ISO code: mlt)
to English, and Dialectal Arabic to English. The
Dialectal Arabic language pair evaluates the perfor-
mance of two Arabic vernaculars, namely Tunisian
(ISO code: aeb) and North Levantine (ISO-3 code:
apc). Maltese and Tunisian language pairs are avail-
able in IWSLT2023 (Agarwal et al., 2023), and
the others are newly included this year. The sub-
missions are under Unconstrained Conditions to
leverage pre-trained models and additional data
resources.

Recent advancements in dialectal and low-
resource speech translation show the benefits of
utilizing pre-trained models (Gow-Smith et al.,
2022; Laurent et al., 2023; Hussein et al., 2023;

Deng et al., 2023). Nowadays, the capacities of
pre-trained models are expanded by incorporating
more extensive data and expanding language cov-
erage. This work leverages the state-of-the-art pre-
trained models, including SeamelssM4T (Barrault
et al., 2023), MMS (Pratap et al., 2023), and NLLB
(NLLB Team et al., 2022).

Cascaded and End-to-End (E2E) are popular
Speech Translation (ST) systems. The Cascaded
system consists of Automatic Speech Recogni-
tion (ASR) and Machine Translation (MT) mod-
els, while the E2E systems integrate both func-
tions into one model. Recent work shows the E2E
system shows comparable performance to the cas-
caded system in speech translation(Liu et al., 2023;
Zhou et al., 2023; Huang et al., 2023; Hrinchuk
et al., 2023), while there needs research to show
which system performs better on dialectal and low-
resource scenarios (Deng et al., 2023; Laurent et al.,
2023; Kesiraju et al., 2023; Shanbhogue et al.,
2023; E. Ortega et al., 2023; Hussein et al., 2023).

Building ST systems for low-resource datasets
always suffers from data limitations. Accordingly,
we collect available training resources and inves-
tigate the training strategies for using them. Al-
though datasets other than the development data
might introduce domain differences that could po-
tentially model performance, we explore the ben-
efits of using extra-supervised data. Furthermore,
we investigate adapter fine-tuning training to ad-
dress data scarcity. By freezing the pre-trained
parameters and only fine-tuning the adapter pa-
rameters, this approach decreases the number of
trainable parameters.

In addition to building ST systems, this work
explores the decoding approach Minimum Bayes
Risk(MBR) to re-rank the candidate translation
(Kumar and Byrne, 2004; Hussein et al., 2023)
from the built systems. We explore the combination
of individual systems and across systems, and our
findings suggest combining translations from the
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cascaded and the E2E systems is effective for all
language pairs.

2 Data Description

2.1 Development and test data

The organizers provide the development data for
each language pair, which is from the same dataset
of the test data for evaluating systems. The devel-
opment data was released at the beginning, and
test data was released when the evaluation period
started for the final comparison of submissions. As
shown in Table 1, the development data of North
Levantine has only a validation split, indicating the
importance of transferring knowledge from other
data resources, such as standard Arabic. We report
the system performance on Tunisian development
data, although we have no submission for it due to
the unexpected unavailability of the test data at the
end of the evaluation period. The Maltese language
pair includes two datasets, and we report scores
only on the Masri dataset because we use the train
split of CV development for training. We evaluated
the Bemba systems on the test split of development
data, but we later found the test split was the same
as the test data.

Development Test
Lang. Train Valid Test
apc - 1126 - 974
aeb 202k 3833 4204 -

mlt_masri 4962 648 - 668
mlt_cv 3923 1235 - 1224

bem 82k 2782 2779 2779
bem_asr1 - - - 977
bem_asr2 - - - 3756

Table 1: Statistic on development and test data. Lang
is the language code of the source language. The value
indicates the number of sample. One sample of the
datasets consists of the audio, transcript, and translation
in English.

2.2 Additional data resource

Under the unconstrained condition, we collected
additional datasets of the language pairs and ex-
plored leveraging these resources to improve model
performance. The ASR data resources are publicly
available except for the SyKIT and MINI dataset,
which is the in-house dataset in the conversational
domain. SyKIT is a dataset that consists of peo-
ple from Syria conversing in dialogues on various
topics via a Zoom setup. The MINI dataset is read
speech and is based on an electronic version of

the M.I.N.I. (International Neuropsychiatric Inter-
view). The MT data resources are all from OPUS
collection (Tiedemann, 2009).

Lang. Corpus Type #Hour/#Sent.
apc LDC2005S08 ASR 60h

LDC2006S29 ASR 250h
SyKIT ASR 50h
Tatoeba MT 20

aeb SRL46 ASR 12h
GNOME MT 646

ara SLR148 ASR 111h
MGB ASR 1200h
MINI ASR 10h

CCMatrix MT 5M
NLLB MT 5M

OpenSubtitles MT 3M
bem BembaSpech ASR 24h

NLLB MT 427k
mlt MASRI-Headset v2 ASR 7h

MASRI-Farfield ASR 10h
MASRI-Booths ASR 2h
MASRI-MEP ASR 1h

MASRI-COMVO ASR 7h
MASRI-TUBE ASR 13h

NLLB MT 14M
DGT MT 3.5M

TildeMODEL MT 2M

Table 2: Overview of the additional data resources.

2.3 Pre-processing
Due to computational limitations, the ASR and ST
training data over 15 seconds is removed. Although
the training scenario is low-resourced, statistics
show only a very small portion of training samples
are removed. Afterwards, we introduce data aug-
mentation with Gaussian noise, time stretch, time
mask, and frequency mask 1.

3 Method

We conduct preliminary evaluations on Tunisian
dialects to assess systems performance and then
apply the promising approaches to other languages
for effective analysis. The motivation is that the
Tunisian language pair has effective systems from
IWSLT 2023 (Agarwal et al., 2023) for approach
analysis.

3.1 Cascaded Systems
The cascaded system is composed of ASR and MT
modules and allows each component to be opti-
mized independently. We explore the ASR and MT
modules individually to mitigate the requirement
on the supervised ST data, aiming to leverage the
supervised ASR and MT data individually.

1https://github.com/asteroid-team/torchaudiomentations
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3.1.1 ASR
We build two ASR systems with MMS and Seam-
lessM4T to leverage pre-trained multilingual mod-
els. The MMS system is the encoder-only model
with the CTC training loss, and the SeamelssM4T
model is the encoder-decoder model with cross-
entropy training loss. We build the MMS system
because the MMS model is pre-trained with more
than 1,400 languages, including Maltese and Be-
mba. The motivation for using SeamlessM4T is its
capacity for multilingual generation as an encoder-
decoder model.

Our initial findings indicated that the Seam-
lessm4t system exhibited superior performance on
Tunisian and North Levantine data over the MMS
system. Consequently, we directed our efforts to-
ward enhancing this particular model.

Given the scarcity of supervised ASR data we ex-
plore training strategies of using only the develop-
ment data or mixing all available training resources.
Using all available data increases the amount of su-
pervised data while bringing domain differences
that might lead to performance degradation. Conse-
quently, we explore the two-step fine-tuning serv-
ing as knowledge transfer. This entails initially
fine-tuning the pre-trained model using all avail-
able ASR data, followed by training the fine-tuned
model solely with the target data.

The amount of supervised data might be insuf-
ficient to fine-tune the parameters of the Seam-
lessM4T model fully. To address this, we explore
the parameter-efficient fine-tuning approach Low-
Rank Adapters (LORA) by adding and only fine-
tuning the LORA adapter (Hu et al., 2021).

3.1.2 MT
The pre-trained SeamlessM4T is a multitask model
that supports both audio and text inputs. Besides
ASR, we also explore its capacity for MT. Note that
Bemba and Maltest are covered in the pre-trained
SeamelssM4T model while the Arabic dialects are
not.

Apart from SeamlessM4T, we also fine-tune
NLLB (NLLB Team et al., 2022) because the pre-
trained model covers more language pairs, includ-
ing all three language pairs of this paper. Given
the large vocabulary size of 256K, we freeze the
word embedding to save memory. We also follow
the recommendations of Cooper Stickland et al.
(2021) regarding fine-tuning pre-trained MT mod-
els on many-to-English directions and freezing the
decoder apart from cross-attention.

Given the extremely limited MT data on the two
Arabic dialects (apc and aeb; Table 2), we fine-
tune SeamlessM4T or NLLB jointly on these lan-
guages along with modern standard Arabic (ara),
resulting in a many-to-English system for {apc,
aeb, ara}→eng.

3.2 End-to-End Systems
The E2E system mitigates the error propagation
issue in the cascaded system. We develop the E2E
model with pre-trained SeamlessM4T consisting of
a speech encoder and a text decoder. Since we don’t
have extra supervised data for ST, we focus on
using the development data for our E2E exploration.
In addition, we also investigate the effectiveness of
fine-tuning with adapters using LORA.

3.3 System Combination
In addition to building ST systems, we explore
combining the developed systems using Minimum
Bayes Risk (MBR) decoding. MBR decoding is
a method used to rerank the candidate translation
output. Given a pool of hypothesis translations,
MBR uses a utility metric to score each hypothesis
against a set of pseudo-references. The hypothesis
with the highest average score is then selected as
the final translation.

Since the main evaluation metric is the BLEU
score, we choose the utility metric as BLEU. For
the end-to-end system, we generate 50 hypotheses
using epsilon sampling (Hewitt et al., 2022) with
temperature 1.0 and epsilon threshold 0.02. For the
cascaded system, we generate 50 hypotheses using
sampling with a temperature of 0.75. We then com-
bine the hypotheses from both systems, resulting
in a hypothesis pool of 100 samples. We use this
same hypothesis pool as the pseudo-references to
score each individual hypothesis.

4 Experiments and Results

4.1 Model Configuration
ASR We use the pre-trained MMS model with
300M parameters to build the CTC-based ASR sys-
tem 2. Compared with other configurations, it has
fewer parameters to train and, therefore, fits better
to this track. As for the encoder-decoder-based
ASR system, we use the pre-trained SeamlessM4T
model of the latest version with the large config-
uration 3. To reduce the memory footprint, we

2https://huggingface.co/facebook/mms-300m
3https://huggingface.co/facebook/seamless-m4t-v2-large
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use the dedicated model of SeamlessM4T for the
speech-to-text task.

MT For the MT systems with SeamlessM4T, we
use the same pre-trained model as for ASR but a
dedicated model architecture for the text-to-text
task 3. Our finetuned NLLB models are based on
the 1B distilled model (NLLB Team et al., 2022).
Although the 3B variant gave better initial perfor-
mance when used out-of-the-box, we could not di-
rectly finetune it due to memory constraints. When
finetuning, we partially freeze the model as de-
scribed in §3.1.2.

E2E ST For the ST systems, the pre-trained
SeamlessM4T model is the same as for ASR and
MT. Here, we use the dedicated SeamlessM4T
model for the speech-to-text task3.

Adapter This work investigates fine-tuning the
adapters of LORA with SeamlessM4T models to
reduce trainable parameters. We add adapters to all
transformer layers of the encoder and decoder. The
details regarding our implementation can be found
in Appendix A

4.2 Evaluation

As the final evaluation uses lowercase and no punc-
tuation, we follow the setup 4 to process the pre-
diction and reference in the evaluation of this work.
Specifically, we process the ASR predictions and
references of Tunisian and North Levantine with
arabic_filter and the other predictions and refer-
ences with english_fiter in evaluation.

For the ASR task, we evaluate with Character Er-
ror Rate (CER) and Word Error Rate (WER) using
package jiwer5. We evaluate MT and ST tasks with
BLEU and chrF++ with package sacreBLEU6.

4.3 ASR

As Table 3 shows, we explore two ASR systems:
the encoder-only system with pre-trained MMS
(A1) and the encoder-decoder system with pre-
trained SeamlessM4T (A2). A2 outperforms A1
for Maltese and Tunisian and is comparable to A1
for Bemba. Considering the pre-trained languages
of MMS cover Maltese and Bemba while those of
SeamlessM4T only cover Maltese, we regard A2

4https://github.com/kevinduh/iwslt22-
dialect/blob/main/1_prepare_stm.py

5https://github.com/jitsi/jiwer
6https://github.com/mjpost/sacrebleu

with SeamlessM4T as a stronger ASR system for
this track and explore enhancing this system

With training data in addition to the development
data, we investigate training with all supervised
ASR data, including the development data. We
find using all data boosts Maltese with 5.1 WER
points, and gains Bemba with 3.5 WER points. For
Tunisian, we gain 3.8 WER points on the valida-
tion split but loss 5.2 WER points on the test split.
The overfitting to the validation split indicates the
importance of improving model robustness. We
notice a clear decrease in comparing the scores
between A2 and A3 for North Levantine, and we
assume the dialect and domain differences are the
main causes.

Building on A3, we investigate knowledge trans-
fer from all training datasets to the target dataset
with the second step of fine-tuning. Here, we ex-
plore full training (A4), which is the same as previ-
ous experiments, and adapter training with LORA
(A5) as described in subsection 4.1. We find knowl-
edge transfer is effective for North Levantine and
Tunisian while not for Maltese and Bemba. The
potential reason is the dialects have clear differ-
ences from other training datasets, and a second
step of fine-tuning enables the model to be spe-
cialized on the target dataset. While all training
datasets of Maltese or Bemba are from the same
languages, the second step of fully fine-tuning (A4)
fails to keep the knowledge learned in the first step
of fine-tuning and causes performance degradation
because of less supervised training data. On the
contrary, we observe the knowledge transfer with
adapter fine-tuning (A5) works on memorizing the
knowledge in the first step but leads to no improve-
ment over A3.

As described in subsection 2.1, the North Lev-
antine has only the valid split in development data,
so we implement different training strategies with
details in Appendix C. Besides, the training for
Tunisian A3 has modifications to other languages,
and details are available in Appendix B.

In Table 3, we report the CER and WER
scores with normalization for North Levantine and
Tunisian, same as (Hussein et al., 2023), for com-
parison with systems of previous years. The nor-
malization is performed on both the predictions and
references and implemented with the camel_tools
package 7. The ASR results without normalization
are in Appendix D. There are no scores for others

7https://github.com/CAMeL-Lab/camel_tools
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Model apc_valid aeb_valid aeb_test mlt_masri_valid bem_test
A1 wav2vec-mms - 26.2/59.3 29.1/63.6 19.2/61.5 10.0/37.3
A2 SeamlessM4T development data 39.1/55.3 21.5/46.5 24.5/45.7 7.2/21.8 10.0/36.6
A3 SeamlessM4T all data 48.0/72.8 21.0/42.7 26.7/ 50.9 5.7/16.7 9.3/33.1
A4 A3 + transfer 44.6/68.7 16.8/33.7 23.0/43.8 8.6/24.0 9.6/33.6
A5 A3 + transfer LORA - 20.9/42.1 25.7/49.1 5.9/17.6 9.3/33.1

2023 best ASR - -/36.5 -/41.7
B1 NLLB all MT data 24.9/53.6 30.4/52.6 26.8/50.2 31.2/53.7 28.4/52.1
B2 SeamlessM4T all MT data 17.9/44.8 16.9/37.9 13.2/34.9 41.6/63.8 28.0/52.9
B3 SeamelssM4T development data - 5.3/24.3 4.7/23.8 52.6/72.6 28.4/52.8

2023 best MT - 30.5/- 26.4/- - -
C1 Best ASR + B1 16.1/40.3 24.7/47.7 20.2/43.9 - 27.5/51.6
C2 Best ASR + B3 - - - 47.1/69.1 27.0/52.0
D1 SeamlessM4T - 22.3/44.9 19.3/42.7 47.2/69.2 27.7/51.3
D2 SeamelssM4T LORA - 8.2/27.5 6.9/26.4 44.3/66.9 14.1/35.3
E1 Best Cascaded - 24.4/47.1 20.6/43.6 47.3/69.3 27.6/51.6
E2 Best E2E - 22.6/44.5 19.9/42.2 48.0/69.5 27.1/49.6
E3 Best Cascaded & E2E - 25.5/47.9 21.3/44.3 50.6/71.2 29.3/52.3

2023 Best ST - 24.9/- 22.2/- - -

Table 3: Experimental results on development dataset. A, B, C, D, and E indicates the ASR, MT, cascaded ST, E2E
ST, and MBR systems. The results for ASR are in the format of CER/WER, and those for MT and ST are in the
format of BLEU/chrF++. The best ASR, MT and ST systems of 2023 IWSLT are both from (Hussein et al., 2023)

as they are new language pairs this year.

4.4 MT
As Table 3 shows, the system with pre-trained
NLLB (B1) suppresses the system with Seame-
lessM4T (B2) models for North Levantine and
Tunisian, and we assume the reason is that NLLB
is pre-trained with datasets of North Levantine and
Tunisian while SeamlessM4T not. In addition, we
notice B1 gives inferior performance for Maltese
and shows comparable performance for Bemba
compared with B2, although both models cover
these two languages in pre-training. We assume
the difference in pre-training datasets leads to in-
consistent findings for these language pairs because
SeamlessM4t and NLLB have similar architectures
and model sizes.

Rather than using all available training data, we
explore training with only the development data
to reduce the effects of domain differences (B3).
We notice B3 brings a significant performance de-
cline for Tunisian because its MT data is much less
than that for B1 (see Table 2). On the contrary,
we observe improvements for Maltese with 11.0
BLEU and 8.8 chrF points. We don’t build an MT
system (B3) for North Levantine as the supervised
MT data is too little.

4.5 ST
We build the cascaded systems from the best ASR
models, which are A2 for North Levantine, A4 for
Tunisian, and A3 for Maltese and Bemba. The
MT models for Arabic dialects are B1, and that

for Maltese is B3. We investigate both B1 and B3
for Bemba as they show comparable performance
as MT models, and we observe a slight improve-
ment in using B3 on BLEU. We explore building
a dedicated cascaded system with the normalized
transcriptions for Tunisian, while it gives inferior
results than the one without normalization.

Regarding E2E systems, we explore training
SeamlessM4T with full fine-tuning and adapter
fine-tuning. Full training shows clear advantages
over adapter training for all languages in the low-
resourced scenario, although more parameters need
to be trained. Therefore, we assume only adapting
the parameters of LORA is insufficient to fine-tune
the SeamlessM4T models on the target language
pairs.

4.6 Systems Combination
As can be seen from Table 3, when applying MBR
decoding on the output of a single system (E1 and
E2), the changes in BLEU and chrF scores are
minor. However, when applying MBR decoding
on the combined output of the best cascaded and
the best end-to-end systems (Row E3), we observe
consistent improvement of ≈ 1 BLEU point and
≈ 1 chrF point. This emphasizes the importance
of output diversity when using ensembing methods
like MBR decoding.

4.7 Submissions and Results
As for the final submission, we chose the MBR of
combining the best cascaded and E2E systems as
primary, and we chose cascaded as the contrastive1
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system and E2E as the contrastive2 system. In
addition, we submit the best ASR systems for eval-
uating the errors in acoustic recognition, which are
described in subsection 4.5. The evaluation scores
performed by the organizers are shown in Table 4.
We notice the primary and contrastive 1 systems for
North Levantine clearly outperform the contrastive
2 system, indicating the contributions of the mul-
tilingual MT model. We notice the ASR and ST
systems achieve very high scores for Maltese, es-
pecially the CV partition. We guess one of the
potential reasons is the pre-trained models touch
the test data because the CommonVoice dataset is
widely used in pre-training.

systems apc bem mlt masri mlt cv
ASR - 33.2 19.3 2.4

ST primary 20.9 28.8 50.5 67.4
ST contrastive 1 19.7 27.0 46.3 64.2
ST contrastive 2 11.9 28.1 46.7 65.7

Table 4: Evaluation results on test data. The ASR sys-
tem is evaluated with WER and the ST system is evalu-
ated with BLEU

5 Conclusion

In this work, we develop the cascaded and E2E
ST systems with pre-trained multilingual models.
The cascaded system outperforms E2E systems for
North Levantine and Tunisian and demonstrates
comparable performance for Maltese and Bemba.
While building the cascaded system, we find per-
formance improvement by involving additional re-
sources in ASR but observe performance degrada-
tion with that in MT. Furthermore, we demonstrate
combining the cascaded and E2E system with MBR
increases model performance for all language pairs.
Comparing our system with previous systems for
Tunisian, we note superior performance in the val-
idation split but lagging results in the test split,
suggesting the need for future investigations to en-
hance model robustness.
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A Adapter fine-tuning

We implement the adapters of LORA with pack-
age PEFT (Mangrulkar et al., 2022). We set the
hyperparameters to rank 8, alpha 32, dropout 0.1,
and bias as ’lora_only’. To add adapters for all lay-
ers in the encoder and decoders of SeamlessM4T,
the target modules are "q_proj, v_proj, linear_q,
linear_v".

B Tunisian ASR training

In our first endeavor, we gathered all available Ara-
bic data to fine-tune our model. The dataset used
for training is detailed in Table 2. To augment
the availability of dialectal data for training, we
adopted two approaches: utilizing default valida-
tion splits or selecting 0.15% of the training data
for validation. Subsequently, we combined the val-
idation sets, retaining only 1,500 utterances for
validation, and incorporating the remainder into
our training data. We applied the same method-
ology to other Arabic datasets. Thus, our consol-
idated validation sets comprised a total of 3,000
utterances, with 50% representing dialectal speech.
This model underwent training with early stopping
set to five epochs, with results documented as A3
in Table 3.

Subsequently, we implemented various strate-
gies further to enhance the model’s performance
on dialectal speech. In iteration A4, we conducted
additional fine-tuning using solely dialectal data.
We experimented with further fine-tuning the A3
model with exclusive Tunisian dialectal data and
a LORA module in A5. However, given the lack
of promising results and Tunisian’s exclusion from
the challenge, we discontinued further investigation
into this approach.

C North Levantine training

For the A2 North Levantine ASR model, we con-
tinued fine-tuning the entire model from A3. We
assume starting from the fine-tuned ASR models
could alleviate the need for training data. As we
only have the validation set, fine-tuning utilizes

apc_valid aeb_valid aeb_test
A1 - 27.4/62.9 31.1/68.4
A2 39.9/56.9 23.7/46.5 27.6/53.6
A3 49.6/75.7 23.1/47.4 29.6/58.9
A4 46.4/72.7 18.6/38.3 26.1/52.2
A5 - 23.1/47.0 28.7/57.0

Table 5: ASR results without normalization

90% of the validation set for training and reserves
the remaining for validating and early stopping.
Upon achieving convergence at a training epoch
number, we use the same hyperparameters to con-
duct a new fine-tuning from A3, utilizing the whole
validation set for training and stopping with the
same epoch number. This approach brings a risk of
overfitting to the validation set but could make full
use of the available data for training.

For the E2E ST system, we implement the same
training strategy as the ASR systems but start from
the pre-trained SeamlessM4T model.

D Tunisian and North Levantine ASR
scores without normalization

For comparison with ASR systems from previous
years, we report ASR scores with normalization in
Table 3d. Here, we report the scores with normal-
ization in Table 5.
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