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Abstract

Speech translation has witnessed significant
progress driven by advancements in modeling
techniques and the growing availability of train-
ing data. In this paper, we highlight recent
advances in two ongoing research directions
in ST: scaling the models to 1) many transla-
tion directions (multilingual ST) and 2) beyond
the text output modality (multimodal ST). We
structure this review by examining the sequen-
tial stages of a model’s development lifecycle:
determining training resources, selecting model
architecture, training procedures, evaluation
metrics, and deployment considerations. We
aim to highlight recent developments in each
stage, with a particular focus on model architec-
tures (dedicated speech translation models and
LLM-based general-purpose model) and train-
ing procedures (task-specific vs. task-invariant
approaches). Based on the reviewed advance-
ments, we identify and discuss ongoing chal-
lenges within the field of speech translation.

1 Introduction

Speech translation (ST) is the task of automati-
cally converting speech in a source language into
its equivalent in a target language. Recently, there
has been significant interest in multilingual models
(Di Gangi et al., 2019; Inaguma et al., 2019; Li
et al., 2021; Le et al., 2021; Radford et al., 2023)
that serve a broad range of translation directions, as
well as multimodal models (Inaguma et al., 2023;
Rubenstein et al., 2023; Seamless Communication
et al., 2023b) that not only generate text translations
but can also synthesize speech output.1 Both devel-
opments are crucial steps towards making ST tech-
nologies more inclusive. By expanding language
coverage and offering diverse output modalities,
these advancements make ST models accessible

1Here we restrict our discussion to the two modalities of
speech and text. We acknowledge the relevance of additional
modalities, such as vision, and leave them for open questions.

to a wider range of users, allowing them to inter-
act with the technology in their preferred language
and format. Besides the practical relevance, mul-
tilingual and multimodal translation are instances
of multi-task learning (Caruana, 1997), a central
machine learning challenge.

In this paper, we aim to review recent advance-
ments in multilingual and multimodal ST. We struc-
ture the review by the stages in a model’s devel-
opment lifecycle, as illustrated in Figure 1. These
stages consist of model coverage and architecture
selection, training procedures, evaluation method-
ologies, and deployment considerations. In the
review of current model architectures (§3), besides
discussing dedicated models for translation, we
review emerging models in adapting text-based
large language models (LLMs) for speech process-
ing. Given the inherent multi-task learning nature
of both multilingual and multimodal ST, we put
special emphasis on the learning procedure (§4).
Specifically, we take two perspectives from task-
specific and task-invariant modeling, and discuss
their roles in terms of the trade-off between inter-
ference and transfer.

While prioritizing direct ST, we also review re-
lated multilingual and multimodal techniques in
automatic speech recognition (ASR) and text-to-
text machine translation (MT), as they often are
extendable to ST tasks. We also note that this work
is not an exhaustive survey, but rather aims to high-
light directions of recent developments and provide
context for open challenges.

2 Training Resources

Determining training resources is one of the ini-
tial steps when building a speech translation model.
This section provides a brief overview of the lan-
guage and modality coverage (§2.1) in existing
training resources, followed by discussions on scal-
ing datasets by augmentation or mining (§2.2).
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Figure 1: Overall structure of the paper, following sequential stages of model development lifecycle.

Dataset Directions Modality & Type # Lang. Pairs Total Hours

MuST-C (Di Gangi et al., 2019; Cattoni et al., 2021) en→X S2T 14 0.4k
Europarl-ST (Iranzo-Sánchez et al., 2020) X→X S2T 12 0.5k
CoVoST 2 (Wang et al., 2021b) en→X, X→en S2T 36 3k
mTEDx (Salesky et al., 2021) X→X S2T 13 0.4k
VoxPopuli (Wang et al., 2021a) X→X S2T/S, interpretation 210 17k
CVSS (Jia et al., 2022b) X→en S2T/S, synthesized 21 2k
SpeechMatrix (Duquenne et al., 2023a) X→X S2T/S, mined 136 418k

Table 1: Overview of popuplar speech translation training resources.

2.1 Language and Modality Coverage

Curating datasets for speech translation is labor-
intensive. Popular training resources often rely
on contributions from volunteers on platforms like
TED and Common Voice, or are sourced from gov-
ernmental bodies. Table 1 provides an overview
of commonly used speech translation datasets. A
trend towards broader language coverage is evident,
with datasets like Europarl-ST and mTEDx cover-
ing non-English translation directions. Moreover,
there has also been growing availability of transla-
tion resources with speech output, exemplified by
VoxPopuli, CVSS, and SpeechMatrix.

2.2 Augmenting and Mining Data

Speech translation models suffer from the scarcity
of parallel data. To address this challenge, several
data augmentation approaches have emerged. One
approach is to leverage pretrained MT models to
convert ASR data into synthetic speech translation
pairs (Pino et al., 2020). Text-to-speech (TTS) sys-
tems can also be employed to create augmented
training data from existing text resources (Jia et al.,
2019a, 2022b). Another way to tackle data scarcity
is to mine parallel data in large unpaired data col-
lections. In general, these approaches typically
invovle learning a multilingual or multimodal sen-
tence embedder, where distances within the embed-
ding space can be used to identify potential parallel
data points (Schwenk, 2018). The effectiveness of
this method on ST was demonstrated by Duquenne

et al. (2021), who showed that mined speech-to-text
data can improve the performance of direct speech
translation models. This line work was extended
with the creation of SpeechMatrix (Duquenne et al.,
2023a), a large-scale speech-to-speech translation
corpus built using mined data.

2.3 Outlook

Understanding the Impact of Data Quality and
Style The increasing volume of ST training re-
sources comes with a risk on data quality. While
scaling up training data volume offers obvious ben-
efits, noisy data could hinder model performance.
To the best of our knowledge, there is currently no
established best practice for data filtering in speech
translation. Current research presents conflicting
findings on the impact of data quality. For exam-
ple, Ouyang et al. (2022) observed no improvement
in model performance when removing misaligned
parallel data from the training set, while Gaido
et al. (2022) demonstrated gains by filtering out
such misalignments. Meanwhile it also remains
unclear whether data filtering best practices are
language-specific. Besides data quality, a deeper
understanding of training data style’s impact on ST
performance is also beneficial. In the related field
of MT, Maillard et al. (2023) showed gains by us-
ing small amounts of professionally-translated data.
In ST, Ko et al. (2023) observed that interpretation-
style data facilitates simultaneous translation mod-
els. Inspired by this finding, Sakai et al. (2024) pro-
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Model # Param
S2T

X→en
(21 lang.)

S2T
en→X

(15 lang.)

S2S
X→en

(21 lang.)
Learning

Speech-to-Text

XLS-R (Babu et al., 2022) 2B 22.1 27.8 − self-supervised
+ supervised FT

MAESTRO (Chen et al., 2022b) 0.6B 25.2 − − self-supervised
+ supervised FT

Whisper Large (Radford et al., 2023) 1.6B 29.7 − − (weakly) supervised
ComSL Large (Le et al., 2023) 1.3B 31.5 − − (weakly) supervised
AudioPaLM (Rubenstein et al., 2023) 8B 35.4 − − supervised FT
↪→ + PaLM 2 (Anil et al., 2023) 8B 37.8 − − supervised FT

ZeroSWOT Large (Tsiamas et al., 2024) 1.7B − 31.2 − zero-shot combination
pretrained ASR & MT

Speech-to-Text/Speech
AudioPaLM S2ST (Rubenstein et al., 2023) 8B 36.2 − 32.5 supervised FT

SeamlessM4T Large (Seamless Communication et al., 2023b) 2.3B 34.1 30.6 36.5 self-supervised
+ supervised FT

↪→ v2 (Seamless Communication et al., 2023a) 2.3B 36.6 31.7 39.2 self-supervised
+ supervised FT

Table 2: Performance overview of selected recent models for speech-to-text (S2T; BLEU↑; on CoVoST 2) and
speech-to-speech translation (S2S; ASR-BLEU↑; on CVSS).

pose augmenting existing datasets with synthetic
targets that mimic the style of interpretation data.
Overall, exploring other data styles relevant to spe-
cific speech translation tasks could be promising
for further performance improvements.

Targeted Resources for Low-Resource Lan-
guages The training resources in Table 1 primar-
ily cover high-resource languages. For truly low-
resource languages, readily available internet data
may be scarce or non-existent. In such cases, col-
laboration with local communities becomes essen-
tial for data collection. The AmericasNLP speech
translation shared task (Ebrahimi et al., 2021) is
a successful example of this approach. The initia-
tive focused on gathering speech translation data
for indigenous languages of the Americas, demon-
strating the feasibility of community-driven data
collection for low-resource languages.

3 Model Architecture

In this section, we first review dedicated model
architectures for speech-to-text (S2T; §3.1) and
speech-to-speech (S2S; §3.2) translation, with a
focus on the use of foundation models. After-
wards, we discuss recent developments in adapting
general-purpose LLMs (§3.3) for encoding or gen-
erating speech.

3.1 Dedicated S2T Translation Models
Integrating Foundation Models Foundation
models have become essential resources for train-

ing. Reflecting this trend, since 2022, a selection of
(often massively multilingual) audio and text foun-
dation models are allowed in the constrained data
condition2 in IWSLT (Anastasopoulos et al., 2022).
However, as most current speech foundation mod-
els are either unsupervised/encoder-only (Baevski
et al., 2020; Chung et al., 2021a; Chen et al., 2022a)
or supervised with a limited translation directions
(Radford et al., 2023), further adaptation is typi-
cally needed on specific speech translation tasks.
A promising direction has been to pair pretrained
audio encoders with text decoders, as frequently
used in recent IWSLT system submissions (Gállego
et al., 2021; Pham et al., 2022; Huang et al., 2023).
In this process, additional lightweight adapters of-
ten are injected to bridge the audio and text rep-
resentations (Li et al., 2021; Gállego et al., 2021;
Zhao et al., 2022). For a focused survey of founda-
tion models in S2T translation, we refer the readers
to Gaido et al. (2024).

Representative Models and Trends Table 2
presents a chronological overview of some recent
S2T translation models. Examining benchmark
results on the CoVoST 2 dataset, a substantial per-
formance improvement (+15.7 BLEU) is observed
for X→en directions over the last two years. How-
ever, the picture for en→X directions remains less
clear due to the limited number of data points.
Nonetheless, when also considering the speech-

2as opposed the unconstrained data condition with no re-
strictions on training data and resources
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to-text/speech results, we clearly see the progress
in en→X is far behind X→en (22.1→36.6 BLEU
vs. 27.8→31.7 BLEU). Regarding the learning
paradigm, a trend emerges from developing new
self-supervised representation learning schemes
(XLS-R, MAESTRO) towards directly using pre-
trained models (ComSL, AudioPaLM), in partic-
ular the plug-and-play combination of pretrained
modules (Tsiamas et al., 2024) in zero-shot condi-
tions.

3.2 Dedicated S2S Translation Models

Challenges of Generating Speech Speech gen-
eration presents unique challenges compared to
text generation. First, the inherent longer length of
audio signals poses significant computational de-
mands for conventional autoregressive approaches.
Moreover, capturing long-range dependencies
within these extended sequences becomes more
difficult for the model. Second, speech generation
is often an under-specified problem. Unlike text,
speech can be produced with various voice char-
acteristics for the same content. This ambiguity
creates a larger space of possible outputs that the
model must handle.

Textless Models An advantage of speech-to-
speech translation is the possibility to circum-
vent intermediate written text. Indeed, there has
been growing interest in textless models (Jia et al.,
2019b; Tjandra et al., 2019; Zhang et al., 2021b;
Lee et al., 2022; Jia et al., 2022a), which do not rely
on intermediate text representations and are espe-
cially suitable for S2ST of languages without stan-
dard writing systems. In general, these approaches
first create discrete representations with unsuper-
vised acoustic unit discovery by clustering or auto-
encoding (Tjandra et al., 2019; Zhang et al., 2021b;
Hsu et al., 2021). The learned inventory of acoustic
units could be viewed as learned phonemes. The
input speech are then mapped to the discrete units,
after which a unit-to-speech model is responsible
for creating the output speech. Discretization of
speech is further discussed in §3.4. Another advan-
tage of textless models is the potential of preserving
source voice characteristics. In particular, Seam-
lessExpressive (Seamless Communication et al.,
2023a) is a recent model dedicated to voice char-
acteristic preservation. Expressivity embeddings
are extracted from the source speech and integrated
in the output speech generation. Specifically, the
model disentangles semantic and expressivity com-

ponents from the source speech by learning speech
reconstruction.

Representative Models and Trends In the lower
section of Table 2, we list recent models supporting
both S2T and S2S translation: AudioPaLM S2ST
(Rubenstein et al., 2023) and SeamlessM4T (Seam-
less Communication et al., 2023b,a). AudioPaLM
S2ST, in contrast to its variant lacking speech gen-
eration capabilities, is additionally trained on TTS
and S2S translation data. The inclusion of addi-
tional modalities not only enables speech genera-
tion as an output, but also improves S2T transla-
tion performance (35.4→36.2 BLEU). Similar to
its text generation counterpart, AudioPaLM S2ST
fuses AudioLM (Borsos et al., 2023a) and the text-
based PaLM model (Anil et al., 2023). The model
has a joint vocabulary for both audio and text in-
puts. The audio tokens are created by an upgraded
version of the USM encoder (Zhang et al., 2023b),
which discretizes and downsamples the speech in-
put. Speech tokenization is further discussed in
(§3.1). Unlike AudioPaLM, SeamlessM4T uti-
lizes an encoder-decoder architecture primarily
fine-tuned from NLLB (NLLB Team et al., 2022).
Its encoder additionally can additionally process
speech inputs based on w2v-BERT representations
(Chung et al., 2021b). Both AudioPaLM S2ST and
SeamlessM4T achieve speech generation by option-
ally chaining a speech generation module after the
text generation stage. AudioPaLM S2ST first con-
verts audio tokens to SoundStream tokens (Zeghi-
dour et al., 2022), which are then used by a vocoder
to synthesize audio waveforms. SeamlessM4T,
on the other hand, employs a text-to-unit encoder-
decoder model followed by a vocoder.

3.3 General-Purpose Models

Adapting LLMs to Encode and Generate Speech
Driven by the recent advancements in LLMs, there
has been a surge of interest in adapting them for
speech translation tasks. However, most publicly
available LLMs, such as those in the LLaMA fam-
ily (Touvron et al., 2023a,b), only support the text-
to-text modality. To enable speech translation,
these models require additional adaptation for both
speech encoding and generation. A common ap-
proach for speech encoding involves discretizing
and downsampling the audio input. This process
transforms the continuous audio signal into a se-
quence of discrete tokens that the LLM can readily
ingest. On the output side, typically discrete audio
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Model Speech Tokenization Backbone LLM Generation Module Evaluated on ST

AudioPaLM (Rubenstein et al., 2023) USM encoder (variant) PaLM (8B) SoundStorm ✓
PolyVoice (Dong et al., 2024) HuBERT GPT-2 (1.6B) SoundStream (variant) ✓
SALMONN (Tang et al., 2024) Window-level Q-Former Vicuna (13B) − ✓
NExT-GPT (Wu et al., 2023) ImageBind Vicuna (7B) AudioLDM ✗
CoDi-2 (Tang et al., 2023) ImageBind LLaMA 2 (7B) AudioLDM 2 ✗
AnyGPT (Zhan et al., 2024) SpeechTokenizer LLaMA 2 (7B) SoundStorm (variant) ✗

Table 3: Selected recent works adapting LLMs for speech processing and their components (speech tokenziation
module, backbone LLM, and speech generation module).

tokens are generated similarly to text tokens. Af-
terwards, a synthesizer, for instance SoundStorm
(Borsos et al., 2023b), converts these tokens to
speech waveforms.

Representative Models and Trends In Table 3,
we summarize recent works in LLMs for encod-
ing and generating speech. Regarding the speech
tokenization modules, common choices include Im-
ageBind (Girdhar et al., 2023), SpeechTokenizer
(Zhang et al., 2023a), HuBERT (Hsu et al., 2021),
and the encoder of USM (Zhang et al., 2023b). For
the backbone LLMs, the surveyed models mostly
choose use small LLM variants (<10B parame-
ters). For the audio generation module, popular
choices are diffusion-based AudioLDM (Liu et al.,
2023a), vector-quantization-based SoundStream
(Zeghidour et al., 2022) and SoundStorm (Borsos
et al., 2023b). As many of the reviewed models
in Table 3 are not evaluated on speech translation,
currently it is still difficult conclusively compare
them to more conventional architectures.

3.4 Speech Tokenization

As introduced earlier, speech tokenization offers
benefits in various applications, including textless
translation and integration with text-based LLMs.
Table 4 provides an overview of prominent ap-
proaches for speech tokenization and their under-
lying techniques. A common thread among these
methods is the use of residual vector quantization
(RVQ) (Barnes et al., 1996), which partitions the
latent space into a finite number of subsets. While
HuBERT employs k-means clustering, similar to
RVQ in its objective of latent space partitioning, it
differs in its implementation of offline clustering in
a separate stage. In contrast to the other methods,
ImageBind (Girdhar et al., 2023) directly encodes
audio by transforming the spectrogram by Vision
Transformer (ViT) (Dosovitskiy et al., 2021). It is
worth exploring whether this approach carries suffi-
cient fine-grained information for speech transcrip-

tion or translation. The window-level Q-Former
used in SALMONN (Tang et al., 2024) is also in-
spired by image processing. A sliding window of
fixed size is applied on the speech features, where
each window is processed by a Q-Former (Li et al.,
2023), which creates a fixed number of token em-
beddings. These audio tokens embeddings are later
ingested by the backbone LLM.

Model Technique

HuBERT (Hsu et al., 2021) k-means clustering
SoundStream (Zeghidour et al., 2022) RVQ
SoundStorm (Borsos et al., 2023b) RVQ
SpeechTokenizer (Zhang et al., 2023a) RVQ
ImageBind (Girdhar et al., 2023) spectrogram + ViT

Win.-level Q-Former (Tang et al., 2024) sliding-window
+ Q-Former

Table 4: Common speech tokenization techniques.

3.5 Outlook
More Unified Speech and Text Generation As
reviewed in this section, current speech and text
generation approaches primarily rely on sequential
processing or separate model branches. This raises
the question of whether a more unified approach
could be beneficial. Circumventing sequential pro-
cessing could be particularly beneficial under real-
time constraints.

Comparison between Architecture Paradigms
Given the recency of some reviewed model types,
especially those leveraging LLMs for general-
purpose tasks (§3.3), a clear understanding of their
performance compared to established architectures
is still missing. Comprehensive benchmarking ef-
forts targeting these recently emerged approaches
could bridge this gap.

Identifying Scaling Law Prior works have ex-
amined how increasing model size affects model
performance in MT (Fernandes et al., 2023). As
the reviewed approaches in this work primarily fo-
cus on smaller LLMs, similar investigations for ST,
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particularly considering the foundation model size,
could yield valuable practical insights.

How far will Transformers take us? A broader
open question is whether alternative architectures
can challenge the dominance of Transformers.
State-space models (Gu et al., 2022a; Gu and Dao,
2023) could be a promising candidate, as their
strength lies in capturing long-range dependencies,
a crucial aspect for effective ST due to the inherent
sequential nature of speech.

4 Multilingual and Multimodal Learning

Both multilingual and multimodal speech transla-
tion are instances of multi-task learning, where
each translation direction in one input-output
modality pair corresponds to one task. As also
observed in general multi-task learning (Caruana,
1997), a key goal here is to maximize the transfer
while minimizing the interference between tasks,
while maintaining an efficient trade-off (Arivazha-
gan et al., 2019b). Given a defined model archi-
tecture (§3), different training procedures control
the learned representations. In this section, we will
discuss the relevant approaches in detail, taking
two perspectives from task-specific (§4.1) and task-
invariant modeling (§4.2).

4.1 Task-Specific Modeling

A central question when adding task-specific capac-
ity is determining the optimal allocation between
shared and task-specific components. Early works
use hand-picked sharing strategies of sub-networks,
such as language-specific decoders (Dong et al.,
2015), attention heads (Zhu et al., 2020), and layer
norm/linear transformation (Zhang et al., 2020).
Recently, research interests shifted towards learn-
ing to balance between task-specific and shared
capacity. We summarize representative approaches
in the following categories: 1) mixture-of-experts,
2) adapters, 3) factorization, and 4) pruning, as il-
lustrated in Figure 2. While these approaches may
share similar end goals, the categorization helps to
outline their specific computational approaches.

Mixture-of-Experts (MoEs) Compared to their
dense counterparts, MoE networks (Eigen et al.,
2014; Shazeer et al., 2017; Lepikhin et al., 2021) in-
corporate multiple expert subnets and use a gating
mechanism to selectively activate the expert mod-
ules. Besides increasing model capacity, this ap-
proach also provides a neat framework for balanc-

ing between task-specific and task-agnostic mod-
ules. MoEs can be seen as neural architecture
search (Baker et al., 2017), where the search space
is the combination of the parallel expert modules.

For multilingual applications, a common config-
uration of MoE is to reserve one universal expert
shared by all languages, while keeping the remain-
ing experts language-specific. The importance of
each expert module is learned by a gating mecha-
nism. The final output is a mix between language-
specific and shared ones. The overall amount of
language-specific capacity can be controlled by a
budget (Zhang et al., 2021a). There have been
works applying MoEs in both multilingual ASR
(Gaur et al., 2021; Kwon and Chung, 2023; Hu
et al., 2023; Wang et al., 2023b) and MT (Zhang
et al., 2021a; NLLB Team et al., 2022; Pires et al.,
2023). In direct ST, there are fewer works using
MoE. One work (Berrebbi et al., 2022) uses the
MoE gating mechanism to balance different acous-
tic features to improve ST robustness.

Adapters Like MoEs, adapters (Rebuffi et al.,
2017; Houlsby et al., 2019; Bapna and Firat, 2019)
is another of form conditionally activated network.
They can be seen as a restricted case of MoE with
hard gating and fixed routing3. In this case, how
the adapters are allocated to tasks needs to be de-
cided a priori. A variety of allocation schemes
have been explored, for example by language pairs
(Bapna and Firat, 2019), single languages (Philip
et al., 2020), and language families (Chronopoulou
et al., 2023). In multilingual ST, language-specific
adapters have been shown to improve over mono-
lithic multilingual models and achieve comparable
results to full fine-tuning (Le et al., 2021). Be-
sides adding capacity, a more common use-case of
adapters in speech translation is to bridge speech
and text representations (Li et al., 2021; Escolano
et al., 2021; Zhao et al., 2022), especially when
coupling pretrained ASR and MT models (Gállego
et al., 2021; Tsiamas et al., 2024). Further discus-
sions on this are in §4.2.

Factorization Another perhaps less explored line
of work uses factorization to balance language-
specific and shared parameters. By decompos-
ing originally shared parameters into (low-rank)
factors that are either language-specific or shared,
factorization enables a learned task allocation of

3Fusion between adapters (Pfeiffer et al., 2021) is an ex-
ception.
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Figure 2: Representative approaches for task-specific modeling.

parameters. This approach has seen applications
in multilingual ASR (Pham et al., 2021) and MT
(Xu et al., 2023). Compared to MoEs or adapters,
an advantage of factorized models is their fewer
total parameters, especially under large language
coverage (Pham et al., 2021; Xu et al., 2023).

Pruning Pruning also leads to sparse sub-
networks, similar to with MoEs. The difference
is that pruning starts with a trained model, and then
finetunes the selected sub-network. This therefore
does not increase model capacity like MoEs. For
multilingual models, per-language pruning results
in a partially shared network, fostering a learned
distribution of language-specific and shared capaci-
ties. This approach has demonstrated effectiveness
in multilingual ASR (Lu et al., 2022; Yang et al.,
2023b) and MT (Lin et al., 2021; Koishekenov
et al., 2023; He et al., 2023). The pruned sub-
networks are shown to correspond to language re-
latedness (Lin et al., 2021; He et al., 2023), sug-
gesting the validity of the learned sharing patterns.

4.2 Task-Invariant Modeling

As introduced in §4.1, task-specific modeling often
helps to alleviate interference in supervised condi-
tions. One the other hand, language- or modality-
invariant representations are often beneficial in
zero-shot or low-resource data conditions as well
as retrieval tasks.

Aligning Speech and Text Representations
Many prior works (Liu et al., 2020b; Dinh et al.,
2022; Ye et al., 2022; Wang et al., 2022; Ouyang
et al., 2023; Duquenne et al., 2022, 2023b) seek
to align speech and text representations, such that
semantically similar sentences are represented sim-
ilarly irrespective of their source modality (speech
or text). A semantically-aligned multimodal la-
tent space has at least the following benefits: 1) It

could facilitate the plug-and-play use of pretrained
unimodal models (Duquenne et al., 2023b; Yang
et al., 2023a; Tsiamas et al., 2024). 2) Text repre-
sentations are often more robust than speech due to
more training data, where cross-modal alignment
can help distill from the resource-richer text-based
task (Liu et al., 2020b; Tang et al., 2021). Indeed,
multiple works showed that enforcing cross-modal
universal representations improves low-resource
(Dinh et al., 2022; Ouyang et al., 2023) and zero-
shot ST (Wang et al., 2022; Duquenne et al., 2022;
Tsiamas et al., 2024). A major challenge in the
alignment of speech and text is the length mis-
match, where speech sequences are often factors
longer than text. Therefore some shrinking mecha-
nism is often necessary, e.g., by CTC-based down-
sampling (Liu et al., 2020b; Gaido et al., 2021),
CNN-based length adapters (Gállego et al., 2021),
or learning to aggregate the representations from
both modalities to fixed sizes (Duquenne et al.,
2022, 2023b).

Language-Invariant Modeling Another form of
task-invariant modeling is to enforce similar rep-
resentations for different languages, thereby estab-
lishing a language-agnostic semantic latent space.
In multilingual MT, such approaches (Arivazha-
gan et al., 2019a; Pham et al., 2019; Liu et al.,
2021) are shown effective on zero-shot translation
of new language pairs not included in training. An-
other application where language-invariant model-
ing helps is similarity search, where multilingual
sentence encoders (Artetxe and Schwenk, 2019;
Duquenne et al., 2023b) are used to mine parallel
data (Schwenk et al., 2021; Duquenne et al., 2023a)
for translation training corpora.

4.3 Outlook
Synergy between Languages and Modalities
Multi-task learning inherently faces a tradeoff be-

289



tween knowledge sharing and negative interference.
This becomes particularly challenging to investi-
gate in recent LLM-based models capable of han-
dling a wide range of modalities (§3.3). A deeper
understanding of the interactions between tasks
will enable targeted solutions to mitigate interfer-
ence and promote knowledge sharing.

Efficiently Adding Languages and Modalities
While in this paper we primarily focuses on the two
modalities of speech and text, expanding modality
coverage is a natural next step. For new modal-
ities, vision offers significant potential for real-
world applications, including sign language transla-
tion (Müller et al., 2023) and lip reading (Afouras
et al., 2020). Recent foundation models like Audio-
Visual BERT (Shi et al., 2022) demonstrates the
feasibility of multimodal processing that incorpo-
rates vision. An additional interesting direction
is the continual learning of trained ST systems.
The key challenge would be to integrate additional
languages or modalities into the model without
compromising its existing performance.

5 Evaluation

The evaluation of multilingual and multimodal ST
models relies on more resources than their bilingual
and unimodal counterparts. Here we outline rele-
vant developments in evaluation resources (§5.1)
and metrics (§5.2).

5.1 Evaluation Resources

The evaluation of multilingual and multimodal ST
models heavily rely on multiway parallel evalua-
tion data, such as the FLoRes evaluation set (Goyal
et al., 2022; NLLB Team et al., 2022) and its
speech-based extension FLEURS (Conneau et al.,
2022). Meanwhile, the increasing training data
scale of large foundation models introduces signifi-
cant risks of data contamination. A very alarming
example is the inclusion of the FLoRes-200 evalu-
ation data (NLLB Team et al., 2022) in the training
corpus of BLOOMZ (Muennighoff et al., 2023),
leading to highly inflated performance scores on
this specific set (Zhu et al., 2023), and rendering
downstream models based on BLOOMZ untestable
by this benchmark. As any Internet content could
be ingested in LLM training, developing new, un-
published test sets becomes even more essential.
The recent initiative of test suites in WMT (Kocmi
et al., 2023) as well as in IWSLT is a significant
step forward in addressing this challenge.

5.2 Evaluation Metric
Speech-to-Text Evaluation While the transla-
tion community is gradually moving beyond BLEU
(Papineni et al., 2002) to neural metrics better
calibrated to human ratings (Freitag et al., 2022)
such as COMET (Rei et al., 2020), language cov-
erage remains a challenge for very low-resource
languages. For instance, COMET supports 109
languages at the time of writing4, whereas eval-
uation on extremely low-resource languages of-
ten rely on match-based scores like chrF (Popović,
2015). Noteworthy are initiatives like AfriCOMET
(Wang et al., 2023a) to scale neural metrics to
lower-resource languages.

Speech-to-Speech Evaluation For evaluation of
speech-to-speech translation, the emergence of
similar neural metrics like BLASER (Chen et al.,
2023) as replacement of ASR-BLEU is also en-
couraging. For expressive speech, evaluation on
voice preservation primarily has been relying on
basic acoustic features such as the fundamental fre-
quency (Akuzawa et al., 2018) or pitch and energy
(Jeuris and Niehues, 2022), which do not account
for speech naturalness. Recently, Seamless Com-
munication et al. (2023a) propose AutoPCP and a
rhythm evaluation toolkit to measure prosody.

5.3 Outlook
Reliably Measuring Progress As discussed in
§5.1, the advent of LLM also introduces higher
risks of test data leakage. Besides calling for more
rigorous documentation by model developers and
critical evaluation by practitioners applying these
models to downstream tasks, this also presents a
crucial research question: how to effectively create
representative testing scenarios to properly mea-
sure progress. Recent targeted evaluation datasets
(Salesky et al., 2023) and community-driven cre-
ation of test suites (Kocmi et al., 2023) are excellent
examples of such efforts. Only with such robust
testing methodologies can we ensure the generaliz-
ability of observed performance improvements.

6 Deployment

In this section, we review three aspects relevant to
model deployment: compression and distillation
for serving the models (§6.1), continual learning
of new capabilities (§6.2), and inference-time cus-
tomization (§6.3).

4https://github.com/Unbabel/COMET?tab=
readme-ov-file#languages-covered
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6.1 Compression and Distillation

While tight-integrated multi-task models offer the
advantage of a compact and unified structure that
simplifies deployment, the growing trend of incor-
porating large pretrained components can negate
part of this initial benefit. Recent works in pruning
massively multilingual MT models (Mohammad-
shahi et al., 2022; Koishekenov et al., 2023) show
successful model compression while maintaining
translation quality. Another related direction is to
distill larger models into to smaller student models
(NLLB Team et al., 2022).

6.2 Continual Learning

Given a deployed model, one use-case is to add
more languages or modalities to the existing system.
A trade-off here is maintaining performance on
existing tasks and achieving optimal adaptation to
the new task. While continual learning for adding
languages has been explored in multilingual ASR
(Li et al., 2022; Pham et al., 2023) and MT (Gu
et al., 2022b; Sun et al., 2023; Liu et al., 2023b) its
application in direct ST remains less investigated.
Recent advancements in parameter-efficient fine-
tuning approaches, such as LoRA (Hu et al., 2022),
offer an alternative modular approach. By training
only the newly added parameters, inherently, one
can naturally decouple the new knowledge from
previously acquired information.

6.3 Inference-Time Customization

Deployed models sometimes require customization
to meet additional constraints specific to the use
case. An example is real-time applications, such
as simultaneous translation, where speech input
needs to be decoded before it is complete. While
other approaches involve designing separate mod-
els for online scenarios, repurposing offline models
for online use cases (Liu et al., 2020a; Papi et al.,
2022, 2023) has been shown to be a competitive
alternative. This is particularly advantageous on
foundation models (Papi et al., 2024) where retrain-
ing the model for specific use-cases is infeasible.

6.4 Outlook

Retrieval-Augmented Generation For both con-
tinual learning and inference-time customization
as reviewed above, retrieval-augmented generation
could be a promising approach. For instance, a
separate data store could house continual learning
data points, allowing for model updates without

modifying the deployed model itself. Retrieval-
augmented translation has demonstrated success
in the text domain (Zhang et al., 2018; Xu et al.,
2020; Cai et al., 2021; Hoang et al., 2023; Hao
et al., 2023). In the context of ST, Du et al. (2022)
explored kNN-MT (Khandelwal et al., 2021) for
domain adaption using a joint speech and text in-
put model with a text-based data store. However,
it remains unclear how speech-based retrieval can
benefit ST performance. Methods for efficiently
incorporating speech data into the retrieval process
is an interesting direction of future research.

7 Conclusion

In this paper, we presented a selection of recent ad-
vancements in multilingual and multimodal speech
translation. We zoom into individual stages of the
lifecycle of building a system: from determining
model coverage and architecture, training proce-
dures, to evaluation, and eventually deployment.
This work is not an exhaustive survey, but rather a
snapshot of ongoing developments related to mul-
tilingual and multimodal speech translation. We
welcome the community’s feedback on any rele-
vant omitted works in the current version.
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