@inproceedings{rishu-etal-2024-uom,
title = "{U}o{M}-{DFKI} submission to the low resource shared task",
author = "Rishu, Kumar and
Williams, Aiden and
Borg, Claudia and
Ostermann, Simon",
editor = "Salesky, Elizabeth and
Federico, Marcello and
Carpuat, Marine",
booktitle = "Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024)",
month = aug,
year = "2024",
address = "Bangkok, Thailand (in-person and online)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.iwslt-1.33",
doi = "10.18653/v1/2024.iwslt-1.33",
pages = "280--285",
abstract = "This system description paper presents the details of our primary and contrastive approaches to translating Maltese into English for IWSLT 24. The Maltese language shares a large vocabulary with Arabic and Italian languages, thus making it an ideal candidate to test the cross-lingual capabilities of recent state-of-the-art models. We experiment with two end-to-end approaches for our submissions: the Whisper and wav2vec 2.0 models. Our primary system gets a BLEU score of 35.1 on the combined data, whereas our contrastive approach gets 18.5. We also provide a manual analysis of our contrastive approach to identify some pitfalls that may have caused this difference.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rishu-etal-2024-uom">
<titleInfo>
<title>UoM-DFKI submission to the low resource shared task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kumar</namePart>
<namePart type="family">Rishu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiden</namePart>
<namePart type="family">Williams</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Borg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Ostermann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Salesky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcello</namePart>
<namePart type="family">Federico</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand (in-person and online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This system description paper presents the details of our primary and contrastive approaches to translating Maltese into English for IWSLT 24. The Maltese language shares a large vocabulary with Arabic and Italian languages, thus making it an ideal candidate to test the cross-lingual capabilities of recent state-of-the-art models. We experiment with two end-to-end approaches for our submissions: the Whisper and wav2vec 2.0 models. Our primary system gets a BLEU score of 35.1 on the combined data, whereas our contrastive approach gets 18.5. We also provide a manual analysis of our contrastive approach to identify some pitfalls that may have caused this difference.</abstract>
<identifier type="citekey">rishu-etal-2024-uom</identifier>
<identifier type="doi">10.18653/v1/2024.iwslt-1.33</identifier>
<location>
<url>https://aclanthology.org/2024.iwslt-1.33</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>280</start>
<end>285</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UoM-DFKI submission to the low resource shared task
%A Rishu, Kumar
%A Williams, Aiden
%A Borg, Claudia
%A Ostermann, Simon
%Y Salesky, Elizabeth
%Y Federico, Marcello
%Y Carpuat, Marine
%S Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand (in-person and online)
%F rishu-etal-2024-uom
%X This system description paper presents the details of our primary and contrastive approaches to translating Maltese into English for IWSLT 24. The Maltese language shares a large vocabulary with Arabic and Italian languages, thus making it an ideal candidate to test the cross-lingual capabilities of recent state-of-the-art models. We experiment with two end-to-end approaches for our submissions: the Whisper and wav2vec 2.0 models. Our primary system gets a BLEU score of 35.1 on the combined data, whereas our contrastive approach gets 18.5. We also provide a manual analysis of our contrastive approach to identify some pitfalls that may have caused this difference.
%R 10.18653/v1/2024.iwslt-1.33
%U https://aclanthology.org/2024.iwslt-1.33
%U https://doi.org/10.18653/v1/2024.iwslt-1.33
%P 280-285
Markdown (Informal)
[UoM-DFKI submission to the low resource shared task](https://aclanthology.org/2024.iwslt-1.33) (Rishu et al., IWSLT 2024)
ACL
- Kumar Rishu, Aiden Williams, Claudia Borg, and Simon Ostermann. 2024. UoM-DFKI submission to the low resource shared task. In Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024), pages 280–285, Bangkok, Thailand (in-person and online). Association for Computational Linguistics.