
Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024), pages 346–358
August 15-16, 2024 c©2024 Association for Computational Linguistics

Fixed and Adaptive Simultaneous Machine Translation Strategies Using
Adapters

Abderrahmane Issam
Yusuf Can Semerci

Jan Scholtes
Gerasimos Spanakis

Department of Advanced Computing Sciences
Maastricht University

{abderrahmane.issam, y.semerci, j.scholtes, jerry.spanakis}@maastrichtuniversity.nl

Abstract

Simultaneous machine translation aims at solv-
ing the task of real-time translation by starting
to translate before consuming the full input,
which poses challenges in terms of balancing
quality and latency of the translation. The wait-
k policy offers a solution by starting to trans-
late after consuming k words, where the choice
of the number k directly affects the latency
and quality. In applications where we seek to
keep the choice over latency and quality at in-
ference, the wait-k policy obliges us to train
more than one model. In this paper, we address
the challenge of building one model that can
fulfil multiple latency levels and we achieve
this by introducing lightweight adapter mod-
ules into the decoder. The adapters are trained
to be specialized for different wait-k values and
compared to other techniques they offer more
flexibility to allow for reaping the benefits of
parameter sharing and minimizing interference.
Additionally, we show that by combining with
an adaptive strategy, we can further improve
the results. Experiments on two language di-
rections show that our method outperforms or
competes with other strong baselines on most
latency values. 1

1 Introduction

Simultaneous machine translation (SiMT) aims at
reducing the latency of translation systems. In sce-
narios with low latency demands, such as confer-
ences or lectures, translating with minimum delay
is crucial. In order to reduce the latency, SiMT
models start translating before consuming the full
input sentence, which improves the latency but
affects the quality of the translation, because of
limited access to enough source context to make
a correct prediction. SiMT techniques design a
strategy to decide when to make a READ (i.e. wait
for more source tokens) or WRITE (i.e. output

1Code is available at: https://github.com/issam9/
Adapters-SiMT

a new token) action. The strategy has to balance
the trade-off between quality and latency by mak-
ing more READ or WRITE actions. Making more
READ actions will lead to improved quality but
will hinder the latency, while the opposite is true for
making more WRITE actions. Fixed policies de-
sign a strategy that is detached from whether there
is sufficient context to make a WRITE action (Ma
et al., 2019; Elbayad et al., 2020; Zhang and Feng,
2021). For instance, the wait-k policy (Ma et al.,
2019) trains the model to make k number of READ
actions before every WRITE action. The value of k
has a direct impact on the quality and latency of the
translation and since it is decided during training,
wait-k models have to be trained with latency in
mind, which means that in order to support multi-
ple latency levels, we need to train multiple models.
The multi-path training (Elbayad et al., 2020) was
introduced to solve this issue by sampling the value
of k randomly during training, which results in a
model that supports multiple latency levels. This
technique was shown to benefit the inference at
lower wait-k values by improving the results, but
it neglects that parameter sharing between all the
wait-k values might introduce interference. Zhang
and Feng (2021) addressed the interference issue by
using Mixture-of-Experts (MoE), where each head
of the multi-head attention is treated as an expert
and is trained on different wait-k values. This has
proven to be a successful technique, but the number
of wait-k experts we can introduce depends on the
number of heads in the Transformer model, which
limits the flexibility in terms of balancing param-
eter sharing and interference between the wait-k
paths. Our method relies on inserting lightweight
adapters (Rebuffi et al., 2017; Houlsby et al., 2019)
for this purpose. The number of the adapters and
their capacity can be easily adjusted depending
on the wait-k values we intend to support and the
complexity of the language direction.

Dynamic strategies have gained increased atten-

346

https://github.com/issam9/Adapters-SiMT
https://github.com/issam9/Adapters-SiMT

tion in recent years (Gu et al., 2017; Zheng et al.,
2019, 2020; Ma et al., 2020; Zhang and Feng, 2022;
Zhao et al., 2023) due to their effectiveness. Dy-
namic strategies strive to strike a balance between
latency and quality by making as much READ ac-
tions as necessary and as much WRITE actions as
possible. The decision to read or write is made
dynamically based on the context (which can be
the received input and the previous target tokens) at
each decoding step. Although dynamic strategies
achieve state-of-the-art results, they often require
specialized training techniques (Gu et al., 2017;
Ma et al., 2020; Zhang and Feng, 2022) that can
balance between latency and quality when gener-
ating READ/WRITE actions, or even require the
training of multiple models (Zheng et al., 2020;
Ma et al., 2020) to support multiple latency levels.
In order to take advantage of the dynamic wait-k
strategies, we adopt a strategy that composes multi-
ple wait-k models during inference (we refer to this
as Adaptive Wait-k (Zheng et al., 2020)) to work
with wait-k adapters instead. This brings efficiency
and cost benefits as only one model is required to
satisfy multiple latency levels and also improves
performance compared to other strong baselines
including Adaptive Wait-k.

In summary, our main contributions are the fol-
lowing:

• We introduce lightweight adapters as a flexi-
ble solution to balance parameter sharing and
interference in multi-path training.

• We show that by combining adapters with a
simple adaptive strategy (i.e. Adaptive Wait-
k) we can further improve the results.

• We show that our technique outperforms or
competes with other strong baselines on most
latency levels.

2 Related Works

2.1 Adapters for Machine Translation

Adapters (Rebuffi et al., 2017; Houlsby et al., 2019)
are typically small modules that are used in order
to efficiently adapt a pre-trained model to a down-
stream task, where the pre-trained model can be ei-
ther frozen (Houlsby et al., 2019), or trained jointly
with the adapters (Stickland and Murray, 2019).

Adapters have been used for efficient multi-task
fine-tuning (Stickland and Murray, 2019), where
each set of adapters is trained on a specific task.

Pfeiffer et al. (2021) added AdapterFusion on top
of the adapters as a way to compose the representa-
tions of different tasks. Pfeiffer et al. (2022) used
adapters as language-specific parameters in order
to address the curse of multilinguality in multilin-
gual pre-training, where the adapter modules are
introduced during pre-training instead of post-hoc.

For Neural Machine Translation (NMT), Bapna
and Firat (2019) introduced a simple formulation of
adapters to learn language-pair specific parameters,
where they showed that it improves performance
on high resource languages in Multilingual Transla-
tion. Chronopoulou et al. (2023) trained language-
family adapters to address negative interference
while allowing for parameter sharing between sim-
ilar languages, which improved performance on
low resource languages. Zhao and Calapodescu
(2022) fine-tuned adapters on multimodal noise,
then added a fusion layer in order to improve gen-
eralization to other types of noise. Adapters were
also explored for other motivations like Zero-shot
NMT and unsupervised domain adaptation (Philip
et al., 2020; Malik et al., 2023).

2.2 Simultaneous Machine Translation

SiMT systems can be divided into fixed and adap-
tive policies. Fixed policies rely on predefined rules
for READ/WRITE decisions. Ma et al. (2019) pro-
posed the wait-k policy, where the model starts by
reading k tokens then alternates between reading
and writing one token. Elbayad et al. (2020) in-
troduced multi-path training, where one model is
trained to support multiple wait-k values by sam-
pling k randomly during training. Zhang and Feng
(2021) addressed interference in multi-path training
by using Mixture-of-Experts. Zhang et al. (2021)
used Knowledge Distillation from a Full-Sentence
Transformer to embed future information into the
SiMT model. For adaptive policies, Gu et al. (2017)
trained a Reinforcement Learning agent to decide
READ/WRITE actions, where the reward func-
tion is designed to consider both quality and la-
tency. Zheng et al. (2019) generated supervised
READ/WRITE actions then trained a classifica-
tion model to predict the action based on encoder
and decoder representations. Zheng et al. (2020)
introduced a heuristic strategy to compose wait-k
models into an adaptive policy based on their uncer-
tainty. Zhang and Zhang (2020) trained a sentence
segmentation model to predict complete sentences
and feed them through a full-sentence translation

347

model. Arivazhagan et al. (2019) introduced MILK,
where they modified the attention mechanism to
learn a Bernoulli variable to decide READ/WRITE
actions. Ma et al. (2020) adapted MILK to the
transformer architecture. Zhang and Feng (2022)
proposed ITST, which quantifies the transported
information from source to target then generates a
token when the quantity is deemed sufficient. Zhao
et al. (2023) trained a supervised policy network
based on automatically generated divergence be-
tween the predicted distribution of partial and full
sentence input.

The majority of the techniques outlined require
training multiple models to accommodate different
latency levels. Our approach focuses on the effi-
cient training of a single model that can support
various latency levels at inference time.

3 Background

3.1 Adapters
Adapters are lightweight modules that can be in-
serted into a model for the purpose of task or do-
main adaptation (Houlsby et al., 2019; Bapna and
Firat, 2019). They offer an efficient solution for
fine-tuning the model and limiting catastrophic for-
getting (Houlsby et al., 2019).

Formally, for a set of N tasks and a model M ,
the adapter parameters A are introduced. We as-
sume that for each task we have a dataset Dn. The
model parameters can be frozen or jointly trained
with the adapters. For a frozen model, the model
M is pre-trained and the objective function for task
n ∈ {1, ..., N} can be defined as:

An ← argmin
An

Ln(Dn;M,An) (1)

The parameters An are randomly initialized for
each task, then they are trained on the dataset Dn

in order to minimize the loss function Ln. This
results in N adapters that can specialize the model
representations to each task n.

In the case of jointly training the model and the
adapters, the model parameters M can be randomly
initialized or frozen. The objective function can be
defined as:

M ′ ← argmin
M,A

(
N∑

n=1

Ln(Dn;M,An)

)
(2)

where M ′ is both the parameters of the model M
and the adapters An for n ∈ {1, ..., N}. The pa-
rameters An are activated during training depend-
ing on the task n.

3.2 Wait-k Policy
The wait-k policy (Ma et al., 2019) trains a model
to start translating after receiving k source tokens.
The model then alternates between writing and
reading a new token. It is a fixed policy, where
the k value has to be chosen during training and
inference. The model reads gk(t) number of source
tokens from the source sentence x = (x1, ..., xm)
when generating the target token yt, where gk(t) is
defined as:

gk(t) = min{|x|, t+ k − 1} (3)

Instead of training the model for a specific wait-k
value, Elbayad et al. (2020) introduced the multi-
path training, which samples k uniformly from
[1, ..., |x|] for each batch during training. This en-
ables the model to support multiple wait-k values
and allows for information sharing between dif-
ferent wait-k paths. While it was shown that the
multi-path training improves the results over the
wait-k policy, it does not offer a solution to balance
between parameter sharing and interference that
we aim at solving by introducing adapters.

4 Method

Our method is composed of two steps: first we train
a single model that can support multiple fixed wait-
k values by using wait-k adapters, then we rely on
the probability that the model assigns to the most
likely token in order to build an adaptive strategy,
where we decide a READ or WRITE action based
on a predefined probability threshold.

4.1 Multi-path Training with Adapters
Multi-path training is highly advantageous as an
efficient alternative to the wait-k policy, where we
need to train multiple models to support more than
one latency at inference, but might introduce in-
terference between wait-k paths due to parameter
sharing. In order to provide the ability to balance
between parameter sharing and interference, we
introduce adapters into each decoder layer and we
activate adapters according to the wait-k paths they
are meant to support. Figure 1 shows an illustra-
tion of this. During training, the wait-k value for
each batch is sampled uniformly from [1, ..., |x|]
following the multi-path training (Elbayad et al.,
2020) and based on that, the model decides which
adapter will be activated. We set the adapter lag-
ging KA as a list of equally spaced positive inte-
gers in increasing order, where each integer speci-

348

fies the minimum wait-k value supported by each
adapter. We insert one adapter for each value in
KA. Since the train wait-k is randomly sampled
from [1, . . . , |x|], we train each adapter on values
starting from its minimum wait-k up until the mini-
mum wait-k of the next adapter. For example, we
can set KA = {1, 5, 9, 13} and this will indicate
adding 4 adapters, where each adapter will handle
4 wait-k values (starting from each integer in KA

until the next), except the fourth adapter (kA = 13),
which will handle values starting from 13 up until
the length of the input sequence |x|. We follow
Bapna and Firat (2019) implementation and insert
the residual adapter modules after the feed-forward
layer. Algorithm 1 shows the pseudo-code for com-
puting the decoder hidden states at decoding step t
using Adapters Wait-k, where H0 is considered to
be the input embeddings of the decoder, and gk(t)
is computed based on equation 3.

Algorithm 1 Adapters Wait-k Policy

Input: Encoder output Z, Decoder hidden states
Ht, Adapter lagging KA, Test lagging ktest

Output: Hidden states HL
t

if is_training then
k ← Sample from [1, . . . , |Z|]

else
k ← ktest

end if
for kA in KA do

if k ≥ kA then
Al = Al

kA
for l ∈ [1, . . . , L]

end if
end for
for l← 1 to L do

H l
t = Decoderl(H l−1

t , Z≤gk(t))

H l
t = Al(H l

t) +H l
t

end for
Return HL

t

4.2 Adaptive Adapters

We follow Zheng et al. (2020) to build an adap-
tive strategy by using adapters instead of different
models for each wait-k value, which can be com-
putationally expensive and less efficient. At each
decoding step, we activate one adapter based on the
lagging behind the current generation step, which
is calculated as k = |x| − |y|, where |x| is the
number of input tokens and |y| is the number of
generated tokens. At the beginning of generation,

|x| = 1 and |y| = 0, which means k starts from 1.
Then, we rely on the probability of the most likely
token to decide whether to write or read a new to-
ken. If the probability is less than a threshold ρk,
we read a new token, otherwise, we write. The pos-
sible values of k are between kmin and kmax that
we determine during inference. If k is lower than
kmin, we force the model to read, if it is higher or
equal to kmax, we force the model to write, which
means that the choice of kmin and kmax also im-
pacts the trade-off between latency and quality (as
we analyze in Section 6.1). When the whole input
sequence is consumed (i.e. x|x| = </s>), we set k
to kmax and generate the rest of the target sequence.
Algorithm 2 shows the pseudo-code of this method
using adapters.

Algorithm 2 Uncertainty based Adaptive Policy

Input: Two integers kmin and kmax and a sequence
of thresholds ρk for kmin ≤ k ≤ kmax.

Output: Predicted sequence y
while x|x| ̸= </s> and y|y| ̸= </s> do

k ← |x| − |y|
if k < kmin then

x← x ◦ READ() ▷ READ action
else

ytop, ptop ← Pk(M,Ak, x, y)
if k < kmax and ptop < ρk then

x← x ◦ READ() ▷ READ action
else

y ← y ◦ ytop ▷ WRITE action
end if

end if
end while
while y|y| ̸= </s> do

ytop, ptop ← Pkmax(M,Akmax , x, y)
y ← y ◦ ytop ▷ WRITE action

end while
return y

5 Experiments

In this section, we describe the datasets we used to
evaluate the models and the baselines that we com-
pare against along with the evaluation setup. We
also provide the main results of our experiments.

5.1 Datasets

We evaluate our method on two public datasets: the
En-Vi dataset for Transformer-Small and De-En
for both Transformer-Base and Transformer-Big.

349

Figure 1: Transformer Decoder with Adapters Wait-k, we illustrate an example where 8 adapters are inserted with
KA = {1, 3, 5, 7, 9, 11, 13, 15}, the generation step is t = 0, and A3 is activated because k = 3.

IWSLT152 English → Vietnamese (133K
pairs) (Cettolo et al., 2015). We follow the set-
tings of Raffel et al. (2017) and Ma et al. (2020).
We use TED tst2012 (1553 pairs) as the validation
set and TED tst2013 (1268 pairs) as the test set.
We replace tokens with frequency less than 5 with
< unk >. The final vocabulary sizes are 17K and
7.7K for English and Vietnamese respectively.

WMT153 German→ English (4.5M pairs) We
follow the settings of Ma et al. (2019). We use
newstest2013 (3000 pairs) as the validation set and
newstest2015 (2169 pairs) as the test set. We apply
BPE (Sennrich et al., 2016) with 32K merge opera-
tions jointly on the source and target to construct a
shared vocabulary.

5.2 System Settings
We conduct experiments on the following systems:

Full Sentence: (Vaswani et al., 2017) Standard
Transformer model that takes the full sentence as
input before starting to translate.

Wait-k: (Ma et al., 2019) A simple policy that
waits for k source tokens before starting to alternate
between writing a target token and reading a source
token.

Multi-path Wait-k: (Elbayad et al., 2020)
Trains a model to support multiple wait-k policies
by randomly sampling k during training, then the
k value is fixed during inference.

Adaptive Wait-k: (Zheng et al., 2020) It is a
method for composing multiple wait-k models dur-
ing inference in order to build an adaptive strategy.
The model is selected based on the lagging behind
the generation step, and the decision to write or
read is based on the output probabilities.

2nlp.stanford.edu/projects/nmt/
3www.statmt.org/wmt15/

MoE Wait-k: (Zhang and Feng, 2021) Mixture-
of-Experts Wait-k is similar to Multipath Wait-k
but applies experts to learn different wait-k policies
to avoid interference.

MMA: (Ma et al., 2020) Monotonic multi-head
attention (MMA) jointly learns a Bernoulli variable
that is used to decide READ/WRITE action.

Adapters Wait-k: Our method as described in
Section 4.1.

Adaptive Adapters: Our method as described
in Section 4.2.

All implementations are based on the original
Transformer architecture (Vaswani et al., 2017) and
are using the Fairseq library (Ott et al., 2019). We
apply Transformer-Small (4 heads) for En-Vi and
both Transformer-Base (8 heads) and Transformer-
Big (16 heads) for De-En. The encoder is made
unidirectional to avoid encoding the source input
each time a new token is added.

The evaluation is performed using BLEU (Pap-
ineni et al., 2002) for translation quality and Av-
erage Lagging (AL)4 (Ma et al., 2019) for latency.
AL measures by how many tokens the system is
lagging behind an ideal policy (a wait-k policy with
k = 0). Given g(t), AL is computed as:

ALg(x, y) =
1

τg(|x|)

τg(|x|)∑

t=1

g(t)− (t− 1)

|y|/|x| (4)

where x and y are the source and target sentences
respectively, while τg(|x|) = min{t | g(t) = |x|}
is the decoding step where the source sentence
finishes.

We set the adapter lagging to KA =
{1, 3, 5, 7, 9, 11, 13, 15} for our experiments,

4github.com/SimulTrans-demo/STACL

350

nlp.stanford.edu/projects/nmt/
www.statmt.org/wmt15/
github.com/SimulTrans-demo/STACL

which means that 8 adapters are inserted into the
model and we specify the adapter bottleneck size as
64. In Table 1, we report the number of parameters
of each method and the number of models required
to achieve the latency levels reported in the results
section. Adapters Wait-k policy introduces 79.94M
parameters into Transformer-Big, but still has the
advantage of using one model to support multiple
latency levels. In Section 6.3, we experiment with
other settings of KA in order to shed light on how
much sharing is best between wait-k values during
the multi-path training.

Model #Parameters #Models
Full Sentence 209.91M 1
Wait-k 209.91M 5
Adaptive Wait-k 209.91M 13
Multipath 209.91M 1
MMA 222.51M 7
MoE Wait-k 209.91M 1
Adapters Wait-k 289.85M 1
Adaptive Adapters 289.85M 1

Table 1: The number of parameters of the models for
Transformer-Big on De-En along with the number of
models required to achieve different latency levels.

The adaptive strategy requires three parameters
to be specified at inference, namely, kmin, kmax,
and the probability threshold ρk. For En-Vi ex-
periments, kmin and kmax are set to 1 and 9 re-
spectively, while for De-En, we lower kmax to
5, which we have found to improve the results
in low latency. We analyze this effect in Sec-
tion 6.1. ρk decreases as a function of the lag-
ging k, since we want the model to be more ag-
gressive when k is low and more conservative
when k is high. We set ρkmin

and ρkmax and com-
pute the threshold as: ρk = ρkmin

− d.(k − 1),
where kmin ≤ k ≤ kmax and d = (ρkmin

−
ρkmax)/(kmax − kmin). In order to vary the la-
tency, we test the following values of ρkmin

and
ρkmax : ρkmin

∈ {0.2, 0.4, 0.6, 0.8, 1.}, ρkmax = 0.,
and ρkmin

= 1., ρkmax ∈ {0.2, 0.4, 0.6, 0.8}.

5.3 Main Results
In Figure 2, we compare our methods to previous
adaptive and fixed strategies on two language di-
rections. We find that our method improves or
competes with other strategies while using a sin-
gle model. MMA, Wait-k, and Adaptive Wait-k
require the training of multiple models in order to
support different latency levels (as seen in Table

1), while our method is more efficient in this re-
gard. Adapters Wait-k is competitive with other
strong fixed strategies like MoE Wait-k and Multi-
path Wait-k and it brings further improvements to
combine it with the adaptive strategy.

Our method does not support higher latency on
De-En because we are using a kmax value of 5 (as
seen in Figures 2b and 2c), which we have found to
improve results for low latency. However, we show
the results for higher kmax and compare them with
Adaptive Wait-k on De-En in Section 6.1.

Using adapters alone is competitive with other
methods, especially on En-Vi (as seen as in Fig-
ure 2a). Compared to Multi-path Wait-k, our
method achieves better results on most latency
levels, which shows the importance of minimiz-
ing interference between different lagging values.
Combining our method with an adaptive strategy
further improves the results, especially in low la-
tency. In comparison to Adaptive Wait-k, where
wait-k policy models are trained and composed dur-
ing inference, we find that our method is better in
all latency levels while being more efficient.

Compared to MoE Wait-k, which also aims at
minimizing interference introduced by multi-path
training (Zhang and Feng, 2021), we find that our
method is better in all latency levels on En-Vi and
De-En with Transformer-Big (as seen in Figures 2a
and 2c), while achieving competitive results when
using Transformer-Base (as seen in Figure 2b). Our
method is more flexible in terms of balancing the
trade-off between parameter sharing and interfer-
ence, as we can choose the number of wait-k values
supported by each adapter and we can also manip-
ulate the capacity of the adapters by adjusting the
bottleneck size. This can bring further improve-
ments but requires more experimentation to find
the appropriate hyperparameters.

6 Analysis

In this section, we look into how the performance
changes in response to varying the value of kmax,
then we provide a wall-clock time comparison
between Adapters Wait-k and Multi-path Wait-k.
Moreover, we experiment with how balancing be-
tween parameter sharing and interference by adjust-
ing the adapter lagging impacts the performance,
and also experiment with varying the bottleneck
size in order to discern the impact of the complexity
of the adapters. At last, we analyze the L2-norm
of the adapter representations to discover which

351

a En-Vi, Transformer-Small b De-En, Transformer-Base c De-En, Transformer-Big

Figure 2: Translation quality (BLEU) against latency (AL) of our methods (Adaptive Adapters, Adapters Wait-k)
and previous adaptive (MMA, Adaptive Wait-k) and fixed (Wait-k, MoE Wait-k, Multi-path Wait-k) strategies on
En-Vi and De-En.

adapter layers are involved in the prediction.

6.1 Ablation
We found that lowering the value of kmax for the
adaptive strategy improves the results in low la-
tency, which we believe is the priority in SiMT,
but a lower kmax value also limits the ability of
supporting high latency. In Figure 3, we show that
by increasing the value of kmax we can support
high latency and get better quality translations. We
compare to Adaptive Wait-k and show that we still
achieve better results for all the values of kmax. A
lower kmax forces the model to be more aggres-
sive, which in some cases can improve the results
in lower latency. The fact that forcing the model
to be more aggressive improves the performance
signifies that the adaptive strategy decides to wait
in cases where the model is able to make a correct
prediction, which suggests that the adaptive strat-
egy based on the probability threshold can still be
improved by a better strategy.

Figure 3: Results of increasing the value of kmax on
De-En. Lower kmax values achieve better BLEU score
in low latency, but it is necessary to increase the value
of kmax in order to support high latency.

6.2 Inference Time

Figure 4: Wall-clock time comparison between
Adapters Wait-k and Multi-path Wait-k averaged over 5
runs on En-De.

Although our method has more parameters than the
baseline Multi-path Wait-k due to the additional
adapters, the effect on the inference time is not pro-
portional to the number of adapters because only
one adapter is activated at a time. To illustrate this,
we compare the wall-clock inference time (aver-
aged over 5 runs) of Adapters Wait-k and Multi-
path Wait-k in Figure 4. It seems that adapters
are faster in low k values which could be due to
over generation by the Multi-path model (where the
model generates longer sequences than it should),
while starting from a k value of 7, Multi-path Wait-
k is better and the difference fluctuates between
0.29s and 0.66s.

6.3 Adapter Lagging

The adapter lagging KA specifies the number of
wait-k values that one single adapter will support

352

Figure 5: Results of varying the window sizes of the
adapter lagging between 1 and 5 on En-Vi.

and also the number of adapters that we will use.
We vary the adapter lagging window between 1
and 5, while maintaining the range between 1 and
16. The results are shown in Figure 5. The wait-k
values supported by an adapter controls the amount
of sharing and interference between the values.
For example, for KA = {1, 5, 9, 13}, adapter A1

will be trained on k ∈ {1, 2, 3, 4}. We note that
although it has more parameters, a window of 1
achieves the worst results, which signifies that pa-
rameter sharing between wait-k values is crucial.
Adapter lagging with window 4 and 5 are com-
petitive especially in low latency, which indicates
that lower wait-k values benefit more from sharing.
This is consistent with the fact that wait-k models
achieve better results when tested on lower wait-k
values (Zhang and Feng, 2021).

6.4 Adapter Bottleneck

The adapter’s bottleneck size can be used to tune
the representation capacity of the adapters and can
be interesting to tune depending on the language
pair and the adapter lagging. In Figure 6, we ex-
periment with doubling the adapter’s bottleneck
size from 8 to 128, which can be regarded as in-
creasing the representation capacity of the adapter
network. We found that the bottleneck size impacts
the performance but not in a consistent way - as
in larger size results in better performance - but it
seems to interact with other hyperparameters (e.g.
adapter lagging) to improve or hinder the perfor-
mance, especially in high latency, where the gap in
performance is larger.

Figure 6: Results of doubling the bottleneck size of the
adapters on En-Vi.

6.5 Adapter Representation Norm

Figure 7: Confusion matrix of the average norm of the
adapter representations in each layer of the decoder by
the values of ρkmin and ρkmax on En-Vi.

We compute the L2-norm of the adapter represen-
tations in order to discover which adapter layers
are involved in the representations (Liu et al., 2020;
Zhu et al., 2021). We measure the L2-norm during
inference for kmin = 1 and kmax = 9 while vary-
ing the value of ρkmin

and ρkmax , as described in
Section 5.2. As depicted in Figure 7, the norm for
all layers except layer 6 decreases as we increase
ρkmin

or ρkmax , which correlates with making the
adaptive strategy more conservative because the
threshold for making a write action is higher. This
shows that the adapters are more involved in the
prediction when the model is forced to be more ag-
gressive. Only layer 6 is stably invested in adapting
the model representations at all the threshold val-
ues, which seems to indicate that only low thresh-

353

old predictions are complex enough to recruit all
the adapter layers. Based on this observation, we
experiment with inserting adapters only in the last
layer (i.e. layer 6). We show in Figure 8 the re-
sults of comparing between inserting adapters in
all layers and inserting the adapters only in the last
layer, where we see a drop in performance only in
lower latency levels. This shows that we can make
the model more efficient by removing lower layer
adapters with a small drop in performance.

Figure 8: Comparison of the results of inserting adapters
in all layers vs. only the last layer on En-Vi. We witness
a drop in performance only in low latency levels.

7 Conclusion

In this paper, we employ adapters to build a SiMT
model that can support multiple latency levels at
inference. We use the multi-path training and show
that by adding wait-k adapters we can flexibly bal-
ance parameter sharing and interference between
the wait-k paths. Furthermore, we adopt a simple
adaptive strategy and show that it further improves
the results. By comparing against strong adap-
tive and fixed strategies, we find that our method
achieves better or competitive results on most la-
tency levels.

8 Limitations

The two datasets we used are common in SiMT re-
search and were selected to compare against other
baselines, but evaluating on only two language di-
rections can be a limiting factor for the generaliza-
tion of our results. Although Vietnamese is from a
different language family, it deploys a similar word
order (i.e. Subject-Verb-Object) to English and
German and we believe that more challenges might
emerge when dealing with language directions with
a different word order. Additionally, we evaluate
latency using common SiMT latency metrics such

as AL, which are sentence-level and do not reflect
the nature of a streaming scenario (Iranzo-Sánchez
et al., 2021). Furthermore, in this work, we only
evaluated on offline data, while evaluating on real
interpretation data might offer more realistic results
(Zhao et al., 2021).

Acknowledgements

The research presented in this paper was conducted
as part of VOXReality project5, which was funded
by the European Union Horizon Europe program
under grant agreement No. 101070521.

References
Naveen Arivazhagan, Colin Cherry, Wolfgang

Macherey, Chung-Cheng Chiu, Semih Yavuz, Ruom-
ing Pang, Wei Li, and Colin Raffel. 2019. Monotonic
infinite lookback attention for simultaneous machine
translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational
Linguistics, pages 1313–1323, Florence, Italy.
Association for Computational Linguistics.

Ankur Bapna and Orhan Firat. 2019. Simple, scal-
able adaptation for neural machine translation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1538–
1548, Hong Kong, China. Association for Computa-
tional Linguistics.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
Bentivogli, Roldano Cattoni, and Marcello Federico.
2015. The IWSLT 2015 evaluation campaign. In Pro-
ceedings of the 12th International Workshop on Spo-
ken Language Translation: Evaluation Campaign,
pages 2–14, Da Nang, Vietnam.

Kyunghyun Cho and Masha Esipova. 2016. Can neu-
ral machine translation do simultaneous translation?
CoRR, abs/1606.02012.

Alexandra Chronopoulou, Dario Stojanovski, and
Alexander Fraser. 2023. Language-family adapters
for low-resource multilingual neural machine trans-
lation. In Proceedings of the The Sixth Workshop
on Technologies for Machine Translation of Low-
Resource Languages (LoResMT 2023), pages 59–72,
Dubrovnik, Croatia. Association for Computational
Linguistics.

Maha Elbayad, Laurent Besacier, and Jakob Verbeek.
2020. Efficient Wait-k Models for Simultaneous Ma-
chine Translation. In Proc. Interspeech 2020, pages
1461–1465.

5https://voxreality.eu/

354

https://doi.org/10.18653/v1/P19-1126
https://doi.org/10.18653/v1/P19-1126
https://doi.org/10.18653/v1/P19-1126
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://aclanthology.org/2015.iwslt-evaluation.1
http://arxiv.org/abs/1606.02012
http://arxiv.org/abs/1606.02012
https://doi.org/10.18653/v1/2023.loresmt-1.5
https://doi.org/10.18653/v1/2023.loresmt-1.5
https://doi.org/10.18653/v1/2023.loresmt-1.5
https://doi.org/10.21437/Interspeech.2020-1241
https://doi.org/10.21437/Interspeech.2020-1241

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Vic-
tor O.K. Li. 2017. Learning to translate in real-time
with neural machine translation. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, pages 1053–1062, Valencia, Spain.
Association for Computational Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Javier Iranzo-Sánchez, Jorge Civera, and Alfons Juan.
2021. Stream-level latency evaluation for simultane-
ous machine translation.

Xuebo Liu, Houtim Lai, Derek F. Wong, and Lidia S.
Chao. 2020. Norm-based curriculum learning for
neural machine translation. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 427–436, Online. Associ-
ation for Computational Linguistics.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuanqiang Zhang,
Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and
Haifeng Wang. 2019. STACL: Simultaneous trans-
lation with implicit anticipation and controllable la-
tency using prefix-to-prefix framework. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3025–3036, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Xutai Ma, Juan Miguel Pino, James Cross, Liezl Puzon,
and Jiatao Gu. 2020. Monotonic multihead attention.
In International Conference on Learning Representa-
tions.

Bhavitvya Malik, Abhinav Ramesh Kashyap, Min-Yen
Kan, and Soujanya Poria. 2023. UDAPTER - effi-
cient domain adaptation using adapters. In Proceed-
ings of the 17th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 2249–2263, Dubrovnik, Croatia. Association
for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic evalu-
ation of machine translation. In Proceedings of the

40th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’02, page 311–318, USA.
Association for Computational Linguistics.

Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James
Cross, Sebastian Riedel, and Mikel Artetxe. 2022.
Lifting the curse of multilinguality by pre-training
modular transformers. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3479–3495, Seattle,
United States. Association for Computational Lin-
guistics.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composition
for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487–503, Online. Association for Computational Lin-
guistics.

Jerin Philip, Alexandre Berard, Matthias Gallé, and
Laurent Besacier. 2020. Monolingual adapters for
zero-shot neural machine translation. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4465–4470, Online. Association for Computational
Linguistics.

Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J.
Weiss, and Douglas Eck. 2017. Online and linear-
time attention by enforcing monotonic alignments.
In Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 2837–2846.
PMLR.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. 2017. Learning multiple visual domains
with residual adapters. In Advances in Neural In-
formation Processing Systems, volume 30. Curran
Associates, Inc.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Asa Cooper Stickland and Iain Murray. 2019. BERT
and PALs: Projected attention layers for efficient
adaptation in multi-task learning. In Proceedings of
the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning
Research, pages 5986–5995. PMLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

355

https://aclanthology.org/E17-1099
https://aclanthology.org/E17-1099
https://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.18653/v1/2020.acl-main.41
https://doi.org/10.18653/v1/2020.acl-main.41
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/P19-1289
https://openreview.net/forum?id=Hyg96gBKPS
https://doi.org/10.18653/v1/2023.eacl-main.165
https://doi.org/10.18653/v1/2023.eacl-main.165
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2022.naacl-main.255
https://doi.org/10.18653/v1/2022.naacl-main.255
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2020.emnlp-main.361
https://doi.org/10.18653/v1/2020.emnlp-main.361
https://proceedings.mlr.press/v70/raffel17a.html
https://proceedings.mlr.press/v70/raffel17a.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/e7b24b112a44fdd9ee93bdf998c6ca0e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/e7b24b112a44fdd9ee93bdf998c6ca0e-Paper.pdf
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://proceedings.mlr.press/v97/stickland19a.html
https://proceedings.mlr.press/v97/stickland19a.html
https://proceedings.mlr.press/v97/stickland19a.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Ruiqing Zhang and Chuanqiang Zhang. 2020. Dynamic
sentence boundary detection for simultaneous trans-
lation. In Proceedings of the First Workshop on Auto-
matic Simultaneous Translation, pages 1–9, Seattle,
Washington. Association for Computational Linguis-
tics.

Shaolei Zhang and Yang Feng. 2021. Universal simul-
taneous machine translation with mixture-of-experts
wait-k policy. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 7306–7317, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Shaolei Zhang and Yang Feng. 2022. Information-
transport-based policy for simultaneous translation.
In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages 992–
1013, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Shaolei Zhang, Yang Feng, and Liangyou Li. 2021.
Future-guided incremental transformer for simultane-
ous translation. Proceedings of the AAAI Conference
on Artificial Intelligence, 35(16):14428–14436.

Jinming Zhao, Philip Arthur, Gholamreza Haffari,
Trevor Cohn, and Ehsan Shareghi. 2021. It is not
as good as you think! evaluating simultaneous ma-
chine translation on interpretation data.

Libo Zhao, Kai Fan, Wei Luo, Wu Jing, Shushu Wang,
Ziqian Zeng, and Zhongqiang Huang. 2023. Adap-
tive policy with wait-k model for simultaneous trans-
lation. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 4816–4832, Singapore. Association for Com-
putational Linguistics.

Yuting Zhao and Ioan Calapodescu. 2022. Multimodal
robustness for neural machine translation. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 8505–
8516, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Baigong Zheng, Kaibo Liu, Renjie Zheng, Mingbo Ma,
Hairong Liu, and Liang Huang. 2020. Simultane-
ous translation policies: From fixed to adaptive. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2847–
2853, Online. Association for Computational Lin-
guistics.

Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang
Huang. 2019. Simpler and faster learning of adaptive
policies for simultaneous translation. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1349–1354, Hong Kong,
China. Association for Computational Linguistics.

Yaoming Zhu, Jiangtao Feng, Chengqi Zhao, Mingx-
uan Wang, and Lei Li. 2021. Counter-interference
adapter for multilingual machine translation. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 2812–2823, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

A Hyperparameters

We list the hyperparameters of our experiments in
Table 2.

B Numeric Results

In Tables 3, 4 and 5, we report the numeric results
of our methods. We report the BLEU score for
quality, while for latency we used Average Lagging
(AL), Consecutive Wait (CW) (Gu et al., 2017), Av-
erage Proportion (AP) (Cho and Esipova, 2016) and
Differentiable Average Lagging (DAL) (Arivazha-
gan et al., 2019). Below we provide the definition
of CW, AP and DAL. g(i) constitutes the number
of tokens read when predicting yi, while |x| and
|y| refer to the number of source and target tokens
respectively.

Consecutive Wait (CW) Computes the average
number of consecutive tokens read between two
predicted tokens.

CW =

∑|y|
i=1(g(i)− g(i− 1))
∑|y|

i=1 Ig(i)−g(i−1)>0

(5)

Average Proportion (AP) Computes the propor-
tion of tokens read to make every prediction.

AP =
1

|x||y|

|y|∑

i=1

g(i) (6)

Differentiable Average Lagging (DAL) Is a dif-
ferentiable version of the Average Lagging metric.

g′(i) =

{
g(i) if i = 1

max
(
g(i), g′(i− 1) + |x|

|y|

)
if i > 1

(7)

DAL =
1

|y|

|y|∑

i=1

g′(i)− i− 1

|x|/|y| (8)

356

https://doi.org/10.18653/v1/2020.autosimtrans-1.1
https://doi.org/10.18653/v1/2020.autosimtrans-1.1
https://doi.org/10.18653/v1/2020.autosimtrans-1.1
https://doi.org/10.18653/v1/2021.emnlp-main.581
https://doi.org/10.18653/v1/2021.emnlp-main.581
https://doi.org/10.18653/v1/2021.emnlp-main.581
https://doi.org/10.18653/v1/2022.emnlp-main.65
https://doi.org/10.18653/v1/2022.emnlp-main.65
https://doi.org/10.1609/aaai.v35i16.17696
https://doi.org/10.1609/aaai.v35i16.17696
https://doi.org/10.18653/v1/2023.emnlp-main.293
https://doi.org/10.18653/v1/2023.emnlp-main.293
https://doi.org/10.18653/v1/2023.emnlp-main.293
https://doi.org/10.18653/v1/2022.emnlp-main.582
https://doi.org/10.18653/v1/2022.emnlp-main.582
https://doi.org/10.18653/v1/2020.acl-main.254
https://doi.org/10.18653/v1/2020.acl-main.254
https://doi.org/10.18653/v1/D19-1137
https://doi.org/10.18653/v1/D19-1137
https://doi.org/10.18653/v1/2021.findings-emnlp.240
https://doi.org/10.18653/v1/2021.findings-emnlp.240

Hyperparameter IWSLT15 En→Vi WMT15 De→En (Base) WMT15 De→En (Big)

Encoder layers 6 6 6
Encoder attention heads 4 8 16
Encoder embed dim 512 512 1024
Encoder FFN embed dim 1024 2048 4096
Decoder layers 6 6 6
Decoder attention heads 4 8 16
Decoder embed dim 512 512 1024
Decoder FFN embed dim 1024 2048 4096
Dropout 0.3 0.3 0.3
Optimizer Adam Adam Adam
Adam-β (0.9, 0.98) (0.9, 0.98) (0.9, 0.98)
Clip-norm 0. 0. 0.
Learning rate (lr) 5e-4 5e-4 5e-4
LR scheduler inverse sqrt inverse sqrt inverse sqrt
Warm-up updates 4000 4000 4000
Warm-up init LR 1e-7 1e-7 1e-7
Weight decay 1e-4 1e-4 1e-4
Label smoothing 0.1 0.1 0.1
Max tokens 16000 8192×4 4096×4×2

Table 2: System Hyperparameters

IWSLT15 English→Vietnamese Transformer-Small
K CW AP DAL AL BLEU

Adapters Wait-k

1 1.16 0.59 3.32 2.25 25.68
2 1.17 0.64 4.13 3.30 27.13
3 1.22 0.68 4.91 4.21 27.75
5 1.44 0.75 6.63 6.01 28.63
7 1.87 0.81 8.36 7.74 29.15
9 2.56 0.85 10.05 9.45 29.20

(ρkmin
, ρkmax) CW AP DAL AL BLEU

Adaptive Adapters

(0.2, 0.0) 1.37 0.60 3.89 2.52 26.12
(0.4, 0.0) 1.73 0.63 5.04 3.13 27.24
(0.6, 0.0) 2.19 0.67 6.14 3.92 28.09
(0.8, 0.0) 2.66 0.71 6.95 4.80 28.62
(1.0, 0.0) 2.71 0.74 7.58 5.65 29.00
(1.0, 0.2) 3.08 0.76 8.40 6.36 29.08
(1.0, 0.4) 3.33 0.79 9.10 7.20 29.10
(1.0, 0.6) 3.34 0.82 9.55 8.01 29.18
(1.0, 0.8) 3.11 0.84 9.87 8.78 29.19

Table 3: Numerical results for En-Vi with Transformer-Small.

357

WMT15 German→English Transformer-Base
K CW AP DAL AL BLEU

Adapters Wait-k

1 1.15 0.52 1.79 0.36 20.72
2 1.19 0.55 2.49 1.00 23.37
3 1.21 0.59 3.32 2.03 25.73
5 1.37 0.66 5.19 3.85 27.71
7 1.69 0.73 7.11 5.86 29.17
9 2.16 0.78 8.98 7.76 30.05
11 2.77 0.82 10.78 9.65 30.45
13 3.52 0.85 12.49 11.46 30.90
15 4.43 0.88 14.10 13.17 31.01

(ρkmin
, ρkmax) CW AP DAL AL BLEU

Adaptive Adapters

(0.2, 0.0) 1.52 0.52 2.61 0.12 21.42
(0.4, 0.0) 1.78 0.53 3.19 0.45 22.83
(0.6, 0.0) 1.95 0.55 3.68 1.03 24.30
(0.8, 0.0) 2.05 0.57 4.04 1.39 25.09
(1.0, 0.0) 1.91 0.59 4.31 1.90 26.00
(1.0, 0.2) 2.02 0.60 4.66 2.23 26.34
(1.0, 0.4) 2.03 0.62 4.90 2.60 26.89
(1.0, 0.6) 1.94 0.63 5.06 3.03 27.41
(1.0, 0.8) 1.74 0.65 5.16 3.41 27.62

Table 4: Numerical results for De-En with Transformer-Base.

WMT15 German→English Transformer-Big
K CW AP DAL AL BLEU

Adapters Wait-k

1 1.18 0.52 1.84 0.31 21.37
2 1.19 0.55 2.55 1.09 24.53
3 1.22 0.59 3.40 2.06 26.70
5 1.38 0.66 5.24 3.88 28.98
7 1.68 0.73 7.15 5.93 30.70
9 2.16 0.78 9.02 7.85 31.50
11 2.77 0.82 10.82 9.73 32.21
13 3.52 0.85 12.52 11.50 32.31
15 4.44 0.88 14.12 13.16 32.44

(ρkmin
, ρkmax) CW AP DAL AL BLEU

Adaptive Adapters

(0.2, 0.0) 1.50 0.52 2.56 0.18 22.30
(0.4, 0.0) 1.78 0.53 3.11 0.44 23.30
(0.6, 0.0) 1.99 0.55 3.60 0.79 24.79
(0.8, 0.0) 2.08 0.57 4.02 1.31 26.18
(1.0, 0.0) 1.94 0.59 4.29 1.82 27.05
(1.0, 0.2) 2.03 0.60 4.66 2.22 27.60
(1.0, 0.4) 2.06 0.62 4.92 2.58 28.05
(1.0, 0.6) 1.99 0.63 5.09 2.94 28.52
(1.0, 0.8) 1.77 0.65 5.20 3.41 28.85

Table 5: Numerical results for De-En with Transformer-Big.

358

