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Introduction

The International Conference on Spoken Language Translation (IWSLT) is the premiere annual scientific
conference for the study, development and evaluation of spoken language translation technology. Laun-
ched in 2004 and spun out from the C-STAR speech translation consortium before it (1992-2003), IW-
SLT is the main venue for scientific exchange on all topics related to speech-to-text translation, speech-to-
speech translation, simultaneous and consecutive translation, speech dubbing, cross-lingual communica-
tion including all multimodal, emotional, paralinguistic, and stylistic aspects and their applications in the
field. The conference organizes evaluations around challenge areas, and presents scientific papers and
system descriptions. IWSLT is organized by the Special Interest Group on Spoken Language Translation
(SIGSLT), which is supported by ACL, ISCA and ELRA.

This year, IWSLT featured spoken language translation shared tasks organized into seven distinct tracks:
(i) speech-to-speech translation, (ii) simultaneous speech translation, (iii) subtitling, (iv) offline speech
translation, (v) dubbing, (vi) low resource, and (vii) indic speech translation. Each track was coordinated
by one or more chairs. The resulting evaluation campaigns attracted a total of 18 teams, from academia,
research centers and industry. System submissions resulted in 26 system papers that will be presented at
the conference. Following our call for papers, this year we received 10 submissions of research papers,
7 of which were accepted for oral presentation through a double-blind review process. The proceedings
also include a survey paper summarizing recent research highlights, 2 test suite papers, which were peer-
reviewed consistently with scientific and system papers respectively. In addition, the conference program
is enriched by the presentation of 2 speech translation papers published in the Findings of the ACL over
the past year.

The program committee is excited about the quality of the accepted papers and expects lively discussion
and exchange at the conference. The conference chairs and organizers would like to express their grati-
tude to everyone who contributed and supported IWSLT. In particular, we wish to thank our Diamond
sponsor Apple. We thank the shared tasks chairs, organizers, and participants, the program committee
members, as well as all the authors that went the extra mile to submit system and research papers to
IWSLT, and make this year’s conference a big success. We also wish to express our sincere gratitude to
ACL for hosting our conference and for arranging the logistics and infrastructure that allow us to hold
IWSLT 2024 as a hybrid conference.

Welcome to IWSLT 2024, welcome to Bangkok!

Marine Carpuat, Program Chair
Marcello Federico and Alex Waibel, Conference Chairs
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Abstract

This paper reports on the shared tasks orga-
nized by the 21st IWSLT Conference. The
shared tasks address 7 scientific challenges
in spoken language translation: simultaneous
and offline translation, automatic subtitling
and dubbing, speech-to-speech translation, di-
alect and low-resource speech translation, and
Indic languages. The shared tasks attracted 18
teams whose submissions are documented in
26 system papers. The growing interest to-
wards spoken language translation is also wit-
nessed by the constantly increasing number
of shared task organizers and contributors to
the overview paper, almost evenly distributed
across industry and academia.

1 Introduction

The International Conference on Spoken Lan-
guage Translation (IWSLT) is the premier an-
nual scientific conference for all aspects of spoken
language translation (SLT). IWSLT is organized
by the Special Interest Group on Spoken Lan-
guage Translation (SIGSLT), which is supported
by ACL, ISCA and ELRA.

Like in all the previous 20 editions, this year’s
conference was preceded by an evaluation cam-
paign featuring shared tasks addressing scientific
challenges in SLT. This paper reports on the 2024
IWSLT Evaluation Campaign, which offered the
following 7 shared tasks:

• Offline SLT, with focus on speech-to-text
translation of recorded conferences and inter-
views from English to German, Japanese and
Chinese.

• Simultaneous SLT, focusing on speech-to-
text translation of streamed audio of confer-
ences and interviews from English to German,
Japanese and Chinese.

• Automatic Subtitling, with focus on speech-
to-subtitle translation of audio-visual docu-
ments from English to German and Spanish and
on compression of pregenerated German and
Spanish subtitles.

• Speech-to-speech Translation, focusing on
natural-speech to synthetic-speech translation
of recorded utterances from English to Chinese.

• Automatic Dubbing, focusing on dubbing of
production quality videos from English to Chi-
nese.

• Low-resource SLT, focusing on the transla-
tion of recorded speech from Bhojpuri to Hindi,
Irish to English, Marathi to Hindi, Maltese
to English, North Levantine Arabic to En-
glish, Pashto to French, Tamasheq to French,
Quechua to Spanish, and Bemba to English.

• Indic Languages Track, with focus on
Speech-to-Text translation of TED talk au-
dios from English to Indic languages including
Hindi, Tamil, and Bengali.

The shared tasks attracted 18 teams (see Ta-
ble 1) representing both academic and industrial
organizations. The following sections report on

1
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Table 1: List of participants to the IWSLT 2024 shared tasks

each shared task in detail. Each section includes
a description of the proposed challenge, the data
and evaluation metrics used for training and test-
ing systems, the received submissions, and finally
a summary of the results. Detailed results for some
of the shared tasks are reported in a corresponding
appendix.

2 Offline SLT

Recent advances in deep learning are providing
the opportunity to address traditional NLP tasks
in new and completely different ways. One of
these tasks is spoken language translation (SLT),
an overarching problem that can be cast in vari-
ous manners, ranging from offline to simultane-
ous processing, to produce either textual or speech
outputs under both unconstrained and constrained
conditions. This section reports on the 2024 round
of the IWSLT Offline Speech Translation Track,
which consists of translating audio speech from
one language into text in a different target lan-
guage without any specific time or structural con-
straints, different from the simultaneous (see §3),
subtitling (§4), speech-to-speech (§5), and dub-
bing (§7) tasks. Under this general problem defi-
nition, the goal of the offline SLT track—the one
with the longest tradition at IWSLT—is to contin-
uously challenge this rapidly evolving technology

by gradually introducing novel aspects that raise
the difficulty bar.

2.1 Challenge
For years, SLT has been addressed by cascading an
automatic speech recognition (ASR) system with
a machine translation (MT) system. More recent
trends involve using a single neural network to di-
rectly translate the input audio signal in one lan-
guage into text in another language, bypassing in-
termediate symbolic representations such as tran-
scriptions. In light of this evolution, the challenges
addressed by the 2024 round of the offline track
stem from the following considerations. (1) Al-
though the results of the recent IWSLT campaigns
have confirmed that the performance of end-to-end
models is approaching that of cascade solutions, it
is currently not clear which of the two technolo-
gies is more effective. Moreover, (2) all recent
evaluations have been based on test sets extracted
from TED talks, which represent a relatively sim-
pler application scenario compared to the variety
of potential deployments of SLT technology. In
this controlled scenario, a single speaker deliv-
ers a prepared speech without background noise
or interaction with other speakers. Finally, (3)
last year’s edition showed that introducing com-
plexity to the scenario (e.g., including spontaneous
speech, terminology, and dialogues) resulted in a

2



clear performance degradation compared to using
the classic TED talk test set.

Therefore, in addition to addressing the ques-
tion of whether the cascade solution remains the
dominant technology, this year we focused on un-
derstanding whether current state-of-the-art solu-
tions can handle more complex scenarios (e.g.,
spontaneous speech, terminology, different ac-
cents, background noise, and dialogues). To shed
light on these aspects, participants were chal-
lenged with data representative of different do-
mains and conditions, namely:

• TED Talks1 – the classic IWSLT evaluation
material, for which fresh test data were col-
lected also this year;

• TV series from ITV Studios2 – data featur-
ing multiple individuals interacting in vari-
ous scenarios. The speech translation system
needs to deal with overlapping speakers, dif-
ferent accents, and background noise;

• Physical training videos offered by Peloton3

– data featuring individuals exercising in the
gym. The speech translation system needs to
deal with with background noise and an in-
formal speaking style;

• Accented English conversations – data fea-
turing conversations, each containing two
friends interacting on a daily topic, such as
hobbies and vacation. The speakers were se-
lected to cover a wide range of English speak-
ers around the globe. In addition to the vari-
ety of accents, another major challenge is the
presence of spontaneous speech.

In continuity with the last two years, three lan-
guage directions were proposed. Depending on
the evaluation scenario, the language conditions
covered are:

• English → German: TED talks, TV series,
physical training videos, and accented En-
glish conversations;

• English→ Japanese: TED talks.

• English→ Chinese: TED talks.
1https://www.ted.com/
2https://www.itvstudios.com/
3https://www.onepeloton.com/

2.1.1 Test Suites
To further broaden the scope of evaluation condi-
tions and explore specific aspects relevant to SLT,
this year we provided participants with the option
to submit additional test suites alongside the stan-
dard evaluation setting described above. The pur-
pose of a test suite is to assess an SLT system
on particular aspects that are generally hidden or
overlooked by the classic evaluation frameworks.
While the official evaluation relies solely on the
designated official test sets, these supplementary
test suites offer a valuable means to enhance sys-
tem testing across a wider spectrum of phenom-
ena. They also provide an opportunity to pinpoint
specific and challenging issues that impact SLT
performance. The particular test suite composi-
tion and its evaluation were fully delegated to the
interested test suite provider.

2.2 Data and Metrics

Training and development data. Similar to the
2023 edition, participants were offered the possi-
bility to submit systems built under three training
data conditions:

1. Constrained: the allowed training data is
limited to a medium-sized framework in
order to keep the training time and re-
source requirements manageable. The com-
plete list4 of allowed training resources
(speech, speech-to-text-parallel, text-parallel,
text-monolingual) does not include any pre-
trained language model.

2. Constrained with large language models
(constrained+LLM ): in addition to all the con-
strained resources, a restricted selection4 of
large language models is allowed to give par-
ticipants the possibility to leverage large lan-
guage models and medium-sized resources.
We reproduce the list of allowed LLMs in Ta-
ble 2.

3. Unconstrained: any resource, pre-trained
language models included, can be used with
the exception of evaluation sets. This setup is
proposed to allow the participation of teams
equipped with high computational power and
effective in-house solutions built on addi-
tional resources.

4See the IWSLT 2024 offline track web page: https://iw
slt.org/2024/offline
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LLM Source
Wav2vec 2.0 https://github.com/pytorch/fairseq/blob/main/examples/wav2vec/README.md
Hubert https://github.com/pytorch/fairseq/tree/main/examples/hubert
WavLM https://github.com/microsoft/unilm/tree/master/wavlm
SpeechLM https://github.com/microsoft/unilm/tree/master/speechlm
data2vec https://github.com/facebookresearch/fairseq/tree/main/examples/data2vec
MBART https://github.com/pytorch/fairseq/blob/main/examples/mbart/README.md
MBART50 https://github.com/pytorch/fairseq/tree/main/examples/multilingual#mbart50-models
M2M100 https://github.com/pytorch/fairseq/tree/main/examples/m2m 100
Delta LM https://github.com/microsoft/unilm/tree/master/deltalm
T5 https://github.com/google-research/text-to-text-transfer-transformer
BLOOM https://huggingface.co/bigscience/bloom-560m#model-details

(Note: only the small 560M parameter version)
Mistral 7B Instruction Fine-tuned https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
Mistral 7B Base Model https://huggingface.co/mistralai/Mistral-7B-v0.1
LLama2 7B Chat Model https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
Llama2 7B base model https://huggingface.co/meta-llama/Llama-2-7b-hf
NLLB 3.3B https://huggingface.co/facebook/nllb-200-distilled-1.3B
NLLB 1.3B https://huggingface.co/facebook/nllb-200-3.3B
NLLB 600M https://huggingface.co/facebook/nllb-200-distilled-600M
Seamless Models https://github.com/facebookresearch/seamless communication

(SeamlessM4T/Streaming/Expressive)

Table 2: List of LLMs allowed in the constrained+LLM training data condition.

The development data allowed under the con-
strained condition consists of the dev set from
IWSLT 2010, as well as the test sets used for
the 2010, 2013-2015 and 2018-2020 IWSLT cam-
paigns. Besides this TED-derived material, addi-
tional development data were released to cover the
three new scenarios included in this round of eval-
uation.

Test data. As in previous rounds of the offline
track, the collection of new test data for the TED
talks scenario started by isolating a set of talks
(41 in total) that are not included in the cur-
rent public release of MuST-C (Cattoni et al.,
2021). Starting from this material, which was used
to build the initial English-German test set, the
talks for which Japanese and Chinese translations
are available were selected to build the English-
Japanese and English-Chinese test sets. Since fur-
ther checks revealed a partial overlap between the
selected talks and the TED2020 corpus5 (Reimers
and Gurevych, 2020) a final cleaning step had to
be applied to remove the overlapping talks (4 for
en-de, 4 for en-ja, none for en-zh). After this
removal, the final test sets comprise 37 talks for
English-German (corresponding to a total dura-
tion of 3h:07m:14s), 30 talks for English-Japanese
(2h:14m:11s), and 30 talks for English-Chinese
(3h:20m:19s).

For the TV series scenario, the 7 TV series for
a total duration of 06h:01m are offered by ITV
5https://opus.nlpl.eu/TED2020/en&de/v1/
TED2020

Studios.6 Each series includes multiple speakers,
background noise, and different audio conditions.

For the Physical training scenario, the 9 physi-
cal training videos for a total duration of 03h:59m
are offered by Peloton.7 Each video includes a sin-
gle speaker in a room practicing sports activities
with, often, background music and breathy voice.

For the Accent challenge scenario, the test set
has 1,448 utterances that are sampled from 76 con-
versations in the Edinburgh International Accents
of English Corpus (EdAcc, Sanabria et al., 2023).
In total, the test set contains about 3.5 hours of au-
dio data, 34k English words, 25.2k German words
and 33 accents. The German translations are cre-
ated from the English transcripts by our profes-
sional translators who are paid at a rate of 0.095
GBP per word. The translators, with access to
the aligned audio files, were required to trans-
late the transcripts in a fluent and faithful manner
while allowing punctuation and casing. For exam-
ple, hesitation tokens like “ACH” and “HMM” in
the transcripts are not included in the translation.
The complete translation guidelines are attached
in Appendix B.1.

Metrics. Systems were evaluated with respect
to their capability to produce translations similar
to the target-language references. The similarity
was measured in terms of multiple automatic met-

6https://www.itvstudios.com
7https://www.onepeloton.com
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rics: COMET8 (Rei et al., 2020), BLEU9 (Pap-
ineni et al., 2002a), chrF (Popović, 2015). Among
them, this year COMET was chosen as the primary
evaluation metric based the findings of Macháček
et al. (2023) and Sperber et al. (2024), which in-
dicate its highest correlation with human judge-
ments. The submitted runs were therefore ranked
based on the COMET calculated on the test set by
using automatic resegmentation of the hypothesis
based on the reference translation by mwerSeg-
menter,10 using a detailed script accessible to par-
ticipants.11 Moreover, similar to last year’s round,
a human assessment was performed on the best-
performing submission of each participant in or-
der to enhance the soundness and completeness of
the evaluation.

2.3 Submissions

This year, 4 teams participated in the offline task,
submitting a total of 38 runs. Table 3 provides
a breakdown of the participation in each sub-
task showing, for each training data condition, the
number of participants, the number of submitted
runs and, for each training data condition (con-
strained, constrained+LLM , unconstrained), the
number of submitted runs obtained with cascade
and direct systems. Notably, no direct system was
submitted this year.

• CMU (Yan et al., 2024) participated with
cascade en-de, en-ja, en-zh systems trained
under the unconstrained condition. Their
model consists of an ASR system based
on Whisper and an MT system based on
fine-tuned NLLB models. The ASR sys-
tem is enhanced by the application of a
specific fine-tuning to process unsegmented
recordings without the need for a separate
voice-activity detection stage. The MT
systems generate a set of candidate trans-
lations via epsilon-sampling that are then
pooled and the 1-best translation is selected
using COMET-based Minimum Bayes-Risk
decoding.

8Unbabel/wmt22-comet-da
9BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a
+version.1.4.14

10https://www-i6.informatik.rwth-aachen.
de/web/Software/mwerSegmenter.tar.gz

11https://github.com/isl-mt/SLT.KIT/blob
/master/scripts/evaluate/Eval.sh

• HW-TSC (Wu et al., 2024) participated
with cascade en-de, en-ja, en-zh systems
trained under the constrained, constrained
with Large Language Models, and uncon-
strained conditions. The authors used dif-
ferent training strategies for each different
condition. Under the constrained condi-
tion, an ASR is trained from scratch test-
ing Conformer and U2. All audio inputs are
augmented with spectral augmentation), and
Connectionist Temporal Classification (CTC)
is added to make the model converge bet-
ter. The MT system takes advantage of the
Deep Transformer-Big model structure, R-
Drop and data selection to identify in-domain
data from a large pool of parallel data. Under
the constrained + LLM condition, the ASR
system is a combination of the wav2vec2
encoder and mBART50 decoder, where the
self-attention of the encoder and decoder are
frozen and all constrained are used for fine-
tuning. The MT system is based on Llama2-
7B fine-tuned with parallel data and source
language consistent instructions, and apply-
ing CPO. Under the unconstrained condition,
the ASR system is based Whisper fine-tuned
and MuST-C, while the MT model selects the
1-best translation from a pool of candidates
generated both with NMT and LLM using
COMET. Audio segmentation is performed
using SHAS.

• KIT (Koneru et al., 2024) participated with a
cascade en-de system trained under the con-
strained with Large Language Models condi-
tion. This submission is based on a four-step
approach. The audio is first transcribed by
a fine-tuned ASR, the n-best list is then pro-
cessed by an LLM to generate the best hy-
pothesis. The final transcripts is translated to
generate the text in the target language. The
transcript and the translation are then paired
and document- level automatic post-editing
is applied to improve the coherence of the
translations. The ASR is based on the com-
bination of WavLM encoder and mBART50
decoder fine-tuned on the task data. Audio
segmentation is based on SHAS, but a long-
former technique is also tested to use context
better. The ASR refiner and the MT post-
editor are fine-tuned versions of Mistral 7B
Instruction-tuned LLM using QLoRA, while

5
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English-German
Participants Runs Constrained Constrained+LLM Unconstrained

Cascade 2 Cascade 3 Cascade 9
4 14 2

Direct -
3

Direct -
9

Direct -
English-Chinese

Participants Runs Constrained Constrained+LLM Unconstrained
Cascade 2 Cascade 2 Cascade 9

3 13 2
Direct -

2
Direct -

9
Direct -

English-Japanese
Participants Runs Constrained Constrained+LLM Unconstrained

Cascade 2 Cascade 2 Cascade 4
3 11 2

Direct -
2

Direct -
4

Direct -

Table 3: Breakdown of the participation in each sub-task (English→German, English→Chinese,
English→Japanese) of the IWSLT offline ST track. For each language direction, we report the number of par-
ticipants, the number of submitted runs and, for each training data condition (constrained, constrained+LLM , un-
constrained), the number of submitted runs obtained with cascade and direct systems.

NLLB 200 3.3B is used as the MT system.
The post-editing step showed to be less ef-
fective when the ASR quality is low. For this
reason, LLM refinement is not used for the
EPTV and ITV datasets.

• NYA (Zhang et al., 2024) participated with
cascade en-de, en-ja, en-zh systems trained
under the unconstrained condition. The ASR
is based on Whisper-v3-large, while the MT
system is a wider and deeper Transformer
model. The MT model is enhanced by lever-
aging several techniques such as R-Drop,
data augmentation with backward transla-
tions, domain adaptation via data filtering,
and ASR output adaptation where the human-
quality transcript in the SLT data is replaced
with the automatic transcript. The final MT
model is an ensemble of two/three models.
The audio is segmented using SHAS.

2.4 Results

We will analyse the different aspects of the results
by language pair.

2.4.1 English to German
Correlation between BLEU, COMET and DA
scores Table 25 shows the aggregated result of
the participated systems on the four test sets. In
terms of ranking based on the BLEU score, NYA
wins 3 out of 4 test sets, except on ITV which
CMU and HW-TSC(U) have a tie. However, the
ranking is substantially changed when COMET is
used. In this case, CMU is the winning system

in all conditions, indicating that this submission
achieves the best performance. But in contrast
to last year when the human evaluation validated
the automatic metric rankings, the correlation be-
tween the automatic rankings and the human rank-
ing is not as good as shown in Table 18. (More
details on our human evaluation using DA are pro-
vided in Appendix A.2.1.) For the human evalua-
tion, HW-TSC(C+) achieves the best performance
overall and has the best DA ranking on 3 out of
four test sets. Only on the accent test set, NYA has
better scores. However, it is worth noticing that
no system performs significantly better than HW-
TSC(C+) on any dataset.

The results show that it is essential to perform
a human evaluation since no automatic metric, at
the moment, can predict the performance of the
individual systems well. Furthermore, additional
research on performing reliable automatic metrics
for speech translation would be very valuable.

It is interesting to note that all the submissions
are based on the cascade architecture this year.
This is an important change compared to previous
editions where the end-to-end architectures com-
peted with the cascade ones.

Context Beyond Segment Level One of the
participating teams, KIT, used document-level
post-editing to improve the coherence of transla-
tion. We note that while document-level consis-
tency is a critical feature of text and speech trans-
lation, our evaluation this year does not reflect
it yet. All used automatic metrics are segment-
oriented. As detailed in Appendix A.2.1 also
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the particular setup of DA this year did not allow
the annotators to consider longer context because
the segments were shuffled for DA. (Two neigh-
bouring segments were provided but only to ac-
count for segmentation errors, not for assessment
of context-level phenomena.) It is therefore con-
ceivable that the outputs of the KIT system were
somewhat penalized.

Domains Similar to last year’s edition, we eval-
uated each submitted system on different domains.
First of all, the results show that the systems per-
form very differently in the different domains.
When looking at the human ranking, the best qual-
ity is achieved in the TED domain. This is not
surprising, since research has focused on this for
many years and a significant amount of training re-
sources exist. The performance on ITV and Pelo-
ton is lower, and the Accent data set appears to
be the most challenging condition, indicating that
speech translation remains an unsolved problem.

The availability of human rankings of the same
systems across different domains allows us also
to analyse whether automatic scores can be used
to assess the quality of SLT system across do-
mains. When ranking the difficulty level of differ-
ent domains, we see that COMET ranks them sim-
ilar than the human ranking except that COMET
shows overall lower scores for Peloton, identifying
Peloton as more challenging than Accent. In con-
strast, string-based metrics like BLEU are not able
to do this. This also shows that additional metrics
might be needed to measure the quality across do-
mains.

Data conditions On top of the above, we can
also observe the improvement in both BLEU and
COMET scores caused by using an additional
large language model or additional data. HW-
TSC submitted three primary systems for each
data condition, and both the unconstrained (U) and
the constrained+LLM (C+) models have a notice-
able gain over the constrained model (C). The two
better models perform similarly in both BLEU and
COMET. Interestingly, additional training data
beyond the language model data does not sig-
nificantly improve. In terms of DA score, the
constrained+LLM model is >0.6 points better than
the other models in different data conditions.

Progress compared to last year We also per-
formed an automatic evaluation of the system on
the test sets from last year from the domains TED,

EMPAC, and ACL. The results are summarized in
Table 26. Although the participants optimized for
different domains, for each domain and each met-
ric this year’s submissions achieved the best per-
formance. When comparing the best submission
from this year and last year, this year’s submission
is between 4.4 and 1.5 BLEU points better and 1.1
to 2.7 COMET percent points better than the best
system from last year.

Performance by accents For the accent test set,
we performed an additional details analysis for the
different accents.

Figure 1 shows the BLEU and COMET of each
system across the 33 accents. The numbers in
parenthesis are audio duration in the format of
“minutes:seconds”. We use the self-reported la-
bels from the original work as the prior choice for
accent labeling. Since accents could be loosely
defined (e.g., multi-class), subjective, and most
speakers in the annotation are not the related ex-
perts, we thus derive the labels from other at-
tributes, such as the first language of the speaker,
if necessary and refine the labels to country-level.
There is one speaker who declares his accent
as “Trans-Atlantic” and speaks multiple first lan-
guages. We assign this special case as “Mixed”.

The aggregated result on Table 25 shows that
CMU is the winning system on Accent when
COMET is used for ranking, whereas NYA would
be the winner if BLEU is used instead. Does this
winning situation occurs on a wide range of ac-
cents or on a small subset? The breakdown on Fig-
ure 1 shows that CMU (the blue-diamond points)
has better COMET scores, especially relative to
NYA, and is within Top-2 on a wide range of ac-
cents. Similar observations are found in the better
BLEU scores of NYA (the yellow-star points).

For the three primary systems submitted by
HW-TSC (the red points), their performances are
rather consistent across the 2 metrics and the ac-
cents. In most cases, both the constrained+LLM
(the circles) and the unconstrained models (the
squares) perform similarly, while the constrained
model (the triangles) falls slightly behind. In
the North Macedonian and the Pakistani accents,
the constrained model seems to be better in both
BLEU and COMET, but their data sizes are rather
small, i.e. <1 minute. In the constrained LLM set-
ting, the HW-TSC system in general performs bet-
ter than the KIT system in a wide range of accents,
but the KIT system has a slight edge in Indonesian,
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Israeli and Japanese accents.
The macro-average across accents are 18.7

BLEU and 0.679 COMET. Despite their fairly
large test sizes, French, Irish, Jamaican, Kenyan
and Vietnamese are below average. In Brazil-
ian, German, Mexican and South African ac-
cents, all systems perform rather poorly, i.e., <10
BLEU. Potential causes are the train-test mis-
match in accents, their small test sizes and the re-
segmentation error in the short utterances. Addi-
tionally, these speeches contain a mix of disflu-
encies and named entities, e.g., food ingredients,
imposing further translation challenges.

2.4.2 English to Japanese
For the English to Japanese direction, we only
have one test condition, the TED domain. In this
case, the HW-TSC is the winner in all metrics,
BLEU, COMET, and human ranking. However,
the order of the submissions from HW-TSC varies
across different metrics. Furthermore, the other
two participants perform similarly on human rank-
ing, but CMU is clearly better on COMET and
NYA is clearly better on BLEU. This again sug-
gests that the automatic metrics do not perform
sufficiently well on speech translation tasks yet.
Similar to the En-De language direction, all the
submitted systems are based on the cascade archi-
tecture.

When comparing the submissions from this
year and last year on the two progress test sets
(TED and ACL), we again see a clear improve-
ment compared to last year’s best systems.

For the data conditions, we see again a bet-
ter performance of the unconstrained (U) and
the constrained+LLM (C+) submissions from HW-
TSC compared to the system using only con-
strained data. However, this does not hold for the
BLEU metric and the human evaluation. In these
metrics, we see no clear benefit from using more
data.

2.4.3 English to Chinese
For the English to Chinese direction, we also
have only one test condition, the TED domain.
In this case, the HW-TSC is the best system in
human evaluation and COMET, while NYA per-
formed best in BLEU. While this could indicate
a good correlation between human evaluation and
COMET, NYA actually serves as a counterexam-
ple: it performed worst in COMET and second
best in human evaluation. This again suggests

that the automatic metrics do not work reliably on
speech translation tasks yet. Similar to the other
language directions, all the submitted systems are
based on the cascade architecture.

When comparing the submissions from this
year and last year on the two progress test sets
(TED and ACL), we again see a clear improve-
ment compared to the best systems of last year.

For the data conditions, we see again a bet-
ter performance of the unconstrained (U) and
the constrained+LLM (C+) submissions from HW-
TSC compared to the system using only con-
strained data, when considering the COMET met-
ric and the human evaluation.

3 Simultaneous SLT

Simultaneous speech translation focuses on trans-
lating speech in real-time, in manner vaguely simi-
lar to simultaneous interpreting. The system is de-
signed to begin translating before the speaker has
finished their sentence. This technology is par-
ticularly useful in scenarios such as international
conferences, personal travel, or public emergency
events.

This year, the task included two tracks: speech-
to-text and speech-to-speech, covering four lan-
guage directions: English to German, English
to Chinese, English to Japanese, and Czech to
English—a new language direction added this
year.

3.1 Challenge

We have retained the settings from last year’s
shared task. A single latency constraint is intro-
duced for each of the tracks:

• An average lagging of 2 seconds for the
speech-to-text track.

• A starting offset of 2.5 seconds for the
speech-to-speech track.

Participants are allowed to submit no more than
one system per track and language direction, pro-
vided the system’s latency remains within the
specified constraints. The latency performance of
the systems is evaluated using the open MuST-
C tst-COMMON test set (Di Gangi et al., 2019).
Submissions were accepted only in the form of
Docker images, which were later executed by the
organizers on the blind-test set in a controlled
environment. An example implementation was
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set domain #utter. #words/ duration
utter. (min)

dev
ParCzech 276 24 56
ELITR 314 13 28.6

test MockConf 1113 14 129.5

Table 4: Statistics of the dev and test sets for the Czech-
English simultaneous task.

provided using the SimulEval toolkit (Ma et al.,
2020).

3.2 Data
To simplify the setting and allow participants to
focus on the new modeling aspects of simultane-
ous translation, we adhere to the constraints with
large language models as defined for the offline
SLT task, see Section 2.2 above. This is the sole
data condition for the task. The test data differ
across different language pairs:

English to German, Chinese, and Japanese
Common TED Talks, which are the same as those
used in the Offline task, as described in Sec-
tion 2.2.

Czech to English The devset was created from
two sources:

• A subset called “context” was taken from
ParCzech 3.0 (Kopp et al., 2021), consist-
ing of consecutive recordings of Parliament
of the Czech Republic.

• An entire recording of a debate about AI from
the ELITR test set (Ansari et al., 2021).12

The reference translations of the devset were
done by students of translation studies from the
Faculty of Arts at Charles University.

The testset was gathered from mock confer-
ences that were part of the interpreting curriculum
of the Faculty of Arts at Charles University. A
speaker pretends to be a celebrity or an interesting
person and delivers a made-up speech on a pre-
determined topic. We included 13 such speeches.
The reference translations were provided by pro-
fessional translators. Due to confidentiality of
recordings, the testset is not released to the com-
munity. The statistics of the data are displayed in
Table 4.
12https://github.com/ELITR/elitr-testset
/tree/master/documents/2021-theaitre-r
elated/robothon-debate

3.3 Evaluation
We evaluate two aspects of the model: quality and
latency.

Quality We conducted both automatic and hu-
man evaluation. BLEU score (Papineni et al.,
2002b) is used for automatic quality evaluation.
For speech output, the BLEU score is computed
on the transcripts from Whisper (Radford et al.,
2023) ASR model. The ranking of the submission
is based on the BLEU score on the Common blind
test set. The human evaluation was conducted
in English-to-German/Chinese/Japanese, as de-
scribed in A.1.

Latency We only conducted automatic evalua-
tion. We report the following metrics for each
speech-to-text systems.

• Average Lagging (AL; Ma et al., 2019)

• Length Adaptive Average Lagging (LAAL;
Polák et al., 2022; Papi et al., 2022a)

• Average Token Delay (ATD; Kano et al.,
2023)

• Differentiable Average Lagging (DAL; Ari-
vazhagan et al., 2019)

For speech-to-speech systems, we report start-
offset, end-offset and Average Token Delay. The
latency metrics will not be used for ranking.

3.4 Submissions
Four teams in total submitted systems this year,
with all teams participating in at least one lan-
guage direction in the speech-to-text track. All
teams entered the English-to-German track; three
teams entered the English-to-Chinese and English-
to-Japanese tracks; and two teams entered the
Czech-to-English track, to which we added a
Whisper-based benchmark. For the speech-to-
speech track, two teams submitted systems, with
one team submitting for all language directions
and the other only in the English-to-Japanese di-
rection.

CMU (Xu et al., 2024) participated in the
speech-to-text track for the English-to-German di-
rection. Their system integrates the WavLM-
based speech encoder (Chen et al., 2021), a
modality adapter, and the Llama2-7B-based de-
coder (Touvron et al., 2023). The training is con-
ducted in two stages: modality alignment and
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full fine-tuning, both performed on MuST-C v2
data (Cattoni et al., 2021). The two-stage train-
ing results in an offline speech translation model,
which is then adapted to a simultaneous speech
translation model with a simple fixed hold-n pol-
icy.

FBK (Papi et al., 2024) participated in all
language directions of the speech-to-text track.
Their system is a unified multilingual simultane-
ous speech translation system, combining Alig-
nAtt (Papi et al., 2023b) and SeamlessM4T-
medium (Seamless Communication et al., 2023).
The SeamlessM4T model is directly used in
its streaming mode without additional retraining.
The generated hypotheses are further processed
through AlignAtt for policy learning. Based on
diverse training sources, the model can translate
into approximately 200 target languages from 143
source languages.

HW-TSC (Li et al., 2024a) participated in all
language directions of both the speech-to-text and
speech-to-speech tracks. Except for the Czech-
to-English direction, all other models utilize cas-
caded simultaneous speech translation approaches
by combining offline speech recognition, machine
translation, and text-to-speech. For the Czech-to-
English direction, they utilize the offline Seam-
lessM4T (Seamless Communication et al., 2023)
as the backbone for speech-to-text translation,
combined with a text-to-speech system. They fol-
lowed their last year’s submissions as the base set-
ting (Guo et al., 2023). Additionally, they ap-
plied online voice-activity-detection-oriented seg-
mentation, chunk padding in the speech recogni-
tion system to achieve smaller delays, and added
an ensemble strategy for machine translation to
achieve better stability. For end-to-end speech-to-
text translation, they fine-tuned the SeamlessM4T
model using the suggested data in the simultane-
ous SLT shared task.

NAIST (Ko et al., 2024) participated in
three language directions of the speech-to-text
track. Their speech-to-text system combined Hu-
BERT (Hsu et al., 2021) and mBART (Liu et al.,
2020b) in an end-to-end fashion, with a local
agreement policy (Liu et al., 2020a; Polák et al.,
2022). Their speech-to-speech system further ap-
plied an incremental text-to-speech module tuned
with AlignAtt policy (Papi et al., 2023b).

ORGANIZER’S BENCHMARK by Charles
University was prepared for the Czech-to-English
direction. The system is based on Whisper (Rad-
ford et al., 2023) version large-v2. We ap-
plied an onlinization technique (Polák et al., 2022,
2023a,b) to utilize the offline Whisper model in
the simultaneous regime, and applied prompting to
leverage the translation history from previous seg-
ments. Due to organizational reasons, the bench-
mark was run on different hardware so the compar-
ison of computationally-aware latency with other
systems is not possible.

3.5 Results
We rank the system performance based on BLEU
scores. The detailed results can be found in the
respective tables in Appendix A.2.3.

Speech-to-Text The ranking of the speech-to-
text track is as follow

• English to German (Table 29):
HW-TSC, CMU, NAIST, FBK

• English to Chinese (Table 30):
HW-TSC, NAIST, FBK

• English to Japanese (Table 31):
HW-TSC, NAIST, FBK

• Czech to English (Table 32):
ORGANIZER’S BENCHMARK (with
context of 2 segments), FBK, HW-TSC

Speech-to-Speech As mentioned in Section 3.4,
two teams submitted speech-to-speech track this
year. HW-TSC submitted systems on all language
directions and NAIST submitted on English to
Japanese Direction. We only rank the English
to Japanese Direction. The rank is: HW-TSC,
NAIST. See Table 33 for more details.

3.6 Conclusions
Over the past four years, the IWSLT has consis-
tently featured simultaneous translation tasks, re-
flecting a growing interest and impressive progress
in this area. The shared task also brings the es-
tablishment of standardized evaluation protocols
for simultaneous translation research. The recent
integration of foundation models has further ex-
panded the potential of this task. All teams inte-
grated such models into their submissions using
different approaches. CMU and NAIST teams
combined two foundation models each specialized
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in one modality (speech encoder and text decoder)
together using fine-tuning, while others chose ex-
isting ST models such as SeamlessM4T or Whis-
per and modified them for simultaneous use. Sur-
prisingly, even large models (e.g., the CMU’s
Llama2-7B-based decoder) achieved competitive
computationally-aware latencies.

The only cascaded system in the competition
(HW-TSC) was consistently rated first in three
language pairs. Nevertheless, according to all la-
tency measurements, this system also exhibited
the highest computationally-aware latencies.

One of the interesting points this year is the
newly-added Czech-to-English translation direc-
tion where we included our Whisper-based bench-
mark. When operating at the segment level, this
benchmark performed worse than participants’
systems, but given one or two of its previous trans-
lation outputs, it improved over them. This con-
firms that the role of context is very important in
speech translation task and the best uses of LLMs
for this task are still to be found.

Several promising directions for future im-
provements remain. Investigating downstream
tasks such as cross-lingual dialogues could pro-
vide deeper insights into practical applications of
simultaneous translation. Developing more inter-
active evaluation methods could enhance the un-
derstanding and effectiveness of these systems.
Lastly, optimizing the evaluation procedure to ex-
pedite the process remains crucial, as the current
system managed by the organizers can be time-
consuming.

4 Automatic Subtitling

In recent years, the task of automatically creating
subtitles for audiovisual content in another lan-
guage has gained a lot of attention due to the rapid
increase in the global distribution and streaming
of movies, series, and user-generated videos. Re-
flecting these trends, the automatic subtitling track
was introduced for the first time in 2023 as part
of the IWSLT Evaluation Campaigns. Given the
growing interest in this area, the task has been con-
tinued this year with the addition of a new sub-
track, subtitle compression, alongside the exist-
ing automatic subtitling sub-task from the previ-
ous edition.

In the automatic subtitling task, participants
were asked to generate subtitles in German and/or
Spanish from English speech in audiovisual docu-

ments. In the new subtitle compression task, par-
ticipants were required to automatically rephrase
subtitles that did not comply with the reading
speed constraint (i.e., subtitles exceeding a certain
length/time ratio given in characters per second) to
ensure they met the required standards.

The decision to have works focusing on this
specific aspect of subtitling is highly motivated
by the existing requirements posed by subti-
tles providers (Papi et al., 2023a). In fact, the
constraint on the reading speed is a commonly
adopted standard to ensure that viewers can enjoy
audiovisual content without experiencing fatigue
or distraction due to excessive reading demands
(Kruger, 2001). Therefore, adhering to this limit is
crucial, making the development of ad-hoc meth-
ods to improve automatically generated subtitles
that exceed this threshold of particular interest.

4.1 Challenge

Automatic Subtitling. The task of automatic
subtitling is multifaceted: starting from speech,
not only must the translation be generated, but it
must also be segmented into subtitles that comply
with constraints ensuring a high-quality user ex-
perience. These constraints include proper read-
ing speed, synchrony with the voices, the maxi-
mum number of subtitle lines, and characters per
line. Most audio-visual companies define their
own subtitling guidelines, which can slightly dif-
fer from each other. In the case of IWSLT partici-
pants, we asked to generate subtitles according to
specific guidelines provided by TED, including:

• The maximum subtitle reading speed is 21
characters per second;

• lines cannot exceed 42 characters, including
white spaces;

• Subtitles cannot exceed 2 lines.

Participants were expected to use only the audio
track from the provided videos (dev and test sets),
the video track was of low quality and primarily
meant to verify time synchronicity and other as-
pects of displaying subtitles on screen. That being
said, the exploitation of the video was permitted.

The subtitling sub-track required participants to
automatically subtitle audio-visual documents in
German and/or Spanish, where the spoken lan-
guage is always English. These documents were
collected, similarly to last year, from the follow-
ing sources:
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• TED talks;13

• Physical training videos offered by Pelo-
ton;14

• TV series from ITV Studios.15

Subtitle Compression. The objective of the
subtitle compression sub-track was to engage
teams interested in the subtitling task but unable
to build a complete automatic subtitling system.
Participants were provided with automatic sub-
titles (in German and Spanish) generated by a
non-participating system, namely the system pre-
sented in (Papi et al., 2023a), and asked to rephrase
those that exceeded the reading speed constraint
(more than 21 characters per second) to make them
compliant. Time boundaries were to remain un-
changed: only the text within a given time span
had to be compressed when necessary. The orig-
inal audiovisual documents (from the ITV test24
set of the subtitling sub-track) were also provided.

Although the subtitle compression task may ap-
pear simpler than subtitling, and it certainly is
from the point of view of architectural complex-
ity, it still presents its own difficulties. These chal-
lenges include those inherent in text summariza-
tion, such as identifying the main content of the
original text, which must be preserved, and dis-
tinguishing accessory information, which can be
omitted if necessary. Additionally, a peculiar chal-
lenge is that the text that needs to be reformulated
is potentially error-prone and often does not con-
sist of well-formed sentences but rather spans of
text representing portions of sentences or words
spanning contiguous phrases. It is expected that
the most effective solutions are those capable of
looking at the context, in an attempt to recover as
much as possible the missing information in the
text being processed.

4.2 Data and Metrics
4.2.1 Automatic subtitling
Data. This sub-track proposed two training data
conditions:

• Constrained: the official training data con-
dition, in which the allowed training data is
limited to a medium-sized framework16 to

13https://www.ted.com/
14https://www.onepeloton.com
15https://www.itvstudios.com
16https://iwslt.org/2024/subtitling#trai
ning-data-allowed-for-constrained-con
ditions

domain set AV hh:m ref subtitles
docs h:mm de es

TED
dev 17 04:11 4906 4964

test23 14 01:22 1375 1422
test24 16 01:50 1832 1826

Peloton
dev 9 03:59 4508 4037

test23 8 02:43 2700 2661
test24 4 01:40 1418 1574

ITV
dev 7 06:01 4489 4762

test23 7 05:08 4806 4896
test24 7 05:54 4564 4528

Table 5: Statistics of the dev and evaluation sets for the
subtitling task.

keep the training time and resource require-
ments manageable;

• Unconstrained: a setup without data re-
strictions (any resource, pre-trained language
models included, can be used) to allow also
the participation of teams equipped with high
computational power and effective in-house
solutions built on additional resources.

For each language and domain, a development
set and two test sets were released, that of the 2023
evaluation (tst2023), used for measuring progress
over years, and a new one (tst2024). Table 5 pro-
vides some statistics on these sets.

Metrics. The evaluation was carried out from
three perspectives, subtitle quality, translation
quality, and subtitle compliance, through the fol-
lowing automatic measures:

• Subtitle quality vs. reference subtitles:
– SubER, primary metric, used also for

ranking (Wilken et al., 2022);17

• Translation quality vs. reference translations:
– BLEU18 and CHRF19 via sacreBLEU;
– BLUERT (Sellam et al., 2020).

Automatic subtitles are realigned to the ref-
erence subtitles using mwerSegmenter (Ma-
tusov et al., 2005)20 before running sacre-
BLEU and BLEURT.

17https://github.com/apptek/SubER
18sacreBLEU signature: nrefs:1|case:mixed|eff:
no|tok:13a|smooth:exp|version:2.0.0

19sacreBLEU signature: nrefs:1|case:mixed|eff:
yes|nc:6|nw:0|space:no|version:2.0.0

20https://www-i6.informatik.rwth-aachen.
de/web/Software/mwerSegmenter.tar.gz
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• Subtitle compliance:21

– rate of subtitles with more than 21 char-
acters per second (CPS);

– rate of lines longer than 42 characters,
white spaces included (CPL);

– rate of subtitles with more than 2 lines
(LPB).

4.2.2 Subtitle compression
Data. No specific training data was released for
this sub-track. Any solution was allowed, with-
out limitations on the training data, including the
use of LLM prompted for text compression (e.g.
chatGPT). The original audio, though potentially
helpful, could either be used or not by participants;
its transcription with external tools (e.g. Whisper)
was also permitted.

As a development set, a minimal example taken
from the EuroParl Interviews benchmark (Papi
et al., 2023a)22 was released, where the non-
participating subtitling system introduced in (Papi
et al., 2023a)23 was employed to generate auto-
matic, sometimes non-compliant subtitles, which
were associated with corresponding compliant ref-
erence subtitles.

The test set consists of German and Spanish
automatic subtitles for the audiovisual documents
defining the ITV test24 set of the subtitling sub-
track; the same non-participating subtitling system
was employed to generate the subtitles to be cor-
rected.

Metrics. Since the text in subtitles has to be
compressed to fulfill the CPS requirement, but at
the same time its meaning should be preserved as
best as possible, both CPS and BLEURT are con-
sidered primary metrics in the evaluation of com-
pression quality.

4.3 Submissions
4.3.1 Automatic subtitling
The subtitling sub-track saw the participation of
three teams: APPTEK, the MT unit of Fondazione
Bruno Kessler (FBK) with two different systems,
and Huawei Translation Service Center (HW-
TSC). The details about the participants’ systems
are provided below:
21https://github.com/hlt-mt/FBK-fairseq/b
lob/master/examples/speech_to_text/scr
ipts/subtitle_compliance.py

22https://mt.fbk.eu/europarl-interviews/
23https://github.com/hlt-mt/FBK-fairseq/b
lob/master/fbk_works/DIRECT_SUBTITLING
.md

AppTek: the cascade-based subtitling system
developed by APPTEK24 leveraging their in-
production automatic captioning and translation
offerings. A pipeline of in-house hybrid ASR,
punctuation and inverse text normalization mod-
els is used to create English captions, which are
segmented into blocks and lines via a neural seg-
mentation model in combination with hard subti-
tling constraints, similar to Matusov et al. (2019).
Time stamps follow from the HMM alignment of
the first and last word in a block. In a second step,
the generated source template is translated with
customized transformer-based NMT models, for
which full sentences are extracted and translations
are reinserted into the template using a variant of
the source-side segmentation method that enforces
splitting into the existing blocks. The NMT mod-
els make use of preceding sentence context, and
prefix tokens are used to provide genre and formal-
ity information (e.g. “talks” + “formal” for TED)
and to control the length of the translation (Ma-
tusov et al., 2020). For the primary submission,
the MT component is fine-tuned on high quality
media and entertainment customer data. In addi-
tion, the following newly developed features are
employed: automatic MT length token selection
to condense translation only where necessary due
to space constraints; extension of subtitle timings
for lower reading speed; improved Spanish MT
model. The contrastive submissions do not use
these upcoming features. The second contrastive
submission is created using APPTEK’s general do-
main MT models, which are trained on publicly
available data.

FBK-AI4CDIR (Gaido et al., 2024a): the
FBK’s direct subtitling system is based on the
transcription-free novel architecture, SBAAM or
Speech Block Attention Area Maximization, in-
troduced in (Gaido et al., 2024b). SBAAM lever-
ages cross-attention scores to retrieve the times-
tamp information and is the first fully direct solu-
tion capable of producing automatic subtitles by
eliminating any dependence on intermediate tran-
scripts. It is the only system trained under con-
strained conditions, utilizing only the limited data
provided by the IWSLT 2024 organizers. This in-
cludes non-subtitle material, which was automat-
ically segmented into subtitles using the multi-
modal segmenter by Papi et al. (2022b). SBAAM
is also employed as a reference system in the

24https://www.apptek.com/
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AI4Culture EU project25 and is available at: ht

tps://github.com/hlt-mt/FBK-fairseq/blo

b/master/fbk_works/SBAAM.md.

FBK-AI4CCSC (Gaido et al., 2024a): the FBK’s
cascade subtitling system, developed by FBK
within the AI4Culture project, exploiting pre-
trained language models and, therefore, partici-
pating under the unconstrained conditions. The
system is a cascade solution with Whisper (Rad-
ford et al., 2023) as the ASR model, and Helsinki
Opus-MT (Tiedemann and Thottingal, 2020) as
the MT model, together with additional compo-
nents developed in-house. The cascade solution is
publicly available at: https://github.com/hlt

-mt/FBK-subtitler.

HW-TSC (Xie et al., 2024): the unconstrained
cascade solution developed by HW-TSC, which
relies on Whisper (Radford et al., 2023) to es-
timate both transcripts and word-level times-
tamps, on Bert-restore-punctuation26 for retriev-
ing punctuation and sentence segmentation, and
on wav2vec2-large-960h-lv6027 for the CTC-
based force alignment between transcripts and
translations, obtained by in-house MT models.
The MT models (English to German and En-
glish to Spanish) were directly employed on the
sentence-level ASR transcripts while the times-
tamps were left unchanged between transcripts
and translations. Moreover, they are the only mod-
els among all participants that were specifically
adapted to the domains of the audiovisual docu-
ments through ad-hoc domain adaptation.

4.3.2 Subtitle compression
Three teams participated in the sub-track: the
FBK MT unit, the Huawei Translation Service
Center (HW-TSC), and the Research Institute for
Artificial Intelligence Mihai Drǎgǎnescu, Roma-
nian Academy (RACAI). The solutions they pro-
posed differ from each other, although they share
the use of Large Language Models as a common
trait. Specifically:

FBK (Gaido et al., 2024a): the primary submis-
sion exploited GPT-4 (Achiam et al., 2023), which
was prompted in zero-shot mode with an instruc-
tion asking the model to shorten the input text us-
25https://pro.europeana.eu/project/ai4cu
lture-an-ai-platform-for-the-cultura
l-heritage-data-space

26Bert-restore-punctuation1
27https://huggingface.co/felflare/bert-r
estore-punctuation

ing the maximum number of characters compati-
ble with the subtitle duration (value computed of-
fline and passed as a parameter) while preserving
the original words as much as possible. In the
two contrastive runs, non-compliant subtitles were
compressed by deleting function words from lists
of different lengths.

HW-TSC (Xie et al., 2024): the subtitle com-
pression method for the primary run is based on
MT models, which are first employed for back-
translating the non-compliant subtitles into En-
glish, and then to re-translate English into the orig-
inal language (either German or Spanish) by set-
ting a large beam size and a high length penalty, so
that short translations are generated and rewarded.
The still non-compliant subtitles are rewritten us-
ing the LLM Llama2 (Touvron et al., 2023), in-
structed with few-shot prompts to condense the in-
put text. The two contrastive runs are variants of
the primary one: in the first, the LLM is not ap-
plied and the compression is carried out only by
the translation models; in the second, the subti-
tles of the primary run rewritten by either the MT
model or the LLM which are still non-compliant
are replaced by the original text.

RACAI (Gasan and Păis, , 2024): the submission
involves generating multiple alternatives for the
original non-compliant subtitle and selecting the
one that maximizes both reading speed compli-
ance (measured by CPS), and content similarity
with the original subtitle (measured by ROUGE
(Lin, 2004)). The alternatives are generated by
i) rephrasing the subtitles using LLMs, specifi-
cally T5 (Raffel et al., 2020) and BART (Lewis
et al., 2020), which were fine-tuned for the text
summarization task, and ii) generating new sub-
titles through the automatic transcription of the
original English audio using Whisper, translating
them with NLLB (Costa-jussà et al., 2022), and
then applying the LLMs as in the first method.

4.4 Results

The performance of runs for the two sub-tracks is
presented and discussed separately in the follow-
ing two subsections.

4.4.1 Automatic subtitling
Scores on tst2024 of all runs calculated using au-
tomatic metrics are shown in Tables 34 and 35,
while Tables 37 and 38 refer to tst2023, where cu-
mulative scores of runs submitted to the 2023 edi-
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tion are also reported to allow the quantification of
progresses.28

This year, unlike in the last edition, only one
team (FBK-AI4CDIR) participated with a system
trained under constrained data conditions. Conse-
quently, comparing its results with those of other
participants is inherently unfair, and must be ac-
knowledged if any comparisons are made. No-
tably, FBK-AI4CDIR is also the only direct sys-
tem in the competition, highlighting that, despite
advancements in direct approaches to spoken lan-
guage processing, constructing cascade subtitling
systems remains prevalent.

tst2024: Looking at performance in both Ger-
man and Spanish, APPTEK achieved the best com-
promise between translation quality and subtitle
compliance, as attested by the SubER values. It
is interesting to note that their primary and con-
trastive1 systems provide better subtitle quality
than contrastive2, especially on Spanish; since the
first two systems featured fine-tuning on propri-
etary data, it can be hypothesized that such data
is somehow “close” to the domains proposed in
this evaluation campaign and therefore that the
adaptation has rewarded these models. Over-
all, the new APPTEK systems (primary and con-
trastive1) surpass the one currently in produc-
tion (contrastive2), although surprisingly the latter
shows the best global SubER on German.

Focusing on the quality of the translation, in
particular in terms of BLEURT, which better cor-
relates with humans compared to BLEU and ChrF,
the performance of HW-TSC’s system is superior,
likely because it is the only system explicitly fine-
tuned on in-domain data. However, this system
has not been optimized in terms of compliance, re-
sulting in the lowest CPL score and, consequently,
in high SubER scores.

The FBK cascade system, based mainly on pre-
trained general-purpose models, shows high trans-
lation quality, especially in Spanish, and an ac-
ceptable conformity of subtitles. This proves the
feasibility of building effective subtitling systems
by appropriately assembling off-the-shelf models.

The FBK direct system, the only one based on a
direct architecture and trained in constrained con-
ditions, generated German subtitles with a surpris-
ingly competitive overall SubER, despite the qual-
28In 2023, the evaluation was done on the three domains still

proposed here plus one additional domain, EPTV; for the
sake of comparability, in the computation of the cumulative
scores of the 2023 runs, EPTV has been excluded.

ity of the translation of the ITV and Peloton doc-
uments being lower compared to other systems.
The good SubER probably derives from the abil-
ity of this system to satisfy subtitle compliance,
which demonstrates the potential of the innova-
tive approach it is based on. On the other hand,
the gap in terms of translation quality on the two
more challenging domains is in line with what al-
ready happened last year and with expectations,
since unconstrained training allows building mod-
els on data more representative of real-life content.

tst2023: On German, the best systems are those
by APPTEK which however did not improve the
SubER score of the last year; in fact, there is
an improvement in the quality of the translation
which is counterbalanced by a worst CPS. More-
over, we note that the CPS of 4 out of 5 submis-
sions from last year is better than any 2024 pri-
mary submission.

On Spanish, the improvements in the quality of
the translations and of the SubER scores are gen-
eralized, while the CPS values worsen.

The progress made by the FBK team over the
past year with their direct approach is notable in
various aspects and for both languages, demon-
strating the potential of end-to-end solutions for
automatic subtitling.

4.4.2 Human evaluation

This year’s edition of the automatic subtitling sub-
track introduces the human evaluation of the pri-
mary submissions for tst2024 en→de. Table 24
shows the direct assessment scores obtained on a
sample of 1000 subtitles randomly selected from
the whole test set. The ranking differs from the
automatic one based on SubER, particularly for
the HW-TSC system which achieves the best DA
value but the worst SubER score. This can be ex-
plained by the design of the human evaluation,
which was focused on assessing the translation
quality while segmentation and subtitle compli-
ance were not directly considered. In fact, the hu-
man ranking closely agrees with the pure trans-
lation quality metrics, in particular BLEURT (see
Table 24 vs. column Bleurt of Table 34). While
this reassures the validity of using automatic MT
metrics also for the domain of subtitle translation,
in future evaluations we see the need to provide
the evaluators with subtitles instead of plain text
sentences so that subtitle compliance, segmenta-
tion and timing errors can be accounted for.
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4.4.3 Subtitle compression
Table 36 shows the results of the submissions
to the subtitle compression sub-track in terms of
BLEURT, computed against the reference subti-
tles and in charge of quantifying the translation
quality, and CPS, as a measure of reading speed
compliance. For the sake of discussion, the table
also includes the results of a simple Baseline
(id=[1]) and those of the provided subtitles to
compress (id=[0]). In the baseline method, the
original subtitles with a non-compliant reading
speed were cut at the maximum number of char-
acters compatible with the subtitle duration and
without regard to maintaining the integrity of the
words, which therefore may be incomplete.

The results indicate that the participants de-
signed methods aimed to find a trade-off between
translation quality and CPS compliance, standing
the working point of their systems in the area be-
tween the two extremes represented by subtitles
[0] and [1], which is highlighted in Figure 2.

Figure 2: Scatter plot of compression results from Ta-
ble 36.

Between [0] and [1], the subtitles generated by
the contrastive FBK ([3,4]) and by the RACAI
([8]) systems are placed according to a nearly
linear relationship. HW-TSC’s and, at a lesser
extent, primary FBK ([2]) submissions differ
markedly from this trend, thus demonstrating that
it is possible to obtain a better compromise be-
tween the two contrasting features. In particular,
the family of HW-TSC solutions is the most effec-
tive, approaching (in Spanish) or even overcoming
(in German) the translation quality of the origi-
nal subtitles, while achieving compliance for even
more than 90% of the original subtitles. How-
ever, the noteworthy result of the FBK primary
run shows the potential of prompting a genera-
tive LLM (GPT-4) to shorten subtitles; consider-

ing that it was done in zero-shot modality, there
should be room for further improvements.

4.5 Conclusions

Overall, the second edition of the subtitling track
continues to highlight the challenges and partic-
ularities of the automatic subtitling task. As in
the previous edition, a clear gap in subtitle qual-
ity can be observed between the well-recorded,
single-speaker, mostly formal style TED talk con-
tent that has traditionally been used for SLT eval-
uation at IWSLT, as opposed to the variety of au-
dio conditions, dialog settings, language styles and
speaking rates encountered in other types of con-
tent such as TV shows and sport videos. While no
clear advancement in terms of best achieved trans-
lation quality or subtitle compliance compared to
last year can be reported, remarkable improve-
ments were achieved in the direct approach, which
due to access to audio information during transla-
tion such as prosody, speaker changes and even
speaker age/gender seems especially promising
for subtitling of dialogs. The aspect of high speak-
ing rates and the resulting necessity to condense
subtitles down to a comfortable reading speed has
been addressed and analyzed in isolation by the in-
troduction of the subtitle compression task. Here,
using LLMs for rephrasing has emerged as one of
the promising approaches which was used by all
participants.

5 Speech-to-Speech Translation

Speech-to-speech translation (S2ST) is a highly
complex process involving the conversion of au-
dio signals from one language to another. In of-
fline translation, the system assumes that the en-
tire audio is available before the translation pro-
cess begins. This approach allows the translation
system to process the audio input as a whole, en-
abling more effective speech recognition, seman-
tic comprehension, and translation.

The main objective of this task is to encour-
age the development of automated methods for
speech-to-speech translation that can perform effi-
ciently and accurately in offline settings. Achiev-
ing this goal will not only advance the field but
also contribute to improving access to information
and communication across different languages and
cultures.

16



5.1 Challenge
Participants built speech-to-speech translation sys-
tems from English into Chinese using any possible
method, for example with a cascade system (ASR
+ MT + TTS or end-to-end speech-to-text trans-
lation + TTS) or an end-to-end or direct speech-
to-speech system. Participants can use any tech-
niques to boost the system performance.

5.2 Data and Metrics
Data. This task allowed the same training data
from the Offline task on English-Chinese speech-
to-text translation. More details are available in
Sec. 2.2. In addition to the Offline task data,
the following training data was allowed to help
build English-Chinese speech-to-speech models
and Chinese text-to-speech systems:

• GigaS2S, target synthetic speech for the Chi-
nese target text of GigaST (Ye et al., 2023)
that was generated with an in-house single-
speaker TTS system;

• aishell 3 (Shi et al., 2020), a multi-speaker
Chinese TTS dataset.

Metrics. Since there was only one participant
this year, we only conducted automatic evaluation
in order to save resources.

Automatic metrics. To automatically evaluate
translation quality, the speech output was auto-
matically transcribed with a Chinese ASR sys-
tem29 (Yao et al., 2021), and then BLEU30 (Pa-
pineni et al., 2002b), chrF31 (Popović, 2015), and
COMET32 (Rei et al., 2022) were computed be-
tween the generated transcript and the human-
produced text reference. BLEU and chrF were
computed using SacreBLEU (Post, 2018).

5.3 Submissions
We only received submissions from one partici-
pant this year.

• HW-TSC (Wu et al., 2024) submitted three
cascaded systems corresponding to three sce-
narios: constrained, constrained with large

29https://github.com/wenet-e2e/wenet/blo
b/main/docs/pretrained_models.en.md

30sacreBLEU signature: nrefs:1|case:mixed|
eff:no|tok:zh|smooth:exp|version:2.3.1

31sacreBLEU signature: nrefs:1|case:mixed|
eff:yes|nc:6|nw:0|space:no|version:2.3.1

32https://huggingface.co/Unbabel/wmt22-c
omet-da

language models, unconstrained. All three
scenarios employ a cascaded system that con-
sists of an Automatic Speech Recognition
(ASR) model, a translation model, and a
Text-to-Speech (TTS) model. In the con-
strained scenario, the ASR model is trained
on WeNet using constrained data. The trans-
lation model is a Transformer model trained
using constrained data, with data enhance-
ment, data denoising, and domain adaptation
strategies applied, followed by model ensem-
ble. The TTS model uses the VITS architec-
ture. In the LLM constrained scenario, the
ASR model is the same as in the constrained
scenario. The translation model uses multiple
LLMs for model ensemble, which are fine-
tuned on llama2-13b using different strate-
gies. The TTS model is the same as above. In
the unconstrained scenario, the ASR model
uses Whisper. The translation model em-
ploys multiple NMT models and LLMs for
model ensemble. The TTS model remains the
same as in the previous scenarios.

5.4 Results
Results by automatic metrics are shown in Table
39 in the Appendix.

6 Low-resource SLT

The 4th edition of the Low-resource Spoken Lan-
guage Translation track focused on the translation
of speech from a variety of data-scarce languages.
The target language is typically a higher-resource
one, generally of similar geographical or historical
linkages. The goal of this shared task is to bench-
mark and promote speech translation technology
for a diverse range of dialects and low-resource
languages. While significant research progress has
been demonstrated recently, many of the world’s
languages and dialects lack the parallel data at
scale needed for standard supervised learning.

6.1 Challenge
This year’s task significantly expanded the ty-
pological and geogrpahical diversity of the lan-
guages, language families, and scripts represented.
The eight subtasks were:

• Bhojpuri→ Hindi

• Marathi→ Hindi

• Irish→ English
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• Maltese→ English

• Bemba→ English

• North Levantine Arabic→ English

• Tamasheq→ French

• Quechua→ Spanish

Teams were allowed to submit to as few as one
language pair, up to all eight. Both constrained
and unconstrained submissions were allowed, to
be separately ranked. For the constrained scenario,
teams were only allowed to submit systems using
the data provided by the shared task. For the un-
constrained systems, teams were allowed to use
any data as well as any pre-trained models.

6.2 Data and Metrics

Table 6 provides a summary of the training data
that were part of the shared task. We describe in
more detail the data for each language pair below.

North Levantine Arabic–English (apc-eng)
Levantine Arabic, a well-established unit within
the Arabic dialectal continuum, can be divided
into at least three regional variants (Al-Wer and
de Jong, 2017). North Levantine Arabic (also
known as Syrian or Shami, ISO code: apc) is
based on the urban speech of mainly Beirut and
Damascus and is perceived as a separate linguistic
unit (Ghobain, 2017).

Participants were provided with the UFAL
Parallel Corpus of North Levantine 1.0 (Sellat
et al., 2023), which includes about 120k lines of
multi-parallel North Levantine-Modern Standard
Arabic-English textual data, that can be down-
loaded from the LINDAT/CLARIAH-CZ Reposi-
tory.33 For additional speech data in North Lev-
antine Arabic, participants were pointed to two
LDC resources: the BBN/AUB DARPA Baby-
lon Levantine corpus (Makhoul et al., 2005) and
the Levantine Arabic QT Training Data Set 5 cor-
pus (Maamouri et al., 2006).

Participants were also encouraged to use the
Tunisian Arabic training data used in the last two
years’ shared task (LDC2022E01). This three-way
parallel data corresponds to 160 hours and 200k
lines of aligned audio in Tunisian speech, Tunisian
transcripts, and English translations. Addition-
ally, a number of OpenSLR resources in Modern
33http://hdl.handle.net/11234/1-5033

Standard Arabic were highlighted: Tunisian Mod-
ern Standard Arabic speech and transcriptions34,
the MADCAT Arabic LDC corpus (Lee et al.,
2012), the Arabic portion of theMediaSpeech cor-
pus (Kolobov et al., 2021), and the Arabic speech
to text Quran data.35

Overall, the provided resources were supposed
to help participants, but only the unconstrained
scenario was considered within this year’s initial
run of the apc-eng language pair.

The development36 and test37 data consist of
recordings of native speakers of the dialect and is a
mix of spontaneous monologues and dialogues on
the topics of everyday life (health, education, fam-
ily life, sports, culture), living abroad, and every-
day life in Syria. The transcription and translation
team consisted of students of Arabic at Charles
University, with an additional quality check pro-
vided by the native speakers of the dialect.

Bemba–English (bem-eng) Bemba (also
known as IciBemba) is a Bantu language (ISO
code: bem), spoken predominantly in Zambia and
other parts of Africa by over 10 million people. It
is the most populous indigenous language spoken
by over 30% of the population in Zambia where
English is the lingua franca and official high-
resourced language of communication. Bemba
is native to the people of Northen, Luapula and
Muchinga provinces of Zambia but also spoken in
other parts of the country including urban areas
such as Copperbelt, Central and Lusaka provinces
by over 50% of the population (ZamStats, 2012).

The provided Bemba-English corpus (Sikasote
et al., 2023a) consists of over 180 hours of Bemba
audio data, along with transcriptions and trans-
lations in English. The dataset is comprised of
recorded multi-turn dialogues between native Be-
mba speakers grounded on images.

In addition, we provided transcribed (28 hours)
and untranscribed (60 hours) monolingual Be-
mba speech from Zambezi Voice (Sikasote et al.,
2023b) and BembaSpeech (Sikasote and Anasta-
sopoulos, 2022) datasets.

Bhojpuri–Hindi (bho-hin) Bhojpuri (ISO
code: bho) belongs to the Indo-Aryan language
group. It is dominantly spoken in India’s western
part of Bihar, the north-western part of Jharkhand,
34https://www.openslr.org/46/
35https://www.openslr.org/132/
36http://hdl.handle.net/11234/1-5518
37http://hdl.handle.net/11234/1-5519
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and the Purvanchal region of Uttar Pradesh. As
per the 2011 Census of India, it has around 50.58
million speakers (Ojha and Zeman, 2020). Bho-
jpuri is spoken not just in India but also in other
countries such as Nepal, Trinidad, Mauritius,
Guyana, Suriname, and Fiji. Since Bhojpuri was
considered a dialect of Hindi for a long time, it
did not attract much attention from linguists and
hence remains among the many lesser-known and
less-resourced languages of India.

The provided Bhojpuri–Hindi corpus consists
of 22.77 hours of Bhojpuri speech data (see Ta-
ble 6) from the news domain, extracted from News
On Air38 and translated into Hindi texts.39 Ad-
ditionally, the participants were directed that they
may use monolingual Bhojpuri audio data (with
transcription) from ULCA-asr-dataset-corpus40 as
well as Bhojpuri Language Technological Re-
sources (BHLTR) (Ojha et al., 2020; Ojha, 2019)41

and Bhojpuri-wav2vec2 based model.42

Irish–English (gle-eng) Irish (also known as
Gaeilge; ISO code: gle) has around 170,000 L1
speakers and 1.85 million people (37% of the pop-
ulation) across the island (of Ireland) claim to be
at least somewhat proficient with the language. In
the Republic of Ireland, it is the national and first
official language. It is also one of the official lan-
guages of the European Union (EU) and a recog-
nized minority language in Northern Ireland with
the ISO ga code.

The provided Irish audio data were compiled
from the news domain, Common Voice (Ardila
et al., 2020),43 and Living-Audio-Dataset.44 The
Irish–English corpus consists of 12 hours of Irish
speech data (see Table 6), translated into English
texts.

Maltese–English (mlt-eng) Maltese (ISO code:
mlt) is a Semitic language, with a heavy influ-
ence from Italian and English. It is spoken mostly
in Malta, but also in migrant communities abroad,

38https://newsonair.gov.in
39https://github.com/panlingua/iwslt2024
_bho-hi

40https://github.com/Open-Speech-EkStep/
ULCA-asr-dataset-corpus

41https://github.com/shashwatup9k/bho-res
ources

42https://www.openslr.org/64/
43https://commonvoice.mozilla.org/en/dat
asets

44https://github.com/Idlak/Living-Audio-D
ataset

most notably in Australia and parts of America
and Canada.

The data release for this shared task consists
of over 14 hours (split into dev and train) of au-
dio data, together with their transcription in Mal-
tese and translation into English. Participants were
also allowed to use additional Maltese data includ-
ing the text corpus used to train BERTu (Micallef
et al., 2022), a Maltese BERT model, the MASRI
Data speech recognition data (Hernandez Mena
et al., 2020), and any data available at the Maltese
Language Resource Server.45

Marathi–Hindi (mar-hin) Marathi (ISO code:
mar) is an Indo-Aryan language and is domi-
nantly spoken in the state of Maharashtra in India.
It is one of the 22 scheduled languages of India
and the official language of Maharashtra and Goa.
As per the 2011 Census of India, it has around 83
million speakers which covers 6.86% of the coun-
try’s total population.46 Marathi is the third most
spoken language in India.

The provided Marathi–Hindi corpus consists of
24.58 hours of Marathi speech data (see Table 6)
from the news domain, extracted from News On
Air47 and translated into Hindi texts.48 The dataset
was manually segmented and translated by Panlin-
gua.49 Additionally, the participants were directed
that they may use monolingual Marathi audio data
(with transcription) from Common Voice (Ardila
et al., 2020),50 as well as the corpus provided
by He et al. (2020)51 and the Indian Language Cor-
pora (Abraham et al., 2020).52

Quechua–Spanish (que-spa) Quechua (macro-
laguage ISO code: que) is an indigenous lan-
guage spoken by more than 8 million people in
South America. It is mainly spoken in Peru,
Ecuador, and Bolivia where the official high-
resource language is Spanish. It is a highly inflec-
tive language based on its suffixes which aggluti-
nate and are found to be similar to other languages

45https://mlrs.research.um.edu.mt/
46https://censusindia.gov.in/nada/index.
php/catalog/42561

47https://newsonair.gov.in
48https://github.com/panlingua/iwslt2023
_mr-hi

49http://panlingua.co.in/
50https://commonvoice.mozilla.org/en/dat
asets

51https://www.openslr.org/64/
52https://www.cse.iitb.ac.in/˜pjyothi/ind
iccorpora/
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Language Pairs Train Set Dev Set Test Set Additional Data

Bhojpuri–Hindi bho–hi 19.88 2.07 0.82 Monolingual audio with transcription
(ASR) and monolingual text

Irish–English ga–eng 9.46 1.03 0.69 IWSLT 2023 test set (with references )
and MT data (monolingual and parallel
corpora)

Marathi–Hindi mr–hi 15.88 3.66 0.61 Monolingual audio with transcriptions
(ASR), IWSLT 2023 test set (with ref-
erences ) and monolingual text

Maltese–English mlt–eng 10 2 2 Monolingual audio with transcriptions
(ASR), monolingual text

North Levantine–English apc–eng - 2.5 1.85 -
Tamasheq–French tmh–fra 17 - - Untranscribed audio, data in other re-

gional languages
Quechua–Spanish que–spa 1.60 1.03 1.03 48 hours of monolingual audio with

transcriptions (ASR) and MT data (not
transcribed)

Bemba–English bem–eng 167.17 5.89 5.83 28.12 hours of monolingual audio with
transcriptions (ASR) and 60 hours of un-
transcribed audio data.

Table 6: Training, development and test data details (in hours) for the language pairs of the low-resource shared
task.

like Finnish. The average number of morphemes
per word (synthesis) is about two times larger than
in English. English typically has around 1.5 mor-
phemes per word and Quechua has about 3 mor-
phemes per word.

There are two main regional divisions of
Quechua known as Quechua I and Quechua II.
This data set consists of two main types of
Quechua spoken in Ayacucho, Peru (Quechua
Chanka ISO: quy) and Cusco, Peru (Quechua
Collao ISO: quz) which are both part of Quechua
II and, thus, considered a “southern” languages.
We label the data set with que - the ISO norm for
Quechua II mixtures.

The constrained setting allowed a Quechua-
Spanish speech translation dataset along with the
additional parallel (text-only) data for machine
translation compiled from previous work (Ortega
et al., 2020). The audio files for training, valida-
tion, and test purposes consisted of excerpts of the
Siminchik corpus (Cardenas et al., 2018) that were
translated by native Quechua speakers. For the un-
constrained setting, participants were directed to
another larger data set from the Siminchik corpus
which consisted of 48 hours of fully transcribed
Quechua audio (monolingual).

Tamasheq–French Tamasheq is a variety of Tu-
areg, a Berber macro-language spoken by nomadic
tribes across North Africa in Algeria, Mali, Niger
and Burkina Faso. It accounts for approximately
500,000 native speakers, being mostly spoken in
Mali and Niger. This task is about translating spo-
ken Tamasheq into written French. Almost 20
hours of spoken Tamasheq with French transla-
tion are freely provided by the organizers. A ma-
jor challenge is that no Tamasheq transcription is
provided, as Tamasheq is a traditionally oral lan-
guage.

The provided corpus is a collection of radio
recordings from Studio Kalangou53 translated to
French. It comprises 17 hours of clean speech
in Tamasheq, translated into the French language.
The organizers also provided a 19-hour version of
this corpus, including 2 additional hours of data
that was labeled by annotators as potentially noisy.
Both versions of this dataset share the same vali-
dation and test sets. Boito et al. (2022) provides a
thorough description of this dataset.

In addition to the 17 hours of Tamasheq audio
data aligned to French translations, and in light of
recent work in self-supervised models for speech
processing, we also provide participants with un-
labeled raw audio data in the Tamasheq language,
53https://www.studiokalangou.org/
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as well as in other 4 languages spoken from Niger:
French (116 hours), Fulfulde (114 hours), Hausa
(105 hours), Tamasheq (234 hours) and Zarma
(100 hours). All this data comes from the ra-
dio broadcastings of Studio Kalangou and Studio
Tamani.54

Note that this language pair is a continuation of
last year’s shared task, using the same test set as
last year.

6.2.1 Metrics

We use standard lowercase BLEU with no punctu-
ation to automatically score all submissions. Ad-
ditional analyses for some language pairs are pro-
vided below. Were applicable, we also report
chrF++ (Popović, 2015).

6.3 Submissions

The Shared Task received a record 69 submissions
(for speech translation) from 12 teams for all 8
language pairs. The Shared Task also received
15 submissions for the speech recognition task of
transcribing the input audio. They are described in
detail below.

ALADAN (Kheder et al., 2024) provided a sub-
mission for the apc-eng direction, building upon
a cascade of ASR and MT systems. The authors
propose a character-level and word-level normal-
ization process to handle the orthographic incon-
sistency between Arabic Dialects, merging words
based on a combination of weighted Levenshtein
distance and similarity of embeddings, as com-
puted with a task-specific Word2vec model. Both
ASR and MT systems are trained on a combina-
tion of public (e.g., IWSLT22 data, GALE speech
corpus55 for ASR, and, e.g., the UFAL parallel
dataset provided by the organizers, Global Voices,
LDC2012T09 for MT) and internal data (a com-
bination of crowd-sourced and web-scrapped re-
sources). For ASR, TDNN-F (Povey et al., 2018)
and Zipformer (Yao et al., 2023) models are con-
sidered, that are firstly trained on a generic Ara-
bic data, and then fine-tuned on a dialect-specific
speech. For MT, both encoder-decoder models
and instruction-following LLMs are explored. The
primary solution uses both ASR systems com-
bined with the ROVER (Fiscus, 1997) algorithm,
with the MT step performed by the fine-tuned

54https://www.studiotamani.org/
55https://arabicspeech.org/resources

Command-R56 LLM, enhanced by MBR decoding
and checkpoint averaging. Contrastive submis-
sions differ in the MT step, with the first one using
the final checkpoint of the fine-tuned LLM, and
the second one using a Transformer-based NLLB
model.

BITSP (Anand et al., 2024) submitted systems
for the Bhojpuri to Hindi and Marathi to Hindi
tasks. Their approach relied on cascading tran-
scriptions which were piped into translation sys-
tems. They used a fine-tuned Whisper model for
Marathi-Hindi and an vakyansh-wav2vec model
for Bhojpuri-Hindi (Chadha et al., 2022; Gupta
et al., 2021). Translation was done using fine-
tuned NLLB for both tasks (NLLB Team et al.,
2022). They also looked at using sentence-
embeddings generated using the MuRIL (Mul-
tilingual Representations for Indian Languages)
(Khanuja et al., 2021) model for the Marathi-Hindi
task.

HW-TSC (Jiawei et al., 2024) participated in
the apc-eng direction with a cascade solution
based on the off-the-shelf Whisper (Radford
et al., 2022) model for ASR combined with
a Transformer-based MT model trained from
scratch for Arabic-to-English translation. The MT
system (35 encoder layers, 3 decoder layers, with
dhidden = 512 and dFFN = 2048) was trained on
the mix of publicly available (e.g., OpenSubtities,
GlobalVoices, TED) and in-house corpora, both
filtered based on sentence embeddings extracted
with LaBSE (Feng et al., 2022). No dialect-
specific datasets were used for training directly.
Instead, an in-domain model was fine-tuned on
the validation set to score the training samples us-
ing domain features (Wang et al., 2020c), with the
highest-scoring subset explored for the final fine-
tuning.

JHU (Robinson et al., 2024) provided systems
for all eight language pairs. The main effort of
their work revolved around fine-tuning large and
publicly available models in three proposed sys-
tems, one cascaded and two end-to-end. For the
cascaded system, they proposed fine-tuning Whis-
per transcription (not translation) and then piping
that output to a fine-tuned NLLB model. For the
end-to-end systems, they fine-tuned for transla-
tion directly on SEAMLESS4MT v2 and Whisper
translation (not transcription). In addition, they
56https://cohere.com/command
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Language Pairs
Team Name apc-eng bem-eng bho-hin gle-eng mlt-eng mar-hin que-spa tmh-fra

SETU-DCU (Zafar et al., 2024) ✓ ✓
UM (Nabhani et al., 2024) ✓ ✓
UOM (Abela et al., 2024) ✓

QUESPA (Ortega et al., 2024) ✓
JHU (Robinson et al., 2024) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

HW-TSC (Jiawei et al., 2024) ✓
ALADAN (Kheder et al., 2024) ✓

KIT (Li et al., 2024c) ✓ ✓ ✓ ✓
BITSP (Anand et al., 2024) ✓ ✓
YMOSLEM (Moslem, 2024) ✓

UOM-DFKI (Rishu et al., 2024) ✓
Total Teams per Lang Pair: 5 2 4 3 5 2 2 1

Table 7: Breakdown of the teams and the language pairs subtasks that they participated in for the Low-Resource
Shared Task.

looked at a variety of different training paradigms
such as intra-distillation (Xu et al., 2022), joint
training, multi-task learning, curriculum learning,
and pseudo-translation. The best-performing ap-
proach, similar to the broader results of this shared
task differed for different language pairs. How-
ever, fine-tuned SEAMLESSM4T v2 tends to per-
form best for source languages on which it was
pre-trained. Additionally, while multi-task train-
ing helps Whisper fine-tuning, in general cascaded
systems with Whisper and NLLB tend to outper-
form Whisper alone. Finally, intra-distillation was
shown to help NLLB fine-tuning.

KIT (Li et al., 2024c) participated in the
Maltese-to-English, Bemba-to-English, North
Levantine Arabic-to-English tasks in the uncon-
strained condition. They leveraged pretrained
multilingual models by fine-tuning them for the
target language pairs, looking at SeamlessM4T,
NLLB (NLLB Team et al., 2022), and MMS
(Pratap et al., 2024). Due to the large size of
the models, they experimented with adapter
fine-tuning to reduce the number of trainable
parameters using LORA (Hu et al., 2021) and
package PEFT (Mangrulkar et al., 2022). They
were also able to show that Minimum Bayes
Risk is effective in improving speech translation
performance by combining systems in all of their
language pairs.

SETU-DCU (Zafar et al., 2024) presented sys-
tems for two language pairs, Irish–English and

Maltese–English. Both of their submissions, de-
spite lower performance on the Irish (GA) task,
were on the unconstrained condition configura-
tion. There were two submissions to the Maltese
(MLT) task ranging from 44.7 to 52.6 BLEU and
one submission to the GA task at 0.6 BLEU.

The MLT results of 52.6 BLEU were favorable
due to SETU-DCU’s primary submission based
on a cascaded (ASR to MT) setup of a Whisper
(Radford et al., 2022) ASR system used in con-
junction with an MT system based on the NLLB
(NLLB Team et al., 2022) where both systems
were fine-tuned on the Maltese–English data pro-
vided. Additionally, their cascaded Contrastive 1
system which used mBart-50 for decoding, scored
44.7 BLEU showing that the use of the NLLB sys-
tem augmented performance by nearly 8 BLEU
points. Further results can be attributed to data
preparation such as removing unnecessary data
chunks from the dataset, eliminating special char-
acters, and converting the sentences to lowercase
along with the following hyper-parameter config-
uration: batch size of 16, learning rate of 1e-5, 500
warmup steps, 30,000 max steps, per-device eval
batch size of 8, generation max length of 225, and
intervals of 1,000 steps for saving and evaluating,
and 25 steps for logging.

SETU-DCU’s submission for the uncon-
strained GA task performed poorly compared to
other systems submitted. It consisted of a direct
speech translation system using the Whisper small
model by first resampling data at 16 khz and us-
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ing the following hyper-parameter configuration:
batch size of 16, learning rate of 1e-5, 500 warmup
steps, 1 gradient accumulation steps, generation
max length of 225, and intervals of 500 steps for
saving and evaluating. The model was fine-tuned
over three epochs. Their only submission used
Whisper for fine-tuning; however, their claim is
that since the data Whisper was trained on did not
contain GA at the time of fine-tuning, generation
was inconsistent.

UOM-DFKI (Rishu et al., 2024) participated in
the Maltese to English shared task using two pop-
ular end-to-end pretrained models, Whisper and
wav2vec 2.0. They hypothesised that Maltese
shares lots of vocabulary with Arabic and Italian
and would therefore have good cross-lingual trans-
fer ability due to pretraining data in those mod-
els. In addition, they investigated other popular
neural models, BERT (Devlin et al., 2019) which
they decided against making a formal submission,
and mBART (Liu et al., 2020b) which was used as
their contrastive submission. Overall, the end-to-
end system performed much better than the con-
trastive submission.

UOM (Abela et al., 2024) participated in the
constrained task of the Maltese to English trans-
lation language pair. Their approach relied on a
cascaded system consisting of a pipeline contain-
ing: a DeepSpeech 1 ASR system (Hannun et al.,
2014), a KenLM model to optimise the transcrip-
tions (Heafield, 2011), and finally an LSTM ma-
chine translation model. For their ASR system,
they trained using the MASRI dataset and Com-
monVoice and used a much smaller layer size (64)
than normal due to the lack of large amounts of
data. These outputs were then used to decode us-
ing a 3-gram statistical language model trained on
Malti v4.0. The translation system was imple-
mented using fairseq (Ott et al., 2019) comparing
both transformer and LSTM architectures, with
their best performing system using LSTMs. The
authors hypothesize that this was due to the very
small amount of data available as a bitext.

UM (Nabhani et al., 2024) competed in the un-
constrained task for Maltese-English and North
Levantine Arabic-English spoken language trans-
lation using a pipeline approach. For the ASR
component of their systems, they relied on fine-
tuning XLS-R using 50 hours of Maltese speech
data. To correct outputs, they relied on the sta-

tistical toolkit KenLM (Heafield, 2011). Machine
translation was then done using a fine-tuned ver-
sion of the 1.3B parameter NLLB model (NLLB
Team et al., 2022). They experimented with a
variety of data sources such as CommonVoice,
MASRI, and OPUS-100.

YMOSLEM (Moslem, 2024) The Yasmin
Moslem team (independent researcher) presented
an end-to-end approach for speech translation
from spoken Irish to written English. Their mod-
els are based on Whisper, utilizing small, medium,
and large versions. The primary system employs
Whisper-large, which has been fine-tuned using
the official training data, supplemented with
synthetic audio data and the data augmentation
technique involving white noise and voice activity
detection.

The synthetic audio data was generated us-
ing Azure’s text-to-speech service, applied to the
Wikimedia dataset comprising 7,545 text seg-
ments. The resulting synthetic audio dataset con-
sists of two parts: one featuring a female voice
(OrlaNeural) and the other a male voice (Colm-
Neural). This resulted in a total of 15,090 utter-
ances, with each text segment used to generate
a synthetic speech segment for each voice. The
same approach has been applied to 3,966 text seg-
ments coming from the SpokenWords dataset.

In addition to the official IWSLT-2023 train-
ing dataset and the aforementioned synthetic au-
dio dataset, the Irish portion of the FLEURS
dataset, the Bitesize dataset, and the SpokenWords
dataset were utilized to fine-tune the Whisper-
Large model. Note that the Irish portion of the
Spoken Words dataset has been translated into En-
glish using the Google Translation API.

QUESPA (Ortega et al., 2024) submitted six to-
tal systems consisting of three constrained and
three unconstrained systems. Team QUESPA
were able to improve the previous year’s results
despite the data remaining the same as last year’s
ranging from 1.4 to 2.0 BLEU for the constrained
task and 11.1 to 19.7 BLEU for the unconstrained
one. This year QUESPA provided developmental
results on several models that used mel-filter bank
(MFB) features extracted using Fairseq (Wang
et al., 2020a) were included that show the effect of
the s2t transformers model type size ranging from
extra-small to large.

QUESPA’s Constrained systems did not vary
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Language Pair Winning Team System Constrained? BLEU

apc-eng ALADAN primary no 28.71
bem-eng JHU primary no 32.60
bho-hin JHU primary no 24.40
gle-eng JHU contrastive1 no 16.00
mlt-eng KIT primary no 58.90
mar-hin IITM primary no 47.20
que-spa QUESPA contrastive1 no 19.70
tmh-fra baseline primary no 8.83

Table 8: Winning submissions for each language pair of the Low-Resource Shared Task.

much from last year’s systems as far as system
architecture is concerned. However, they were
able to identify a caveat in the training data set
which contains audio wav files of lengths from
1 to 30 seconds while the developmental and test
sets were all of 30 seconds in length. Their opin-
ion is that the varied length warranted a severe
hyper-parameter empirical search resulting in a
Primary system that scored 2.0 BLEU with the
following configuration of a Fairseq (Wang et al.,
2020a) speech translation model based on mel-
Filter Bank features: extra-small transformer, 6
encoder layers, 3 decoder layers, Adam optimiza-
tion, 500 epochs and a learning rate of .0002 while
using an average of the last 10 checkpoints which
outperformed the same model with other hyper-
parameters from last year. Their Contrastive 1
system, similar to the primary system, introduced
a new concept of data augmentation in combina-
tion with a medium transfomer (s2t transformer),
12 encoder layers, 6 decoder layers, and 8 atten-
tion heads and 200 epochs. More importantly, in
Contrastive 1 they introduced audio augmentation
via LibRosa57 where the translation was the same
but four audio techniques were introduced: Noise
(0.009 aggregation), Roll (sr/10), Time(0.4), and
Pitch (-5) to create 4-fold sets of the original. Ad-
ditionally, QUESPA’s Contrastive 1 system re-
moved SpecAugment as an audio augmentation
technique. Finally, the Contrastive 2 system from
Team QUESPA were identical to the primary sys-
tem with the change of epochs to 400 and model
type to a medium-size (s2t transformer).

QUESPA’s Unconstrained systems were a
novel introduction for the QUE–SPA task and out-
performed last year’s best systems. Their primary
system introduced the SpeechT5 (Ao et al., 2022)

57https://librosa.org/

ASR PLM which consists of 12 Transformer en-
coder blocks and 6 Transformer decoder blocks,
with a model dimension of 768, an internal di-
mension (FFN) of 3,072, and 12 attention heads.
It used normalized training text from the Lib-
riSpeech language model as unlabeled data, which
consisted of 400 million sentences and fine-tuned
on the competition data while optimizing with
Adam and a learning rate maximum of 0.0002.
Fine-tuning was performed using the SpeechT5
fine-tuning recipe58 for Speech-Translation with
the same hyperparameter settings. Additionally,
their primary system used a data augmentation
technique (noise, distortion, duplication)59 (Ma,
2019) for total of 120h: 60h original + 60h syn-
thetic data scoring 16.0 BLEU, higher than previ-
ous year’s results. For Contrastive 1, QUESPA
introduced a combination of more data by manu-
ally translating Quechua to Spanish 55 hours of
the total set along with an additional 19 min-
utes of Guarani and 29 minutes of Bribiri from
the AmericasNLP60 shared task. On top of that,
they applied two data augmentation techniques:
(1) nlpaug (Ma, 2019) and (2) DA-TTS (Zeval-
los et al., 2022), which involves generating syn-
thetic text and audio using a de-lexicalization al-
gorithm and a TTS system for the source language
(Quechua). These two data augmentation tech-
niques generated 62 hours and 50 hours respec-
tively. Altogether, they used a total of 167h and 48
min: 55h (new dataset) + 48 min (ANLP dataset)
+ 62h nlpaug + 50h DA-TTS. The Contrastive 1
system was QUESPA’s best system scoring 19.7
BLEU. The Contrastive 2 system was also newly

58https://github.com/microsoft/SpeechT5/
tree/main/SpeechT5

59https://github.com/makcedward/nlpaug
60https://turing.iimas.unam.mx/americasn
lp/2022_st.html
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introduced with the use of Whisper medium-size,
multi-lingual model for ASR in a cascade ap-
proach basically replacing last year’s “fleurs” ASR
system. The MT system was identical to the one
they used last year called FloresMT (Ortega et al.,
2023). QUESPA’s Contrastive 2 system resulted
in a score of 11.1 BLEU.

6.4 Results

Table 8 summarizes the winning submissions
for each language pair. Detailed results for all
teams’ systems and settings are available in Ap-
pendix B.5.

Of the 8 language pairs, 5 different teams had
the top performing system on at least one language
pair. This shows how competitive the shared task
was, and that a multitude of approaches are help-
ful for low-resource speech translation. Addition-
ally, no team was able to beat the baseline on the
Tamasheq-French direction (which corresponds to
last year’s best system). This suggests that there
continues to be lots of room for improvement and
that this remains an active area of research.

Compared to previous iterations of the shared
task, many of the language pairs had marked im-
provements with large gains in the official au-
tomatic metrics. For example, BLEU scores
for Maltese-English and Marathi-Hindi are in the
40s and 50s. Furthermore, for North Levantine
Arabic-English, Bemba-English, and Bhojpuri-
Hindi are above 20 BLEU points. Even for
Quechua-Spanish, the least resourced language
pair, the best submission’s BLEU score is almost
20 points.

This marks stark improvements from last year’s
shared task systems for some language pairs. In
Marathi-Hindi, the best system in 2023 achieved a
BLEU score of 39.7, with this year’s best system
improving by more than 7 BLEU points. Simi-
larly, the improvements in the quality and quantity
of the Maltese data lead to a more than 50 BLEU
points improvement compared to last year. For
Irish and Tamasheq, the performance increases are
more modest, about 1 to 2 BLEU points in each,
compared to the 2023 Shared Task.

For the language pairs included for the first time
in the shared task, we find that Bemba-English and
Bhojpuri-Hindi end up with decent systems, a re-
sult of high-quality data availability: for instance,
Bemba-English has an order of magnitude more
training data –167h– than any other language pair

in our shared task); and Bhojpuri is the second
most “high-resourced” language in our set, with
almost 22 hours of speech translation data.

Within the systems submitted to the initial
run of the North Levantine Arabic-English lan-
guage pair, all of the primary submissions are
based on a pipeline approach exploring ASR
and MT, with a single submission combining
E2E and cascaded systems. Since the popular
NLLB model explored by several submissions
supports an input/output combination of dialecti-
cal Arabic/English and a large-scale, parallel tex-
tual dataset of Levantine Arabic was provided,
the participating teams mainly struggled with the
ASR component. The winning submission by AL-
ADAN, which outperformed a second-place team
by over 8 BLEU points, uses an internal dataset of
Levantine speech to boost the performance of their
ASR component. While the data used for fine-
tuning the MT system is comparable between the
submissions, ALADAN explored a much larger,
prompt-driven LLM compared to the 600M/1.3B
NLLB variants explored by other teams.

We note that almost all submissions followed
the unconstrained setting – a clear indication that
pre-trained multilingual systems seem to be the
best option for building ST for low-resource lan-
guages, at least under the current data, architec-
tural, and compute constraints.

7 Automatic Dubbing

7.1 Challenge and Test Sets
Dubbing is a form of speech translation where
the user can not only hear the translated speech,
but also can often see the original speaker. This
adds numerous challenges and constraints, includ-
ing isochrony (does the new translation respect
the timing of the original speech), phonetic syn-
chrony or lip sync (is the new speech compat-
ible with the mouth movements of the original
speaker, if visible), kinesic synchrony (is the new
speech consistent with visible body movements
of the original speakers), and others (Mayoral
et al., 1988; Chiaro, 2009; Chaume, 2020; Bran-
non et al., 2023).

For English→Chinese, we use the ITV test set
from subtitle task. We manually selected 10min
sections from each of clip 15, 16, 18, 19, and 21.
The 10min sections were manually selected with
several goals:

1. Speech is fairly clear
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2. A mix of on-/off-screen dialogues

3. A diverse set of genders and accents

4. Avoid excessive profanity

5. Avoid opening/closing credits

German→English followed the same setup as
the submissions from last year (Chronopoulou
et al., 2023; Pal et al., 2023; Rao et al., 2023)

7.2 Submissions

This task received a total of four English→Chinese
submissions (see Table 9): one end-to-end dub-
bing submission and three participants in the of-
fline speech translation task (speech to text) scored
our challenge set (set5). For the offline submis-
sions, we utilized the provided translations to gen-
erate dubs.

We also received one submission (Li et al.,
2024b) for German→English. We chose to fo-
cus on English→Chinese for evaluation due to the
availability of the offline speech systems to com-
pare against, which should represent strong speech
translation models (but not dubbing specific mod-
els).

The process of generating dubs from text trans-
lations involved several steps. First, due to the
absence of source language subtitles, we down-
loaded subtitles from an open-source website and
manually time align the five clips. Each time
aligned sentence was then split at commas and full
stops to create manageable segments for process-
ing, while keeping a track of original sentences
and time-stamps.

Similarly, the translations from the three sub-
missions were also split at commas and full stops.
We used Vecalign (Thompson and Koehn, 2019,
2020) a tool for sequence alignment, in conjunc-
tion with LASER-2 embeddings (Heffernan et al.,
2022), to align the source language with the tar-
get language. This ensured that the meaning and
context of the translated text matched the original
as closely as possible. Timestamps were then pro-
jected from the source to the target language, pro-
viding a temporal map for the dubbing process.

For each sentence, we employed Amazon Polly,
a text-to-speech service, to generate the corre-
sponding speech. We also used the duration of
the source speech segment as a constraint to gen-
erate target speech with Polly. Polly allowed this
by adding a flag with max durations, where the

generated speech cannot go beyond maximum du-
ration. We used Zhiyu standard voice as that al-
lowed use of this flag via SSML wrapper. Adding
duration constraint essentially ensured that the tar-
get speech did not exceed the length of the source
speech. Typically, the target speech was shorter
than the source speech, so we filled the remaining
portion with silences to maintain synchronization.

We synchronized the start time of the target
speech with the source speech using the previously
obtained timestamps to ensure that the dialogue
matched the visual cues accurately. Finally, we
concatenated the target speech segments to form
the complete clip.

7.3 Metrics and Results

We report speech overlap (between the original au-
dio and the dubbed audio) in Table 10. For refer-
ence, in a large corpus of professionally dubbed
media, human speech overlap between original
and dubbed speech is about 0.658 (mean) and
0.731 (median) (Brannon et al., 2023). The dub-
bing submission HWTSC-Dubbing is similar to
the human statistics, while the cascaded systems
generated in part by the task organizers perform
substantially worse.

We report PEAVS (Perceptual Evaluation of
Audio-Visual Synchrony) score (Goncalves et al.,
2024), an automatic metric with a 5-point scale
that evaluates the quality of audio-visual synchro-
nization, in Table 12. PEAVS is the only AV sync
evaluation metric that is grounded in human judge-
ments as it is trained on a large Audio-Visual syn-
chrony benchmark for “in-the-wild” videos. In our
case, we use PEAVS for evaluating the quality of
synchrony in the generated dubs. As expected for
a system optimized with speech timing in mind,
HWTSC-Dubbing performs best here.

Table 12 also reports BLASER 2.0-QE scores.
BLASER 2.0-QE is a reference-free modality-
agnostic automatic metric for speech translation
quality (Seamless Communication et al., 2023). It
only supports short-form speech, so we segment
the full speech into sentences as mentioned in Sec-
tion 7.2 and report average scores. Surprisingly,
the dubbing submission performs the best at this
metric, even though it is optimized for both trans-
lation quality and timing. It is worth noting that
the segments being evaluated are quite short, of-
ten much shorter than typical sentences in written
text, and lack of domain context has been shown
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Submission Submission Type

HWTSC-Dubbing (Li et al., 2024b) Dubbing
HWTSC-Offline (Wu et al., 2024) Offline Speech Translation Challenge Set
NYA-Offline (Zhang et al., 2024) Offline Speech Translation Challenge Set
CMU-Offline (Yan et al., 2024) Offline Speech Translation Challenge Set

Table 9: Submissions to the Dubbing Track

to be problematic in machine translation metrics
even for normal length sentences (Läubli et al.,
2018; Toral et al., 2018; Vernikos et al., 2022).
BLASER 2.0-QE is not trained on dubbing data,
so there is likely degradation due to domain mis-
match (Zouhar et al., 2024).

We report two measures of lip sync, both from
Prajwal et al. (2020): LSE-D (lip-sync error dis-
tance) and LSE-C (Lip Sync Error - Confidence)
(see Table 13). LSE-D measures the accuracy
of audio-visual synchronization by identifying the
offset with the smallest distance between audio
and video features. LSE-C measures the confi-
dence in this synchronization by comparing the
best match’s distance to those of adjacent off-
sets, with higher values indicating greater confi-
dence. In essence, LSE-D tells us how well the
audio and video are synchronized, while LSE-C
tells us how sure the model is about that synchro-
nization. HWTSC-Dubbing performs the best at
LSE-D on average, although one strange result is
that the metric prefers HWTSC-Dubbing to the
original audio in two of the test sets, which does
not make sense. Another surprise is that CMU-
Offline slightly outperforms HWTSC-Dubbing on
the LSE-C metric.

We also conduct human judgements to evalu-
ate translation quality and naturalness. We eval-
uate the first 20 sentences of each clip based on
the rubric (Table 11), and report the average score
for each submission in Table 12. In general, the
dubbing system produces more natural speech but
sometimes less accurate translation than the offline
systems. The offline systems oftentimes have to
speed up the speech synthesis to match the orig-
inal duration of a sentence, leading to hard-to-
recognize speeches.

8 Indic Languages Track

In the realm of spoken language processing,
speech-to-text translation (ST) holds a crucial role
at the intersection of natural language processing.
The primary aim of ST is to convert spoken lan-
guage from one linguistic context into written text

in another language. This typically involves us-
ing Automatic Speech Recognition (ASR) to con-
vert speech in the source language into text, fol-
lowed by Machine Translation (MT) to translate
the source language text into the target language.
ST is a multimodal task that takes speech input
and produces output in text format. Furthermore,
it is inherently multilingual, taking speech input
in one language and generating text output in an-
other. Traditionally, human language translators
proficient in both the source and target languages
have handled this task. However, the scarcity of
translators fluent in multiple languages has cre-
ated a pressing need for a dedicated model tailored
to excel in the unique realm of ST tasks across
diverse languages. Recent advancements in ST
have predominantly focused on high-resource lan-
guages, leaving a significant gap for low-resource
languages that face a substantial catch-up jour-
ney. The attention imbalance is primarily due to
the scarcity of data for low-resource languages, as
most deep-learning models depend on data abun-
dance. Acquiring such data for low-resource lan-
guages poses a formidable challenge.

While a considerable body of research is ded-
icated to ST across diverse language families, a
noticeable gap exists in investigating this domain
concerning low-resource Indian languages. Cur-
rently, there are no datasets specifically designed
for the ST task in Indian languages, covering both
the Indo-Aryan and the Dravidian language fami-
lies. This research aims to create either an End-to-
End (E2E) or a Cascaded ST model

This Indic track aims to establish an ST trans-
lation model that spans a diverse array of dialects
and low-resource languages originating from the
Indo-Aryan and Dravidian language families in In-
dia. Given that a significant portion of the data is
sourced from very low-resource languages, these
languages remain largely unexplored in the realm
of speech translation. Compounding this chal-
lenge is the fact that many of the target languages
are distantly related to English. Consequently,
we anticipate that relying solely on pre-trained
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Test Set 15 16 18 19 21 Average

HWTSC-Dubbing 0.721 0.585 0.718 0.749 0.715 0.698
HWTSC-Offline 0.281 0.228 0.277 0.374 0.238 0.280
NYA-Offline 0.316 0.194 0.274 0.385 0.225 0.279
CMU-Offline 0.365 0.206 0.323 0.372 0.253 0.304

Table 10: Speech Overlap (↑), computed on speech segments as detected by silero-vad (Silero Team, 2021).

Score Description

1 Speech is not natural at all and/or the translation has nothing to do with the source.
2 Speech is not natural but you can understand why some of the words in the translation are there.
3 Speech is partially matching speakers lips and/or is a bit natural as well as the meaning of the source sentence

are adequately transferred into the target language.
4 Speech naturalness is of acceptable quality and the meaning of the source sentence is mostly preserved.
5 Speech is mostly natural and the translation is almost perfect or is a good paraphrase of reference.
6 Speech looks completely natural and the translation is perfect in every sense of the word.

Table 11: Dubbing human evaluation rubric.

Model PEAVS (↑) BLASER-QE (↑) Human Evaluation (↑)
Original 3.82 ±0.41 – –
HWTSC-Dubbing 3.05 ±0.45 3.25 3.9
HWTSC-Offline 1.33 ±0.37 3.07 3.5
NYA-Offline 1.28 ±0.31 3.03 3.3
CMU-Offline 1.28 ±0.31 3.07 3.2

Table 12: PEAVS (Perceptual Evaluation of Audio-Visual Synchrony) score (Goncalves et al., 2024), BLASER
2.0-Q, a reference-free modality-agnostic automatic metric for speech translation quality (Seamless Communica-
tion et al., 2023), and human evaluation results.

Test Set 15 16 18 19 21 Average

Original 8.220 7.258 11.553 9.311 10.197 9.308
HWTSC-Dubbing 11.969 5.398 11.341 11.887 11.200 10.359
HWTSC-Offline 13.596 12.219 12.024 12.748 8.437 11.805
NYA-Offline 14.094 11.539 10.488 12.833 8.409 11.473
CMU-Offline 14.793 12.834 12.499 12.817 7.933 12.175

Table 13: Lip sync error distance (LSE-D, ↓) (Prajwal et al., 2020) at clip level.

Test Set 15 16 18 19 21 Average

Original 3.714 0.656 1.190 3.340 1.443 2.069
HWTSC-Dubbing 0.638 1.011 1.463 1.185 0.893 1.038
HWTSC-Offline 0.477 0.834 1.095 1.355 0.849 0.922
NYA-Offline 0.674 0.567 1.153 0.944 0.697 0.807
CMU-Offline 0.706 0.971 2.143 1.019 0.718 1.112

Table 14: Lip-sync error confidence (LSE-C, ↑) (Prajwal et al., 2020) at clip level.
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models may encounter numerous obstacles. The
dataset provided will serve as the inaugural bench-
mark and gold standard dataset, encompassing all
Indian languages. We aspire for participants to de-
velop systems capable of real-world deployment
in the future.

8.1 Challenge

The Indic shared task consists of ST for three lan-
guage pairs from English (en) to Hindi (hi), Tamil
(ta), and Bengali (bn). The ST data for all these
three language pairs is derived from the Indic-
TEDST dataset (Sethiya et al., 2024). The sub-
missions are allowed for both the constrained and
the unconstrained cases. The constrained case in-
volves only the data provided in the task. The
unconstrained case can utilize either the data pro-
vided in the challenge or any external data, along
with any pre-trained models. The submissions are
also allowed for the cascade and end-to-end mod-
els for all the language pairs. Thus, the task ac-
cepts the following cases for all three language
pairs (en-hi, en-ta, and en-bn):

• End-to-end + Constrained

• End-to-end + Unconstrained

• Cascade + Constrained

• Cascade + Unconstrained

8.2 Data and Metrics

The ST task data for the Indic track encompasses
three Indian languages representing diverse lan-
guage families. The languages included in this
shared task are Hindi (hi), Bengali (bn), and Tamil
(ta), originating from the Indo-Aryan and Dravid-
ian language families. The dataset includes speech
and text (transcriptions) in English (source lan-
guage) and text (translations) in Hindi, Bengali,
and Tamil (target languages).

The data for this Indic track comprises a ST cor-
pus that includes 3 low-resource Indian languages.
The data is curated from the TED talks with Indic
translations, usually a talk spans from 3 minutes
to 15 minutes. A segmentation of the audio files in
the form of YAML is provided with the data. Table
15 illustrates the consistency maintained across all
corpora, with an equal number of lines in their .en,
.lang, and .yaml files. However, due to inherent
linguistic differences, the number of tokens in the
.en and .lang files varies. The count of audio files

Lang Split #Lines #Tokens #Tokens #Audio #Speech
en→ (en) (lang) files (hrs)

bn test 1.1 19.3 17.3 15 2.09
train 5.1 89.4 80.4 106 9.20
valid 1.3 22.1 20.4 30 2.30

hi test 7.2 118.6 138.0 75 13.52
train 45.8 752.6 890.5 528 76.46
valid 7.6 130.3 158.5 150 13.52

ta test 2.2 38.9 28.0 20 4.04
train 8.0 135.1 101.5 145 14.41
valid 2.1 35.4 27.3 42 3.56

Table 15: Statistics of Indic track dataset. #Lines and
#Tokens (.en & .lang) are in terms of thousands(K).
All the data in the above table is approximated.

corresponds to the number of distinct talks, each
delivered by an individual speaker. Additionally,
the speech hours indicate the cumulative speech
duration in a given language. Each parameter is
meticulously categorized into test, train, and valid
subsets, establishing a comprehensive and struc-
tured dataset.

English-Hindi: Hindi is the third most spoken
language in the world, with 615 million speak-
ers. It belongs to the Indo-Aryan language family,
mainly spoken in India. It is also the official lan-
guage of India, written in devanagiri script. The
data contains English speech, English text (tran-
scripts), and Hindi text (translations). The speech
in English language is 103.5 hours and the text in
Hindi language is 37K lines.

English-Bengali: Bengali is the 7th most spo-
ken language in the world, with 228 million speak-
ers. It belongs to the Indo-Aryan language family,
spoken in the Bengal region of South Asia. It is
also the official language of Bangladesh, written
in Bengali-Assamese script. The data contains En-
glish speech, English texts (transcripts), and Ben-
gali texts (translations). The speech in English lan-
guage is 13.59 hours and the text in Bengali lan-
guage is 6.9K lines.

English-Tamil: Tamil is one of the classical
languages of India, spoken by 90.8 million speak-
ers. It belongs to dravidian language family, spo-
ken by the tamil people of South Asia. It is the of-
ficial language of Tamil Nadu state of India, writ-
ten in Brahmi script. The data contains English
speech, English texts (transcripts), and Tamil texts
(translations). The speech in English language is
22.01 hours and the text in Tamil language is 8K
lines.

Metrics: Case-sensitive detokenized BLEU us-
ing sacreBLEU (Post, 2018) is used to report the
performance of all the submissions.
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8.3 Submissions

There were four teams participating in this inau-
gural task: Research team from National Institute
of Information and Communications Technology
of Japan (NICT) , the Voice Intelligence Team
of Samsung (SRI-B), the Huawei Translation
Service Center (HW-TSC), and a team from Na-
tional Institute of Technology Kurukshetra, India
(NITKKR). The participants submitted their result
under various constraints, including end-to-end
constrained, unconstrained, cascaded end-to-end,
and unconstrained approaches. Below, we provide
an overview of each team’s approach and their
results.

NICT: Their submission included cascaded
and end-to-end approach in unconstrained setting
for all the language pairs. The cascaded system
involves fine-tuning the Whisper model for ASR
and fine-tuning the IndicTrans2 model for MT.
This dual fine-tuning aimed to address the format
mismatch between spoken and written language.
For the end-to-end syatem, the IndicTrans2 model
is used to generate pseudo translation data, which
replaced the gold transcription data for fine-tuning
the Whisper model. This strategy aimed to distill
knowledge from a stronger translation model
and ensure consistent formatting. In stage 1,
Whisper is fine-tuned using English transcription
and Indic language translation. Stage 2 involves
generation of pseudo translations for all English
transcriptions, and fine-tuning Whisper using
English audio and the pseudo translations. During
inference, the fine-tuned Whisper model per-
formed direct end-to-end speech translation.

HW-TSC: The submission included implemen-
tation of cascaded approach in the unconstrained
setting. It involves Whisper-large-v3 model
for Automatic Speech Recognition (ASR) and
a Transformer model for Machine Translation
(MT). For MT, strategies like LaBSE for parallel
corpus filtering, data diversification using multiple
model predictions, forward and back translation
for data augmentation, domain fine-tuning with
scored data selection, and regularized dropout
for enhanced training efficiency are used. The
base architecture is from FAIRSEQ toolkit (Wang
et al., 2020b) with hyperparameters of 2048 as
batch size, learning rate of 5e-4, label-smoothing-
cross-entropy loss with label smoothing of 0.1,

4000 warmup steps, and Adam optimizer settings
(ß1 = 0.9, ß2 = 0.98). During inference, a beam
size of 4 and length penalties of 1.0 is applied to
optimize translation outputs.

SRI-B: The submission included end-to-end
approach in both constrained and unconstrained
setting. In the constrained setting the base ar-
chitecture used is from FAIRSEQ toolkit (Wang
et al., 2020b). Pre-processing involves the ex-
traction of 80 channel log mel-filter bank features
with a window size of 25ms and SpecAugment
for data augmentation. The s2t conformer among
fairseq’s built-in architectures for speech-to-text
translation is used. It consist of 16 encoder
layers and 6 decoder layers with label-smoothed
cross-entropy loss and the Adam optimizer with a
learning rate of 2e-3 to train the models. Under
the unconstrained setting, the method involves
using the pre-trained SeamlessM4T v2 from Meta,
a multi-lingual end-to-end model designed for
various languages. The pre-trained multi-lingual
model is used to directly generate text in Indic
languages directly from English for evaluation.

NITKKR: The submission adopts cascaded
approach in unconstrained setting to solve the
task. It begins with audio preprocessing and
transcription, utilizing ResembleAI for noise
reduction, distortion restoration, and speech band-
width enhancement. The processed audio is then
fed into OpenAI’s Whisper model for real-time
ASR. Subsequently, MT models are applied:
Helsinki-NLP’s OPUS-MT for translating English
to Hindi, and Facebook’s Multilingual BART
(MBART) for both English to Tamil and English
to Bengali translations.

8.4 Results

Scores on the test set of all submissions are cal-
culated using automatic metrics and the respective
settings are presented in Table 16. In the following
section, we discuss results from each direction of
languages.

8.4.1 En-Hi
Unconstrained Setting: In the E2E approach,
NICT achieved a BLEU score of 33.02, sig-
nificantly outperforming SRI-B, which scored
21.63. This superior performance by NICT can be
attributed to their robust use of pseudo translation
data aimed to distill knowledge from a stronger
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Language Setting Approach Team ID BLEU

En-Hi Unconstrained

E2E NICT 33.02
SRI-B 21.63

Cascaded
NICT 60.54

HW-TSC 47.14
NITKKR 19.77

Constrained E2E SRI-B 29.76

En-Bn Unconstrained

E2E NICT 10.79
SRI-B 18.13

Cascaded
NICT 52.63

HW-TSC 35.04
NITKKR 4.46

Constrained E2E SRI-B 2

En-Ta Unconstrained

E2E NICT 13.46
SRI-B 11.93

Cascaded
NICT 39.84

HW-TSC 30.79
NITKKR 11.76

Constrained E2E SRI-B 0.81

Table 16: Results on all language pairs and setting from all the submissions.

translation model to ensure consistent formatting.
In the cascaded approach, NICT again led with
a remarkable 60.54 BLEU score, significantly
higher than HW-TSC at 47.14 and NITKKR at
19.77. The cascaded approach by NICT utilized
the strengths of pretraining the ASR and MT
model to address the format mismatch problem
which leads to maximizing the performance.

Constrained: In the E2E approach, there
was one submission by SRI-B, which achieved a
BLEU score of 29.76.

8.4.2 En-Bn
Unconstrained: SRI-B with a BLEU score of
18.13 beats NICT which scored 10.79 when
implementing the E2E approach. In the cas-
caded approach, NICT scored the highest with
52.63 BLEU, compared to HW-TSC at 35.04
and NITKKR at 4.46. The same strategy from
En-Hi allowed NICT to excel in this category,
demonstrating the effectiveness of their cascaded
approach.

Constrained: For the E2E approach, SRI-B
scored a BLEU of 2 demonstrating the challenges
of the constrained setting in this language pair.

8.4.3 En-Ta
Unconstrained: NICT led with a BLEU score of
13.46, while SRI-B scored 11.93 for the models
using E2E approach. NICT’s consistent use of
Whisper for ASR and their robust translation
models contributed to their leading position.
For teams using the cascaded approach, NICT

again achieved the highest BLEU score of 39.84,
followed by HW-TSC at 30.79 and NITKKR
at 11.76. The result could be explained due to
the method of addressing the format mismatch
problem by NICT already mentioned above.

Constrained: In this setting there is one
submission using the E2E approach, by SRI-B.
They achieve a score of 0.81, which shows the
limitations on this setting and language pair. The
low score could be explained due to limited data
and the morphologically complex structure of the
Tamil language.

8.5 Conclusion

This is the first time that a speech-to-translation
task is presented for the Indic track as one of the
IWSLT tasks. The results presented in the work
establish an important benchmark for the end-to-
end as well as cascade models for both the con-
strained and unconstrained conditions. This work
highlights a major performance gap between the
end-to-end and the cascade models. Also, a note-
worthy gap is seen in the performance with the un-
constrained data and pretrained models are used.
We plan to include more data and more Indic lan-
guages in the next edition.
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Adam Pospı́šil, and Pavel Pecina was funded by
the European Commission via its H2020 Program
(contract no. 870930: WELCOME).

The work by University of Malta was supported
through H2020 EU Funded LT-Bridge Project
(GA 952194) and DFKI for access to the Virtual
Laboratory.

Brian Thompson’s contributions to this work
were conducted outside of, and are unrelated to,
his employment at Amazon.
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Tradumàtica: tecnologies de la traducció, 12:455–
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Figure 1: Performance in BLEU (up) and COMET (down) across a wide range of accents. The audio duration for
each accent is denoted in a “(minutes:seconds)” format. The macro-average across accents are 18.7 BLEU and
0.679 COMET.
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Appendix A. Human Evaluation

A Human Evaluation

Human evaluation included MQM for the English-to-Japanese simultaneous speech translation task
(A.1), as well as direct assessment for offline, simultaneous, and subtitling tasks (A.2).

A.1 MQM-based Human Evaluation for the English-to-Japanese Simultaneous Task
For the English-to-Japanese Simultaneous Translation Task, we conducted a human evaluation using a
variant of Multidimensional Quality Metrics (MQM; Lommel et al., 2014). MQM has been used in recent
MT evaluation studies (Freitag et al., 2021a) and WMT Metrics shared task (Freitag et al., 2021b). For
the evaluation of Japanese translations, we used JTF Translation Quality Evaluation Guidelines (JTF,
2018), distributed by Japan Translation Federation (JTF). The guidelines are based on MQM but include
some modifications in consideration of the property of the Japanese language.

We hired a Japanese-native professional interpreter as the evaluator. The evaluator checked translation
hypotheses along with their source speech transcripts and chose the corresponding error category and
severity for each translation hypothesis on a spreadsheet. Here, we asked the evaluator to focus only on
Accuracy and Fluency errors, because other types of errors in Terminology, Style, and Locale convention
would not be so serious in the evaluation of simultaneous translation. Finally, we calculated the cumula-
tive error score for each system based on the error weighting presented by Freitag et al. (2021a), where
Critical and Major errors have the same level of error scores. The results are shown in Table 17.

A.2 Direct Assessment
For the offline translation track (Section 2), simultaneous translation track (Section 3), and subtitling
track (Section 4), we conducted a human evaluation of primary submissions based on a random selection
of 1000 segments from each test set. Human graders were asked for direct assessment (DA) (Graham
et al., 2013; Cettolo et al., 2017; Akhbardeh et al., 2021), expressed through scores between 0 and 100.

A.2.1 Automatic Segmentation
In the case of offline and subtitling tracks, we collected segment-level annotations based on the re-
segmentated test data (see Section 2). Because we did not want issues from the segmentation to influence
scores negatively, we followed Sperber et al. (2024) and provided translators not only with the source
sentence and system translation, but also with the system translation of the previous and following seg-
ments. Annotators were then instructed as follows: “Sentence boundary errors are expected and should
not be factored in when judging translation quality. This is when the translation appears to be missing
or adding extra words but the source was segmented at a different place. To this end, we have included
the translations for the previous and next sentences also. If the source and translation are only different
because of sentence boundary issues, do not let this affect your scoring judgement. Example for a clear
case for a good translation suffering only from sentence boundary issues that should not result in a poor
score:
Source: *you’ll see that there’s actually* a sign near the road.
Translation: ein Schild neben der Straße gibt.

Team BLEU (on three talks) Error score
# Errors

Critical Major Minor

NAIST 17.2 27.4 0 3 16
HW-TSC 20.6 50.2 0 8 12
FBK 11.4 130.5 1 21 25

Table 17: Human evaluation results on two talks (107 lines) in the English-to-Japanese Simultaneous speech-to-
text translation task. Error weights are 5 for Critical and Major errors and 1 for Minor errors.
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Previous sentence: Ich bin mir sicher, dass Sie nicht wissen, dass, wenn Sie weiter weitergehen, *Sie
sehen – (Gelächter) – dass es tatsächlich*
Next sentence: . . . .”
No video or audio context was provided. Segments were shuffled and randomly assigned to annotators to
avoid bias related to the presentation order. Annotation was conducted by professional translators fluent
in the source language and native in the target language.

A.2.2 Subtitling Constraints
The subtitling task (Section 4) includes cases where systems compress translations in order to match
subtitling constraints, e.g. filtering out non-relevant information present in the source. This is desired in
subtitling and should therefore not be penalized in human evaluation. To this end, we provided annotators
with the following instructions: “When judging the translations, please consider that these are subtitles
which are compressed translations of the original speech, not the translations of the subtitles in the
source language. Thus, there may be significant differences in how the source and the target sentences
are formulated. Subtitles are created independently for each language with the goal of good readability
during the short time period when they are displayed on screen. Readability in terms of number of
characters per second may differ between the source (English) and target (German). Please take this
into account. The translation should convey the same meaning as the source sentence but may omit
information that is not very important for getting the main message of the sentence across. It is OK if the
sentence is shortened this way in order to fulfil the readability constraints.”

A.2.3 Computing rankings
System rankings are produced from the average DA scores computed from the average human assessment
scores according to each individual annotator’s mean and standard deviation, similarly to Akhbardeh
et al. (2021). Ranks are established according to Wilcoxon rank-sum statistical significance test with
p < 0.05. The below tables show the DA scores and rankings. Note that the guidelines are different
for offline, simultaneous, and subtitling tasks. This makes results not directly comparable across tasks,
and we consequently only present within-task rankings here. Within each of the tasks (only the offline
and subtitling English-to-German have more domains), all the outputs were assessed in one annotation
run, distributing the scoring items randomly to annotators across domains, with all annotators most
likely seeing all the domains. This allows us to treat the DA scores across domains in a given task as
comparable, so we present them in the same table.

Table 18: Offline task, English to German

All TED ITV Accent Peloton
System Rank DA Rank DA Rank DA Rank DA Rank DA

HWTSC-LLM 1 84.8 1-2 94.9 1-2 84.7 1-4 76.1 1-4 82.6
HWTSC 2-3 84.2 3-5 92.8 1-3 84.0 1-4 76.8 1-4 81.6
CMU 2-4 83.3 3-5 92.5 2-3 83.1 1-4 75.4 1-4 81.2
NYA 3-4 81.0 1-2 94.7 4 73.9 1-4 77.9 1-4 80.2
KIT 5 76.7 3-5 91.8 5 69.3 5 72.8 5 74.6
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Table 19: Offline task, English to Japanese

TED
System Rank DA

HWTSC 1-3 75.4
HWTSC-LLM 1-2 74.7
NYA 2-4 72.8
CMU 3-4 72.9

Table 20: Offline task, English to Chinese

TED
System Rank DA

HWTSC-LLM 1 78.9
NYA 2-3 77.2
HWTSC 2-4 76.5
CMU 3-4 75.8

Table 21: Simultaneous task, English to German

TED
System Rank DA

CMU 1 87.3
HWTSC 2 86.0
FBK 3-4 84.2
NAIST 3-4 83.4

Table 22: Simultaneous task, English to Japanese

TED
System Rank DA

NAIST 1 77.4
HWTSC 2 75.4
FBK 3 71.7

Table 23: Simultaneous task, English to Chinese

TED
System Rank DA

HWTSC 1-2 80.0
NAIST 1-2 79.2
FBK 3 76.1
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Table 24: Subtitling task, English to German. All combines the ITV and Peloton DA scores

All ITV Peloton
System Rank DA Rank DA Rank DA

HWTSC 1 72.2 1 73.0 1-2 71.3
AppTek 2-3 68.2 2 69.3 3 67.3
FBK-cascade 2-3 66.3 3 62.2 1-2 71.5
FBK-direct 4 52.8 4 46.5 4 61.2
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Appendix B. Automatic Evaluation Results and Details

B.1 Offline SLT

• Systems are ordered according to the COMET score (denoted by COMET, the third column).

• The “Joint” column is computed by averaging the scores of the 4 test sets, aka macro-averaging.

• The “D” column indicates the data condition in which each submitted run was trained, namely:
Constrained (C), Constrained+LLM (C+), Unconstrained (U).

• All systems are based on cascade architecture.

System D Joint TED 2024 ITV Peloton Accent
COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU

CMU U 0.743 18.3 0.862 25.7 0.735 17.3 0.670 11.5 0.705 18.5
HW-TSC C+ 0.731 19.3 0.851 27.4 0.728 17.2 0.652 11.9 0.691 20.7
HW-TSC U 0.727 19.1 0.849 27.1 0.723 17.3 0.646 11.0 0.690 20.8
HW-TSC C 0.717 18.5 0.841 26.6 0.712 16.7 0.637 10.4 0.678 20.2
NYA U 0.695 19.5 0.837 28.1 0.648 15.8 0.616 12.2 0.677 21.7
KIT C+ 0.677 17.5 0.832 27.5 0.618 13.2 0.600 10.2 0.656 19.1

Table 25: Official results of the automatic evaluation for the Offline Speech Translation Task, English to German.

System D TED 2023 EMPAC ACL
COMET BLEU COMET BLEU COMET BLEU

CMU U 0.858 27.2 0.820 16.2 0.837 31.5
HW-TSC U 0.849 32.6 0.799 17.4 0.823 38.3
HW-TSC C+ 0.844 29.0 0.802 18.4 0.825 38.2
HW-TSC C 0.843 32.8 0.792 17.1 0.808 37.0
NYA U 0.837 29.8 0.756 17.2 0.826 45.5
KIT C+ 0.831 28.7 0.723 15.2 0.781 35.1
Best 2023 0.821 30.2 0.382 16.9 0.801 41.1

Table 26: Official results of the automatic evaluation for the Offline Speech Translation Task on progress test sets,
English to German.

System D TED 2024 TED 2023 ACL
COMET BLEU COMET BLEU COMET BLEU

HW-TSC U 0.853 23.6 0.856 23.1 0.868 31.8
HW-TSC C+ 0.851 23.1 0.856 22.2 0.839 32.5
CMU U 0.841 18.3 0.850 17.9 0.849 19.1
HW-TSC C 0.839 23.9 0.831 24.3 0.839 28.0
NYA U 0.812 20.1 0.822 21.0 0.861 39.9

Table 27: Official results of the automatic evaluation for the Offline Speech Translation Task on official test set
and progress test sets, English to Japanese.
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System D TED 2024 TED 2023 ACL
COMET BLEU COMET BLEU COMET BLEU

HW-TSC U 0.845 37.0 0.834 36.3 0.857 50.8
HW-TSC C+ 0.842 36.2 0.831 35.8 0.855 49.8
CMU U 0.834 31.5 0.827 30.6 0.853 43.1
HW-TSC C 0.824 38.3 0.810 37.3 0.833 52.4
NYA U 0.823 40.4 0.814 39.1 0.855 59.1

Table 28: Official results of the automatic evaluation for the Offline Speech Translation Task on official test set
and progress test sets, English to Chinese.
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Translation Guidelines

In this task, we aim to obtain high quality German translations of the English transcripts. The
transcripts (inside the “transcripts.txt” file) contain conversations between friends talking about a
daily topic, e.g. hobbies and vacation. There are 76 conversations (recordings) in total. In each
conversation, there are only two speakers, but the same pair of speakers may appear in another set(s)
of conversations, see the list below. The content of each recording is independent of each other, so
they could be translated independently. For each source sentence (line) to be translated, we
provide metadata, such as the recording id, speaker id, the audio file and the utterance number. The
utterance number indicates its order in the conversation. It begins from 0 (which is not included in the
transcripts required for translation) and stands for the beginning of the conversation. In general, most
recordings start from an utterance number of 15.

The general translation guidelines are:
● All translations should be “from scratch”, without post-editing from Machine Translation.

We can detect post editing so will reject translations that are post-edited.
● Translators should preserve the line structure of the source file. By this we mean that they

should not add or remove line-breaks , and each line is English should correspond to a line of
German. Note that each line of the source file corresponds to one audio file.

● We need the translations to be returned in the same format. If you prefer to receive the text
in a different format, then please let us know as we may be able to accommodate it.

● Translators should avoid inserting parenthetical explanations into the translated text and
obviously avoid losing any pieces of information from the source text. We will check a
sample of the translations for quality, and we will check the entire set for evidence of
post-editing.

Since it is a conversation between friends, please pay attention to the below:
● You might need to use the context before and/or after the utterance to translate.
● [Important] There are disfluencies in the transcripts, including but not limited to, hesitation,

repetitions, and correction. We expect to have fluent and faithful translations. These
disfluencies in the transcripts might be helpful for your translation, but they are not
required as long as the meaning is clear. Please avoid word-by-word translation of
them.

a. In general, please focus on the core meaning in the translation. You might rephrase or
remove the redundant parts in the transcripts if necessary, e.g., repetitions.

b. For Hesitation, some examples are below, please do NOT include them in the
translation. We keep them on the transcripts as it might help signal a “pause” in the
utterance.

Examples of disfluencies:
● Hesitation:

a. List of possible tokens: {"ACH", "AH", "EEE", "EH", "ER", "EW", "HA",
"HEE","HM", "HUH", "MM", "OOF", "UH", "UM", "HMM"}

b. Example: "YEAH I KNOW UM WAIT WHAT WAS I GONNA SAY UM SO
DO YOU WANNA ASK THE QUESTION NOW"?

● Repetitions:
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a. “WELL ACTUALLY ARE THEY LIKE ALL THESE ALL THESE ALL
THESE DUMPLINGS OF EASTERN EUROPEAN ORIGIN”

A note on the recording_id

There are 76 conversations / recordings in total, but the same pair of speakers may show up in
another conversation(s) (122 speakers in total). In spite of the same pair of speakers, the contents
in each of these conversations are also independent of each other. These conversations have their
id extended by “_PX” where “X” is a number. Below is the list of recodings that have “_PX” in
their names:

● EDACC-C23_P1, EDACC-C23_P2
● EDACC-C32_P1, EDACC-C32_P2
● EDACC-C33_P1
● EDACC-C40_P1, EDACC-C40_P2, EDACC-C40_P3
● EDACC-C43_P1
● EDACC-C46_P1, EDACC-C46_P2
● EDACC-C05_P0, EDACC-C05_P1
● EDACC-C29_P1, EDACC-C29_P2
● EDACC-C31_P1, EDACC-C31_P2
● EDACC-C38_P1, EDACC-C38_P2
● EDACC-C35_P1, EDACC-C35_P2, EDACC-C35_P3
● EDACC-C36_P1, EDACC-C36_P2
● EDACC-C37_P1, EDACC-C37_P2
● EDACC-C47_P1, EDACC-C47_P2
● EDACC-C57_P1, EDACC-C57_P2
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B.2 Simultaneous SLT

Team BLEU LAAL AL AP DAL ATD

HW-TSC 26.39 2.17 (4.19) 1.92 (4.07) 0.919 (1.66) 3.10 (7.37) 2.18 (5.31)
CMU 24.65 2.21 (3.57) 2.01(3.45) 0.87 (1.24) 3.04 (4.73) 2.22 (3.22)
NAIST 23.37 2.30 (3.33) 2.05 (3.17) 0.91 (1.22) 3.03 (4.53) 2.23 (3.12)
FBK 21.18 2.00 (3.03) 1.71 (2.84) 0.92 (1.24) 2.52 (3.77) 2.02 (2.49)

Table 29: Simultaneous Speech-to-Text Translation, English to German. Except for AP, the latency is measured in
seconds. Numbers in brackets are computation aware latency.

Team BLEU LAAL AL AP DAL ATD

HW-TSC 34.23 2.10 (3.93) 2.00 (3.89) 0.78 (1.42) 3.05 (7.45) 0.94 (4.24)
NAIST 29.33 2.36 (3.19) 2.24 (3.11) 0.79 (1.06) 3.01 (4.51) 1.04 (1.81)
FBK 25.20 2.73 (4.43) 2.61 (4.16) 0.84 (1.17) 3.61 (5.44) 1.09 (2.42)

Table 30: Simultaneous Speech-to-Text Translation, English to Chinese. Except for AP, the latency is measured in
seconds. Numbers in brackets are computation aware latency.

Team BLEU LAAL AL AP DAL ATD

HW-TSC 19.394 2.44 (4.10) 2.39 (4.01) 0.77 (1.28) 3.35 (7.03) 0.74 (3.44)
NAIST 17.954 2.39 (3.41) 2.31 (3.37) 0.79 (1.14) 3.08 (5.21) 0.56 (1.68)
FBK 12.136 2.15 (3.74) 2.07 (3.70) 0.72 (1.18) 2.85 (5.53) 0.59 (2.25)

Table 31: Simultaneous Speech-to-Text Translation, English to Japanese. Except for AP, the latency is measured
in seconds. Numbers in brackets are computation aware latency.
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Team BLEU LAAL AL AP DAL ATD

BENCH-2 29.93 2.28 1.95 0.78 3.03 2.75
BENCH-1 29.43 2.35 2.02 0.82 3.13 2.78
FBK 29.20 2.55 (3.92) 2.14 (3.65) 0.93 (1.24) 3.20 (4.67) 2.75 (3.29)
HW-TSC 27.11 2.00 (5.11) 1.53 (4.86) 0.89 (2.28) 3.27 (11.03) 2.63 (8.38)
BENCH-0 26.85 3.34 3.09 0.75 3.99 3.39

Table 32: Simultaneous Speech-to-Text Translation, Czech to English. Except for AP, the latency is measured
in seconds. Numbers in brackets are computationally-aware latency. BENCH-N represents ORGANIZER’S
BENCHMARK, with N indicating the number of previously translated segments used as a Whisper prompt to
provide the model with the context.

Target Language Team ASR BLEU Start Offset End Offset ATD

English to German HW-TSC 23.33 2.00 4.30 3.22

English to Japanese
HW-TSC 17.37 2.36 3.41 3.31
NAIST 14.35 2.39 4.20 4.18

English to Chinese HW-TSC 28.97 2.04 2.99 3.11

Czech to English HW-TSC 25.93 1.58 3.52 3.67

Table 33: Simultaneous Speech-to-Speech from English Speech. The latency is measured in seconds. The BLEU
scores are computed based on transcript from the default Whisper (Radford et al., 2023) ASR model (large) for
each language direction.
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B.3 Automatic Subtitling

Con- Subtitle Translation Subtitle
Team di- System Domain quality quality compliance

tion SubER Bleu ChrF Bleurt CPS CPL LPB
APPTEK U cntrstv2 ALL 70.34 17.45 41.77 .4746 73.25 100.00 98.78

ted 60.55 24.70 53.00 .5823 86.89 100.00 97.27
itv 72.19 16.47 39.12 .4575 65.46 100.00 99.18

pltn 77.68 10.22 32.38 .3910 83.70 100.00 99.14
APPTEK U prmry ALL 71.01 17.54 42.82 .4842 73.94 100.00 99.78

ted 63.03 23.35 54.03 .5904 79.67 100.00 99.33
itv 72.38 16.98 40.42 .4683 69.23 100.00 99.92

pltn 77.45 10.17 32.46 .3981 83.03 100.00 99.80
APPTEK U cntrstv1 ALL 71.52 17.48 43.28 .4874 67.18 100.00 96.73

ted 63.97 23.13 55.09 .6024 73.91 100.00 91.81
itv 72.79 16.88 40.62 .4689 61.24 100.00 97.88

pltn 77.64 10.26 32.70 .3987 79.17 100.00 98.40
FBK-AI4CDIR C prmry ALL 73.99 13.48 36.12 .3775 76.19 88.86 99.99

ted 57.50 25.79 54.78 .6114 83.10 83.69 100.00
itv 78.90 9.67 28.43 .2911 70.45 90.04 99.97

pltn 80.68 7.71 30.45 .3542 82.16 92.77 100.00
HW-TSC U cntrstv2 ALL 74.44 16.70 41.78 .5008 86.40 60.18 100.00

ted 69.44 22.40 50.60 .5513 93.98 37.83 100.00
itv 74.72 16.08 40.18 .5031 82.84 65.55 100.00

pltn 80.26 11.11 32.89 .4284 90.62 66.12 100.00
FBK-AI4CCSC U prmry ALL 75.56 16.23 40.10 .4503 64.64 91.79 100.00

ted 63.26 22.94 53.70 .5872 79.99 89.52 100.00
itv 79.92 14.86 35.16 .4048 54.20 91.12 100.00

pltn 78.34 11.30 34.13 .4202 76.52 96.99 100.00
HW-TSC U prmry ALL 75.60 16.62 42.64 .5066 67.92 57.34 100.00

ted 70.27 22.09 50.97 .5556 80.09 36.44 100.00
itv 76.04 16.09 41.34 .5098 61.72 61.80 100.00

pltn 81.35 11.13 33.56 .4332 76.40 64.93 100.00
HW-TSC U cntrstv1 ALL 77.11 16.52 43.00 .5148 28.67 62.64 100.00

ted 70.48 22.06 51.00 .5559 46.25 36.66 100.00
itv 78.04 16.07 41.80 .5194 19.80 66.38 100.00

pltn 83.09 10.93 34.25 .4467 40.61 74.57 100.00

Table 34: Subtitling Task: automatic evaluation scores on tst2024 en→de. C and U stand for constrained and
unconstrained training condition, respectively; prmry and cntrstv for primary and contrastive systems. Ranking
based on SubER scores on ALL domains.
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Con- Subtitle Translation Subtitle
Team di- System Domain quality quality compliance

tion SubER Bleu ChrF Bleurt CPS CPL LPB
APPTEK U prmry ALL 62.02 25.59 49.75 .5268 82.42 100.00 99.94

ted 45.73 39.29 63.86 .6995 88.05 100.00 99.76
itv 66.80 21.37 44.35 .4761 79.18 100.00 99.98

pltn 73.55 15.45 41.43 .4728 86.83 100.00 100.00
FBK-AI4CCSC U prmry ALL 63.01 26.60 49.64 .5174 69.97 93.28 100.00

ted 40.75 45.69 69.20 .7500 83.42 90.31 100.00
itv 70.82 18.92 40.17 .4262 60.85 93.46 100.00

pltn 74.17 16.18 44.42 .5108 80.24 97.03 100.00
APPTEK U cntrstv1 ALL 63.65 24.33 48.63 .5152 75.98 100.00 98.52

ted 47.71 37.61 62.68 .6892 85.50 100.00 96.60
itv 67.85 20.37 43.44 .4668 70.82 100.00 98.98

pltn 76.72 13.70 39.75 .4533 82.37 100.00 99.14
HW-TSC U cntrstv2 ALL 63.77 26.92 50.09 .5453 91.43 62.67 100.00

ted 49.64 42.35 64.55 .6859 94.97 38.82 100.00
itv 67.57 21.39 43.94 .5045 90.09 69.19 100.00

pltn 75.08 16.79 43.95 .4999 92.26 66.20 100.00
HW-TSC U prmry ALL 64.18 27.38 51.50 .5554 74.80 60.42 100.00

ted 48.93 44.20 66.12 .6953 81.48 37.43 100.00
itv 68.42 22.10 45.46 .5159 71.28 66.28 100.00

pltn 75.83 16.97 44.84 .5071 79.90 65.38 100.00
HW-TSC U cntrstv1 ALL 64.87 27.25 51.58 .5583 33.42 66.14 100.00

ted 49.02 44.18 66.11 .6951 47.70 38.24 100.00
itv 69.50 22.01 45.56 .5183 25.92 71.22 100.00

pltn 76.17 16.84 45.07 .5150 44.09 75.58 100.00
APPTEK U cntrstv2 ALL 66.25 22.25 47.74 .4985 73.47 100.00 98.61

ted 46.82 38.63 64.18 .6853 84.53 100.00 96.48
itv 72.12 17.40 41.15 .4440 66.82 100.00 99.10

pltn 79.46 12.60 39.25 .4391 83.03 100.00 99.33
FBK-AI4CDIR C prmry ALL 67.13 22.03 44.69 .4277 76.00 90.35 100.00

ted 39.86 45.63 69.63 .7441 82.43 86.59 100.00
itv 77.00 11.91 31.95 .2986 70.61 92.60 100.00

pltn 79.70 11.88 40.05 .4329 82.26 89.58 100.00

Table 35: Subtitling Task: automatic evaluation scores on tst2024 en→es. C and U stand for constrained and
unconstrained training condition, respectively; prmry and cntrstv for primary and contrastive systems. Ranking
based on SubER scores on ALL domains.

id Team System
de es

Bleurt CPS Bleurt CPS
0 subtitles to compress .1946 60.25 .2136 69.97
1 baseline .1720 100.00 .1892 100.00
2 FBK primary .1895 84.81 .2063 90.66
3 FBK contrastive 1 .1890 67.94 .2113 75.74
4 FBK contrastive 2 .1811 83.36 .2033 87.48
5 HW-TSC primary .1956 84.35 .2101 91.42
6 HW-TSC contrastive 1 .1967 79.97 .2126 87.56
7 HW-TSC contrastive 2 .2002 84.38 .2102 91.44
8 RACAI primary not submitted .1946 94.29

Table 36: Compression Task: automatic evaluation scores on German and Spanish subtitles.
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Con- Subtitle Translation Subtitle
Team di- System Domain quality quality compliance

tion SubER Bleu ChrF Bleurt CPS CPL LPB
APPTEK U cntrstv2 ALL 70.05 16.51 40.51 .4730 70.46 100.00 98.87

ted 60.38 23.58 50.67 .5808 82.29 100.00 97.50
itv 69.09 16.97 39.90 .4718 65.00 100.00 99.03

pltn 78.02 9.96 34.41 .4217 75.58 100.00 99.22
APPTEK U prmry ALL 70.29 17.24 41.77 .4813 72.13 100.00 99.84

ted 61.46 24.22 52.85 .6012 77.30 100.00 99.45
itv 69.21 17.97 41.27 .4790 67.64 100.00 99.96

pltn 77.99 10.46 34.67 .4262 78.62 100.00 99.80
APPTEK U cntrstv1 ALL 70.88 17.16 42.08 .4846 65.08 100.00 97.13

ted 62.59 24.08 53.51 .6097 70.12 100.00 92.51
itv 69.70 18.04 41.56 .4818 59.96 100.00 97.91

pltn 78.45 10.29 34.76 .4276 72.92 100.00 97.85
HW-TSC U cntrstv2 ALL 72.37 17.69 41.75 .5064 85.10 58.39 100.00

ted 62.79 26.33 52.40 .5916 93.56 32.02 100.00
itv 71.35 18.10 41.39 .5139 82.01 65.86 100.00

pltn 80.40 10.86 34.74 .4508 88.04 54.55 100.00
HW-TSC U prmry ALL 73.10 17.92 43.00 .5156 65.44 55.51 100.00

ted 62.90 26.79 53.56 .6013 78.54 30.30 100.00
itv 72.16 18.35 42.95 .5244 60.15 62.37 100.00

pltn 81.38 10.91 35.46 .4577 71.22 52.55 100.00
FBK-AI4CCSC U prmry ALL 73.78 16.46 39.07 .4454 61.44 93.04 100.00

ted 62.86 22.44 51.88 .5910 76.28 90.67 100.00
itv 74.91 16.19 35.91 .3996 54.70 92.97 100.00

pltn 78.38 10.59 36.09 .4550 65.10 94.66 100.00
FBK-AI4CDIR C prmry ALL 74.26 13.08 34.77 .3742 72.75 89.35 99.96

ted 59.06 24.41 52.05 .5996 79.52 83.97 99.94
itv 77.15 10.40 29.13 .2939 68.73 91.00 99.97

pltn 78.03 9.41 33.39 .4059 74.84 90.14 99.96
HW-TSC U cntrstv1 ALL 74.34 17.80 43.57 .5279 27.53 61.69 100.00

ted 63.21 26.61 54.29 .6148 41.37 36.08 100.00
itv 74.12 18.23 43.42 .5335 18.37 67.29 100.00

pltn 81.77 10.85 36.12 .4751 41.44 61.99 100.00
Submissions 2023 (here ALL={ted,itv,pltn}, while last year eptv was considered as well):

APPTEK U prmry ALL 70.23 15.10 37.39 .4291 87.87 100.00 100.00
MATESUB U prmry ALL 74.00 14.92 38.92 .4579 84.47 99.26 100.00
APPTEK C prmry ALL 77.14 12.40 33.17 .3300 93.01 100.00 100.00

FBK C prmry ALL 79.70 10.77 31.99 .3016 69.23 83.72 99.99
APPTEK C cntrstv ALL 83.75 9.33 29.28 .2790 88.90 100.00 100.00

Table 37: Subtitling Task: automatic evaluation scores on tst2023 en→de. C and U stand for constrained and
unconstrained training condition, respectively; prmry and cntrstv for primary and contrastive systems. Ranking
based on SubER scores on ALL domains.
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Con- Subtitle Translation Subtitle
Team di- System Domain quality quality compliance

tion SubER Bleu ChrF Bleurt CPS CPL LPB
APPTEK U prmry ALL 63.97 23.25 47.46 .5121 80.98 100.00 99.98

ted 46.75 36.33 61.47 .6889 88.92 100.00 99.84
itv 66.39 22.17 45.42 .4881 77.61 100.00 100.00

pltn 71.61 15.47 40.75 .4646 83.82 100.00 100.00
HW-TSC U cntrstv2 ALL 64.72 25.00 49.02 .5480 90.78 62.45 100.00

ted 44.98 43.71 66.71 .7240 94.76 33.30 100.00
itv 67.35 22.17 45.13 .5213 89.53 71.44 100.00

pltn 73.73 17.20 43.05 .5059 91.66 56.41 100.00
APPTEK U cntrstv1 ALL 65.37 22.27 46.61 .5007 74.41 100.00 98.91

ted 48.98 34.49 60.17 .6758 85.26 100.00 97.19
itv 67.29 21.55 44.82 .4784 69.77 100.00 99.17

pltn 73.36 14.37 39.76 .4510 78.35 100.00 99.26
HW-TSC U prmry ALL 65.41 25.29 50.38 .5579 72.10 59.42 100.00

ted 44.50 44.83 68.02 .7326 82.83 31.93 100.00
itv 68.20 22.60 46.72 .5319 68.95 67.58 100.00

pltn 74.95 17.21 44.07 .5152 73.94 54.50 100.00
HW-TSC U cntrstv1 ALL 65.97 25.21 50.49 .5612 33.25 66.05 100.00

ted 44.45 44.63 68.08 .7353 48.76 38.26 100.00
itv 69.27 22.56 46.84 .5338 25.02 72.91 100.00

pltn 74.95 17.19 44.22 .5213 44.16 64.58 100.00
FBK-AI4CCSC U prmry ALL 66.02 23.87 46.53 .4811 67.56 94.25 100.00

ted 40.81 43.11 68.20 .7408 81.79 92.20 100.00
itv 71.62 19.18 39.70 .4019 62.11 94.22 100.00

pltn 73.16 16.19 42.78 .4921 69.30 95.60 100.00
APPTEK U cntrstv2 ALL 68.69 19.83 45.46 .4817 71.43 100.00 99.00

ted 48.14 35.78 62.51 .6681 82.76 100.00 97.74
itv 71.58 17.85 42.21 .4572 66.60 100.00 99.25

pltn 77.76 12.62 38.75 .4301 75.54 100.00 99.14
FBK-AI4CDIR C prmry ALL 70.09 19.16 41.58 .3972 73.08 91.64 99.97

ted 40.45 42.09 67.76 .7224 82.59 89.77 99.93
itv 78.20 12.09 31.50 .2827 70.11 92.89 100.00

pltn 75.52 13.20 40.33 .4389 72.01 90.84 99.96
Submissions 2023 (here ALL={ted,itv,pltn}, while last year eptv was considered as well):

MATESUB U prmry ALL 67.29 22.54 46.40 .4993 85.51 99.53 100.00
APPTEK C prmry ALL 72.33 17.72 38.49 .3467 95.30 100.00 100.00

FBK C prmry ALL 73.93 16.70 37.68 .3217 76.57 91.84 99.99

Table 38: Subtitling Task: automatic evaluation scores on tst2023 en→es. C and U stand for constrained and
unconstrained training condition, respectively; prmry and cntrstv for primary and contrastive systems. Ranking
based on SubER scores on ALL domains.
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B.4 Speech-to-Speech Translation

System D Test
Ref BLEU chrF COMET

Cascade Systems

HW-TSC
U 33.6 29.4 74.79
C+ 31.8 28.1 74.41
C 31.4 28.5 73.65

Table 39: Official results of the automatic evaluation for the English to Chinese Speech-to-Speech Translation
Task. The “D” column indicates the data condition in which each submitted run was trained, namely: Constrained
(C), Constrained+LLM (C+), Unconstrained (U).
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B.5 Low-Resource SLT

North Levantine Arabic→English (Unconstrained Condition)
Team System BLEU↓ chrF2 COMET

ALADAN primary 28.71 52.25 0.7763
ALADAN contrastive1 28.50 52.12 0.7706
ALADAN contrastive2 22.12 46.38 0.7296

KIT primary 20.86 44.54 0.7013
KIT contrastive1 19.73 45.43 0.7098
JHU primary 15.95 38.89 0.6951
JHU contrastive1 14.74 37.27 0.6775

HW-TSC primary 13.64 33.31 0.5877
KIT contrastive2 11.87 34.76 0.6064
UM contrastive1 5.09 24.50 0.5378
UM primary 4.74 24.10 0.5369
UM contrastive2 3.53 21.56 0.5196

Table 40: Automatic evaluation results for the North Levantine Arabic to English task, unconstrained Condition.
A lowercase, no punctuation variant of chrF2 is reported. The Unbabel/wmt22-comet-da model was used
for COMET computation, with the source side (Arabic transcript) unmodified and the target side lowercased and
with removed punctuation.

Bemba→English (Unconstrained Condition)
Team System BLEU
JHU primary 32.6
KIT primary 28.8
KIT contrastive2 28.1
JHU contrastive1 27.0
KIT contrastive1 27.0
JHU contrastive2 26.7

Team System WER
KIT ASR primary 33.2
JHU ASR primary 35.7

Table 41: Automatic evaluation results for the Bemba to English task, unconstrained Condition.

Bhojpuri→Hindi (Unconstrained Condition)
Team System BLEU chrF2
JHU primary 24.4 49.5
JHU contrastive1 23.9 48.7
JHU contrastive2 12.2 39.1

BITSP primary 12.9 41.1
DFKI MLT primary 0.1 6.1

Table 42: Automatic evaluation results for the Bhojpuri to Hindi task, unconstrained Condition.
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Irish→English (Unconstrained Condition)
Team System BLEU chrF2
JHU contrastive1 16.0 39.0
JHU primary 15.3 38.3

Ymoslem primary 7.6 27.6
Ymoslem contrastive1 7.4 26.5
Ymoslem contrastive2 5.1 24.7

SETU-DCU primary 0.6 15.4

Table 43: Automatic evaluation results for the Irish to English task, unconstrained Condition.

Maltese→English (Unconstrained Condition)
Team System BLEU chrF2
KIT primary 58.9 76.5

SETU-DCU primary 56.7 81.9
KIT contrastive2 56.2 75.0
KIT contrastive1 55.2 74.4

SETU-DCU contrastive1 52.6 72.1
UOM primary 52.4 72.3
UOM contrastive1 52.4 72.3
UOM contrastive2 52.3 72.1

SETU-DCU contrastive2 44.7 65.5
JHU primary 41.4 68.6
JHU contrastive1 36.5 64.2

UOM-DFKI primary (e2e) 35.1 59.0
JHU contrastive2 24.8 55.8

UOM-DFKI contrastive1 (e2e) 18.5 42.0

Table 44: Automatic evaluation results for the Maltese to English task, Unconstrained Condition. e2e denotes
end-to-end system.

Maltese→English (Constrained Condition)
Team System BLEU chrF2
UOM primary 0.5 15.6

Table 45: Automatic evaluation results for the Maltese to English task, Constrained Condition.

Marathi→Hindi (Unconstrained Condition)
Team System BLEU chrF2
IITM primary 47.2 70.1
JHU primary 37.7 62.7
JHU contrastive1 37.3 62.4
JHU contrastive2 28.5 55.0

BITSP contrastive1 25.0 50.1
BITSP primary 21.3 48.1
BITSP contrastive2 19.0 44.8

Team System WER CER
IITm ASR primary 22.8 7.3
JHU ASR primary 26.7 8.9

BITSP ASR contrastive1 62.9 17.5
BITSP ASR primary 69.3 21.2
BITSP ASR contrastive2 69.3 21.2

Table 46: Automatic evaluation results for the Marathi to Hindi task, Unconstrained Condition.
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Quechua→Spanish (Constrained Condition)
Team System BLEU chrF2

QUESPA contrastive2 1.3 30.9
QUESPA contrastive1 1.4 30.3
QUESPA primary 2.0 30.0

Table 47: Automatic evaluation results for the Quechua to Spanish task, Constrained Condition. ChrF2 scores
were only taken into account for those systems that scored less than 5 points BLEU.

Quechua→Spanish (Unconstrained Condition)
Team System BLEU chrF2

QUESPA contrastive1 19.7 43.1
QUESPA primary 16.0 52.2

JHU primary 12.5 49.7
QUESPA contrastive2 11.1 44.6

JHU contrastive1 6.4 39.5
JHU contrastive2 0.9 13.0

Table 48: Automatic evaluation results for the Quechua to Spanish task, Unconstrained Condition.

Tamasheq→French (Unconstrained Condition)
Team System BLEU

Organizer Baseline primary 8.83
JHU primary 6.07
JHU contrastive 0.50

Table 49: Automatic evaluation results for the Tamasheq to French task, Unconstrained Condition.
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Abstract

Automatic dubbing aims to translate the speech
of a video into another language, ensuring the
new speech naturally fits the original video.
This paper details Huawei Translation Services
Center’s (HW-TSC) submission for IWSLT
2024’s automatic dubbing task, under an uncon-
strained setting. Our system’s machine trans-
lation (MT) component utilizes a Transformer-
based MT model and an LLM-based post-editor
to produce translations of varying lengths. The
text-to-speech (TTS) component employs a
VITS-based TTS model and a voice cloning
module to emulate the original speaker’s vo-
cal timbre. For enhanced dubbing synchrony,
we introduce a parsing-informed pause selector.
Finally, we rerank multiple results based on
lip-sync error distance (LSE-D) and character
error rate (CER). Our system achieves LSE-D
of 10.75 and 12.19 on subset1 and subset2 of
DE-EN test sets respectively, superior to last
year’s best system.

1 Introduction

The task of automatic dubbing is to translate spoken
language in a video into another language such that
the translated speech can be seamlessly blended
with the original video. A unique aspect of dubbing
is isochrony, which refers to the property that the
speech translation is time-aligned with the original
speaker’s visual cues. The spoken words should
match the speaker’s lip movements, ensuring the
audio is heard when the lips move and is silent
when they don’t.

To address this challenge, a unified model that
simultaneously processes translations and speech
timing is optimal, allowing for adjustments in trans-
lation to fit timing constraints. Chronopoulou et al.
(2023) accomplish this by simply binning target
phoneme durations and interleaving them with tar-
get phonemes during training and inference. Pal
et al. (2023) enhance this approach by predicting

the durations of phonemes as target factors. How-
ever, these methods fail to utilize pre-trained ma-
chine translation (MT) models and large language
models (LLM) that are trained on massive text cor-
pora. Moreover, constructing large-scale datasets
with phoneme duration labels is challenging, thus
limiting the translation quality. Therefore, a disen-
tangled approach that considers MT and dubbing
synchrony separately can achieve better results.
Our system (Rao et al., 2023) from last year first
generated a set of translation candidates and later
reranked them based on speech overlaps, achieving
better mean opinion scores (MOS) than the base-
line systems. Therefore, this year we extend last
year’s system by using more advanced pre-trained
models and a more sophisticated pause-aware dub-
bing pipeline.

Specifically, our method comprises the following
key components:

• A Transformer-based MT (Machine Transla-
tion) model, which is a fine-tuned version of
NLLB-1.3B on the CoVoST2 dataset (Chang-
han Wang, 2020).

• An LLM-based post-editor that modifies the
lengths of translations.

• A VITS-based (Kong et al., 2023) TTS model
that is non-autoregressive and supports speed
control.

• A voice cloning (VC) module based on Open-
Voice (Qin et al., 2023), ensuring that the input
speech and output speech share the same tone
color.

• A pause-aware dubbing pipeline that identifies
potential split points using sentence parsing.

• A reranking method based on LSE-D and
CER.

In this paper, we provide detailed analyses of
the components mentioned above. Our system
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Figure 1: Diagram illustrating the process of automated
dubbing: (a) without accounting for pauses; (b) with
consideration of pauses. (Note that the ASR results are
provided by the organizer in this track.)

achieves an LSE-D of 10.75 on subset1 and 12.19
on subset2 of the DE-EN test sets, respectively, out-
performing last year’s best system. Additionally,
we take into account the vocal timbre of the speech,
which can enhance the perceptual quality.

2 Methods

2.1 System Design

Figure 1 (a) shows the naive automatic dubbing
system which assumes that the speech of the video
does not have obvious pauses. First, an automatic
speech recognition (ASR) model transcribes the
source speech. The result of this step is provided
by the organizer. Then, an MT model translates the
source German (DE) text into the target English
(EN) text, followed by an LLM that is prompted
to change the length of the translation. Utilizing
MeloTTS 1, the target speech is synthesized and its
duration is compared with the original speech to
determine the speed factor. Finally, we regenerate
the target speech, convert the tone color, and fill the
audio into the original video based on timestamps
from the voice activity detection (VAD) 2 system.

Figure 1 (b) illustrates the pause-aware dubbing
system. Unlike the naive system, it integrates a
pause selector. This selector generates an index
of potential word positions that best align with the
pauses in the original speech. To avoid unnatu-
ral sentence breaks, sentence parsing is employed
to determine groups of words that should remain
together. Finally, the TTS model is utilized to pro-
duce audio clips for each text segment, with the
speed factor calculated for each independently.

1https://github.com/myshell-ai/MeloTTS
2https://github.com/snakers4/silero-vad

Algorithm 1 Pause Selector

Require: tpause, textMT = {w1, ..., wn}
split = {t1, ..., tn−1}, Tsrc, Ttts

1: PP, V P,NP = Parsing(textMT )
2: index = SplitPoint(PUNC,PP, V P,NP )

3: i = argmin(abs(
tpause
Tsrc

− spliti
Ttts

)) i ∈ index

4: return i

2.2 Pause Selector
Algorithm 1 provides the details of the pause selec-
tor. Given the time of the pause (tpause) predicted
by VAD, the translation (textMT ), the word-level
timestamps (split) of synthetic speech predicted by
a CTC-based aligner from WhisperX (Bain et al.,
2023), and the duration of source and generated
speech (Tsrc) and (Ttts), we first use sentence pars-
ing 3 to obtain the prepositional phrases (PP), verb
phrases (VP), and noun phrases (NP). The possi-
ble split index can be only after these phrases and
punctuations. Then, we select the best index that
minimizes the distance between the normalized
word time by duration and the normalized time of
the pause.

2.3 LLM-based Post-Editor

You are a professional German-English trans-
lator and skilled proofreader. Now you are
given the original German text and its English
translation. Please improve the translation and
make it more complex/simple without explain-
ing.
Source (German): "{DE}"
Initial Translation (English): "{EN}"
Revised Translation (English):

Table 1: Prompt for LLM-based post-editor.

LLM (Touvron et al., 2023; Zeng et al., 2023) is
known for its exceptional zero-shot and few-shot
capabilities, meaning it can perform downstream
tasks using a prompt that describes the task or a
few examples. In the context of automatic dubbing,
we use LLM to generate translations with different
lengths so that we can select the one that results in
the best lip-sync accuracy. The input prompt for
the LLM is shown in Table 1. We first describe

3https://github.com/Halvani/
Constituent-Treelib
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the task and the role of the LLM as a translator
and a proofreader. Then, we instruct it to make
the translation more complex or simple. Finally,
we provide the source and translated text. We use
"complex" and "simple" as indicators of output
length as they contribute to better stability than
"longer" and "shorter".

2.4 TTS and VC

We use MeloTTS, which is based on the archi-
tecture of VITS (Kim et al., 2021; Kong et al.,
2023). VITS leverages variational autoencoder,
adversarial learning, normalizing flow, and stochas-
tic duration predictor to generate realistic speech
in an end-to-end manner without relying on exter-
nal word alignment and a vocoder. To convert the
voice into the desired tone color, we adopt Open-
Voice (Qin et al., 2023), which disentangles the
tone color information in the encoder. The target
speaker embedding is integrated into the decoder.

2.5 Rerank

We use LSE-D and CER to select the final syn-
thetic speech from multiple candidates. The CER
is computed between the original ASR transcrip-
tion and the transcription of the generated speech.
For subset1, there are no obvious pauses, so we
only use system (a) as shown in Figure 1. For
subset2, which contains notable pauses, we use
both systems (a) and (b) in Figure 1. For the same
translation, we only use system (b) if we do not
observe a decline in CER and note an improvement
in LSE-D compared to system (a). To rank multiple
translations of different lengths, we use the average
rank determined by LSE-D and CER and select
the translation with the lowest rank. Note that we
use CER rather than word error rate to mitigate
the influence of the ASR model’s limited ability to
recognize out-of-vocabulary words. During rerank,
we considered four translations: the original trans-
lation, the translation using LLM-based post editor
without indicating the output length, the "complex"
translation, and the "simple" translation.

3 Experimental Setups

We fine-tuned the NLLB-1.3B 4 model for 20
epochs on the CoVoST2 (Changhan Wang, 2020)
DE-EN subset, using a learning rate of 3×10−5 and
a batch size of 512. For the LLM-based post-editor,

4https://huggingface.co/facebook/
nllb-200-distilled-1.3B

when employing the “complex” indicator, we sam-
pled three answers and selected the one with the
highest Comet score (Rei et al., 2020) compared
to the original translation. For the “short” indica-
tor, we sampled only once. When adjusting the
speech speed, we set the lower bound to 0.75×
and the upper bound to 2.5×. We adopted several
evaluation metrics: the BLEU score and the Comet
score to evaluate MT quality, and the lip-sync error
distance (LSE-D) (Chung and Zisserman, 2017) 5

and ASR character error rate (CER) to measure
dubbing performance. We used the Wav2Vec2-
base model 6, fine-tuned on LibriSpeech, as the
ASR model, which utilizes a character-level vocab-
ulary. We opted not to use a more advanced ASR
model since the less robust model is more sensi-
tive to speech quality. During rerank, we consid-
ered four translations: the original translation, the
translation using LLM-based post editor without
indicating the output length, the "complex" trans-
lation, and the "simple" translation. Additionally,
we attempted to enhance the speech by applying
denoising and audio super-resolution techniques 7,
which remove noise and upscale the audio from
16kHz to 44.1kHz.

4 Experimental Results

4.1 Performance of MT and LLM-based
Post-Editor

As shown in Table 2, the NLLB-1.3B model,
fine-tuned on the target-domain CoVoST2 dataset,
achieves high translation quality with BLEU scores
of 46.37 and 44.03 on subset1 and subset2, respec-
tively, and Comet scores of 89.29 and 88.01, re-
spectively. When using an LLM to post-process
the translations, we observe a decrease in BLEU
scores, especially for longer translations. However,
we find that the Comet scores are similar to those
of the unmodified translations, indicating that the
LLM effectively performs paraphrasing without
changing the meaning of the translations.

4.2 Results for Pause-Aware Automatic
Dubbing

For subset2, we observe that the pause-aware auto-
matic dubbing pipeline (Dubbing (b)) contributes

5When computing LSE-D, we used the video with subti-
tles.

6https://huggingface.co/facebook/
wav2vec2-base-960h

7https://github.com/resemble-ai/
resemble-enhance
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Subset1 Subset2
MT Dubbing (a) MT Dubbing (a) Dubbing (b) Dubbing (a + b)

Method BLEU↑ Comet↑ LSE-D↓ CER↓ BLEU↑ Comet↑ LSE-D↓ CER↓ LSE-D↓ CER↓ LSE-D↓ CER↓
NLLB (fine-tune) 46.37 89.29 10.92 5.68 44.03 88.01 13.88 3.93 12.27 4.47 12.39 3.59

LLM-PE 43.03 89.42 11.03 5.78 40.75 88.00 12.90 3.97 12.25 4.21 12.46 3.51
LLM-PE (simple) 44.50 88.01 10.97 6.35 43.88 87.98 12.89 4.47 12.22 4.61 12.38 3.93

LLM-PE (complex) 19.67 84.08 11.12 4.75 18.88 83.74 13.05 3.60 12.35 4.46 12.73 3.28

Rerank (LSE-D) 41.18 88.15 10.62 5.70 39.13 87.79 / / / / 11.96 3.76
Rerank (CER) 29.42 85.88 11.05 3.76 29.32 85.03 / / / / 12.62 2.36

Rerank (LSE-D&CER) 38.13 87.91 10.75 4.62 38.60 87.13 / / / / 12.19 3.02

+ Enhance / / 11.18 5.39 / / / / / / 12.52 4.07
- VC 35.10 87.91 10.86 4.08 39.09 87.28 / / / / 12.14 2.73

Table 2: Performance of MT and dubbing measured by BLEU score, Comet score, LSE-D, and ASR-CER (%).
Rerank is applied to the results that correspond to the first four rows.

to a significantly lower LSE-D than the naive
pipeline (Dubbing (a)). For instance, with pause-
aware dubbing, the LSE-D decreases from 13.88 to
12.27 for the original translation. However, there
is an increase in CER. The possible reason could
be that the pauses in the translation may be unnatu-
ral, or the TTS model’s ability to generate speech
for incomplete sentences is limited. Therefore, we
combine the two systems. For the same translation,
we only use system (b) if we do not observe a de-
cline in CER and note an improvement in LSE-D
compared to system (a). This combination method
(Dubbing (a + b)) results in the lowest CERs, and
the LSE-D is also notably better than the naive
system (a).

4.3 Results for Rerank

LSE-D measures the synchronization of speech
with video, while CER assesses speech intelligibil-
ity. Employing either metric for reranking could
enhance the results according to their respective
evaluations. Using their average rank can achieve
a balance between them. For subset1 and subset2,
the final dubbed videos achieve LSE-D scores of
10.75 and 12.19, respectively, and CERs of 4.62%
and 3.02%, respectively. It is worth noting that
the CER for longer speeches tends to be lower due
to more contextual information, while the LSE-D
tends to be higher as it is more difficult to align the
pauses.

4.4 Alternative Systems

We carried out ablation studies and provided al-
ternative systems in our submission. When VC
is not used, the LSE-D is similar to the complete
system. The CER is notably lower because the sole
TTS model provides better speech quality, whereas
the VC model can introduce some noise. How-

ever, without VC, using a female’s voice for a male
speaker is unreasonable. Our TTS model operates
at a sample rate of 16kHz. To improve the sub-
jective listening experience, we adopted an audio
super-resolution model to enhance it to 44.1kHz.
Perceptually, higher frequencies contribute to bet-
ter quality. However, we found that audio super-
resolution negatively impacts the LSE-D and CER,
although we do not observe noticeable distortion
in the audio samples.

5 Discussion

Compared to last year’s system, which utilized a
length-aware MT system that employed a length
tag to indicate the desired output length, this year’s
approach aims to enhance translation quality by
fine-tuning a pre-trained MT model rather than
training one from scratch. Although we attempted
to incorporate length tags in the fine-tuning process,
we found that they failed to produce translations
with varying lengths due to the limited number of
epochs and fine-tuning data. Consequently, we
used an LLM which has robust rewriting capabili-
ties.

We submitted a single entry for the English-
Chinese subtask, which presents significantly
greater challenges than the German-English sub-
task due to factors such as long-form video,
speaker changes, and background music. To ad-
dress these challenges, we enhanced our automatic
dubbing system with an open-source diarization
model (Desplanques et al., 2020), a source sepa-
ration tool (Takahashi and Mitsufuji, 2017), and
a TTS API 8. However, given the complexity of
the task and the lack of labeled test set, we have
not provided a detailed analysis. In movie dub-

8https://github.com/rany2/edge-tts
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bing, it is crucial that the emotion of the dubbed
speech matches that of the original speech, there-
fore, expressive TTS models are preferred. We
evaluated the Seamless Expressive model (Barrault
et al., 2023), however, we observed that the speech
quality was inconsistent, and for non-English lan-
guages, the speech did not sound native.

6 Conclusion

In this paper, we propose a novel pause-aware
automatic dubbing system that ensures translated
speech signals are not only accurate but also main-
tain the timbre of the original speech. The key com-
ponents involve a novel pause selector, informed
by parsing, to align dubbing with the video’s pace,
a VC model to convert the tone color, and an LLM
to provide translation candidates. For future work,
we plan to carry out more systematic experiments
on long-form, movie-like videos and provide more
expressive dubbed videos.
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Abstract

This paper presents the NICT’s submission
for the IWSLT 2024 Indic track, focusing
on three speech-to-text (ST) translation direc-
tions: English to Hindi, Bengali, and Tamil.
We aim to enhance translation quality in this
low-resource scenario by integrating state-of-
the-art pre-trained automated speech recogni-
tion (ASR) and text-to-text machine translation
(MT) models. Our cascade system incorpo-
rates a Whisper model fine-tuned for ASR and
an IndicTrans2 model fine-tuned for MT. Ad-
ditionally, we propose an end-to-end system
that combines a Whisper model for speech-to-
text conversion with knowledge distilled from
an IndicTrans2 MT model. We first fine-tune
the IndicTrans2 model to generate pseudo data
in Indic languages. This pseudo data, along
with the original English speech data, is then
used to fine-tune the Whisper model. Experi-
mental results show that the cascaded system
achieved a BLEU score of 51.0, outperform-
ing the end-to-end model, which scored 19.1
BLEU. Moreover, the analysis indicates that
applying knowledge distillation from the In-
dicTrans2 model to the end-to-end ST model
improves the translation quality by about 0.7
BLEU.

1 Introduction and Related Work

Speech-to-text translation is crucial for breaking
the language barriers during international activi-
ties, such as translating diverse languages in online
meetings. Although high-resource language pairs
often achieve excellent results, the performance
for low-resource language pairs remains unsatisfac-
tory (Radford et al., 2023; Joshi et al., 2020), such
as English to Indic languages. This paper presents
NICT’s submission to the Indic Track of IWSLT
2024, which includes translation directions from
English to Hindi, Bengali, and Tamil. An overview
of the cascade and end-to-end systems is illustrated
in Figure 1.

Data scarcity is a significant challenge for the
English to Indic languages ST task due to its low-
resource scenario and we are using data-driven
neural models. Data augmentation on speech
and text data is an efficient way to address this
challenge (Shanbhogue et al., 2023; Mi et al.,
2022). Assisting information such as phonetic in-
formation (Cheng et al., 2021) and spectral fea-
tures (Berrebbi et al., 2022), or knowledge trans-
ferred from related languages (Anastasopoulos
et al., 2022; Gow-Smith et al., 2023; Song et al.,
2020) can also enhance the performance. To this
end, we use data combined data from three direc-
tions rather than using them separately.

Cascade and end-to-end (E2E) systems are two
popular paradigms in ST with their advantages. In
general, cascaded systems show higher translation
quality (Agarwal et al., 2023) and end-to-end sys-
tems usually show lower latency and less modeling
burden (Xu et al., 2023). To maximize the transla-
tion quality, we adopt the cascaded way and attempt
to make full use of the recent advancements in ASR
and MT fields (Sperber and Paulik, 2020). Follow-
ing preliminary experiments, we decided to partici-
pate in the unconstrained setting, where we lever-
age pre-trained models such as Whisper and Indic-
Trans2 to develop our cascaded and E2E systems.
Although additional datasets like IndicVoices are
available for Indic languages (Javed et al., 2024),
we refrain from using them due to concerns about
test set overlap.

We use Whisper (Radford et al., 2023) as our
ASR system. Unlike previous work (Wang et al.,
2023a) who prompt Whisper without fine-tuning,
we fine-tune Whisper-medium on the training data.
Our results demonstrate significant improvements
through fine-tuning. Although other ASR sys-
tems such as HuBERT (Hsu et al., 2021), wav2vec
2.0 (Baevski et al., 2020) and others (Communica-
tion et al., 2023; Wang et al., 2023b) exist, we adopt
Whisper for its ease of use and its ability to deliver
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Figure 1: Comparison of Cascaded and End-To-End systems.

high-quality transcriptions of English speech. We
then cascade Whisper with IndicTrans2 (Gala et al.,
2023) as our MT system. It supports high-quality
translations across 22 popular Indic languages and
outperforms the mBART50 model (Liu et al., 2020)
and the M2M-100 model (Fan et al., 2020) in direc-
tions involving Indic language. Additionally, we
explore the potential of the E2E system by employ-
ing knowledge distillation from the IndicTrans2
model into the Whisper model. Experimental re-
sults show that our cascaded systems are about
32 BLEU better than the E2E systems. Further-
more, E2E systems trained with distilled transla-
tions, which are obtained by translating English
transcripts to Indic languages via IndicTrans2, tend
to be about 0.7 BLEU points better than those using
the originally provided gold standard translations.

The remainder of this paper is structured as fol-
lows: Section 2 describes the datasets and data
preprocessing. Section 3 introduces our cascade
and end-to-end models. Section 4 presents the ex-

perimental settings, results, and analysis. Lastly,
Section 5 concludes the paper.

2 Data

We show the statistics of the original corpora and
how we pre-process the raw data in this section.

2.1 Dataset

Direction Train Dev Test Total
Speech Hours

en → hi 44,538 7,612 7,044 95.70
en → bn 5,138 1,344 1,170 16.44
en → ta 7,950 2,139 2,194 22.15

Table 1: Statistics of the datasets showing the number
of sentences in the training, development, and test sets
alongside total speech hours.

We use only the corpus provided on the official
site, with statistics shown in Table 1. We do not
leverage any extra data, although our systems are
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built under the unconstrained condition. In the
table, en, hi, bn, and ta represent English, Hindi,
Bengali, and Tamil, respectively. We obtain the au-
dio segments of textual sentences from the original
files according to the offset and duration informa-
tion. After segmentation, each data sample con-
tains an audio segment in English, its transcription,
and a translation in one of the three Indic languages.
We observed that the data belongs to the spoken
language domain, where the sentences are shorter
compared to sentences in written texts. Moreover,
there is almost no punctuation in English transcrip-
tions and Indic language translations.

2.2 Pre-processing

To fine-tune a more robust Whisper model, we
combine data from three English datasets as they
belong to the same distribution.

3 Method

We describe the training and inference processes of
the cascaded and E2E systems.

3.1 Cascaded System

The training and inference phases of the cascaded
system are shown in Figure 1a. During training,
we fine-tune the Whisper model using English au-
dio paired with its English transcription. We then
fine-tune the IndicTrans2 model using the English
transcriptions and their corresponding translations
in the Indic language. Although the Whisper model
without fine-tuning can achieve reasonable perfor-
mance, we found the format mismatch problem
as presented in Figure 2. It is a type of domain
mismatch between spoken language and written
language, where there is less punctuation in the
spoken language. However, this is prevalent in the
training and development datasets, so we do not
bother processing this further.

And its only 30 years old

and it's only 30 years old.

And its only 30 years old

Transcription

Whisper output
w/o fine-tuning

Whisper output
w/ fine-tuning

Figure 2: We fine-tune Whisper to address the format
mismatch problem.

During inference, the English transcription gen-
erated by the fine-tuned Whisper model is input

into the fine-tuned IndicTrans2 model, which then
produces the final output in the Indic language.

3.2 End-to-end System

The training and inference phases of the E2E Whis-
per model are shown in Figure 1b. During train-
ing, we first generate pseudo translation data using
the IndicTrans2 model. We then use this pseudo
data, instead of the gold transcription, to fine-tune
the Whisper model. The motivation is to distill
knowledge from a stronger translation model. The
outputs of IndicTrans2, which are in a more con-
sistent format, are easier for the Whisper model
to learn than the human-annotated transcriptions.
As shown in stage 1, we fine-tune the IndicTrans2
using English transcriptions and their translations
in the Indic language. In stage 2, we generate
pseudo translations for all English transcriptions
in the dataset. Finally, we fine-tune the Whisper
model using English audio data and these pseudo
translations. During inference, we solely rely on
the fine-tuned Whisper model to perform E2E ST.

4 Experiments

4.1 Settings

All our models are multilingual, achieved by com-
bining all data into a single collection and using
language indicator tokens to indicate the target lan-
guage, as is the common practice. For the ASR
module, we used the medium architecture of Whis-
per (Radford et al., 2023), which showed higher
performance compared to the tiny, base, and small
architectures. During fine-tuning, we set the learn-
ing rate to 1e−5, batch size to 16, and epoch size to
50. We allocated 10% of the total training steps for
warmup and implemented early stopping if there
was no improvement in loss after 1, 000 steps, with
evaluations every 100 steps on the development set.
For the MT part of our experiments, we used the In-
dicTrans2 (Gala et al., 2023) model. We fine-tuned
using the scripts provided in the IndicTrans2 li-
brary1 including data preparation2 and fine-tuning3.
Using our fine-tuned IndicTrans2 model, we per-
formed standard beam search decoding with a beam
of size 5.

1https://github.com/AI4Bharat/IndicTrans2
2https://github.com/AI4Bharat/IndicTrans2/

blob/main/prepare_data_joint_finetuning.sh
3https://github.com/AI4Bharat/IndicTrans2/

blob/main/finetune.sh
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4.2 Main Results: Submitted Systems

Table 2 presents the results of our cascaded and
E2E systems on the test set.

Direction Cascaded E2E ∆

English→ Bengali 52.6 10.8 41.8
English→ Hindi 60.5 33.0 27.5
English→ Tamil 39.9 13.5 26.4
Average 51.0 19.1 31.9

Table 2: BLEU scores on the test set.

Direction Cascaded E2E

English→ Bengali 50.0 7.9
English→ Hindi 64.1 32.1
English→ Tamil 41.7 12.1

Table 3: BLEU scores on the first 500 sentences from
the dev set.

The scores are provided by the organizers, who
do not provide a comparison with other participants
at the time of writing this paper. Nevertheless, it
is evident that cascaded systems outperform E2E
systems by a wide margin. This indicates that data
scarcity is a major problem limiting E2E system
development for English to Indic language speech
translation. We also provide scores for the same
languages on 500 development set samples in Ta-
ble 3, where we can see that there are similar trends
as observed for the test set.

4.3 Impact of Distillation on E2E Systems

In Table 4, we present the differences between an
E2E system trained on original translations and
those trained on distilled translations. It is clear
that distillation, performed by translating English
transcriptions into Indic language sentences used as
references for E2E systems, leads to a reasonable
improvement of 0.7 BLEU.

5 Conclusion

This paper presented NICT’s submission to the
IWSLT 2024 English to Indic speech-to-text trans-
lation task. We took advantage of the advancements
in ASR and MT where we combined the Whisper
model and IndicTrans2 model in our cascaded sys-
tem. In our end-to-end system, we further utilize
the pseudo translation data technique, also known

Direction E2E-Dist E2E-Orig ∆

English→ Bengali 7.9 7.6 0.3
English→ Hindi 32.1 31.2 0.9
English→ Tamil 12.1 11.2 0.9
Average 17.4 16.7 0.7

Table 4: BLEU scores comparison of E2E systems on
the first 500 sentences from the dev set. E2E-Dist rep-
resents an E2E system trained on translated (distilled)
Indic languages references, whereas E2E-Orig refers to
when original references are used.

as knowledge distillation, to empower the Whis-
per model. Future work will focus on combining
Whisper with IndicTrans2 jointly to train an even
stronger speech translation system.
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Abstract

Large language models (LLMs) are trained on
text-only data that go far beyond the languages
with paired speech and text data. At the same
time, Dual Encoder (DE) based retrieval sys-
tems project queries and documents into the
same embedding space and have demonstrated
their success in retrieval and bi-text mining.
To match speech and text in many languages,
we propose using LLMs to initialize multi-
modal DE retrieval systems. Unlike traditional
methods, our system doesn’t require speech
data during LLM pre-training and can exploit
LLM’s multilingual text understanding capa-
bilities to match speech and text in languages
unseen during retrieval training. Our multi-
modal LLM-based retrieval system is capable
of matching speech and text in 102 languages
despite only training on 21 languages. Our sys-
tem outperforms previous systems trained ex-
plicitly on all 102 languages. We achieve a
10% absolute improvement in Recall@1 aver-
aged across these languages. Additionally, our
model demonstrates cross-lingual speech and
text matching, which is further enhanced by
readily available machine translation data.

1 Introduction

LLMs have demonstrated their effectiveness in
modelling textual sequences to tackle various
downstream tasks (Brown et al., 2020; Hoffmann
et al., 2022; Chowdhery et al., 2023). This effec-
tiveness has led to the development of powerful
LLMs capable of modelling text in a wide range
of languages. The abundance of textual data in dif-
ferent languages across the internet has fueled the
progress of multi-lingual models (Johnson et al.,
2017; Xue et al., 2020; Siddhant et al., 2022). On
the other hand, speech technologies are prevalent
in smartphones and personal assistants, but their

∗Work done by Frank and Ramon during their internship
in Google Research and Google DeepMind respectively.

†‡ Equal Advising Contributions.
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Shared Speech Text

Figure 1: Our dual encoder architecture and train-
ing pipeline. We expand the embedding layer of our
backbone LLM to support the additional discretized
speech tokens, that are extracted from a pre-trained
speech encoder. At the same time, we tokenize the
corresponding transcripts with the LLM tokenizer. We
encode the speech tokens and transcripts separately and
train the model with a contrastive loss over the dot prod-
uct between speech and transcript embeddings.

language availability is relatively limited compared
to the languages that LLMs support (Baevski et al.,
2020; Radford et al., 2023).

Various efforts have explored solutions to the
speech-text data scarcity problem (Duquenne et al.,
2021; Ardila et al., 2019; Wang et al., 2020). Works
such as SpeechMatrix (Duquenne et al., 2022) use
separate speech and text encoders to mine seman-
tically similar utterances that are neighbors in an
embedding space. However, these approaches are
limiting because they require speech and text en-
coders that have aligned representation spaces.

We posit that we can retrieve speech and text
utterances by aligning both modalities within the
embedding space built from a single pre-trained
LLM. We take inspiration from previous works
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that use pre-trained LLMs to perform automatic
speech recognition (ASR) and automatic speech
translation (AST) (Rubenstein et al., 2023; Wang
et al., 2023; Hassid et al., 2023; Gong et al., 2023;
Peng et al., 2023). Our intuition is that we can per-
form the speech and text alignment leveraging the
capabilities of text-only LLMs without requiring
two separate models.

In this paper, we propose converting LLMs into
speech and text DE retrieval systems without requir-
ing speech pre-training and outperform previous
methods with significantly less data. By discretiz-
ing speech into acoustic units (Hsu et al., 2021),
we extend our LLMs embedding layer and treat
the acoustic units as ordinary text tokens. Con-
sequently, we transform our LLM into a retrieval
system via a contrastive loss allowing us to match
speech and text utterances in various languages.
Our contributions are the following:

1. We build a speech-to-text symmetric DE from
a pre-trained LLM. We show that our retrieval
system is effective matching speech and text
in 102 languages of FLEURS (Conneau et al.,
2023) despite only training on 21 languages.

2. We show that our model exhibits cross-lingual
speech and text matching without training on
this type of data. At the same time, we find
that cross-lingual speech and text matching is
further improved by training on readily avail-
able machine translation data.

2 Method

We train a transformer-based DE model that en-
codes speech and text given a dataset D =
{(xi, yi)}, where xi is a speech utterance and yi
is its transcription. We denote the speech and text
embeddings as xi = E(xi) and yi = E(yi), re-
spectively, where E is a transformer-based DE that
encodes speech and text.

2.1 Generating Audio Tokens

We convert raw speech into discrete tokens using
the process in Lakhotia et al. (2021); Borsos et al.
(2023). The process converts a speech query xi into
an embedding using a pre-trained speech encoder.
The output embedding is then discretized into a set
of tokens using k-means clustering. We refer to
the resulting tokens as audio tokens. We use the
2B variant of the Universal Speech Model (USM)
encoder (Zhang et al., 2023) as the speech encoder
and take the middle layer as the embedding for xi.

Additionally, we generate audio tokens at 25Hz
using k-means clustering 1. We will refer to this as
our audio token vocabulary.

2.2 Supporting Text and Audio Tokens

To support text and audio tokens in our LLM, we
follow the formulation of Rubenstein et al. (2023).
We extend the embedding layer of a transformer
decoder by a tokens, where a represents the size
of our audio token vocabulary. This modification
leads to an embedding layer with size (t+ a)×m,
where t is the number of tokens in the text vocab-
ulary and m is the dimensions of the embedding
vectors. In our implementation, the first t tokens
represent text and the remaining a tokens are re-
served for audio. We initialize the embeddings
layer from scratch when training our model.

3 Data and Tasks

Appendix A.3 details our training and evaluation
datasets along with the number of languages in
each dataset, the split we used, and the size of each
dataset. We focus on the following retrieval tasks:

Speech-to-Text Retrieval (S2T) involves re-
trieving the corresponding transcription from a
database given a speech sample. In S2T, we train
on CoVoST-2 (Wang et al., 2021) speech utterances
and their transcriptions. CoVoST-2 is a large multi-
lingual speech corpus derived from Wikipedia ex-
panding over 21 languages and provides translation
to and from English. We use FLEURS (Conneau
et al., 2023) to evaluate S2T performance on 102
languages. FLEURS is an n-way parallel dataset
containing speech utterances from FLoRES-101
(Goyal et al., 2021) human translations. To eval-
uate S2T, we report recall at 1 (R@1) rates for
retrieving the correct transcription for every speech
sample and word error rate (WER).

Speech-to-Text Translation Retrieval (S2TT)
attempts to retrieve the corresponding text transla-
tion of a speech sample. We use S2TT to measure
the cross-lingual capabilities of our multi-modal
DE retrieval system. We evaluate this capability
zero-shot on X→ En S2TT data of FLUERS and
explore if we can further improve this capability by
training on readily-available machine translation
data from WikiMatrix (Schwenk et al., 2019). We
pick French, German, Dutch, and Polish to English

1We use the USM-v2 audio tokenizer from Rubenstein
et al. (2023)
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R@1 ↑ WER ↓
mSLAM DE (Conneau et al., 2023) 76.9 14.6
PaLM 2 DE (Proposed Model) 86.7 13.4

Table 1: PaLM 2 DE results for R@1 and WER com-
pared against the mSLAM DE on 102 languages from
FLEURS for speech-to-text retrieval (S2T).

that are common across WikiMatrix and FLEURS
and further discuss the amount of machine trans-
lation data used in Appendix A.3. For S2TT, we
report 4-gram corpusBLEU (Post, 2018).

4 Model

Figure 1 shows an illustration of our model. We
initialize our dual encoder from PaLM 2 XXS
(Google et al., 2023) and append a linear projection
layer after pooling the outputs along the sequence
length dimension. The embedding and linear pro-
jection layers are initialized randomly. After initial-
izing our model from PaLM 2, we use a contrastive
loss (Hadsell et al., 2006). Appendix A.1 includes
more details on our training setup. We will refer to
our proposed model as PaLM 2 DE.

5 Experiments

We train our DE model to perform S2T, where the
task is to retrieve the corresponding transcription
given a speech sample. We train on the 21 lan-
guages from CoVoST-2 and evaluate our model us-
ing the S2T portion of FLEURS in 102 languages.

5.1 Speech-to-Text Retrieval

Table 1 shows the average R@1 and WER for S2T
for 102 languages from FLEURS. We compare
against the mSLAM DE model from Conneau et al.
(2023), a model trained on 426k hours of S2T data
in 51 languages and fine-tuned on FLEURS train-
ing data. Our model significantly outperforms the
mSLAM DE baseline in R@1 and WER metrics
despite being trained with only 1/10 of the data
and having been initialized from a text-only LLM.
More importantly, our model was only trained on
the 21 languages in CoVoST-2 and never fine-tuned
on the FLEURS training data.

5.1.1 Seen-Unseen Breakdown
In Figure 2 we break down the R@1 scores based
on seen and unseen languages during training. We
find that our model performs best on the 20 lan-
guages that are within the training and evaluation

80
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)↑

Transcript Retrieval

mSLAM DE (102 Lang.)
All (102 Lang.)

Unseen (82 Lang.)
Seen (20 Lang.)

Figure 2: R@1 transcription retrieval for seen and un-
seen languages in the training set.

R@1 ↑
Language Group (#) mSLAM DE PaLM 2 DE

# Wins
(Conneau et al., 2023) (Proposed Model)

Afro-Asiatic (7) 73.67 84.22 5
Atlantic-Congo (14) 86.77 70.41 1
Austro-Asiatic (2) 47.90 34.42 0
Austronesian (6) 75.50 90.73 6
Dravidian (4) 65.70 92.06 4
Indo-European (51) 84.62 95.32 49
Japonic (1) 5.80 91.54 1
Kartvelian (1) 70.50 82.92 1
Koreanic (1) 5.20 52.36 1
Kra-Dai (2) 3.20 22.09 1
Mongolic (1) 70.70 99.89 1
Nilo-Saharan (1) 91.00 92.52 1
Sino-Tibetan (3) 3.40 90.66 3
Turkic (5) 81.28 92.86 4
Uralic (3) 91.40 99.04 3

All (102) 76.90 86.72 81

Table 2: FLEURS S2T (R@1) performance by lan-
guage groups. Bold represents better performance.
Numbers in parenthesis are the number of languages
within the language group. # Wins is the number of
languages where PaLM 2 DE outperforms mSLAM in
the language group.

data, but still perform well on the remaining 82 un-
seen languages. We hypothesize this is due to the
vast textual multilingual data our backbone LLM
has seen during pre-training.

5.1.2 Language Group Breakdown
Table 2 shows the R@1 language group breakdown
for S2T on FLEURS. We find that although we only
trained on 21 languages, our model significantly
outperforms mSLAM DE in 13 of the 15 language
groups. These results are consistent with the exper-
iments in Hassid et al. (2023) which explore the
effect of initializing speech language models from
pre-trained LLMs.

5.2 Evaluating on Cross-Modal and
Cross-Lingual Tasks

We evaluate on S2TT to gauge the cross-modal and
cross-lingual capabilities of our model. We show
we can improve S2TT by simply combining S2T
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Figure 3: BLEU scores for FLEURS zero-shot S2TT
when training on Transcripts or Transcripts +
Translations for PaLM 2 DE. Combining transcripts
and translation data improves zero-shot S2TT retrieval.

and translation data without S2TT training data.

5.2.1 Zero-Shot S2TT
Given the multi-lingual capabilities of our back-
bone language model, we explore if these capabil-
ities are transferred after training our model con-
trastively on the S2T task. We hypothesize that our
model should showcase cross-lingual and cross-
modal capabilities due to the cross-modal training
task and the cross-lingual capabilities of the back-
bone LLM. We evaluate S2TT in a zero-shot setting
to assess our model’s performance retrieving En-
glish translations given a speech sample in another
language. Using the FLEURS S2TT portion, we
evaluate S2TT X→ En in 4 languages: German,
Polish, French, and Dutch.

Figure 3 shows BLEU S2TT performance us-
ing S2T CoVoST-2 in 21 languages. We call this
setup Transcripts in Figure 3. Our results demon-
strate that even when only training our model on
speech and transcriptions, we can achieve some
zero-shot S2TT performance and We find that
S2TT BLEU scores are considerably higher for
languages present S2T training data. For exam-
ple, Polish was not in the S2T training therefore its
BLEU scores are the lowest.

5.2.2 Improving S2TT with MT Data
To further improve our model’s cross-lingual per-
formance, we add readily available translation data
from Schwenk et al. (2019) to improve S2TT. For
each batch, we combine 25% translation and 75%
S2T data. Figure 3 shows comparison of only
training on S2T (Transcripts) and combining
S2T and translation data ( Transcriptions +
Translations). We find that combining S2T and
translation data significantly improves the S2TT

BLEU scores in all 4 languages without training
on S2TT data. This finding demonstrates that
we can improve our models cross-lingual perfor-
mance with highly accessible translation data with-
out needing scarce and often expensive speech-to-
text translation training data.

6 Related Work

The success of pre-trained LLMs have motivated
the application of these models in different modal-
ities. Lakhotia et al. (2021) transformed speech
into pseudo-text units to introduce the task of gen-
erative spoken language modeling. Borsos et al.
(2023) introduced a framework to generate audio
with long-term consistency. Consequently, Hassid
et al. (2023) showed that SpeechLMs benefit from
being initialized from pre-train LLMs while Ruben-
stein et al. (2023) demonstrated that pre-trained
LLMs can be adapted to various tasks that required
text and speech understanding.

On the other hand, several works aim to build
joint speech and text representations (Khurana
et al., 2022; Gow-Smith et al., 2023). Chung
et al. (2021) introduced w2v-bert which com-
bines masked language modeling and contrastive
learning to create speech representations. Bapna
et al. (2022) jointly pre-trains on speech and text
from unsupervised speech and text data. Recently,
Duquenne et al. (2023) employed separate speech
and text encoders to generate embeddings in over
200 languages. Nevertheless, there is still a lack of
understanding of whether joint speech and text rep-
resentations can be built from a single encoder. We
fill this gap by using pre-trained LLMs to jointly
train on speech samples and their transcriptions to
show that our approach is capable of speech-text
matching in 102 languages.

7 Conclusion

We present an effective approach to developing
a speech-to-text DE from a text-only LLM. Our
findings suggest that by using a text-only LLM
as a backbone model, we can drastically outper-
form previous approaches using considerably less
speech-to-text training data. Additionally, we find
that we can improve zero-shot speech translation
by simply combining readily available translation
and S2T data. We showcase our findings in 102
languages for S2T and 4 languages in S2TT; open-
ing up the possibility of using speech-to-text DE’s
in different cross-model and cross-lingual settings.
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Input Type Before Tokenization Input Ids

Speech [English Speech] 50,210,245, . . . 240, 503, 32050, 32210, 32245, . . .
Transcription [English Text] Hello World . 59, 294, 691, . . .

Table 3: Example of the speech and transcript inputs given to our model. The speech input is composed of a prefix
containing the language and the input modality. Text will be tokenized using the LLMs tokenizer and an offset
will be applied to the audio token to match the tokens that were reserved within the audio token vocabulary. Bold
numbers represent the audio tokens before tokenization and after the offset is applied to the audio tokens.

initializing our model from the PaLM 2, we use a
contrastive loss (Hadsell et al., 2006).

L = − 1

N

N∑

i=1

esim(xi,yi)

∑N
j=1 e

sim(xi,yj)
(1)

Using equation 1, our multi-modal DE will learn
from paired speech and text embeddings (xi,yi),
where yi is considered as a positive example to xi

while all other examples where i 6= j are negative
ones. The model should learn to bring the positive
transcriptions closer to the corresponding speech
sample, while pushing away all the other negative
transcriptions. In our training, the positive and neg-
ative distinction is done within the training batch.
Hence, we apply an in-batch softmax as part of
our loss computation. Lastly, sim() is a similarity
function formulated as the dot product between the
speech sample and the transcription embeddings.

To train our model, we use the sum of a con-
trastive loss with a spreadout loss (Zhang et al.,
2017) of both the speech and text embeddings. We
calculate the contrastive loss (Yang et al., 2019)
in a bidirectional way, by adding the loss in the
speech-to-text and the text-to-speech direction.

We use the Adam (Kingma and Ba, 2014) opti-
mizer with a learning rate of 1.0×10−3 with linear
ramp cosine decay scheduler with 2.5k warm up
steps. We use a dropout probability of 0.1 and train
for 100k steps with a batch size of 1024.

A.2 Expressing Tasks
For training and inference, we found that using
a prefix improves speech-to-text retrieval perfor-
mance. Therefore, we pre-pend a prefix containing
the language and modality shown in in Table 3. In
the case of a speech utterance, the prefix will be tok-
enized with the LLMs tokenizer and the remaining
will be converted to audio tokens.

A.3 Data
Table 4 shows the training and evaluation datasets
we used through out our experiments. We used

Dataset Type Task Langs. Split Size

CoVoST-2 Speech S2T 21 Train 900 h.
FLEURS Speech S2T 102 Test 283 h.
FLEURS Speech S2TT 102 Test 283 h.

Wikimatrix Text MT 4 Train 9M sents.

Table 4: Training and evaluation datasets. CoVoST-2
is used for speech-to-text retrieval (S2T), Wikimatrix
is for machine translation retrieval (MT), and FLEURS
is for evaluating X→ En speech-to-text translation re-
trieval (S2TT) and also speech-to-text retrieval (S2T).

# Sents. X→ En

German (de) 6.2M
Polish (pl) 2.1M
French (fr) 705k
Dutch (nl) 570k

Table 5: Number of parallel sentences used in the ma-
chine translation mixture from Wikimatrix corpus.

21 languages CoVoST-2 to train our model on
speech-to-text retrieval which amounts to approxi-
mately 900 hours of speech. To evaluate our mod-
els speech-to-text retrieval capabilities, we evalu-
ate on FLEURS speech-to-text test split on 102
languages. We use FLEURS speech-to-text trans-
lation test split to evaluate our models abilities on
tasks that require cross-lingual and cross-modal
knowledge. We evaluate of 4 different languages:
German, Polish, French, and Dutch.

We find that combining speech-to-text retrieval
data and readily available translation data improves
our models cross-lingual and cross-modal abilities.
Table 5 shows the number of parallel sentences we
used during training from X→ En.

A.4 Performance Breakdown By Language
Table 6 includes the PaLM 2 DE R@1 for each
language found in FLEURS. We also include the
language group from Table 2 and the number of
examples found within each S2T test set.
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Idx Language Name Code Family # Examples R@1

mSLAM PaLM 2 DE

1 Afrikaans af Indo-European 414 90.1 99.3
2 Amharic am Afro-Asiatic 516 34.1 69.6
3 Arabic ar Afro-Asiatic 427 82.7 98.8
4 Armenian hy Indo-European 929 50.3 89.7
5 Assamese as Indo-European 980 81.5 87.4
6 Asturian ast Indo-European 946 90.1 100.0
7 Azerbaijani az Turkic 918 83.0 98.4
8 Belarusian be Indo-European 955 90.2 97.2
9 Bengali bn Indo-European 911 83.5 84.6
10 Bosnian bs Indo-European 923 95.5 99.8
11 Bulgarian bg Indo-European 657 95.1 100.0
12 Burmese my Sino-Tibetan 870 2.4 19.3
13 Cantonese yue Sino-Tibetan 819 2.4 83.6
14 Catalan ca Indo-European 938 93.2 100.0
15 Cebuano ceb Austronesian 532 79.8 94.9
16 Croatian hr Indo-European 914 98.0 99.8
17 Czech cs Indo-European 720 98.1 99.6
18 Danish da Indo-European 929 94.1 99.9
19 Dutch nl Indo-European 364 95.3 100.0
20 English en Indo-European 647 96.0 99.1
21 Estonian et Uralic 892 95.6 99.9
22 Filipino fil Austronesian 928 73.1 89.1
23 Finnish fi Uralic 916 93.0 98.9
24 French fr Indo-European 675 90.7 100.0
25 Fula ff Atlantic-Congo 649 81.4 81.7
26 Galician gl Indo-European 927 90.9 100.0
27 Ganda lg Atlantic-Congo 705 90.7 75.7
28 Georgian ka Kartvelian 978 70.5 82.9
29 German de Indo-European 841 91.2 100.0
30 Greek el Indo-European 649 81.2 73.2
31 Gujarati gu Indo-European 1000 77.0 95.9
32 Hausa ha Afro-Asiatic 557 84.5 83.1
33 Hebrew he Afro-Asiatic 792 64.0 76.0
34 Hindi hi Indo-European 417 78.0 83.7
35 Hungarian hu Uralic 902 85.3 98.3
36 Icelandic is Indo-European 46 71.7 97.8
37 Igbo ig Atlantic-Congo 869 85.8 64.9
38 Indonesian id Austronesian 684 79.6 99.4
39 Irish ga Indo-European 829 55.1 69.5
40 Italian it Indo-European 857 93.5 100.0
41 Japanese ja Japonic 650 5.8 91.5
42 Javanese jv Austronesian 722 78.0 97.0
43 Kabuverdianu kea Indo-European 859 95.4 99.9
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Idx Language Name Code Family # Examples R@1

mSLAM PaLM 2 DE

44 Kamba kam Atlantic-Congo 798 89.7 81.5
45 Kannada kn Dravidian 831 69.0 88.8
46 Kazakh kk Turkic 841 88.7 83.1
47 Khmer km Austro-Asiatic 765 42.1 20.3
48 Korean ko Koreanic 382 5.2 52.4
49 Kyrgyz ky Turkic 974 84.3 88.6
50 Lao lo Kra-Dai 399 37.0 23.3
51 Latvian lv Indo-European 848 97.4 100.0
52 Lingala ln Atlantic-Congo 440 91.2 76.4
53 Lithuanian lt Indo-European 985 96.8 98.2
54 Luo luo Nilo-Saharan 254 91.0 92.5
55 Luxembourgish lb Indo-European 929 80.5 74.6
56 Macedonian mk Indo-European 967 96.1 98.8
57 Malay ms Austronesian 749 77.7 98.7
58 Malayalam ml Dravidian 944 62.3 88.3
59 Maltese mt Afro-Asiatic 918 92.7 76.0
60 Mandarin cmn Sino-Tibetan 944 5.4 100.0
61 Maori mi Austronesian 890 64.7 65.3
62 Marathi mr Indo-European 1005 69.8 82.4
63 Mongolian mn Mongolic 949 70.7 99.9
64 Nepali ne Indo-European 724 66.1 89.6
65 Northern-Sotho nso Atlantic-Congo 738 80.8 70.3
66 Norwegian nb Indo-European 357 91.9 100.0
67 Nyanja ny Atlantic-Congo 745 85.5 63.6
68 Occitan oc Indo-European 968 77.4 99.4
69 Oriya or Indo-European 875 15.7 95.1
70 Oromo om Afro-Asiatic 41 92.7 100.0
71 Pashto ps Indo-European 510 84.8 91.0
72 Persian fa Indo-European 858 85.4 100.0
73 Polish pl Indo-European 758 95.8 99.3
74 Portuguese pt Indo-European 914 91.9 99.9
75 Punjabi pa Indo-European 574 70.6 96.7
76 Romanian ro Indo-European 882 92.0 100.0
77 Russian ru Indo-European 774 93.2 100.0
78 Serbian sr Indo-European 700 97.7 99.1
79 Shona sn Atlantic-Congo 920 84.1 53.9
80 Sindhi sd Indo-European 977 71.8 85.4
81 Slovak sk Indo-European 791 97.6 99.5
82 Slovenian sl Indo-European 834 97.4 100.0
83 Somali so Afro-Asiatic 1007 68.7 86.0
84 Sorani-Kurdish ckb Indo-European 918 80.8 96.7
85 Spanish es Indo-European 907 69.6 100.0
86 Swahili sw Atlantic-Congo 487 91.2 86.2
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Idx Language Name Code Family # Examples R@1

mSLAM PaLM 2 DE

87 Swedish sv Indo-European 758 94.2 100.0
88 Tajik tg Indo-European 590 76.3 92.7
89 Tamil ta Dravidian 582 58.0 98.1
90 Telugu te Dravidian 471 73.5 93.0
91 Thai th Kra-Dai 1011 3.2 20.9
92 Turkish tr Turkic 742 84.5 100.0
93 Ukrainian uk Indo-European 750 93.5 99.3
94 Umbundu umb Atlantic-Congo 264 77.3 62.1
95 Urdu ur Indo-European 299 70.6 91.3
96 Uzbek uz Turkic 861 67.6 94.2
97 Vietnamese vi Austro-Asiatic 850 64.5 48.6
98 Welsh cy Indo-European 1002 82.3 96.1
99 Wolof wo Atlantic-Congo 351 90.6 87.5
100 Xhosa xh Atlantic-Congo 1034 90.9 30.2
101 Yoruba yo Atlantic-Congo 816 92.4 84.6
102 Zulu zu Atlantic-Congo 822 85.5 67.2

All (102) 76.9 86.7

Table 6: Language name, code, family, and number of examples for each test set found in FLEURS. We report
R@1 for mSLAM and PaLM 2 DE.
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Abstract

Large Language Models (LLMs) have shown
remarkable performance in Natural Language
Processing tasks, including Machine Transla-
tion (MT). In this work, we propose a novel MT
pipeline that integrates emotion information ex-
tracted from a Speech Emotion Recognition
(SER) model into LLMs to enhance translation
quality. We first fine-tune five existing LLMs
on the Libri-trans dataset and select the most
performant model. Subsequently, we augment
LLM prompts with different dimensional emo-
tions and train the selected LLM under these
different configurations. Our experiments re-
veal that integrating emotion information, es-
pecially arousal, into LLM prompts leads to
notable improvements in translation quality.

1 Introduction

Large Language Models (LLMs) are transformer-
based (Vaswani et al., 2017) deep learning models
designed to understand and generate natural lan-
guage text by predicting the probability of the next
token in a sequence. LLMs excel across various
Natural Language Processing (NLP) tasks, such as
information retrieval (Zhu et al., 2023b), instruc-
tion following (Ouyang et al., 2022), or engaging
in chatbot discussions (OpenAI, 2022).

Among NLP tasks, LLMs have shown great ca-
pacities in Machine Translation (MT) (Zhu et al.,
2023a), the task of translating a text from one lan-
guage to another. Previous research has enhanced
LLM performance in MT through various strate-
gies, including optimized prompting techniques
(Zhang et al., 2023), in-context learning features
(Brown et al., 2020) to improve translation quality
over time (Moslem et al., 2023a,b), and a two-stage
fine-tuning method composed of a first fine-tuning
on monolingual data to learn general linguistic
knowledge followed by a second fine-tuning on
parallel data (Xu et al., 2023) that establishes the
current state-of-the-art method in MT.

Apart from LLMs, previous works in MT have
demonstrated the possibility of controlling the
translation by adding extra information to the
model that is not explicitly specified in the source
sentence to be translated, and that can influence
the translation. Existing works in that direction fo-
cused on the control of politeness (Sennrich et al.,
2019), gender (Vanmassenhove et al., 2018; Gaido
et al., 2023), or emotion (Brazier and Rouas, 2024)
of the translation and showed that this extra infor-
mation helps improve translation quality.

In this work, we propose to improve translation
performances of an LLM-based model by adding
emotion as extra information in the prompt of the
model to condition the translation. This work relies
on the fact that words can be classified into emo-
tion categories, leading to affective word lists (Pen-
nebaker et al., 2001). Thus, conditioning the trans-
lation with a specific emotion would use a suitable
vocabulary in the translation. In Brazier and Rouas
(2024), authors showed that adding arousal infor-
mation, reflecting the level of stimulation (ranging
from calm to excited), extracted from the voice and
added at the start of each input text sentence, helps
improve translation performances. In the follow-
ing, we study the behavior of several LLMs for the
task of MT when emotion dimensions are added to
input prompts.

To address this problem, we first fine-tune sev-
eral existing LLMs for the task of English-to-
French text-to-text translation. Then, after se-
lecting the best model as baseline for our experi-
ments, we compute for each input sentence its emo-
tional dimensions with the help of a state-of-the-art
Speech Emotion Recognition (SER) model applied
to audio recordings. Finally, we compare trans-
lation performance with and without the addition
of each emotional dimension as extra information
added to each input prompt. We show that emo-
tion improves translation (BLEU and COMET),
especially in the case of arousal.
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2 Related works

In this work, we aim at combining an LLM-based
MT model with emotion information to improve
translation performances. In the following, we first
describe a close work that performs this combi-
nation without the use of an LLM. Then, we list
several existing LLMs that can be used as a base-
line for our MT task.

2.1 Machine Translation with Emotion

To our knowledge, the only work that combines an
MT model with emotion information is described
in Brazier and Rouas (2024). In this study, the
authors utilize a state-of-the-art Speech Emotion
Recognition (SER) model (Wagner et al., 2023) to
automatically estimate dimensional emotion val-
ues, including arousal, dominance, and valence, for
each audio recording associated with text sentence.
These values are then transformed into unique emo-
tion tokens, either positive or negative, which are
added at the beginning of tokenized input text sen-
tences. The authors report an increase in translation
BLEU score, especially when adding arousal to-
kens at the start of input sentences.

The MT model used for their experiments is
a transformer-based encoder-decoder architecture,
comprising 6 layers for the encoder, 6 layers for
the decoder, and 4 attention heads in each self-
attention layer. The model is trained on the Libri-
trans dataset (Kocabiyikoglu et al., 2018), which in-
cludes triplets of English recordings, English texts,
and French texts, totaling 235 hours of data (230h
for train, 2h for dev, and 3.5h for test). The model
performs English-to-French translation.

In this work, we propose to use the same trans-
lation pipeline, but instead of using a specific MT
model, we replace it with a fine-tuned LLM. Since
LLMs have more trainable parameters, we antici-
pate improved translation performances. However,
our objective is to observe how LLMs behave when
augmented with emotion information in the input
prompt.

2.2 LLM selection for MT

Recent advances in Large Language Modeling have
significantly expanded the capabilities of LLMs
across various tasks, such as reasoning, coding, or
mathematics. Among the numerous existing LLMs
(Chiang et al., 2024), the best-performing models
are GPT-4 (OpenAI, 2023), LLaMA 3 (AI@Meta,
2024), Gemini 1.5 (Team, 2024), or Claude 3 (An-

thropic, 2024).
For the task of MT, we restrict our LLM se-

lection to models that are open-source, promising
(high rank in the LLM arena1, or already fine-tuned
to the MT task), and that only contain 7 billion (7B)
of parameters. We select 5 different models that
are described in the following.

The first selected LLM is Mistral-7B-v0.12, an
open-source model (Jiang et al., 2023) which ranks
among the best 7B-parameter models.

As the second model, we select Mistral-7B-
Instruct-v0.23. The model is similar to the previous
model but has been fine-tuned to follow instruc-
tions.

Our third selected model is TowerBase-7B-v0.14.
This model (Alves et al., 2024) is based on LLaMA
2 (AI@Meta, 2023) and its training has been con-
tinued on multilingual data (including English and
French monolingual data, as well as bilingual data).

Similarly to Mistral, we select TowerInstruct-
7B-v0.25 as our fourth model. This model is a
variant of the previous one that has been fine-tuned
to follow instructions including translations.

Finally, as our fifth model, we select the SOTA
MT model ALMA-7B-R6, which is based on
LLaMA 2 (AI@Meta, 2023), and fine-tuned on
monolingual and parallel data. However, the data
used for fine-tuning does not include French.

3 Experiments and results

In this section, we describe our experiments for the
task of English-to-French text-to-text translation.
We conduct two successive experiments. Firstly,
we fine-tune five existing LLMs on the Libri-trans
dataset (Kocabiyikoglu et al., 2018) and consider
the best model as a foundation for our second ex-
periment. Secondly, we fine-tune the selected LLM
on the same task but under different configurations.
Henceforth, prompts used for translation include
each emotion dimension that is automatically esti-
mated from the SER model.

3.1 Fine-tuning LLMs on Libri-trans
To perform MT with LLMs, the task needs to be
converted into a language modeling problem with
1http://chat.lmsys.org/?leaderboard
2http://huggingface.co/mistralai/Mistral-7B-v0.1
3http://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2

4http://huggingface.co/Unbabel/TowerBase-7B-v0.1
5http://huggingface.co/Unbabel/
TowerInstruct-7B-v0.2

6http://huggingface.co/haoranxu/ALMA-7B-R
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Model BLEU COMET
dev test dev test

Mistral 16.4 16.7 73.2 72.5
MistralInstruct 16.0 17.9 72.1 71.9
TowerBase 24.0 20.6 73.8 72.9
TowerInstruct 6.4 6.1 35.5 35.5
ALMA 7.1 7.5 52.1 52.8

Table 1: BLEU and COMET scores of our five selected
LLMs on dev and test sets of Libri-trans.

the use of prompts. In this work, we perform zero-
shot prompting and follow two different templates.
The first template will be applied to Mistral-7B-
v0.1 and TowerBase-7B-v0.1:

English: <src txt> \n French: <tgt txt> (1)

where <src txt> and <tgt txt> refer to the En-
glish source sentence and the French target sen-
tence respectively.

The second template will be applied to mod-
els that follow instructions, namely Mistral-7B-
Instruct-v0.2, TowerInstruct-7B-v0.2, and ALMA-
7B-R:

[INST] Translate from English to French: <src txt> [/INST] \n <tgt txt>

(2)
To fine-tune LLMs, we employ QLoRA (Hu

et al., 2022; Dettmers et al., 2023), a Parameter
Efficient Fine-Tuning method (Mangrulkar et al.,
2022) that allows training with significantly fewer
parameters. Additionally, we apply a 4-bit quanti-
zation to reduce memory usage while maintaining
16-bit precision during computation.

We provide two distinct metrics to evaluate our
MT models. The first metric is the BLEU score
computed using sacrebleu (Post, 2018). It reflects
the degree of lexical matches (number of common
n-grams) between the proposed translation and its
corresponding reference. The second metric is the
COMET score 7 (Rei et al., 2022). It is computed
from a trained model and reflects translation quality
between translation, reference, and also the source
sentence. According to the metric ranking pre-
sented in Freitag et al. (2022), we rely more on the
COMET score than on the BLEU score.

Table 1 showcases the results of our first experi-
ment. In this table, we report BLEU and COMET
scores of the five selected LLMs on both the dev
and test sets of the Libri-trans dataset.
7https://huggingface.co/Unbabel/wmt22-comet-da

The table highlights three models, Mistral-7B-
v0.1, Mistral-7B-Instruct-v0.2, and TowerBase-7B-
v0.1, that attain high BLEU and COMET scores.
They obtain COMET scores ranging from 72.1 to
73.8 on the dev set and from 71.9 to 72.9 on the
test set. Additionally, their BLEU scores ranged
from 16.0 to 24.0 on the dev set and from 16.7 to
20.6 on the test set. While COMET scores are not
meant to be interpretable (but enable the compar-
ison between models), BLEU scores indicate, on
average, a translation that is more or less clear with
numerous grammatical errors. These low BLEU
scores are comparable to performances of previous
works on this dataset (Zhao et al., 2021; Brazier and
Rouas, 2024) and are mainly caused by the nature
of the data (audiobooks with literary vocabulary).

Also, it is worth noting that two models,
TowerInstruct-7B-v0.2 and ALMA-7B-R, exhibit
poor performances in MT when fine-tuned on Libri-
trans. In the case of ALMA-7B-R, this can be ex-
plained by the fact that French is not among the
languages included in the data used to pre-train the
model. Thus, the model fails at predicting French
text.

As additional training information, all LLMs
have obtained their optimal state in a maximum of
5 epochs. This represents a training time of 3 hours
on a GPU NVIDIA A100 for each model. This
fast fine-tuning time is due to QLoRA and 4-bit
quantization strategies.

To summarize, the best machine translation per-
formances were achieved with the TowerBase-7B-
v0.1. This LLM serves as a baseline and foundation
model for the following experiment.

3.2 Fine-tuning LLMs with Emotion
The second experiment aims at observing the
behavior of our LLM-based TowerBase-7B-v0.1
model on the task of English-to-French Machine
Translation when emotion information is added to
the prompt before translation.

As a first step, we estimate the emotion of each
English recording present in the Libri-trans dataset.
Following the same methodology as Brazier and
Rouas (2024), we compute dimensional emotion
values for arousal, dominance, and valence with
the help of a trained SER model (Wagner et al.,
2023). Emotion values range between 0 and 1 and
are correctly balanced (medians between 0.4 and
0.6, see Brazier and Rouas (2024)).

As a second step, we create specific prompts that
include the emotion information in the text. For
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this purpose, we propose 3 different templates. The
first template adds emotion information before the
source sentence:

English <status> <emotion>: <src txt> \n French: <tgt txt>

(3)
where status is replaced by either with or without
if the emotion value is higher or lower than 0.5
respectively, emotion is replaced by either arousal,
dominance, or valence, src txt represents the
English source sentence, and tgt txt represents
the French target translation.

The second template adds emotion information
before the target sentence:

English: <src txt> \n French <status> <emotion>: <tgt txt>

(4)
The third template is inspired from Brazier and

Rouas (2024), where emotion information is added
as a discrete token at the start of the source sen-
tence:

English: [<emotion> <polarity>] <src txt> \n French: <tgt txt>

(5)
where polarity is replaced by either positive or
negative if the emotion value is higher or lower
than 0.5 respectively.

In this experiment, the TowerBase-7B-v0.1
model is retrained from its initial state and not
from the training checkpoint obtained after the pre-
vious experiment. In the following, all models ob-
tain their best performances in less than 5 training
epochs.

Table 2 showcases the results of our second ex-
periment. It reports BLEU and COMET scores of
the selected TowerBase-7B-v0.1 model on the dev
and test sets of the Libri-trans dataset under differ-
ent configurations. The first line mentions the score
of the LLM obtained in the previous experiment
and serves as a baseline for the second experiment.
The other lines correspond to the model trained
with different emotions (arousal, dominance, or va-
lence), and with different prompts (the numbers 3,
4, and 5 refer to their equation number).

We first remark that, except in the case of dom-
inance5, all COMET scores improved, compared
to their baseline. This reflects a better translation
quality when adding emotion information to the
prompts. The best COMET scores are obtained
when arousal information is added to the prompt
using Equation 3. In this configuration, COMET
scores are increased by +1.1 and +1.4 for the dev
and test sets of Libri-trans respectively.

Model BLEU COMET
dev test dev test

TowerBase 24.0 20.6 73.8 72.9
+arousal3 22.1 21.8 74.9 74.3
+arousal4 25.6 24.1 74.8 73.9
+arousal5 19.3 19.2 74.2 73.4
+dominance3 19.9 19.4 74.4 73.5
+dominance4 18.9 20.9 74.9 74.0
+dominance5 16.5 20.1 73.4 73.0
+valence3 21.5 18.9 74.1 73.5
+valence4 18.3 21.2 74.6 73.9
+valence5 17.2 16.0 74.5 73.6

Table 2: BLEU and COMET scores of the TowerBase
model on dev and test sets of Libri-trans. First line:
baseline score. Other lines: score when trained with
emotion in the prompt.

Secondly, we observe that BLEU scores show
improvements only for specific models. The best
BLEU scores are obtained when arousal informa-
tion is added to the prompt using Equation 4. In
this configuration, BLEU scores increase by +1.6
and +3.5 for the dev and test sets of Libri-trans
respectively. However, due to the low ranking of
BLEU (Freitag et al., 2022), we do not conduct
further analysis based on this metric.

In summary, incorporating emotion information
into the translation process appears to enhance
translation quality. The highest scores are achieved
when utilizing the arousal dimension with Equa-
tion 3 or 4. This finding aligns with the results
reported in Brazier and Rouas (2024).

4 Conclusion

We proposed a new MT pipeline that combines
an LLM-based model and emotion information
extracted from a SER model to improve trans-
lation performances. We obtain the best perfor-
mances when the arousal value is added to the LLM
prompt.

As future work, we will apply our method
to other multilingual datasets including Must-C
(Di Gangi et al., 2019). Unlike the Libri-trans
dataset, which consists of literary text read by
speakers, Must-C encompasses various speech
types, such as TED talks, which can offer more
emotional variability and therefore further enhance
translation performance. We also plan to extend
our method to the speech-to-text task, also known
as Speech translation.
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Abstract

This paper reports the NYA’s submissions to
IWSLT 2024 Offline Speech Translation (ST)
task on the sub-tasks including English to Chi-
nese, Japanese, and German. In detail, we par-
ticipate in the unconstrained training track us-
ing the cascaded ST structure. For the auto-
matic speech recognition (ASR) model, we use
the Whisper large-v3 model. For the neural ma-
chine translation (NMT) model, the wider and
deeper Transformer is adapted as the backbone
model. Furthermore, we use data augmenta-
tion technologies to augment training data and
data filtering strategies to improve the quality
of training data. In addition, we explore many
MT technologies such as Back Translation, For-
ward Translation, R-Drop, and Domain Adapta-
tion. Moreover, our model is a one-to-many ST
system that utilizes flags for different tasks. Ex-
perimental results on the tst2022 test set demon-
strate that our model achieves 36.37, 20.92, and
24.28 BLEU in En2Zh, En2Ja, and En2De, re-
spectively.

1 Introduction

The Offline Speech Translation (ST) Task trans-
lates the source audio into target text. Currently,
there are two leading solutions for ST. The first
is the traditional cascade system (Matusov et al.,
2005a), which decouples the ST task into an auto-
matic speech recognition (ASR) and a neural ma-
chine translation (NMT) task. In the traditional cas-
cade system, when translating, the source speech
is recognized into source text, and then the NMT
model is used to translate the source text into target
text. However, it often leads to higher architectural
complexity and error propagation (Duong et al.,
2016), affecting subsequent NMT tasks. In order
to alleviate this problem, the end-to-end (E2E) ST
architecture (Bérard et al., 2016) is proposed. The
E2E ST combines ASR and NMT modeling to es-
tablish the map between the source audio and the

target text.
For the E2E ST architecture, one disadvantage

is the lack of parallel training data. For the tradi-
tional cascade ST system, sufficient training can
obtain high-accuracy ASR and MT systems due
to the large ASR and MT datasets. Therefore, the
traditional cascade ST system generally achieves
better performance than the E2E ST. At the same
time, in the recent offline track of IWSLT evalua-
tion (Anastasopoulos et al., 2021, 2022; Agarwal
et al., 2023), we can see that the cascade ST system
is better than the E2E ST system. Thus, in this
work, we use the traditional cascaded ST scheme.

Specifically, in the ASR task, we directly adopt
the Whisper (Radford et al., 2023) large-v3 model,
which can achieve a strong comprehensive ASR
performance. We also explore sharding strategies,
such as Supervised Hybrid Audio Segmentation
(SHAS) (Tsiamas et al., 2022), to segment the
source audio for better ST results. In the MT task,
we use the Transformer architecture (Vaswani et al.,
2017) as the backbone model. To ensure the MT
model is fully trained, we meticulously collect a
large amount of parallel data and monolingual data
from various data sources. Furthermore, we delve
into many MT technologies such as Back Transla-
tion (Sennrich et al., 2016), Forward Translation,
R-Drop (Wu et al., 2021), Domain Adaptation, and
Ensemble (Ganaie et al., 2022). Moreover, we com-
pare the two solutions: one-to-one and one-to-many
ST, and we find that one-to-many is better.

Through the above explorations, our model fi-
nally achieves good ST performance. In detail,
experimental results on the tst2022 test set demon-
strate that our model achieves 36.37, 20.92, and
24.28 BLEU in En2Zh, En2Ja, and En2De, respec-
tively.

The rest of this paper is organized as follows.
Section 2 describes the datasets and data pre-
processing. Section 3 describes our speech transla-
tion system, which includes ASR and MT models.
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Corpus En2Zh En2Ja En2De
CoVoST (Wang et al., 2020) 171K 191K 220K
MuST-C v3 (Cattoni et al., 2021) 296K 251K 238K
NewsCommentary (Tiedemann, 2012) 400K - 345K
OpenSubtitles (Lison and Tiedemann, 2016) 4.9M 832K 12M
Tatoeba (Tiedemann, 2012) - 193K 302K
GigaST (Ye et al., 2023) 6.2M - 6.3M
JParaCrawl (Morishita et al., 2020) - 6.4M -
Total 12M 8.2M 19.5M

Table 1: Data statistics on MT datasets.

Section 4 reports the experimental results. Finally,
we conclude in Section 5.

2 Dataset

2.1 Text Data

The dataset used for machine translation is shown
in Table 1, which contains both speech-to-text-
parallel and text-parallel data types of all language
pairs allowed by IWSLT 2024. Additionally, we
employ the GigaST dataset to expand our text train-
ing data. sBERT (Reimers and Gurevych, 2019,
2020) is used for calculating sentence representa-
tions. We compute sentence embeddings for all
parallel text data and remove sentences pairs that
lower than 0.7 cosine similarity. The data statistics
in table represent the number of sentences remain-
ing in each dataset after sBERT filtering.

2.2 Data pre-processing

We perform the following preprocessing steps to
filter all text-parallel data:

• Remove empty sentences and duplicate sen-
tences.

• Remove sentences containing invalid charac-
ters and HTML tags.

• Remove sentences longer than 200 tokens or
shorter than 3 tokens.

• Remove sentences with unbalanced source-
target token ratio.

• Remove sentences with too much punctuation.

• Remove sentences where the source or target
language constitutes a low percentage.

• Remove sentences with mismatched punctua-
tion marks, such as quotation marks.

Then we apply mosesdecoder toolkits1 (Koehn
et al., 2007) for punctuation, space and case nor-
malization. The sentences are then tokenized us-
ing joint SentencePiece model (SPM) (Kudo and
Richardson, 2018). The vocabulary size of joint
SPM is about 130,000, with 40k in English, 40k in
Chinese, 30k in German, and 20k in Japanese, both
source and target side share the same dictionary.

3 Speech translation system

3.1 ASR model

Whisper2 (Radford et al., 2023) is an excellent mul-
tilingual ASR system trained on 680,000 hours of
multilingual and multitask supervision data. It still
shows strong robustness in various audio scenes,
such as accent speech and background noise, and
achieves good recognition results. It adopts the
Encoder-Decoder architecture (Dong et al., 2018),
and the training data has an extraordinarily struc-
tured design. In addition, it uses a method similar
to prompt during the training process. The open-
source Whisper models have five sizes of models:
tiny, base, small, medium, and large. It is worth not-
ing that the OpenAI has recently updated the Whis-
per large model to form a more effective large-v3
version model. In this work, we adopt the Whisper
large-v3 version as the ASR part of our ST system.

3.2 MT model

3.2.1 Model structure
We adopt Transformer model (Vaswani et al., 2017)
to build our machine translation system and imple-
mente them on Fairseq toolkits (Ott et al., 2019).
More specifically, we adopt a wider and deeper
Transformer model which contains 18-layer en-
coder, 6-layer decoder, 16 self-attention heads and

1https://github.com/moses-smt/mosesdecoder
2https://github.com/openai/whisper
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Language Raw data Filter data
Chinese 22M 9M
Japanese 30M 15M
English 8M 4.1M

Table 2: Data statistics on monolingual corpus.

FFN with 4096 dimensions. We utilize all pro-
vided parallel data from three language directions
(En2Zh, En2De, En2Ja) for model training, and
derived a one-to-many MT model.

3.2.2 R-Drop
The Dropout method (Srivastava et al., 2014; Gao
et al., 2022) is an influential strategy for the regular-
ization of deep neural networks. While it enhances
the efficacy of the training process, the stochastic
nature of dropouts might result in discrepancies be-
tween the training and inference phases. R-Drop, as
introduced by Wu et al. (2021), ensures consistency
among the output distributions of the sub-models
generated by dropout. To enhance the consistency
within our model, we implement the R-Drop algo-
rithm and set weight factor α to 5. Consequently,
the R-Drop training strategy significantly improves
the performance of our baseline model.

Furthermore, when using the R-drop mecha-
nism to train models, the model computation in-
creases exponentially, which will consume more
training time and GPU resources. Given the limi-
tation of time and resources, we adopt it solely for
our foundational model, and integrate the R-Drop-
augmented model into ST system by using model
ensemble approach during the evaluation stage.

3.2.3 Data Augmentation
Previous works (Edunov et al., 2018) has demon-
strated that the incorporation of synthetic data can
significantly enhance the efficacy of machine trans-
lation systems. We implement following data aug-
mentation methodologies to further refine our trans-
lation models.

Forward translation (FT) is a process of trans-
forming source language into target language using
MT model. On the contrary, backward translation
(BT) (Sennrich et al., 2016) is the translation of
target language back into source language, forcing
the model to learn a more robust representation of
the source language. Both methods use additional
monolingual resources to create bilingual data.

As shown in Table 2, we select 22M sentences
of Chinese, 8M sentences of English and 30M sen-

Figure 1: The iterative updating process for FT and BT
model.

tences of Japanese of monolingual data from public
datasets, such as Common Crawl and News Crawl
corpus. Moreover, to make our MT model have
better results in ACL scenarios, we adopt the sci-
entific English monolingual corpus from Rohatgi
et al. (2023). After data pre-processing pipeline
mentioned above, approximately 40%-50% of the
sentences from the original data are retained for
each language. BT model is trained separately for
each language pair, and then the monolingual data
is used for backward translation. We employ an
iterative forward-backward translation approach
to progressively enhance the translation quality of
both the FT model and BT model. As shown in
figure 1, the FT model and BT model generated
pseudo-labels target’ and source’ respectively. We
mix them with labelled text pairs (source, target) to
update our BT model and FT model. As the BLEU
scores of BT model increased, the positive impact
of the back-translated data on the FT model also
becomes more pronounced.

When using data generated by BT model, we re-
fer to the tagged BT method (Caswell et al., 2019),
adding a special token <BT> at the beginning of
source sentence.

We also convert numerical expressions in En-
glish sentences into forms that more closely match
the ASR transcription results, e.g., converting ’21’
to ’twenty-one’, ’2018’ to ’two thousand and eigh-
teen’. Additionally, we randomly discard punctua-
tion marks within sentences to enable the model to
generalize well across varying punctuation styles.
These transformed sentences are merged with the
original sentences to obtain an augmented dataset.

3.2.4 Domain adaptation
Considering the quality of machine translation
models is easily influenced by specific domain, we
also select in-domain data and fine-tune the model
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System En2Zh En2Ja En2De
1 Baseline model 35.04 18.75 23.14
2 + R-drop 35.67 19.36 23.71
3 + GigaST 35.42 19.21 23.70
4 + Backward translation 35.71 19.77 23.94
5 + Domain adaptation 35.44 19.90 23.97

Ensemble(2,4) 36.33 20.90 24.26
Ensemble(2,4,5) 36.37 20.92 24.28

Table 3: Main results with BLEU scores on IWSLT tst2022 datasets

System En2Zh En2Ja
one-to-one 32.77 18.38
one-to-many 35.04 18.75

Table 4: BLEU scores on IWSLT tst2022 datasets (one-
to-one vs. one-to-many ST)

System En2Zh En2Ja En2De
Baseline 35.42 19.21 23.70

+ BT-Ja 35.37 19.71 24.00
+ BT-Zh 35.71 19.77 23.94

Table 5: BLEU scores on IWSLT tst2022 datasets with
different BT data

to enhance in-domain performance. We use MUST-
C data (Cattoni et al., 2021) as domain-specific
dataset to train monolingual language models sep-
arately, and then use them to score all language
pairs. We set specific thresholds to filter parallel
data closer to the domain, with higher scores im-
plying better quality, and train incrementally to get
domain-specific model. The filtered in-domain data
is about 5-10% of the total data.

3.2.5 ASR output adaptation
For ST dataset, we use ASR models to transcribe
the audio data and replace their source side label
with ASR recognition results, and finally obtain an
augmented dataset containing ASR noise. ASR
model may produce incorrect transcriptions for
words with similar pronunciations, which, despite
reducing the quality of MT training dataset, also
bolster the robustness of the ST system. For this
part of data, we also add a special tag <ASR> at the
beginning of source sentence.

4 Experiments and results

All models are implemented on Fairseq toolkits
(Ott et al., 2019) and trained on four NVIDIA A100
GPUs. The IWSLT test sets of tst2022 are used

to evaluate the translation performance at sentence
level. The mwerSegmenter toolkit3 (Matusov et al.,
2005b) is used to resegment and align translation
results and then SacreBLEU4 (Post, 2018) is used
to compute BLEU scores. For the Japanese text,
tokenization is performed using the Mecab, while
for the Chinese text, tokenization is executed at
character level. We apply SHAS5 (Tsiamas et al.,
2022) for audio segmentation and try a variety of
combinations for min and max segment length, the
optimal parameters is 5-30 secs for TED domain.

The table 4 presents a comparative analysis be-
tween the one-to-one and the one-to-many systems,
specifically their performance on En2Zh and En2Ja.
In the one-to-one system, each source language cor-
responds to only one target language, with BLEUs
of 32.77 in En2Zh and 18.38 in En2Ja. In the
one-to-many system, a source language text can
correspond to multiple target language texts. The
system trains data from English to three target
languages (En2Zh , En2Ja , En2De) simultane-
ously and distinguishes the target language type by
adding <zh>/<ja>/<de> tags. The performance
of the one-to-many system improves to 35.04 in
En2Zh and 18.75 in En2Ja. These scores indicate
that one-to-many system outperforms the one-to-
one system.

For the one-to-many system in Table 3, we first
train a baseline model with all constrained data. We
find that introducing R-drop mechanism positively
affects model performance. Then, we add GigaST
dataset for incremental training, which enriches the
data diversity but also leads to a dramatic increase
in the training data. We observe that as the amount
of training data increases, R-drop no longer ben-
efits model performance while consuming more
training time, so we remove the R-drop mechanism

3https://www-i6.informatik.rwth-aachen.de/web/
Software/mwerSegmenter.tar.gz

4https://github.com/mjpost/sacrebleu
5https://github.com/mt-upc/SHAS
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in subsequent stages.

In the forth stage, we collect monolingual data
in Chinese and Japanese and perform back transla-
tion. As shown in table 5, the model performance
is incrementally enhanced by incorporating back
translation data into training dataset. Specifically,
after adding BT-Ja data, the BLEU score for En2Ja
improves significantly from 19.21 to 19.71, while
En2Zh slightly decreases to 35.37. The addition of
BT-Zh data enhances En2Zh to 35.71 and En2Ja
to 19.77. Notably, although no BT data is added
for En2De, its BLEU score still improves by 0.24,
demonstrating a positive impact of back translation
data on the overall model performance. Finally,
domain adaptation brings some improvements in
En2Ja and En2De.

Finally, we integrate the baseline model, which
is enhanced by the R-drop mechanism, with fine-
tuned models that leverage additional data, back-
ward translation, and adaptation techniques. The
ensemble of model (2, 4) achieves notable improve-
ments, with BLEU scores of 36.33 for En2Zh,
20.90 for En2Ja, and 24.26 for En2De. Further-
more, the ensemble of model (2, 4, 5) slightly
surpasses the ensemble of model (2, 4), reaching
scores of 36.37 for En2Zh, 20.92 for En2Ja, and
24.28 for En2De. This indicates the effectiveness
of model ensemble in boosting translation quality.

5 Conclusion

This paper describes our submission to the
IWSLT24 offline speech translation task. We col-
lect a large amount of parallel and monolingual
data from the public data sources and adopt the
traditional cascade ST architecture for the uncon-
strained training track. For the ASR model, we
use the excellent Whisper large-v3 model, which is
trained on 680,000 hours of multilingual and multi-
task supervision data. It shows strong robustness
in various audio scenes. For the MT model, we ex-
plore a wider and deeper Transformer model using
Fairseq tookit. To make the model fully trained, we
carefully experiment many MT technologies, such
as Back Translation, Forward Translation, Domain
Adaptation, and R-Drop. Experimental results on
the tst2022 test set show that our model achieves
36.37, 20.92, and 24.28 BLEU in En2Zh, En2Ja,
and En2De, respectively.
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Abstract

This paper presents HW-TSC’s submission to
the IWSLT 2024 Offline Speech Translation
Task and Speech-to-Speech Translation Task.
The former includes three translation directions:
English to German, English to Chinese, and En-
glish to Japanese, while the latter only includes
the translation direction of English to Chinese.
We attend all three tracks (Constraint train-
ing, Constrained with Large Language Mod-
els training, and Unconstrained training) of of-
fline speech translation task, using the cascade
model architecture. Under the constrained train-
ing track, we train an ASR model from scratch,
and then employ R-Drop and domain data selec-
tion to train the NMT model. In the constrained
with Large Language Models training track,
we use Wav2vec 2.0 and mBART50 for ASR
model training initialization, and then train
the LLama2-7B-based MT model using con-
tinuous training with sentence-aligned parallel
data, supervised fine-tuning, and contrastive
preference optimization. In the unconstrained
training track, we fine-tune the whisper model
for speech recognition, and then ensemble the
translation results of NMT models and LLMs
to produce superior translation output. For the
speech-to-speech translation Task, we initially
employ the offline speech translation system
described above to generate the translated text.
Then, we utilize the VITS model to generate
the corresponding speech and employ the Open-
Voice model for timbre cloning.

1 Introduction

Recent advances in deep learning allow us to ad-
dress traditional NLP tasks in a new and signifi-
cantly different manner. One such task is speech
translation, involving automatic speech recognition
(ASR) (Gulati et al., 2020) system and machine
translation (MT) (Vaswani et al., 2017) system.
Another task is speech-to-speech translation (S2S),
which involves ASR system, MT system, and text-
to-speech (TTS) (Ren et al., 2020) system. Recent

trends tend to utilize a single neural network to
directly translate input speech from one language
to text or speech in another language, bypassing
intermediate symbolic representations. The results
shows that the performance of end-to-end models
is nearing that of cascade solutions, but the effec-
tiveness comparison between the two technologies
remains unclear. Both methods face specific chal-
lenges. The primary challenge with the end-to-end
approach is the lack of training data, while the cas-
cade method has to go through the ASR, MT and
even TTS processes, leading to the errors accumu-
lation. Due to the data insufficiency in end-to-end
training, We ultimately chose the cascade approach
on the IWSLT 2024 offline speech translation task
and speech-to-speech translation task.

For the IWSLT offline speech translation task,
we apply different training strategies across the
three tracks, adapting to diverse data and model
conditions. In the constrained training track, we ini-
tiate training with an ASR model from scratch, fol-
lowed by the utilization of R-Drop (Wu et al., 2021)
and domain data selection (Wang et al., 2019b)
techniques to train the NMT model. Within the
constrained with Large Language Models (LLMs)
training track, we commence ASR model training
initialization using Wav2vec 2.0 (Baevski et al.,
2020) and mBART50 (Tang et al., 2020). Sub-
sequently, we train the LLama2-7B-based (Tou-
vron et al., 2023) MT model through continual
pre-training with sentence-aligned parallel data
(Guo et al., 2024), supervised fine-tuning (Xu
et al., 2023), and contrastive preference optimiza-
tion (CPO) (Xu et al., 2024). In the unconstrained
training track, we fine-tune the whisper model
(Radford et al., 2023) for speech recognition, and
then ensemble (Farinhas et al., 2023) the transla-
tion outputs of NMT models and LLMs to gen-
erate superior translation result. For the IWSLT
S2S translation task, we initially employ the of-
fline speech translation system described above to
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generate the translated text. Next, we utilize the
VITS (Kim et al., 2021) model to generate the cor-
responding speech and employ the OpenVoice (Qin
et al., 2023) model for timbre cloning.

In comparison to last year, our cascade offline
speech translation system and S2S translation sys-
tem is performing significantly better, particularly
following translation hypothesis ensembling with
NMT models and LLMs.

2 Datasets and Preprocessing

2.1 ASR Data

There are six different datasets used in the training
of our ASR models, such as MuST-C V2 (Cat-
toni et al., 2021), LibriSpeech (Panayotov et al.,
2015), TED-LIUM 3 (Hernandez et al., 2018),
CoVoST 2(Wang et al., 2020), VoxPopuli (Wang
et al., 2021), Europarl-ST (Iranzo-Sánchez et al.,
2020), as described in Table 1. We use the exactly
same data processing strategy to train our ASR
models following the configuration of (Wang et al.,
2022). We extend one data augmentation method
(Zhang et al., 2022): adjacent voices are concate-
nated to generate longer training speeches. Tsiamas
et al. (2022) propose Supervised Hybrid Audio Seg-
mentation (SHAS), a method that can effectively
learn the optimal segmentation from any manually
segmented speech corpus. In the test phase, we use
SHAS to split long audios into shorter segments.

Dataset Duration(h)
LibriSpeech 960
MuST-C 590
CoVoST 1802
TEDLIUM3 453
Europarl 161
VoxPopuli 1270

Table 1: Data statistics of ASR corpus.

2.2 MT Data

We use the same data processing strategy following
(Wu et al., 2023) to extract our MT data from the
officially available text-parallel and speech-to-text-
parallel data. Table 2 illustrates the bilingual data
sizes after labse filtering (Feng et al., 2022) and
domain selection (Wang et al., 2019b).

language pairs en2de en2ja en2zh
Clean Data 5.8M 5.6M 2.2M
Domain Data 0.4M 0.4M 0.4M

Table 2: Bilingual data sizes of MT corpus.

3 ASR Model

3.1 Constrained training

In this track, we train the constrained ASR model
using the Conformer (Gulati et al., 2020) and U2
(Zhang et al., 2020) model architectures. The
first model is standard auto-regressive ASR mod-
els built upon the Transformer architecture. The
last one is a unified model that can perform both
streaming and non-streaming ASR, supported by
the dynamic chunking training strategy. The model
configurations are as follows:

1) Conformer: The encoder is composed of 2
layers of VGG and 16 layers of Conformer, and the
decoder is composed of 6 layers of Transformer.
The embedding size is 1024, and the hidden size of
FFN is 4096, and the attention head is 16.

2) U2: Two convolution subsampling layers with
kernel size 3*3 and stride 2 are used in the front of
the encoder. We use 12 Conformer layers for the
encoder and 6 Transformer layers for the decoder.
The embedding size is 1024, and the hidden size of
FFN is 4096, and the attention head is 16.

During the training of ASR models, we set the
batch size to the maximum of 20,000 frames per-
card. Inverse sqrt is used for lr scheduling with
warm-up steps set to 10,000 and peak lr set as 5e-4.
Adam is used as the optimizer. All ASR models
are trained on 8 NPUs for 100 epochs. Parameters
for last 5 epochs are averaged. Audio features are
normalized with utterance-level CMVN for Con-
former, and with global CMVN for U2. All audio
inputs are augmented with spectral augmentation
(Park et al., 2019), and Connectionist Temporal
Classification (CTC) is added to make the model
converge better.

3.2 Constrained with LLMs training

LLM is currently the mainstream method in the
field of artificial intelligence. In ASR, the pre-
training model has been proved to be an effective
means to improve the quality, especially the mod-
els such as wav2vec (Schneider et al., 2019) and
Hubert (Hsu et al., 2021) have been proposed in
recent years. Li et al. (2020) combine the encoder
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of wav2vec2 (Baevski et al., 2020) and the decoder
of mBART50 (Tang et al., 2020) to fine-tune an
end2end model. We also adopt a similar strategy,
but combine the encoder of wav2vec2 and the de-
coder of mBART50 to fine-tune an ASR model
(w2v2-mBART). Due to the modality mismatch be-
tween pre-training and fine-tuning, in order to bet-
ter train cross-attention, we freeze the self-attention
of the encoder and decoder. We first use all the
constrained data for fine-tuning, and only use the
MUST-C data after 30 epochs of training.

3.3 Unconstrained training

Whisper (Radford et al., 2023) is an automatic
speech recognition (ASR) system trained on
680,000 hours of multilingual and multitask su-
pervised data collected from the web. It show that
the use of such a large and diverse dataset leads to
improved robustness to accents, background noise
and technical language. The Whisper architecture
is a simple end-to-end approach, implemented as an
encoder-decoder Transformer. Even though it en-
ables transcription in multiple languages, we only
use its speech recognition feature, transcribing au-
dio files to English text. In this task, we use it as a
pre-trained model, and use the MUST-C dataset for
fine-tuning to improve its performance in specific
domains. We trained for 2 epochs with a small
learning rate of 10e-6.

4 MT Model

4.1 Constrained training

Transformer stands as the state-of-the-art model
in recent machine translation evaluations. Re-
search to enhance this model type is divided into
two main avenues: one focuses on using wider
networks (e.g., Transformer-Big) (Vaswani et al.,
2017), while the other emphasizes deeper language
representations (e.g., Deep Transformer (Wang
et al., 2017, 2019a)). Under the constrained condi-
tions, we combine these two improvements, adopt
the Deep Transformer-Big model structure, and
utilize the clean bilingual data filtered by the
labse model (Feng et al., 2022) to train the NMT
model from scratch. The primary features of Deep
Transformer-Big include pre-layer normalization,
a 25-layer encoder, a 6-layer decoder, 16-head self-
attention, 1024-dimensional embedding, and 4096-
dimensional FFN embedding.

To regularize the training of NMT and alleviate
the inconsistency between training and inference

caused by the randomness of dropout(Srivastava
et al., 2014; Gao et al., 2022), we introduce R-
Drop(Wu et al., 2021), which forces the output
distributions of different sub-models generated by
dropout to be consistent with each other.

Since the quality of the translation model is eas-
ily affected by the domain, we try to select domain-
related data to incrementally train the model. We
adopted the domain adaptation strategy by (Wang
et al., 2019b). The strategy uses a small amount
of in-domain data to tune the base model, and then
leverages the differences between the tuned model
and the base to score bilingual data. The score is
calculated based on formula 1.

score =
logP (y|x; θin)− logP (y|x; θbase)

|y| (1)

Where θbase denotes the base model; θin denotes
the model after fine-tuning on a small amount of
in-domain data, and |y| denotes the length of the
sentence. Higher score means higher quality.

Specifically, we use TED and MUST-C data as
in-domain data. We score all the training bilingual
data through Equation 1, and filter out 80% - 90%
of the data according to the score distribution. We
use the remaining 0.4M in-domain data to continue
training on the previous model.

In the training of NMT models, each model un-
dergoes training utilizing 8 NPUs. The batch size
remains fixed at 6144, the update frequency is 2,
the dropout is 0.1, and the learning rate is main-
tained at 5e-4. A total of 4000 warmup steps are
executed, and the model is saved every 2000 steps.
Additionally, λ is set to 5 for R-Drop.

4.2 Constrained with LLMs training
Generative LLMs have made significant strides in
various NLP tasks. However, these advancements
have not fully translated to translation tasks, partic-
ularly for medium-sized models, which still trail be-
hind traditional supervised encoder-decoder trans-
lation models. Previous studies have attempted
to enhance the translation ability of these LLMs
through prompt translation (Zhang et al., 2023;
Moslem et al., 2023), but the improvements re-
main limited. Fortunately, recent research is mak-
ing more progress through supervised fine-tuning
(SFT) (Zeng et al., 2024), and showing that it is pos-
sible to break away from the reliance on massive
amounts of parallel data that traditional translation
models typically require.
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Translate this from [source language] to [target language]:
[source language]: <source_sentence>
[target language]:

Figure 1: The translation prompt used for training and evaluation. [source language] and [target language] represent
the full name of the language written in English format, e.g., Translate this from English to Chinese.

Among the officially designated LLMs, we opt
to perform MT tasks based on the Llama2-7B base
model. To enhance the cross-lingual capability of
Llama2-7B, we first adopt the method of contin-
ual pre-training with sentence-aligned parallel data
(Guo et al., 2024). We construct the data for this
format from the clean data listed in Table 2.

Since Guo et al. discovered that constructing
translation instruction written in the source lan-
guage notably improves performance. We then use
the domain data to construct a dataset of transla-
tion instructions in English format, and leverage
this source-language consistent instruction for SFT.
The translation prompt used for training and evalu-
ation is shown in Figure 1.

Finally, we introduce CPO (Xu et al., 2024),
which trains the model to avoid producing ade-
quate but imperfect translations. To generate the
triplet data, we additionally fine-tune a relatively
small LM (BLOOM (Shoeybi et al., 2019)) and
generate the output for each instance using a sim-
ple sampling strategy. With examples of correct
and incorrect translations, the model is optimized
to distinguish high-quality translations.

During the fine-tuning of LLMs, We adopt LoRA
(Hu et al., 2021) method to fine-tune the LLM on
8 NPUs. The epoch size is 1, the batch size is 128,
the maximum text length is 512, and the learning
rate is 2e-3. Additionally, the weight decay is 0.01.

4.3 Unconstrained training

LLMs are becoming a one-fits-many solution, but
they sometimes hallucinate or produce unreliable
output. In the unconstrained track, we utilize
translation hypothesis ensembling with NMT mod-
els and LLMs (Farinhas et al., 2023). First, we
gather translation hypotheses from various NMTs
and LLMs. Next, we utilize the external model
COMET (Rei et al., 2022) to select the optimal re-
sult. This involves calculating the average COMET
score between each translation hypothesis and the
other hypotheses to determine its quality score.
Subsequently, we choose the translation hypothesis
with the highest quality score as the best result.

5 TTS Model

Several recent end-to-end TTS models enabling
single-stage training and parallel sampling have
been proposed, but their sample quality does not
match that of two-stage TTS systems. VITS (Kim
et al., 2021) is a parallel end-to-end TTS method
that generates more natural sounding audio than
current two-stage models. The method adopts
variational inference augmented with normalizing
flows and an adversarial training process, which
improves the expressive power of generative mod-
eling. In the S2S translation system, we first use the
speech translation system to generate the transla-
tion text, and then use the VITS model to generate
the corresponding speech.

To improve the similarity of synthesized audio’s
timbre to that of the source language audio, we also
use OpenVoice (Qin et al., 2023) model for timbre
cloning. It is a versatile voice cloning approach that
requires only a short audio clip from the reference
speaker to replicate their voice and generate speech
in multiple languages.

6 Experiments and Results

The only difference between our S2S translation
system and speech translation system is the addi-
tion of TTS and timbre cloning modules. Since we
did not perform additional training on these two
modules, we only present the experimental results
of the speech translation system.

We utilize the open-source fairseq (Ott et al.,
2019) for training the NMT model, the open-source
ALMA (Xu et al., 2023) for fine-tuning LLM
model. We assess the ASR models using the word
error rate (WER) and evaluate the MT models us-
ing case-sensitive SacreBLEU (Post, 2018) and
COMET scores. Our ASR system is evaluated on
the test sets of tst-COM, while our MT system is
evaluated on the test sets of tst-COM and tst2022.

Table 3 presents our final evaluation results for
three language pairs across the constrained training,
constrained with LLM training, and unconstrained
training tracks. As the final evaluation result shows,
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en2de en2ja en2zh
Cascade System BLEU COMET BLEU COMET BLEU COMET
Constrained 33.64 0.7762 19.19 0.7992 34.77 0.8046
Constrained with LLMs 22.55 0.7646 15.70 0.8253 32.66 0.8230
Unconstrained 33.18 0.7925 18.46 0.8325 33.76 0.8358

Table 3: BLEU and COMET of speech translation on tst-2022 test set.

the cascade system based on the NMT model per-
form better in the BLEU metric, while the cascade
system based on the LLM model perform better in
the COMET metric. When ensembling the transla-
tion results of both NMT and LLM, the cascade sys-
tem is performing well in both BLEU and COMET.

6.1 ASR Results

We compare the results of different model architec-
tures, the overall experimental results about ASR
is described in Table 4. We evaluated our system
on tst-COM test set. For long audio in the test set,
we use SHAS for segmentation. We calculate the
WER after the reference and hypothesis are lower-
cased and the punctuation is removed. In Table 4,
all ASR systems achieve good performance, and
the results are relatively close.

ASR System tst-COM
Conformer 5.3
U2 6.1
w2v2-mBART 4.9
Whisper 4.5
Whisper fine-tuning 4.3

Table 4: WER of ASR on tst-COM test set.

6.2 MT Results

When evaluating the MT model, we use the Whis-
per fine-tuning model transcription results as the
source text. Since the NMT model performs well
on BLEU, we are using BLEU to evaluate the per-
formance of the NMT model at each stage on the
tst-COM test set. While the LLM model performs
well on COMET, we are using COMET to evaluate
the performance of the LLM model at each stage
on the tst-2022 test set.

Table 5 is illustrating the BLEU of the NMT
model being trained in each phase on the tst-COM
test set. These results highlight the importance of
employing the domain data selection method to
carefully choose domain-specific data for further
fine-tuning the model to facilitate domain adapta-

tion. Following this, we utilize tst-dev as a more
precise domain dataset for additional fine-tuning,
resulting in even greater quality improvements.

NMT System en2de en2ja en2zh
R-Drop baseline 32.65 13.88 27.14
+ Domain data selection 36.33 16.42 27.48
+ tst-dev fine-tuning 38.12 20.05 28.86

Table 5: BLEU of NMT model on tst-COM test set.

Table 6 shows the COMET of the LLM model
fine-tuning at each stage on the tst-2022 test set.
From the results, it becomes evident that the three
methods of continuous training with Interlinear
Text Format Documents, SFT, and CPO are orthog-
onal and can all improve the machine translation
capabilities of LLM.

LLM System en2de en2ja en2zh
Llama2-7B 0.5966 0.6925 0.6934
+ continual pre-training 0.7555 0.8016 0.8141
+ SFT 0.7641 0.8150 0.8220
+ CPO 0.7646 0.8253 0.8230

Table 6: COMET of LLM model on tst-2022 test set.

7 Conclusion

This paper presents our cascade speech translation
system and S2S translation system in the IWSLT
2024 evaluation. We try several ASR model train-
ing strategies and achieve good performance. For
the MT system, we explore two research direc-
tions based on NMT and LLM, and enhanced
them through various technical means. Finally,
we achieve further improvements by ensembling
the translation results of NMT models and LLMs.
For the TTS, we directly use open source models
to generate speech and timbre clones. Our experi-
mental results show that LLM-based ASR and MT
are promising research directions.
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Abstract

This article introduces the process of HW-TSC
and the results of IWSLT 2024 Indic Track
Speech to Text Translation. We designed a
cascade system consisting of an ASR model
and a machine translation model to translate
speech from one language to another. For the
ASR part, we directly use whisper large v3 as
our ASR model. Our main task is to optimize
the machine translation model (en2ta, en2hi,
en2bn). In the process of optimizing the trans-
lation model, we first use bilingual corpus to
train the baseline model. Then we use mono-
lingual data to construct pseudo-corpus data to
further enhance the baseline model. Finally,
we filter the parallel corpus data through the
labse(Feng et al., 2022) filtering method and
finetune the model again, which can further
improve the BLEU score. We also selected
domain data from bilingual corpus to finetune
previous model to achieve the best results.

1 Introduction

This article describes the Indic track speech-to-text
translation task submitted by HW-TSC at IWSLT
2024.

From a system architecture perspective, current
research on speech-to-text translation can be di-
vided into two forms: end-to-end and cascade sys-
tems. Cascade systems usually consist of a speech
recognition (ASR) module and a text-to-text ma-
chine translation (MT) module. Although integrat-
ing these modules may be complex, the results are
still very satisfactory as long as there are sufficient
data resources to train each module. Additionally,
the end-to-end approach can generate translation
results directly from the unified model with speech
input. However, what we need to know is that the
parallel data required to train an end-to-end speech
translation model is extremely scarce.

2 Methods

Our approach ultimately adopts a cascade ap-
proach.

2.1 ASR

In our cascaded system we have whisper-large-v3
as our ASR module. The researchers of Whis-
per(Radford et al., 2023) has scaled up the super-
vised speech recognition dataset from thousands to
680,000 hours. Pretraining on such a large-scale
weakly supervised dataset enables the model to
be applicable to various data types or domains.
Furthermore, Whisper has expanded the scope of
weakly supervised pretraining to include multilin-
gual and multitask scenarios. Therefore, we ul-
timately chose the powerful recognition-capable
Whisper-large-v3 model as our ASR module.

2.2 MT

Our cascade system includes the Transformer
(Vaswani et al., 2017) as the MT module, which has
become a prevalent method for machine translation
in recent years. The Transformer has achieved im-
pressive results, even with a primitive architecture
that requires minimal modification. To improve the
offline MT model performance, we utilize multiple
training strategies.

2.2.1 labse

Language-agnostic BERT Sentence Embedding
(Feng et al., 2022) is an effective parallel corpus
filtering method, which can effectively filter out
high-quality bilingual data. We can use the filtered
high-quality bilinguals and then finetune our model.
Finally, we applied this method to this competition,
which greatly improved the results in the three di-
rections. In this experiment, we get 37 million fil-
tered high-quality bilinguals in the en2ta direction,
55 million filtered high-quality bilinguals in the
en2hi direction, and 43 million filtered high-quality
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bilinguals in the en2bn direction from bilingual
data.

2.2.2 Data Diversification
Data Diversification (DD) (Nguyen et al., 2020)
is a simple but effective strategy to boost neu-
ral machine translation (NMT) (Bahdanau et al.,
2015) performance. It diversifies the training data
by using the predictions of multiple forward and
backward models and then merging them with the
original dataset on which the final NMT model is
trained. This method is more effective than knowl-
edge distillation and dual learning. Finally,

2.2.3 Forward Translation
Forward translation (FT) (Abdulmumin, 2021) uses
source-side monolingual data to improve model
performance. The general procedure of FT involves
three steps: (1) randomly sampling a subset from
large-scale source monolingual data; (2) using a
"teacher" NMT model to translate the subset into
the target language, thereby constructing synthetic
parallel data; and (3) combining the synthetic and
authentic parallel data to train a "student" NMT
model.

2.2.4 Back Translation
Augmenting parallel training data with back-
translation (BT) (Sennrich et al., 2016; Wei et al.,
2023) has been shown effective for improving
NMT using target monolingual data. Numerous
works have expanded the understanding of BT and
investigated various approaches to generate syn-
thetic source sentences. Edunov et al. found that
back-translations obtained via sampling or noised
beam outputs tend to be more effective than those
via beam or greedy search in most scenarios. For
optimal joint use with FT, we employ sampling
back-translation (ST) (Edunov et al., 2018).

2.2.5 Domain Fine-tuning
Previous studies have shown that fine-tuning a
model with in-domain data can significantly en-
hance its performance. We use the model scoring
method to select data from the bilingual training
data that are close to the dev set in domain, and
then use these domain data to finetune the model,
which can further improve the result. Finally, we
select 12 million domain data in the en2ta direction,
15 million domain data in the en2hi direction, and
10 million domain data in the en2bn direction from
the bilingual training data.

2.2.6 Regularized Dropout
Regularized Dropout (R-Drop) (Wu et al., 2021)
improves performance over standard dropout, es-
pecially for recurrent neural networks on tasks
with long input sequences. It ensures more con-
sistent regularization while maintaining model un-
certainty estimates. The consistent masking also
improves training efficiency compared to standard
dropout. Overall, Regularized Dropout is an en-
hanced dropout technique that often outperforms
standard dropout.

3 Experiments Setup

3.1 ASR

In our cascade system, we use whisper-large-v3
as our ASR module, which we will not introduce
here.

3.2 MT

3.2.1 Model
For our experiments using the MT model, we
utilize the Transformer deep model architec-
ture. The configuration of the MT model is as
follows:n_encoder layers = 35, n_decoder layers =
3, n_heads = 8, d_hidden = 512, d_FFN = 2048.

3.2.2 Dataset
To train the MT model, we collected all available
parallel corpora from the official website and se-
lected paralla data similar to the dev domain. The
amount of data is shown in Table 1. We first trained
respective baseline models in the three directions
using bilingual data. Then, we construct pseudo-
corpus based on existing monolingual data in each
language direction to gradually enhance the base-
line model.

Bilingual Source Target
en-ta 57M 200M 70M
en-hi 80M 200M 230M
en-bn 82M 200M 190M

Table 1: Bilingual and monolingual data used for train-
ing.

3.2.3 Training
We utilize the open-source Fairseq (Ott et al., 2019)
for training, with the following main parameters:
each model is trained using 8 GPUs, with a batch
size of 2048, a parameter update frequency of 32,
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and a learning rate of 5e-4. Additionally, a la-
bel smoothing value of 0.1 was used, with 4000
warmup steps and a dropout of 0.1. The Adam
optimizer is also employed, with ß1 = 0.9 and ß2 =
0.98. During the inference phase, a beam size of 4
is used. The length penalties are set to 1.0.

3.3 Results

We can see results From Table 2, In the field of
machine translation, Domain Finetuning, Forward
Translation, and labse filter method are frequently
employed methods to enhance translation quality.
It is evident from Table 4 that these training strate-
gies can effectively improve the overall quality of
the system.

Language-pair Training strategies Bleu
en-hi Bilingual baseline 51.9

+ FT+BT 53.8
+ labse Bilingual Finetune 54.7

+ Domain Finetune 64.8
en-ta Bilingual baseline 41.9

+ FT+BT 42.2
+ labse Bilingual Finetune 43.1

+ Domain Finetune 45.2
en-bn Bilingual baseline 38

+ FT+BT 40.4
+ labse Bilingual Finetune 42.1

+ Domain Finetune 44.8

Table 2: All the results for dev testsets in three
directions(EN-HI,EN-TA,EN-BN).FT means Forward
Translation. BT means Back Translation.

At the same time, we also calculated the blue of
NLLB-200-3.3B (Costa-jussà et al., 2022) in three
directions, as shown in Table 3, for comparison
with our results. As can be seen from Table 2 and
Table 3, our model is far better than the NLLB
model.

Language-pair NLLB baseline
en-hi 40.9
en-ta 20.4
en-bn 25.7

Table 3: NLLB-200-3.3B results for dev testsets in three
directions(EN-HI,EN-TA,EN-BN).

4 Conclusion

In this paper, we report on our work on IWSLT2024
speech-to-text translation evaluation in Indic Track.
We mainly introduce our cascade system and the
main optimization processes and methods of the
MT model. We improve the final results by fo-
cusing on optimizing the MT model. For cascade
systems, the impact of the MT model on the results
is crucial. For the future we plan to further explore
the direction of end-to-end systems.
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Abstract

This paper presents RACAI’s system used for
the shared task of "Subtitling track: Subtitle
Compression" (the English to Spanish language
direction), organized as part of "the 21st edi-
tion of The International Conference on Spo-
ken Language Translation (IWSLT 2024)". The
proposed system consists of multiple models
whose outputs are then ensembled using an al-
gorithm, which has the purpose of maximizing
the similarity of the initial and resulting text.
We present the introduced datasets and the mod-
els’ training strategy, along with the reported
results on the proposed test set.

1 Introduction

Subtitles play a vital role in ensuring accessibility
and comprehension of audiovisual (AV) content for
viewers with diverse needs, including those with
hearing impairments or language barriers. How-
ever, traditional subtitling methods often generate
text exceeding recommended reading speed con-
straints, hindering comprehension and viewer en-
gagement. This problem becomes particularly pro-
nounced for audiences with slower reading speeds
or limited language proficiency.

In the context of the 21st edition of The Inter-
national Conference on Spoken Language Transla-
tion (IWSLT 2024), the Subtitle Compression task,
part of the Subtitling track, required participants
to propose systems that rephrase subtitles that are
non-compliant with the reading speed constraint
without limitations on the training data conditions.
This paper describes the possibility of using large
language models (LLMs) to achieve this while try-
ing to benefit from the initial content in the source
language. Sometimes, sentences have formats that
make them hard to compress, especially when a
translation step has been made. The most funda-
mental example of such inconvenience is regarding
idioms. They might not have perfect equivalents in

the target language, and thus, their compression be-
comes even more challenging to process. Problems
of this kind can be partially solved by initially com-
pressing the sentence in the source language and
then translating it. Our contribution is twofold: a)
we introduce a new method that is able to combine
the predictions of multiple models; b) we explore
different parameters for the proposed algorithm and
present the results on the shared task dataset.

The rest of the paper is structured as follows:
Section 2 presents related work, Section 3 describes
the method proposed, including dataset description
(in Section 3.3), model training (in Section 3.4) and
ensemble process (in Section 3.5); results are given
in Section 4 and we conclude in Section 5.

2 Related work

In this section, we explore the various methodolo-
gies and research efforts that have contributed to
the development of compression tasks. Although
the compression task is inherently monolingual, we
consider not only the works focused on text sum-
marization but also those addressing automatic sub-
titling, machine translation (MT), and automatic
speech recognition (ASR). This is because these
domains often employ similar techniques and face
comparable challenges in reducing and transform-
ing textual data while maintaining its essential in-
formation and coherence.

2.1 Automatic subtitling

Recent advancements in speech translation (ST)
have focused on developing systems that can trans-
late spoken language directly into another language,
bypassing the need for separate automatic speech
recognition and machine translation (MT) steps.
This approach, known as end-to-end ST, has shown
promising results. Papi et al. (2023a) build on this
progress by exploring the use of direct architectures
for both simultaneous translation (SimulST) and
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automatic subtitling tasks. Their work contributes
to the growing body of research on efficient and
effective methods for real-time speech translation
applications. Bahar et al. (2023) tackle the same
task, by proposing En-Ru and En-Pt production
models, which support formality control via prefix
tokens.

2.2 Text summarization models
Sentence compression has been extensively ex-
plored using various transformer-based architec-
tures. The T5 model (Raffel et al., 2023) employs
a text-to-text transformer architecture, leveraging
its encoder-decoder structure to identify and elim-
inate redundant information through a process of
denoising and reconstruction. Specifically, T5 uses
a unified framework that converts all NLP tasks
into a text-to-text format, allowing it to adapt to
sentence compression tasks through task-specific
prompting and fine-tuning.

BART (Lewis et al., 2020) utilizes a novel de-
noising autoencoder approach, where the input sen-
tence is corrupted through token masking and dele-
tion, and the model is trained to reconstruct the orig-
inal sentence. During pre-training, BART learns
to predict the original tokens from their corrupted
versions, developing a robust understanding of sen-
tence structure and semantics. This pre-training
objective enables the model to develop a strong
ability to recognize and remove redundant informa-
tion.

The Llama2 model (Touvron et al., 2023) relies
on a combination of masked language modelling
and denoising objectives to learn a robust represen-
tation of language. Specifically, it uses a multi-task
learning framework that jointly optimizes masked
language modelling, sentiment analysis, and next-
sentence prediction tasks. This multi-task learning
approach enables Llama2 to develop a comprehen-
sive understanding of language syntax, semantics,
and pragmatics.

2.3 Automatic speech recognition
Automatic speech recognition (ASR) has witnessed
significant advancements with the emergence of
transformer-based architectures. The Whisper
model (Radford et al., 2023) employs a conditional
waveform-to-text model that leverages a combi-
nation of self-supervised learning and supervised
finetuning to achieve state-of-the-art performance
on various ASR benchmarks. It uses a multi-task
learning framework that jointly optimizes masked

acoustic modelling, phoneme recognition, and sen-
tence transcription tasks, enabling it to learn ro-
bust representations of spoken language that can
generalize across different accents, languages, and
recording conditions.

2.4 Translation models
Machine translation has seen significant ad-
vancements with the development of large-scale
transformer-based models. NLLB (No Language
Left Behind) (Team et al., 2022) is a family of
translation models that aim to bridge the gap be-
tween high-resource and low-resource languages.
NLLB uses a multilingual masked language mod-
elling objective to pre-train a single model on
a massive dataset of 50 languages, enabling it
to learn shared representations across languages
and achieve state-of-the-art performance on var-
ious translation benchmarks. NLLB employs a
novel "language-agnostic" approach that treats all
languages equally, without relying on language-
specific adapters or fine-tuning, making it particu-
larly effective for low-resource languages.

2.5 Summarization Datasets
The development of effective text summarization
models relies heavily on the availability of high-
quality, linguistically diverse datasets. In this re-
gard, the Google Sentence Compression (Filippova
and Altun, 2013) dataset is a prominent resource,
comprising approximately 200,000 sentence pairs
extracted from news articles. Each pair consists
of an original sentence and its corresponding com-
pressed version, with an average compression ratio
of 35%. Notably, this dataset is primarily com-
posed of English sentences, with a focus on formal,
written language.

TaPaCo (Scherrer, 2020) is a freely available
paraphrase corpus that offers a unique resource for
natural language processing (NLP) research. Ex-
tracted from the Tatoeba database, a crowdsourced
platform primarily designed for language learners,
TaPaCo provides a vast collection of paraphrases
in 73 languages.

The PAWS-X (PAWS eXtended) (Yang et al.,
2019) dataset takes a multilingual approach to text
summarization, featuring a diverse range of texts
from the web in four languages: English, French,
German, and Spanish. With over 1 million pairs of
original texts and their corresponding summaries,
PAWS-X provides a comprehensive benchmark
for evaluating cross-lingual summarization perfor-
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mance. The dataset’s structure is noteworthy, with
each instance comprising a source text, a target
summary, and corresponding metadata such as lan-
guage labels and genre information.

3 Method

3.1 Overview

Our proposed method analyzes both the original
text in English and the translated text in Spanish
in order to have an alternative approach in case
the latter is not being compressed within the estab-
lished limits. Therefore, we had to obtain the initial
subtitles in the language of the video through an
automatic speech recognition model. With that in
mind, we can compress and translate the English
text in this exact order such that we obtain a new
set of Spanish sentences to be fitted within the time
intervals presented in the given SRT file. We define
a sentence based on the presence of strong punc-
tuation; a sentence may span over multiple time
intervals in the SRT file. Having a series of alter-
natives for each sentence that has to be processed,
we run an algorithm to determine the assignment
of the compressed sentences that maximizes the
similarity between the reference and the prediction
texts. A general representation of the method is
presented in Figure 1.

3.2 Performance identifiers and metrics

We focused on multiple metrics to define the per-
formance of our models and to determine a relation
of order between sentences with the same meaning.

ROUGE (Recall-Oriented Understudy for Gist-
ing Evaluation) (Lin, 2004) is a set of metrics used
to evaluate the quality of summarization models. It
measures the overlap between the generated sum-
mary and the reference summary, focusing on recall
(i.e., how much of the reference summary is cov-
ered by the generated summary). There are several
variants of ROUGE, including:

a) ROUGE-1: measures the overlap of unigrams
(single words) between the generated and reference
summaries;

b) ROUGE-2: measures the overlap of bigrams
(pairs of adjacent words) between the generated
and reference summaries;

c) ROUGE-L: measures the longest common
subsequence between the generated and reference
summaries.

ROUGE scores range from 0 to 1, with higher
scores indicating better summarization quality.

BLEU (Bilingual Evaluation Understudy) (Pap-
ineni et al., 2002) is a metric used to evaluate the
quality of machine translation models, but it can
also be applied to summarization tasks. It mea-
sures the similarity between the generated sum-
mary and the reference summary based on n-gram
overlap. BLEU calculates the precision of n-grams
(sequences of n items) in the generated summary
compared to the reference summary. BLEU scores
range from 0 to 1, with higher scores indicating
better summarization quality.

MPNet (Quyen and Kim, 2023) is a type of neu-
ral network architecture that uses word embeddings
to represent words as vectors in a high-dimensional
space. In this context, MPNet is used to calcu-
late the distance between words or phrases in the
generated summary and the reference summary.
The distance calculation can be done using vari-
ous metrics, such as cosine similarity (in this case),
Euclidean distance, or Manhattan distance. The
resulting distance score can be used to evaluate
the semantic similarity between the generated and
reference summaries.

BLEURT (BERT-based Learned Utility for
Ranking Translation Outputs) (Sellam et al., 2020)
is a metric that evaluates the quality of summa-
rization models using a BERT-based approach. It
learns to predict a utility score for each generated
summary based on its similarity to the reference
summary. BLEURT analyzes different factors, in-
cluding:

a) Fluency: measures the grammatical correct-
ness and coherence of the generated summary;

b) Relevance: measures the degree to which the
generated summary covers the main points and
ideas of the original text;

c) Informativeness: measures the amount of new
information presented in the generated summary;

d) Coherence: measures the degree to which the
generated summary is well-organized and easy to
follow.

The BLEURT score is a weighted sum of these
individual metrics, providing a comprehensive eval-
uation of the generated summary’s quality.

3.3 Dataset Choice and Creation
As part of the gathered Spanish corpora, PAWS-X
and TaPaCo were used as they are, while Google’s
Sentence Compression dataset was filtered to elim-
inate pairs of sentences with very low compression
rate. In addition to these resources, we created a
new one (Sent-Comp-ES) by translating Google’s
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Figure 1: Scheme of the overall transformation.

Dataset Language Dimension
Sent. Comp. English 200k

Sent-Comp-Es Spanish 53k
TaPaCo Spanish 85k

PAWS-X (filtered) Spanish 9k

Table 1: Datasets used for extractive summarization.

Sentence Compression dataset (referred as Sent.
Comp. later in the paper) for extractive summariza-
tion (i.e., the task of selecting a subset of words
from a sentence to form a summary). In the trans-
formation process, multiple rules have been estab-
lished such that the quality of the data is preserved,
with the downside of obtaining less data than the
initial resource. The conducted steps are in exact
order:

a) Eliminate the English pairs with an associated
compression rate smaller than 10% for sentences
with at least 10 characters;

b) Eliminate the English pairs with an associated
ROUGE score smaller than 0.8;

c) Translate the remaining sentences to Spanish
using Facebook’s NLLB model;

d) Eliminate the Spanish pairs not respecting the
extractive summarization pattern (i.e., eliminate
those pairs for which the compressed sentence is
not a subsequence of words from the initial sen-
tence);

e) Check again for the associated compression

rate and ROUGE score while keeping the same
constraints as aforementioned;

In the end, from 200k pairs of English sentences,
we formed 53k pairs of Spanish sentences that can
be used for extractive summarization training. Fur-
thermore, all processed data can be as well used for
abstractive summarization.

3.4 Model Choice and Training

Since this paper focuses on an ensemble selection
system, we had to define the models we want to
use and train. Regarding the Spanish text mod-
els, we finetuned the base checkpoints of T5 and
Bart, while for Llama2, we chose the 13B parame-
ters checkpoint. Through the previous models, we
propose to tackle both extractive and abstractive
summarization. On the other hand, for the audio
processing, since it can be assumed that for generat-
ing the given Spanish text, a variant of the original
English text is already composed, we decided to
go with a pre-trained large checkpoint of the Whis-
per v2 model. Wee feed the model pre-segmented
audio by taking timestamps of the original Span-
ish SRT, without activating the internal VAD. For
the English text summarization, a pre-trained large
checkpoint of T5 was used.

T5 and Bart were trained on a joint dataset con-
taining TaPaCo, PAWS-X and Sent-Comp-ES, to-
taling at 147k pairs of sentences, with a simple
prompt, namely "comprimir: " (en: "compress: ").
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Model Learning Rate Epoch Avg. Compression ROUGE BLEU MPNET
T5-base 1e-4 4 48% 0.60 0.23 0.81
T5-base 2e-5 4 47% 0.61 0.20 0.74
T5-base 1e-4 15 46% 0.61 0.24 0.81

Bart-base 2e-5 4 46% 0.60 0.24 0.82
Bart-base 2e-5 15 47% 0.62 0.25 0.84

Llama2-13B 1e-4 1 18% 0.57 0.23 0.80
Llama2-13B 1e-4 4 33% 0.60 0.24 0.85

Table 2: Metrics obtained on the gathered corpora while training for Spanish sentence compression.

We also finetuned Llama2 on all the data available
(200k pairs) using QLoRA (Dettmers et al., 2023),
with a more complex prompt trying to settle the
context and the general task:

### TAREA: Parafrasee la frase de entrada
para hacerla lo más corta posible en térmi-
nos de número de caracteres, conservando
el significado inicial y teniendo una gra-
mática y puntuación correctas. Si no es
posible o no está seguro, mantenga la frase
sin cambios.
### SENTENCIA SIN COMPRIMIR: <UNCOMP>
### SENTENCIA COMPRIMIDA: <COMP>

(Note: the <UNCOMP> and <COMP> tokens are
replacing the uncompressed and compressed
sentences respectively.)

Table 2 contains the results acquired during train-
ing. According to the reported performance and
considering Llama2’s inference time, we decided
to exclude it from the prediction system. Another
important reason is that Llama2 was trained for
abstractive summarization, which makes the re-
construction of the SRT file from sentences really
difficult.

3.5 Algorithm Development
In order to present the proposed algorithm, let us
standardize the problem to be solved. We have
N sentences distributed among M time intervals,
where a sentence might be covering multiple in-
tervals. Each sentence can be written as a set of
word sequences, representing its splits among the
time intervals it overlaps. Using the summariza-
tion models, we obtain for each given sentence a
set of at most K other sentences split in the same
manner (possible because the extractive summa-
rization preserves the order of the words), along
with some metrics defining the resemblance to the
uncompressed text. Considering known the time

intervals’ lengths, we can determine if a split is
compliant by taking into account the dimension
of the newly formed word sequence. We define
the following notion as well: the score of an as-
signment is the weighted sum of similarity scores
where the weights are length-based. The score is
between 0 and 1, a score of one being obtained for
the initial sentences. The length of a sentence is
defined as the number of characters.

A baseline approach is to go through all the
possible combinations of assigned sentences and
choose the one with a maximal score that is also
compliant. The complexity of this algorithm is in
terms of O((M +N) ∗KN ). Our proposed algo-
rithm achieves a complexity of O((M+N)∗K∗α),
where α is the maximum length of a split. The main
idea of the algorithm is to denote critical points as
the time intervals that contain words from more
than one sentence. Then, we just have to analyze
the best obtainable score until a certain checkpoint,
while consuming a certain number of characters
from the maximum allowed within that time inter-
val. This is achievable using dynamic programming
and it reduces the complexity to the one previously
mentioned. The pseudo code for obtaining the max-
imum score can be seen in Figure 2. The optimal
solution can be easily reconstructed by maintaining
a backward array during the update of the dp array,
which allows backtracking from the final state to
the initial state to retrieve the sequence of selected
sentences.

4 Results

The dev set proposed within the shared task con-
sists of 7 SRT files, part of the EuroParl Interviews
(EPI) en-es test set, whereas the test set concerns
AV docs from the ITV entertainment series, all gen-
erated by the non-participating (Papi et al., 2023b).
The reported results of our submission can be seen
in Table 3, where ChrF is a metric introduced by
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Figure 2: Pseudo code for obtaining the maximum score.

Method BLEU ChrF TER BLEURT CPS
ref - - - - 89.98

ori test-set 8.71 29.18 81.08 0.213571 69.97
baseline 7.70 27.52 81.27 0.18917 100.00
RACAI 7.51 26.60 80.33 0.194613 94.29

Table 3: Reported results on the proposed test set.
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(Popović, 2015) , and TER (Translation Edit Rate)
represents the minimum number of edits needed
to change a hypothesis so that it exactly matches
one of the references, normalized by the average
length of the references. In addition, the methods’
acronyms in Table 3 respect the following nota-
tions:

a) ref: reference subtitles used to compute
BLEU/ChrF/TER/BLEURT scores;

b) ori test-set: original subtitles to be com-
pressed;

c) ori test-set-1line: original subtitles where
those segmented in more lines are unsegmented
in 1-line;

d) baseline: hard cut at max number of charsq
compatible with subtitle duration;

e) RACAI: subtitles generated with the system
described in this paper.

5 Conclusion

This paper presents RACAI’s system for the "Sub-
titling track: Subtitle Compression" shared task,
focusing on compressing subtitles from English
to Spanish while maintaining readability within
reading speed constraints. Our system leverages
multiple large language models (LLMs) to generate
alternative compressed sentences for the original
text. An ensemble selection algorithm then chooses
the most suitable compressed options based on sim-
ilarity metrics. This approach allows us to benefit
from the strengths of various models and address
potential shortcomings of individual models.

Future work could explore the incorporation of
additional metrics or quality estimation techniques
within the ensemble selection algorithm. Addition-
ally, investigating the effectiveness of the system
on different language pairs or domains could be
valuable, such as including the Romanian language.
We previously had an interest for processing Roma-
nian language speech using Whisper (Gasan and
Păis, , 2023). Overall, this work contributes to the
development of automatic subtitling systems that
ensure accessibility and comprehension for diverse
audiences.
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Abstract

This paper presents the FBK contribution to
the IWSLT-2024 “Test suites” shared sub-
task, part of the Offline Speech Translation
Task. Our contribution consists of the MuST-
SHEIWSLT24 benchmark evaluation, designed
to assess gender bias in speech translation.
By focusing on the en-de language pair, we
rely on a newly created test suite to investi-
gate systems’ ability to correctly translate fem-
inine and masculine gender. Our results in-
dicate that – under realistic conditions – cur-
rent ST systems achieve reasonable and com-
parable performance in correctly translating
both feminine and masculine forms when con-
textual gender information is available. For
ambiguous references to the speaker, how-
ever, we attest a consistent preference towards
masculine gender, thus calling for future en-
deavours on the topic. Towards this goal we
make MuST-SHEIWSLT24 freely available at:
https://mt.fbk.eu/must-she/

1 Introduction

In today’s interconnected world, speech transla-
tion technology stands as a cornerstone of global
communication, facilitating seamless interactions
across linguistic barriers. Indeed, the last few years
have seen notable advancements for the task of
speech-to-text translation (ST), which has made
strides in generic performance (Bentivogli et al.,
2021; Anastasopoulos et al., 2021, 2022; Agarwal
et al., 2023). Also, the emergence massively mul-
tilingual solutions has greatly expanded the lan-
guage coverage of competitive “one-model-fits-all”
speech models (Radford et al., 2022; Communica-
tion et al., 2023; Peng et al., 2024; Pratap et al.,
2024).

Amid such advancements, there arise the increas-
ing need to pair traditional overall quality assess-
ments of ST with more fine-grained analyses by
accounting for relevant aspects of translations. It
is within this context that the IWSLT Test Suites

shared task emerges, aiming to provide a dedicated
evaluation framework for specific dimensions of
the ST output, which are otherwise overlooked with
generic test sets and holistic metrics.

In light of the above, our contribution is dedi-
cated to the critical themes of gender bias in au-
tomatic translation (Costa-jussà, 2019; Savoldi,
2023; Vanmassenhove, 2024).1 Given the large-
scale deployment of ST, biased translations are not
only relevant from a technical perspective, where
gender-related errors negatively impact the accu-
racy of automatic translation. Rather, biased and
non-inclusive systems can pose the concrete risk of
under/misrepresenting gender minorities by over-
producing masculine forms and reinforcing gen-
dered stereotypes (Blodgett et al., 2020; Sun et al.,
2019). Indeed, gendered linguistic expressions af-
fect the representation and perception of individu-
als (Stahlberg et al., 2007; Corbett, 2013; Gygax
et al., 2019), and are actively used as a tool to ne-
gotiate the social, personal, and political reality
of gender (Hellinger and Motschenbacher, 2015).
A such, models that systematically favor mascu-
line over feminine forms fail to properly recognize
women, can reduce feminine visibility, and offer
an unequal service quality (Crawford, 2017).

This paper presents the FBK participation in the
Test Suites shared task by conducting evaluations
on the MuST-SHEIWSLT24 en-de dataset. It rep-
resents the newly created speech-to-text extension
of the English→German textual-only portion of
MuST-SHE (Savoldi et al., 2023), a multilingual
gender bias benchmark (Bentivogli et al., 2020).

In the hereby presented evaluations, we obtained
translations of our test suites by systems that are
part of the Offline Speech Translation Task of the
21st International Conference on Spoken Language

1Its relevance is also attested by the creation of dedicated
workshops on theme of gender bias and inclusivity, such as
GeBNLP (Hardmeier et al., 2022) and GITT (Vanmassenhove
et al., 2023).

113

https://mt.fbk.eu/must-she/


Form Category 1: Ambiguous first-person references Speaker

Fem. src The other hat that I’ve worn in my work is as an activist... She
RefDe Der andere Hut, den ich bei meiner Arbeit getragen habe, ist der<den> Ak-

tivistin<Aktivist>...

Masc. src I mean, I’m a journalist. He
RefDe Ich meine, ich bin Journalist <Journalistin>.

Category 2: Unambiguous references with gender cue in context

Fem. src A college classmate wrote me a couple weeks ago and she said ... He
RefDe Eine<Ein> Kommilitonin<Kommiliton> hat mir vor ein paar Wochen geschrieben und

gesagt...

Masc. src I decided to pay a visit to the manager [...] and he pointed ... She
RefDe Also entschied ich mich den<die>Filialleiter<Filialleiterin> zu besuchen [...]

Table 1: Textual portion of MuST-SHE (Savoldi et al., 2023), with annotated segments organized per category. For
each gender-neutral word referring to a human entity in the English source sentence (SRC), the reference translation
(REF) shows the corresponding gender-marked (Fem/Masc) forms, annotated with their wrong <gender-swapped>
forms. The last column provides information about the speaker’s gender.

Translation (IWSLT 2024). Specifically, we evalu-
ated 13 systems for MuST-SHEIWSLT24 en-de.

2 MuST-SHEIWSLT24

MuST-SHEIWSLT24 is a test suite designed to eval-
uate the ability of ST systems to correctly translate
gender. It is composed of 200 segments that re-
quire the translation of – at least – one English
gender-neutral word into the corresponding mascu-
line or feminine target word(s) in German.2 The
test suite is created as an extension of MuST-SHE,
a multilingual, natural benchmark built on TED
talks data (Bentivogli et al., 2020). The original
corpus comprises ∼3,000 (audio, transcript, trans-
lation) triplets annotated with qualitatively differen-
tiated gender-related phenomena for thee language
pairs: English→ French/Italian/Spanish. Recently,
MuST-SHE was also extended to English→ Ger-
man for the MT task – i.e. MuST-SHEWMT23

(Savoldi et al., 2023). However, since it only con-
sists of a textual portion (transcript, translation), it
does not allow for the evaluation of ST models.

Here, we introduce the expansion of MuST-SHE
English→ German for the ST task, by incorpo-
rating the additional speech input portion so as to
obtain (audio, transcript, translation) triplets.

2.1 Audio Portion Creation

To ensure conformity, the dataset audio portion was
obtained by following the same automatic proce-
dures used for MuST-SHE and other TED-based

2See §5 for a discussion on the use of (binary) gender as a
variable.

resources, as reported in (Cattoni et al., 2021). Ac-
cordingly, from the official TED website we down-
loaded the videos of the talks included in the tex-
tual portion of MuST-SHE English→ German. On
this basis, i) audio tracks were extracted from the
videos, and ii) an alignment procedure was applied
to split talks into segments and generate aligned
(audio, transcript, translation) triplets. Since this
automatic procedure generates 90% of properly
aligned triples on average (Cattoni et al., 2021),
we performed qualitative checks. Two evaluators
– both students proficient in the German language
and with a background in Applied Linguistics3 –
reviewed all the extracted audios and corrected any
audio-text misalignment.4 Hence, we ensured the
quality of all audio segments included in MuST-
SHEIWSLT24, and the exact alignment of each (au-
dio, transcript, translation) triplet.

2.2 Dataset Features
MuST-SHE is designed to evaluate the translation
of a source English neutral word into its corre-
sponding target gender-marked one(s) in the con-
text of human referents, e.g. en: the good friend,
de: der/die gute Freund/in. To allow for fine-
grained analyses, each segment in MuST-SHE is
enriched with the following annotations:
· GENDER, which allows to distinguish results for
Feminine (Fem) and Masculine (Masc) forms, thus
revealing a potential gender gap.
· CATEGORY, which differentiates between CAT1

3Their work was carried out during an internship at FBK.
4We relied on the ELAN annotation tool: https://

archive.mpi.nl/tla/elan.
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– first-person references to be translated according
to the speakers’ linguistic expression of gender5

(e.g. I am a teacher) – and CAT2 – references
to any participant, to be translated in agreement
with gender information available in the sentence
(e.g. He/she is a teacher). These categories allow
analysing models’ behaviour across unambiguous
and ambiguous gender translation instances.6

· GENDER-SWAPPED WORDS, providing, for each
target gender-marked word annotated in MuST-
SHE reference translations, a corresponding wrong
form swapped in the opposite gender (e.g. en:
she is a friend; de: Sie ist eine<ein> Fre-
undin<Freund>). As described in §3.2, such pairs
of annotated target gender-marked words are a
key feature of MuST-SHE, which enables gender-
focused evaluations.

All above-mentioned dimensions are already
provided with the textual portion of MuST-SHE
English→ German, and are consequently also in-
cluded in MuST-SHEIWSLT24. In Table 1, we
show examples of annotated (transcript, transla-
tion) segments from the corpus. Overall dataset
statistics are provided in Table 2.

CAT1 CAT2
Fem. 23 (35) 77 (121)
Masc. 23 (38) 77 (155)

Tot. 200 (349)

Table 2: MuST-SHEIWSLT24 statistics: number of sen-
tences and (gender-marked target words).

3 Experimental Settings

3.1 Models

The test suite evaluation is carried out on the sys-
tems that were submitted to the IWSLT Offline
Speech Translation tasks. Overall, four different
participants – i.e. HW-TSC, CMU, NYA, and KIT
– submitted a total of 13 models. Of those, six mod-
els were presented as primary system submission,
while the other 7 models are additional, contrastive
models. All systems contributions are built upon

5Speaker’s gender information is provided for each seg-
ment. Note that gender has been labeled based on the personal
pronouns the speakers used to describe themselves in their
publicly available personal TED section.

6For direct ST solutions that directly translate from the au-
dio input without intermediate textual representations, CAT1
can also reveal whether such models leverage speakers’ voice
as an unwanted cue to translate gender. See Gaido et al.
(2020).

cascade architectures, which resolve the ST task as
pipelined ASR+MT solutions.

Since the participants (with the only exception
of NYA) segmented the sentences before generat-
ing the outputs, we isolated the predicted transla-
tion for each reference sentence by means of the
mWERSegmenter tool (Matusov et al., 2005). This
procedure mirrors what is done in the standard eval-
uation of the offline task (Agarwal et al., 2023).

3.2 Evaluation
Following the original MuST-SHE evaluation pro-
tocol described in Gaido et al. (2020), MuST-
SHEIWSLT24 evaluation allows to focus on the
gender realization of the target gender-marked
forms, which are annotated in the reference trans-
lations together with their wrong, gender-swapped
form (see Table 1). The evaluation is carried out
in two steps, and by matching the annotated (cor-
rect/wrong) gender-marked words against the ST
output. Accordingly, we first calculate the Term
Coverage as the proportion of gender-marked
words annotated in the MuST-SHE references (ei-
ther in the correct or wrong form) that are actually
generated by the system, on which the accuracy of
gender realization is therefore measurable. Then,
we define Gender Accuracy as the proportion of
correct gender realizations among the words on
which it is measurable. This evaluation method7

has several advantages. On one side, term cover-
age unveils the precise amount of words on which
systems’ gender realization is measurable. On the
other, gender accuracy directly informs about sys-
tems’ performance on gender translation and re-
lated gender bias: scores below 50% indicate that
the system produces the wrong gender more often
than the correct one, thus signalling a particularly
strong biased behaviour.

4 Results

In Table 3 we present the MuST-SHEIWSLT24

results of the 13 IWSLT Offline ST cas-
cade models. Starting from coverage
scores (All-Cov), all models achieve over-
all positive results, which range from ∼70%
(HW-TSC_CONSTRAINED-wLLM.primary) to
74.79% (HW-TSC_CONSTRAINED.primary).
Hence, these models produce a good amount of

7The evaluation script is publicly available at:
https://github.com/hlt-mt/FBK-fairseq/blob/
master/examples/speech_to_text/scripts/gender/
mustshe_gender_accuracy.py.
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Model All-Cov All-Acc F-Acc M-Acc 1F-Acc 1M-Acc 2F-Acc 2M-Acc

HW-TSC_CONSTRAINED.primary 74.79 82.99 84.44 81.70 68.18 85.71 87.61 80.80
HW-TSC_UNCONSTRAINED.primary 73.93 82.52 82.96 82.12 65.22 85.71 86.61 81.30
HW-TSC_UNCONSTRAINED.contrastive 75.07 81.72 81.16 82.24 56.52 85.71 86.09 81.45
CMU_mbr_ensemble_all_50+50+50.primary 73.07 81.36 80.00 82.73 50.00 80.00 87.50 83.33
CMU_beam_5.contrastive 74.21 80.56 79.58 81.51 52.00 76.00 85.47 82.64
CMU_mbr_50.contrastive 73.93 80.21 80.14 80.28 55.17 70.83 86.61 82.20
NYA.contrastive3 72.21 79.72 77.37 81.94 39.13 86.96 85.09 80.99
HW-TSC_CONSTRAINED-wLLM.primary 70.49 79.70 78.63 80.71 45.45 79.17 85.32 81.03
NYA.contrastive1 72.49 79.64 77.54 81.69 39.13 86.96 85.22 80.67
NYA.primary 72.49 79.64 77.54 81.69 39.13 86.96 85.22 80.67
NYA.contrastive2 73.35 79.51 78.99 80.00 45.83 76.00 85.96 80.83
KIT.primary 71.92 77.70 78.03 77.40 43.48 65.38 85.32 80.00
KIT.contrastive1 71.92 77.42 78.20 76.71 40.91 65.38 85.59 79.17

standard dev. ±.1.3 ±.1.6 ±.2.1 ±.1.8 ±.9.4 ±.7.8 ±.0.8 ±.1.0

Table 3: MuST-SHEIWSLT24 results for en-de. Systems are ranked based on overall Gender Accuracy (All-Acc).
Primary model submissions in violet color.
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Figure 1: MuST-SHEIWSLT24 accuracy results across categories 1 and 2 per each gender (F/M).

gender-marked words that can be evaluated with
regards to the accuracy of their gender realization.

Moving onto the overall accuracy scores (All-
Acc), we can see that – while there is still room
for improvement – all of the evaluated ST sys-
tems achieve reasonable results, by being able to
correctly translate gender with an accuracy of at
least 77.42% (KIT.contrastive1) up to 84.44%
for HW-TSC_CONSTRAINED.primary. Similar ac-
curacy ranges are attested also by disaggregating
results across feminine (F-ACC) and masculine
(M-Acc) genders. Interestingly, such results show
that none of the models exhibit perfectly equal per-
formance across both genders. Still, the divide is
fairly limited, with i) a comparable number of ST
systems achieving slightly higher results on either
the feminine or masculine set of MuST-SHE, and
ii) little variation in scores across the 13 models,
as attested in terms of standard deviation. If we go

more fine-grained into disaggregated results, how-
ever, we unveil a higher degree of variation.

In Figure 1, we report results across categories
for masculine (1M and 2M) and feminine gen-
der realizations (1F and 2F). On the one hand,
for unambiguous gender translation from CAT2,
systems are slightly better in performing feminine
gender translation. Instead, results on CAT1 un-
veil a wide gender gap, where feminine accuracy
is consistently lower compared to its masculine
counterpart. In fact, most models tend to gener-
ate the correct feminine form in less than 50%
of the cases, namely below random chance. The
ST model HW-TSC_CONSTRAINED-wLLM.primary,
which overall emerges as the best system for gender
translation, still remains at 68.18%.

To conclude, our results show that – when con-
fronted with ambiguous source sentences – current
ST models tend to favour the generation of mas-
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culine forms in the German target language. We
acknowledge that the phenomena subject to our
analysis (gender bias) are not currently accounted
for in the design of ST systems, which are rather
designed with the goal of optimizing overall trans-
lation quality. Towards the creation of fairer ST
technology, however, we hope that our evaluation
will raise awareness in the community, and encour-
age the development of capable models, which can
equally accommodate feminine and masculine lan-
guage.

5 Conclusion

This paper summarizes the results of our IWSLT-
2024 Test Suites evaluation, which focused on
gender bias in translation. To this aim, we have
introduced the speech expansion of the en-de
MuST-SHE test set. Overall, results on MuST-
SHEIWSLT24 show that the evaluated ST systems
are reasonably good at translating gender under
realistic conditions, achieving comparable results
across feminine and masculine gender translation.
Also, all models are quite robust, and show a simi-
lar behaviour for translation of unambiguous gen-
der phenomena, where they can rely on contextual
gender information. However, for ambiguous cases
where the input sentence does not inform about the
gender form to be used in translation, we confirm
a strong skew where all systems favour masculine
generation almost by default. This finding calls
for further research endeavours and evaluation ini-
tiatives to counter gender bias in ST and measure
future advances.

Limitations

The main limitation of this work concerns the lim-
ited size of data points (i.e. gender-marked words)
available for evaluation. As such, even in the case
of gender performance parity, the dataset does not
allow to make conclusive statements about the ab-
sence of bias in the assessed models. Despite its
restricted size, however, MuST-SHEIWSLT24 pro-
vides a first glimpse into understanding and mon-
itoring en-de systems’ behaviour with respect to
gender bias and translation.

Ethics Statement

The use of gender as a variable in this paper war-
rants some reflections. Namely, when working on
the evaluation of speaker-related gender translation
for MuST-SHE (i.e. Category 1) we solely focus

on the rendering of their reported linguistic gender
expressions. No assumptions about speakers’ self
determined identity (GLAAD, 2007) – which can-
not be directly mapped from pronoun usage (Cao
and Daumé III, 2020; Ackerman, 2019) – has been
made.

Also, in our diagnosis of gender bias we only ac-
count for feminine and masculine linguistic forms,
which are those traditionally in use and the only rep-
resented in the used data. However, we stress that –
by working on binary forms – we do not imply or
impose a binary vision on the extra-linguistic real-
ity of gender, which is rather a spectrum (D’Ignazio
and Klein, 2020). Also, we acknowledge the cur-
rent challenges faced for grammatical gender lan-
guages like German in fully implementing neu-
tral language (Paolucci et al., 2023), and support
the rise of both non-binary language (Shroy, 2016;
Gabriel et al., 2018; Conrod, 2020) and translation
technologies (Lauscher et al., 2023; Gromann et al.,
2023).

Acknowledgements

The work presented in this paper is funded by
the European Union’s Horizon research and in-
novation programme under grant agreement No
101135798, project Meetween (My Personal AI
Mediator for Virtual MEETtings BetWEEN Peo-
ple) and the PNRR project FAIR - Future AI Re-
search (PE00000013), under the NRRP MUR pro-
gram funded by the NextGenerationEU. Also, we
would like to thank the 2022 FBK internship stu-
dents Sabrina Raus and Abess Benissmail from
the University of Bolzano: the creation of MuST-
SHEIWSLT24 was made possible by their work.

References
Lauren Ackerman. 2019. Syntactic and cognitive issues

in investigating gendered coreference. Glossa: a
Journal of General linguistics, 4(1).

Milind Agarwal, Sweta Agrawal, Antonios Anasta-
sopoulos, Luisa Bentivogli, Ondřej Bojar, Claudia
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Abstract

This paper describes the FBK’s participation
in the Simultaneous Translation Evaluation
Campaign at IWSLT 2024. For this year’s
submission in the speech-to-text translation
(ST) sub-track, we propose SimulSeamless,
which is realized by combining AlignAtt and
SeamlessM4T in its medium configuration.
The SeamlessM4T model is used "off-the-
shelf" and its simultaneous inference is enabled
through the adoption of AlignAtt, a SimulST
policy based on cross-attention that can be
applied without any retraining or adaptation
of the underlying model for the simultane-
ous task. We participated in all the Shared
Task languages (English→ {German, Japanese,
Chinese}, and Czech→English), achieving ac-
ceptable or even better results compared to last
year’s submissions. SimulSeamless, covering
more than 143 source languages and 200 tar-
get languages, is released at https://github.
com/hlt-mt/FBK-fairseq/.

1 Introduction

Simultaneous speech-to-text translation (SimulST)
is the task in which a model has to provide a textual
translation into the target language while continu-
ously receiving an incremental speech input in the
source language.

SimulST poses additional difficulties to standard
offline ST, as it has to find the optimal balance be-
tween translation quality and output latency, which
is the time delay between an utterance being spo-
ken and the corresponding translation being emit-
ted. This balance – often referred to as "quality-
latency tradeoff" – depends on the application sce-
nario (Fantinuoli and Prandi, 2021), which can span
many domains such as online meetings, lectures,
conference talks, and live shows.

Due to the growing interest in SimulST tech-
nologies, this task has been included in the IWSLT

Evaluation Campaigns1 since 2020. The increas-
ing interest has led to numerous direct and cascade
models participating in the challenge every year
(Ansari et al., 2020; Anastasopoulos et al., 2021,
2022; Agarwal et al., 2023), all vying for the title
of the best approach to realize a SimulST system
from scratch. More recently, the practice of using
models without ad-hoc training for the simultane-
ous scenario has become widespread (Polák et al.,
2022; Gaido et al., 2022; Papi et al., 2023a; Polák
et al., 2023; Yan et al., 2023; Huang et al., 2023),
demonstrating that competitive or even superior re-
sults can be achieved compared to systems specif-
ically tailored for SimulST (Papi et al., 2022a).
Among the strategies used to repurpose standard
(offline) ST models for SimulST (Liu et al., 2020;
Papi et al., 2022a, 2023c), AlignAtt (Papi et al.,
2023b) emerged as the best one, achieving new
state-of-the-art results. AlignAtt exploits speech-
translations alignments based on cross-attention
scores to guide the simultaneous inference, over-
coming the limitations of the previous approach
relying on attention (Papi et al., 2023c).

Alongside the increased interest in the SimulST
task, especially during the last year, we have wit-
nessed an explosion in the use of large models
(Latif et al., 2023), including speech foundation
models (Radford et al., 2023; Pratap et al., 2023;
Barrault et al., 2023a; Zhang et al., 2023). These
models are now commonly used alone or in com-
bination with large language models (Gaido et al.,
2024) for generic ST tasks. Among these, Seam-
lessM4T (Barrault et al., 2023a) has emerged as
one of the most promising multimodal and mul-
tilingual models, covering more than 143 source
languages and 200 target languages.

For this year’s submission to the IWSLT Evalu-
ation Campaign on Simultaneous Translation, we,
therefore, propose to combine the best of both

1https://iwslt.org/
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Figure 1: Representation of the SeamlessM4T model combined with AlignAtt: SimulSeamless.

worlds to obtain a multilingual model without any
training or adaptation for the SimulST task. This
results in SimulSeamless, consisting of the Seam-
lessM4T model used "off-the-shelf" repurposed for
simultaneous inference using AlignAtt.

From empirical results on the task, we show
that SimulSeamless can achieve acceptable or even
better results compared to last year’s participants,
despite not being retrained or fine-tuned either for
the simultaneous task or on paired data in the eval-
uated languages. Moreover, SimulSeamless is a
generic multilingual model that can be used for any
allowed translation direction supported by the un-
derlying SeamlessM4T model, covering more than
143 source languages and 200 target languages.
The code is released under the Apache 2.0 Licence
at https://github.com/hlt-mt/FBK-fairseq/
blob/master/fbk_works/SIMULSEAMLESS.md.

2 SimulSeamless

Similarly to previous years (Gaido et al., 2022; Papi
et al., 2023a), we participated in the Simultaneous
Translation evaluation campaign, focusing on the
speech-to-text translation sub-track. For this year’s
submission, we opted for the use of the new Seam-
lessM4T model, which is allowed for the task,2 as
the underlying model of the SimulST policy Alig-
nAtt. This policy can be applied to any standard
(i.e., offline-trained) model without the need for
retraining or adaptation.

In the following, both these elements and their
combination are explained in detail.

SeamlessM4T. SeamlessM4T (Barrault et al.,
2023a) (or Massively Multilingual & Multimodal
Machine Translation) is a family of models based
on pre-trained models including W2V BERT 2.0,
and NLLB (Costa-jussà et al., 2022), whose
encoder and decoder respectively are used for
the speech-to-text modality. W2V-BERT is a

2https://iwslt.org/2024/simultaneous

Conformer-based model (Gulati et al., 2020) com-
posed of 24 layers, with a total of ∼600M parame-
ters, and trained on 1 million hours of open speech
audio data to learn self-supervised speech repre-
sentations. It processes the audio features obtained
by applying 80-dimensional Mel filterbanks to the
audio waveform. The W2V-BERT encoder is fol-
lowed by a Length Adapter based on a modified ver-
sion of the M-adaptor (Zhao et al., 2022), which is
a Transformer-based model (Vaswani et al., 2017)
that is in charge of compressing the speech repre-
sentation (by a factor of 8) through attention pool-
ing. The compressed input representations are then
fed to the NLLB decoder, in its 1.3B parameters
configuration, to produce the translations. The final
model was obtained after training on both manual
and automatically aligned speech translation data
with a total of 406,000 hours.

AlignAtt. AlignAtt (Papi et al., 2023b) is a
SimulST policy that relies on cross-attention to
make decisions about whether to emit translated
words or wait for additional information in the
simultaneous scenario. At each time step, the
cross-attention scores are exploited to obtain audio-
translation alignments by uniquely assigning the
predicted words to the audio frames (encoder
states) having the maximum attention score. Then,
it is checked, for each word, if it has been aligned
with one of the last f frames, which is the parame-
ter handling the latency of the model. If this is true,
the emission is stopped, otherwise, the next word
is evaluated. The idea behind AlignAtt is that, if a
word is aligned with one of the last received audio
frames, the encoded information could be unstable
and/or not sufficient to reliably predict that word.
Conversely, if a word mostly attends to a more
stable and earliest-received encoded information,
it can be safely predicted. With this formulation,
AlignAtt simplifies the previous EDAtt policy (Papi
et al., 2023c) by eliminating the dependency on
additional hyper-parameters while achieving com-
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petitive or even better results.

SeamlessM4T + AlignAtt = SimulSeamless.
Since AlignAtt is applicable to any standard ST
models without the need for re-training or adap-
tation, we chose to apply it directly to the Seam-
lessM4T model in its medium configuration, real-
izing SimulSeamless. This solution is completely
different from SeamlessStreaming (Barrault et al.,
2023b), which is obtained through an expensive
ad-hoc finetuning of the Seamless model for the si-
multaneous task based on EMMA – efficient mono-
tonic multi-head attention (Ma et al., 2023). Since
SeamlessM4T already covers all the languages eval-
uated in the Simultaneous track, the model is used
completely "off-the-shelf". The SimulSeamless
model is shown in Figure 1.

3 Experimental Settings

We used the available checkpoint of the Seam-
lessM4T model provided on HuggingFace in its
"medium" configuration,3 with a total of 1.2B pa-
rameters.

The results are reported on the benchmarks used
for the submission, which is MuST-C (Cattoni et al.,
2021) v2.0 tst-COMMON for en-{de, ja, zh}, and
the dev set provided for the task for cs-en. The
scores are computed using the SimulEval toolkit
(Ma et al., 2020).4 Translation quality is evaluated
using BLEU score with sacreBLEU (Post, 2018)5.
Latency is reported using Average Lagging (AL)
(Ma et al., 2019) since it is the metric used for the
final scoring. Length Adaptive Average Lagging
(LAAL) (Papi et al., 2022b) and Average Token
Delay (ATD) (Kano et al., 2022) are also evaluated
and included in the final results since they are offi-
cial metrics reported for the task.6 Both latency and
BLEU scores are computed at the character level
for Chinese and Japanese while the standard 13a
tokenizer is used for sacreBLEU, and word-level
latency is computed for the other languages. Ad-
ditionally, computationally aware metrics are pre-
sented to account for the real elapsed time, which
also considers the computational cost of running
the underlying model. The inference was run using
a single GPU NVIDIA V100 with 16GB of RAM.

3https://huggingface.co/facebook/
seamless-m4t-medium

4We used the f1f5b9a commit that is the last version
with the remove evaluation working, which is needed to run
SimulEval using Docker containers.

5Version 2.4.0.
6https://iwslt.org/2024/simultaneous

Figure 2: Example of skewed cross-attention scores
representation towards some frames.
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Figure 3: Translation quality (BLEU↑) scores of
SimulSeamless on MuST-C v2.0 tst-COMMON for En-
glish (en) to German (de), Japanese (ja), and Chinese
(zh), and on the IWSLT 2024 dev set for Czech (cs) to
English by varying the decoder layer from which cross-
attention scores are extracted from.

For the AlignAtt policy, we set the size of the
speech chunk processed by the model at each time
step to 1s for English to German and Czech to En-
glish, 800ms for English to Chinese, and 400ms
for English to Japanese. To achieve latency close
to an AL of 2s required for the submission, we set
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Figure 4: Latency (AL↓) scores of SimulSeamless on
MuST-C v2.0 tst-COMMON for English (en) to German
(de), Japanese (ja), and Chinese (zh), and on the IWSLT
2024 dev set for Czech (cs) to English by varying the
decoder layer from which cross-attention scores are
extracted from.

the hyper-parameter handling the latency f to 1
for en-ja and en-zh, 6 for en-de, and 9 for cs-en.
The cross-attention scores are normalized frame-
wise before applying AlignAtt to avoid the cross-
attention weights being skewed to some frame rep-
resentation, as shown in Figure 2.

4 Results

4.1 Submission Selection

For selecting the best setting, we analyzed the per-
formance by varying the layer from which cross-
attention scores are extracted since simply aver-
aging them across layers led to worse results, as
also already found in (Papi et al., 2023c). The
layer-wise quality results are shown in Figure 3
while layer-wise latency results close to AL=2s are
shown in Figure 4.

It can be seen from the Layer-AL(s) curves (Fig-
ure 4) that Layer 5 represents a threshold layer
starting from which the latency increases signifi-
cantly without, however, similar significant quality
improvements in terms of BLEU (Figure 3). The
only acceptable layers to achieve an AL≤2s for
en-ja are layers 1 and 2 while this set is extended
to layer 4 for cs-en, and up to layer 5 for en-de and
en-zh. Among the two admissible layers for en-ja,
we chose for the final submission the one maxi-
mizing the quality, which is Layer 1. For en-zh,
we followed a similar approach by choosing Layer
4, which achieves the highest BLEU score with
an admissible latency. The choice of Layer 4 is
also maintained for en-de and cs-en since we found

that is the layer achieving the best quality-latency
tradeoff between BLEU and AL.

4.2 Comparison with Last Year’s Participants

In Table 1, we report the scores for the final submis-
sion for each language pair, including LAAL and
ATD latency metrics and their corresponding com-
putationally aware scores. SimulSeamless is com-
pared with all the participants of last year: CMU
(Yan et al., 2023), CUNI-KIT (Polák et al., 2023),
FBK (Papi et al., 2023a), HW-TSC (Guo et al.,
2023), NAIST (Fukuda et al., 2023), and XIAOMI
(Huang et al., 2023). Comparisons are not reported
for cs-en since it is a new language direction for
the task.

First, it can be noticed that SimulSeamless
achieves the best translation quality and, in general,
the best quality-latency trade-off for en-ja. Con-
versely, it struggles to achieve very competitive
results in en-de and, especially, in en-zh. How-
ever, it is important to notice that SimulSeamless
is the only model that has not been fine-tuned on
the IWSLT-allowed data for the task, which in-
clude the MuST-C v2.0 training set. Therefore, it
is a more generic and multilingual system cover-
ing more than 143 source languages and 200 target
languages.7

Furthermore, an overlap has been identified be-
tween the MuST-C tst-COMMON and the ST-TED
dataset (Zhang and Ao, 2022), which was allowed
for last year’s task. Some participants, unaware
of this issue, employed the ST-TED dataset (e.g.,
CUNI-KIT and XIAOMI). Therefore, the results
achieved by last year’s submissions on the MuST-C
tst-COMMON may not be entirely reliable. In ad-
dition, it has been recently found another possible
overlap with TED2020, which may invalidate other
scores.8

In conclusion, SimulSeamless allows for accept-
able or even better results compared to last year’s
participants in the SimulST Evaluation Campaign
while being generic and potentially applicable to
all translation directions supported by the underly-
ing SeamlessM4T model without any retraining or
adaptation.

7We are not able to exclude that MuST-C has been used for
training the "off-the-shelf" SeamlessM4T but no ad-hoc fine-
tuning on the data and/or language pairs has been performed
for our participation.

8Unaware of this overlap, participations from CMU and
HW-TSC used this dataset.
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Lang. Pair Model BLEU ↑ AL ↓ LAAL ↓ ATD ↓
CMU† 30.4 1.92 1.99 -
CUNI-KIT† 31.4 1.955 (3.072) - -
FBK† 30.70 1.888 (2.939) 2.069 (3.052) 1.797 (2.364)
HW-TSC‡ 33.54 1.88 - -
NAIST 29.98 1.964 2.173 1.894

en-de

SimulSeamless† 27.37 1.815 (3.012) 1.993 (3.137) 1.778 (2.353)
NAIST 15.32 1.974 2.291 0.548
CUNI-KIT† 15.3 1.982 (3.489) - -
HW-TSC‡ 17.89 1.98 - -

en-ja

SimulSeamless† 22.19 1.997 (4.018) 2.137 (4.272) 0.580 (2.728)
NAIST 22.11 1.471 1.907 0.668
CUNI-KIT† 26.6 1.987 (3.508) - -
HW-TSC‡ 27.23 1.98 - -
XIAOMI† 26.59 1.966 - -

en-zh

SimulSeamless† 20.56 1.942 (3.388) 2.080 (3.465) 0.765 (1.933)
cs-en SimulSeamless† 18.03 1.988 (3.755) 2368 (3.999) 2.778 (3.399)

Table 1: Results on the MuST-C v2.0 tst-COMMON (for en-{de, ja, zh}) and IWSLT 2024 dev (for cs-en) considering
BLEU and all the latency metrics (in seconds) reported for the task. Results in brackets are computationally aware
but computed with different environments between systems. † indicates systems trained offline and tested in
simultaneous. ‡ indicates cascade systems.

5 Conclusions

We introduced FBK’s system designed for partici-
pation in the IWSLT 2024 Evaluation Campaigns
in Simultaneous Translation and, specifically, the
speech-to-text sub-track (SimulST). Our submis-
sion is characterized by the "off-the-self" use of
the SeamlessM4T model for direct speech trans-
lation, repurposed for the simultaneous scenario
by means of AlignAtt. AlignAtt is a SimulST pol-
icy that leverages cross-attention scores to guide
simultaneous inference without any further modifi-
cation or adaptation of the underlying model. The
combination of SeamlessM4T and AlignAtt results
in SimulSeamless, which supports all translation
pairs of the Evaluation Campaign (English to Ger-
man, Japanese, and Chinese, and Czech to English).
SimulSeamless, to be released upon paper accep-
tance, achieves acceptable or even superior results
compared to last year’s participants. Moreover, it
can be used for any language pairs enabled by the
underlying SeamlessM4T model, potentially cover-
ing more than 143 source languages and 200 target
languages.
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efficient simultaneous speech translation: CUNI-KIT
system for simultaneous track at IWSLT 2023. In
Proceedings of the 20th International Conference on
Spoken Language Translation (IWSLT 2023), pages
389–396, Toronto, Canada (in-person and online).
Association for Computational Linguistics.

Peter Polák, Ngoc-Quan Pham, Tuan Nam Nguyen,
Danni Liu, Carlos Mullov, Jan Niehues, Ondřej Bo-
jar, and Alexander Waibel. 2022. CUNI-KIT system
for simultaneous speech translation task at IWSLT
2022. In Proceedings of the 19th International Con-
ference on Spoken Language Translation (IWSLT
2022), pages 277–285, Dublin, Ireland (in-person
and online). Association for Computational Linguis-
tics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium.

Vineel Pratap, Andros Tjandra, Bowen Shi, Paden
Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky,
Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi,
Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning
Hsu, Alexis Conneau, and Michael Auli. 2023. Scal-
ing Speech Technology to 1,000+ Languages. arXiv.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine Mcleavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages
28492–28518.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Brian Yan, Jiatong Shi, Soumi Maiti, William Chen,
Xinjian Li, Yifan Peng, Siddhant Arora, and Shinji
Watanabe. 2023. CMU’s IWSLT 2023 simultane-
ous speech translation system. In Proceedings of the
20th International Conference on Spoken Language
Translation (IWSLT 2023), pages 235–240, Toronto,
Canada (in-person and online). Association for Com-
putational Linguistics.

Yu Zhang, Wei Han, James Qin, Yongqiang Wang,
Ankur Bapna, Zhehuai Chen, Nanxin Chen, Bo Li,
Vera Axelrod, Gary Wang, et al. 2023. Google usm:
Scaling automatic speech recognition beyond 100
languages. arXiv preprint arXiv:2303.01037.

7
126

https://doi.org/10.21437/Interspeech.2020-2897
https://doi.org/10.21437/Interspeech.2020-2897
https://doi.org/10.21437/Interspeech.2020-2897
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/2020.emnlp-demos.19
https://doi.org/10.18653/v1/2020.emnlp-demos.19
https://doi.org/10.18653/v1/2023.iwslt-1.11
https://doi.org/10.18653/v1/2023.iwslt-1.11
https://doi.org/10.18653/v1/2023.iwslt-1.11
https://aclanthology.org/2022.findings-emnlp.11
https://aclanthology.org/2022.findings-emnlp.11
https://doi.org/10.18653/v1/2022.autosimtrans-1.2
https://doi.org/10.18653/v1/2022.autosimtrans-1.2
https://doi.org/10.18653/v1/2022.autosimtrans-1.2
https://doi.org/10.18653/v1/2023.acl-long.745
https://doi.org/10.18653/v1/2023.acl-long.745
https://doi.org/10.18653/v1/2023.iwslt-1.37
https://doi.org/10.18653/v1/2023.iwslt-1.37
https://doi.org/10.18653/v1/2023.iwslt-1.37
https://doi.org/10.18653/v1/2022.iwslt-1.24
https://doi.org/10.18653/v1/2022.iwslt-1.24
https://doi.org/10.18653/v1/2022.iwslt-1.24
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://proceedings.mlr.press/v202/radford23a.html
https://proceedings.mlr.press/v202/radford23a.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2023.iwslt-1.20
https://doi.org/10.18653/v1/2023.iwslt-1.20


Ziqiang Zhang and Junyi Ao. 2022. The YiTrans speech
translation system for IWSLT 2022 offline shared
task. In Proceedings of the 19th International Con-
ference on Spoken Language Translation (IWSLT
2022), pages 158–168, Dublin, Ireland (in-person
and online). Association for Computational Linguis-
tics.

Jinming Zhao, Hao Yang, Gholamreza Haffari, and
Ehsan Shareghi. 2022. M-Adapter: Modality Adap-
tation for End-to-End Speech-to-Text Translation. In
Proc. Interspeech 2022, pages 111–115.

8
127

https://doi.org/10.18653/v1/2022.iwslt-1.11
https://doi.org/10.18653/v1/2022.iwslt-1.11
https://doi.org/10.18653/v1/2022.iwslt-1.11
https://doi.org/10.21437/Interspeech.2022-592
https://doi.org/10.21437/Interspeech.2022-592


Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024), pages 128–133
August 15-16, 2024 c©2024 Association for Computational Linguistics

The SETU-DCU Submissions to IWSLT 2024 Low-Resource Speech-to-Text
Translation Tasks

Maria Zafar†, Antonio Castaldoδ, Neha Gajakos, Prashanth Nayak,
Rejwanul Haque†, Andy Way

†South East Technological University, Carlow, Ireland
δUniversità di Pisa, Italy

ADAPT Centre, Dublin City University, Ireland
C00304029@setu.ie,antonio.castaldo@phd.unipi.it,neha.gajakos@adaptcentre.ie
prashanth.nayak@adaptcentre.ie,rejwanul.haque@setu.ie,andy.way@adaptcentre.ie

Abstract

Natural Language Processing (NLP) research
and development has experienced rapid pro-
gression in the recent times due to advances in
deep learning. The introduction of pre-trained
large language models (LLMs) is at the core
of this transformation, significantly enhancing
the performance of machine translation (MT)
and speech technologies. This development
has also led to fundamental changes in modern
translation and speech tools and their method-
ologies. However, there remain challenges
when extending this progress to underrepre-
sented dialects and low-resource languages, pri-
marily due to the need for more data.

This paper details our submissions to the
IWSLT speech translation (ST) tasks. We used
the Whisper model for the automatic speech
recognition (ASR) component. We then used
mBART and NLLB as cascaded systems for
utilising their MT capabilities. Our research
primarily focused on exploring various dialects
of low-resource languages and harnessing ex-
isting resources from linguistically related lan-
guages. We conducted our experiments for two
morphologically diverse language pairs: Irish-
to-English and Maltese-to-English. We used
BLEU, chrF and COMET for evaluating our
MT models.

1 Introduction

The introduction of the Transformer architecture
(Vaswani et al., 2017) is considered to be a ground-
breaking development in NLP. This innovation has
led to the rise of LLMs, which have become the
catalyst for the AI revolution we are presently wit-
nessing. LLMs have consistently pushed the bound-
aries of research by improving upon the state-of-
the-art across various NLP tasks. The variants of
Transformer such as the Transducer (Chen et al.,
2021), Conformer (Nguyen et al., 2021), and ESP-
net (Watanabe et al., 2018) have become essential
to the success observed in a range of speech tasks,

including both text-to-speech and speech-to-text
MT.

This study explores low-resource speech-to-
text translation, focusing on Irish-to-English and
Maltese-to-English language pairs. We focused on
developing our ST systems following two standard
approaches:

• End-to-End (E2E) system: An E2E system in
ST performs translation from one language to
another without any intermediate steps. This
process uses a single model to manage the
entire translation process.

• Cascaded System: A cascaded system in ST
uses a two-step process. First, it converts
speech into text using ASR, and then it trans-
lates that text into another language. This
process uses separate models in each step.

The rest of the paper is organised as follows:
Section 2 describes our related work. Our datasets
are explained in Section 3. Section 4 describes
the models we used. In Section 5, we discuss our
experiments and results. We conclude with avenues
for future work in Section 6.

2 Related Work

This section discusses some foremost papers re-
lated to our work. Hussein et al. (2023) recently
utilise LLMs for MT, such as mBART (Liu et al.,
2020) and NLLB-200 (Team et al., 2022), which
they used within both E2E and cascaded ST frame-
works. Furthermore, enhancements in ASR were
achieved by employing pseudo-labeling for data
augmentation and adjusting for channel variations
in telephone speech data. Additionally, they em-
ployed Minimum Bayes-Risk decoding to optimise
the integration of their E2E and cascaded ST sys-
tems. The proposed framework led to impressive
results.
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Ortega et al. (2023) utilised the Fairseq S2T
framework1, where they used log mel-scale filter
bank (Ortega et al., 2023) features for audio rep-
resentation and Transformer for translation. Their
systems integrated ASR and MT into the frame-
work sequentially. The system’s ASR component
was powered by a pre-trained XLS-R model (Babu
et al., 2021), enhanced with a fine-tuning step. At
the same time, translations were performed us-
ing an MT system developed from a fine-tuned
LLM. They found that in low-resource settings, like
Quechua-to-Spanish, direct ST methods (combin-
ing ASR and MT) tended to outperform standalone
LLM applications.

Mbuya and Anastasopoulos (2023) used self-
supervised pre-trained speech models to improve
translation performance in specific applications.
Their study utilised self-supervised models such
as Wav2vec 2.0 (Baevski et al., 2020), XLSR-53,
and Hubert (Hsu et al., 2021). Their findings in-
dicated that the Wav2vec 2.0 and Hubert models
achieved similar performance levels in tasks involv-
ing low-resource languages and dialects. Moreover,
they found that the Wav2vec 2.0 model performed
better after removing its top three layers, a modi-
fication that the Hubert model did not require. In
contrast, the XLSR-53 model showed weaker re-
sults in low-resource contexts but excelled in trans-
lating dialects, outperforming both Wav2vec 2.0
and Hubert in those scenarios.

Vakharia et al. (2023) investigated a novel ap-
proach termed “style embedding intervention” for
low-resource formality control in spoken language
translation. By assigning distinct style vectors
to individual input tokens their proposed method
comprehended and managed the subtleties of trans-
lating between formal and informal styles. They
found that their approach surpasses previous “addi-
tive style intervention” techniques, particularly for
the English-to-Korean translation task, enhancing
average matched accuracy. After analysing their
“style embedding intervention” model, they found
that most of the style information was acquired in
the <bos> (beginning of the sentence) token, fur-
ther improving the average matched accuracy.

In their study, Radhakrishnan et al. (2023) em-
ployed a basic E2E framework based on Trans-
formers and explored various techniques such as
replacing encoder blocks with Conformer and pre-

1Fairseq: https://github.com/facebookresearch/
fairseq/tree/main

training the encoder. Their approach resulted in a
substantial improvement in translation quality.

Williams et al. (2023) utilised a cascaded ap-
proach for their ST systems. For the ASR compo-
nent, they used the XLS-R model. The MT com-
ponent was based on mBART-50. They conducted
experiments for English-to-Maltese language pairs,
with the approach showing significant improve-
ment over their baseline systems.

Experiments by Kesiraju et al. (2023) used E2E
translation framework based on a bilingual ASR
system. The model was jointly trained using Con-
nectionist Temporal Classification and attention
mechanisms. Furthermore, they employed tech-
niques such as speed perturbation for data augmen-
tation and re-scoring the top hypotheses using an
external language model. They also introduced a
cascaded system that utilised the same bilingual
ASR and MT systems. Their experiments demon-
strated significant improvements over the baseline
for the Hindi-to-Marathi language pair.

The systems submitted to the previous year’s
IWLST offline and low-resource speech translation
tracks employed various strategies for improving
the performance of E2E or cascaded systems. As
for ASR, several submissions adopted a mix of
Transformer and conformer models (Zhang et al.,
2022; Nguyen et al., 2021) or fine-tuned existing
models (Zhang and Ao, 2022; Zanon Boito et al.,
2022; Denisov et al., 2021). These efforts resulted
in improved ASR performance through techniques
such as training ASR on synthetic data with added
punctuation, noise-filtering, and domain-specific
fine-tuning (Zhang and Ao, 2022; Zhang et al.,
2022), or integrating an intermediate model to re-
fine the ASR output concerning casing and punctua-
tion (Nguyen et al., 2021). As for MT, they predom-
inantly relied on Transformer-based architectures
(Zhang et al., 2022; Nguyen et al., 2021) or fine-
tuning on preexisting LLMs (Zhang and Ao, 2022).
Additionally, methods employed to improve MT
performance included multi-task learning (Denisov
et al., 2021), training the MT component robustly
on noisy ASR output data (Nguyen et al., 2021),
and re-ranking and de-noising techniques (Ding
and Tao, 2021).

While there have been extensive and rapid de-
velopments in ST, the field of low-resource and
dialect ST still needs to be explored. In this pa-
per, we discuss our submissions to the IWSLT ST
task. We conducted our experiments for two low-
resource language pairs: Maltese-to-English and
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Irish-to-English.

3 Datasets

We utilised the data provided by IWSLT for our
experiments. The data statistics are detailed in
Table 1.

Irish-to-English
Audios Sentences

Train 7,478 7,478
Dev 1,120 1,120
Test 347 347

Maltese-to-English
Train + Dev 7,542 7,542

Test 1,864 1,864

Table 1: Statistics of the datasets used.

4 Cascaded System

This section describes the architecture of our cas-
caded system. Like standard cascaded ST systems,
our ASR and MT models are interconnected, i.e.
the output from the ASR model serves as the in-
put to the MT system. For this experiment, we
selected the OpenAI Whisper model2 (Radford
et al., 2022) as our ASR system. We fine-tuned the
OpenAI Whisper small model on Maltese speech
to optimise its ASR capabilities. As for the MT
component, we used two different pre-trained mod-
els, mBART-503 (Liu et al., 2020) and NLLB-200-
distilled-600M4 (Team et al., 2022). Both models
were fine-tuned on the Maltese-to-English bilingual
data.

As pointed out above, we used the OpenAI Whis-
per model as our ASR system. We aligned the data
format with the model’s input requirements to pre-
pare our data. This involved removing unnecessary
data chunks from the dataset, eliminating special
characters, and converting the sentences to lower-
case. Since our input audio was sampled at 48kHz,
we downsampled it to 16kHz before passing it to
the OpenAI Whisper feature extractor, as 16kHz is
the sampling rate expected by the model. Addition-
ally, we adjusted the audio inputs to the correct sam-
pling rate using the “cast column” method. This
operation does not alter the audio files directly but

2Whisper: https://openai.com/research/whisper
3mBART-50: https://huggingface.co/facebook/

mbart-large-50
4NLLB-200: https://ai.meta.com/research/

no-language-left-behind/

instead instructs the dataset to resample the audio
samples on-the-fly the first time they are loaded.

We empirically identified that the following hy-
perparameter settings provided us the best results:
batch size of 16, learning rate of 1e-5, 500 warmup
steps, 30,000 max steps, per-device eval batch size
of 8, generation max length of 225, and intervals of
1,000 steps for saving and evaluating, and 25 steps
for logging.

4.1 The MT systems
As previously discussed, we choose mBART-50
and NLLB-200-distilled-600M as the choice of our
MT models. We fine-tuned these models on the
Maltese-to-English bilingual data (cf. Table 1). For
the purpose of our evaluation, we used the BLEU
(Papineni et al., 2002), COMET (Rei et al., 2020),
and ChrF (Popović, 2015) metrics.

5 End-to-end System

Our submission for the English-Irish language pair
comprises a fine-tuned version of OpenAI Whisper
Small5 to perform direct ST. Note that in this exper-
iment, the audio files are resampled at 16kHz. This
experiments were carried out for Irish-to-English
only. In terms of hyperparameters selection, for our
E2E experimentation, we identified that the follow-
ing settings provided us the best results: batch size
of 16, learning rate of 1e-5, 500 warmup steps, 1
gradient accumulation steps, generation max length
of 225, and intervals of 500 steps for saving and
evaluating. The model was fine-tuned over three
epochs. We also integrated early stopping with
Patience = 2. The data preprocessing pipeline
was the same as the one used for the cascaded sys-
tem (see Section 4).

6 Results

This section discusses the results that we obtained
from our experiments. Table 2 shows the results ob-
tained by evaluating our models on the evaluation
test set while Table 3 shows the results obtained
on blind test set provided by IWSLT. We can see
from Table 2 that our models are reasonably good
in the Maltese-to-English translation task. Our pri-
mary submission for Maltese-to-English was based
on cascaded setup (Whisper + NLLB fine-tuning).
For this setup, we obtained 52.60 BLEU, 72.12
chrF and 0.831 COMET points on the IWSLT 2023
evaluation test set. Our contrastive system is also

5Whisper: https://openai.com/research/whisper
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Model BLEU ChrF COMET
Maltese-English

Whisper-small 56.67 81.92 0.84
NLLB-200-600M 52.6 72.12 0.83
mBART-50 44.7 65.53 0.79

Irish-English
Whisper-small 0.14 33.05 -
(E2E)

Table 2: Results for our translation systems on evalua-
tion test set.

a cascaded system; however, this time, we used
mBART-50 as the decoder. This setup provided us
44.70 BLEU, 65.53 chrF, 0.796 COMET points on
the evaluation test set. Fine-tuning OpenAI’s Whis-
per model for the English-to-Irish language pair
has led to a performance improvement, despite the
fact that the language is unsupported and unavail-
able in the model’s training data. Unfortunately, the
BLEU score remains low, probably due to instances
of overgeneration and undergeneration. The ChrF
score, which measures character-based similarity,
is higher but still indicates room for improvement
as far as translation quality is concerned.

The results obtained on the blind test set are
shown in Table 3. For our primary submission
for Maltese-to-English we obtained 56.67 BLEU
and 81.92 chrF2 points on the IWSLT 2024 blind
test sets. Like above, our contrastive systems were
cascaded systems; the first and second contrastive
systems provided us 52.6 BLEU and 72.12 chrF2
and 44.70 BLEU and 65.53 chrF2 points, respec-
tively. For our primary submission for English-to-
Irish language pair we obtained 0.6 BLEU and 15.4
ChrF2 points on the test set.

As shown in Table 2 and Table 3, our best per-
forming system is cascaded system with whisper-
small and NLLB-200-600M. However, E2E are
better than cascaded system due to the fact that in
cascaded systems errors from the ASR can severely
impact the performance of the subsequent compo-
nent (MT). In contarst, E2E models can learn to
directly map source language speech to the target
language text. Their ability to process input in a
single pass can significantly reduce latency com-
pared to cascaded systems that involve multiple
stages of processing, thereby avoiding intermediate
errors. Our team secured second position for the
Maltese-to-English translation task in this competi-
tion.

BLEU ChrF2
Maltese-English

Primary 56.67 81.92
Constrastive1-Data1 52.6 72.12
Constrastive1-Data2 44.7 65.53

Irish-English
Primary 0.6 15.4

Table 3: Official results for our translation systems on
blind set.

7 Conclusion

In this study, we discussed our ST models for the
IWSLT 2024 Low-Resource Task for both Irish-
English and Maltese-English language pairs. Our
proposed architecture offers numerous benefits: it
is both computationally and data-efficient, supports
both speech-to-text and text-to-text translations (in-
cluding transcription), enhances knowledge trans-
fer which boosts performance in low-resource lan-
guages, and exhibits robust translation capabilities.

Future investigations will focus on a detailed as-
sessment of our architecture’s ASR functionality
and explore the use of adapters within the speech
representation model. Additionally, a thorough ex-
amination of the optimal layers will be necessary
when the speech representation model is not up-
dated.
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Abstract

The paper describes the FBK submissions to
the Subtitling track of the 2024 IWSLT Eval-
uation Campaign, which covers both the Au-
tomatic Subtitling and the Subtitle Compres-
sion task for two language pairs: English to
German and English to Spanish. For the Au-
tomatic Subtitling task, we submitted two sys-
tems each covering one of the two proposed
training conditions, namely constrained and
unconstrained: i) a direct model, trained in
constrained conditions, that produces the SRT
files from the audio without intermediate out-
puts (e.g., transcripts), and ii) a cascade solu-
tion that integrates only free-to-use and freely
trained components, either taken off-the-shelf
or developed in-house. Results show that, on
both language pairs, our direct model outper-
forms both cascade and direct systems trained
in constrained conditions in last year’s edition
of the campaign, while our solution assembly-
ing pre-trained models is competitive with the
best 2023 systems, although they were fine-
tuned on task specific training data. For the Sub-
title Compression task, our primary submission
involved prompting a Large Language Model
in zero-shot mode to shorten subtitles that ex-
ceed the reading speed limit of 21 characters
per second. Our results highlight the challenges
inherent in shrinking out-of-context sentence
fragments that are automatically generated and
potentially error-prone, underscoring the need
for future studies to develop targeted solutions.

1 Introduction

In response to the growing amount of audiovisual
content produced every day, the task of automati-
cally generating subtitles has seen increasing atten-
tion (Álvarez et al., 2015; Vitikainen and Koponen,
2021), with the goal of fostering the accessibility
of the material by overcoming language barriers.
In light of this, starting from the 2023 edition, the
IWSLT Evaluation Campaign includes the Auto-
matic Subtitling task, in which participants had

to generate well-formed subtitles in German and
Spanish starting from the corresponding English
audio (Agarwal et al., 2023). In addition to requir-
ing high-quality translations of the audio content,
correct subtitles also need the translated text to be
split into blocks (each of them possibly split into
2 lines) in a way that minimizes the users’ cogni-
tive effort (Bogucki, 2004; Khalaf, 2016; Cintas
and Remael, 2021), and these blocks have to be
presented on-screen with the correct timing, i.e. in
sync with the original audio.

Although there is no absolute rule to determine
the cognitive effort required to read a subtitle, typ-
ical constraints to keep it low include: i) not hav-
ing more than 2 lines per block (LPB); ii) keep-
ing the number of characters per line (CPL) be-
low a given threshold, which was set to 42 in the
IWSLT 2023 campaign; and iii) avoiding excessive
reading speed expressed in the number of char-
acters per second (CPS) to be read by the user,
which was set to 21. Good subtitles should hence
be displayed in text blocks that conform to these
rules, and their adherence to the constraints can be
measured as the percentage of blocks compliant
with them. Since automatic subtitling systems can
fail in fully matching all the above constraints, the
IWSLT 2024 campaign introduced an additional
Subtitle Compression sub-task,1 which requires to
reduce the number of characters in each block of
pre-generated subtitles to an extent that satisfies the
reading speed constraint, without compromising its
semantic content.

This paper describes FBK’s submissions to both
tasks (Automatic Subtitling and Subtitle Compres-
sion) of the IWSLT 2024 Subtitling track. Our
submitted systems cover both language directions
under evaluation, namely English-German (en-de)
and English-Spanish (en-es).

Regarding Automatic Subtitling, we explored

1https://iwslt.org/2024/subtitling
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two approaches that led to two submissions, one
for each training condition, constrained and uncon-
strained. On the one hand, following the promising
results obtained by the first direct models for auto-
matic subtitling (Papi et al., 2023a), we trained a
direct subtitling model (§2.1) in constrained con-
ditions, i.e. using only the data allowed by the or-
ganizers for this setting. We call this model direct
as it generates the subtitles in the target languages
(including block and line delimiters) as well as
timestamps without any intermediate discrete con-
tent representation, such as textual transcripts of the
audio. In this respect, it is different from the two
direct models submitted in the 2023 edition as both
required the generation of intermediate transcripts
for the timestamps estimation, either by using an
auxiliary automatic speech recognition (ASR) sys-
tem (Bahar et al., 2023) or by using auxiliary mod-
ules of the direct speech translation (ST) system
(Papi et al., 2023b). On the other hand, we created
a pipeline system (§2.2) within the AI4Culture2

EU project, which binds us to use only code and
models released under licenses as permissive as
possible. Lastly, our primary submission to the
newly proposed Subtitle Compression task (§2.3)
tackled the problem with an LLM-based approach.
To this aim, we explored a first basic solution by
prompting the model in zero-shot mode to shorten
candidate hypotheses exceeding the 21 CPS limit,
and compared it with simpler, word/character dele-
tion strategies.

2 Systems Description

In this section, we first describe the direct (§2.1)
and cascade (§2.2) Automatic Subtitling sys-
tems, and then our Subtitle Compression submis-
sions (§2.3).

2.1 Direct Subtitling with SBAAM
Our direct subtitling system is based on an encoder-
decoder architecture, made of a 12-layer Con-
former3 encoder (Gulati et al., 2020) and a 6-layer
Transformer decoder (Vaswani et al., 2017). It is
trained to predict the translation in the target lan-
guage with end of line (<eol>) and end of block
(<eob>) delimiters to learn both to translate and
segment into subtitle units. Moreover, we add a
Connectionist Temporal Classification (CTC) on

2https://pro.europeana.eu/project/ai4culture-an-ai-
platform-for-the-cultural-heritage-data-space

3We use the padding-safe implementation tested with
pangolinn by Papi et al. (2024).

target module (Yan et al., 2023) on top of the en-
coder that is trained with the same target as the
autoregressive Transformer decoder. In addition,
to reduce the computational cost of our model, we
include a CTC compression module in the 8th en-
coder layer (Gaido et al., 2021). This module is
trained to predict the transcription of the audio,
but no transcript is generated at inference time and
the module only averages similar vectors without
producing any textual representation of the source.

The end-to-end training is realized with a com-
posite loss (L) that sums the label smoothing cross-
entropy (CE) loss (Szegedy et al., 2016) on the
decoder outputs with the CTC loss of the CTC on
target module, and the CTC loss of the CTC com-
pression module. By defining t as the transcript of
an audio sample, and x and y as the target transla-
tion augmented with <eob> and <eol> delimiters,
we can formalize the loss as:

L = λ1 CTC(h8, t) + λ2 CTC(h, y)

+ λ3 CE(D(h, y), y)

where λ1,2,3 control the relative weight of the
losses, h8 is the output of the 8th encoder layer,
h is the encoder output, and D is the Transformer
decoder. In our experiments, we follow the indi-
cation of (Yan et al., 2023) and set (λ1, λ2, λ3) to
(1.0, 2.0, 5.0).

The inference phase, instead, combines only
the probabilities predicted by the CTC on tar-
get module and by the decoder, following the
joint CTC/attention framework with CTC rescor-
ing (Watanabe et al., 2017; Yan et al., 2023). This
method involves rescoring the next-token probabili-
ties produced by the decoder using the probabilities
of the candidate prefixes obtained from the CTC
on target module (TgtCTC):

p = pD(yi|h, y0,...,i−1) + αpTgtCTC(y0,...,i|h)

where α is a hyperparameter that controls the
weight of the CTC rescoring.

The output of this inference is the translated
text with subtitle boundaries. As such, we still
miss a key element for subtitles: the start and
end timestamps of each block, which control how
long and when they have to be displayed on the
screen. To estimate them, we rely on the Speech
Block Attention Area Maximization (SBAAM)
method (Gaido et al., 2024). SBAAM leverages
the encoder-decoder attention to create alignments
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between the generated subtitles and the source au-
dio, as done in many works both in text-to-text sce-
narios (Tang et al., 2018; Zenkel et al., 2019; Garg
et al., 2019; Chen et al., 2020) and, more recently,
speech-to-text ones (Papi et al., 2023c; Alastruey
et al., 2023). In fact, SBAAM first applies a mean-
standard deviation normalization to the attention
matrix on the text axis (clipping all negative val-
ues to a small −ϵ quantity to avoid penalizing in
different ways unnecessary areas). Then, for each
block boundary (<eob>) in the generated text, it
iteratively determines the timing of the <eob> by
selecting the splitting point that maximizes the area
of the current block with the audio up to that point
and the remaining blocks with the rest of the audio.

Once all the <eob>s in the output have been pro-
cessed, all blocks will have start and end timings.

Experimental Details. The input of our models
is represented by 80 Mel-filterbank features ex-
tracted every 10 ms with a window of 25 ms. The
input features are then processed with two 1D con-
volutional layers with stride 2 that reduce the input
length by a factor of 4. We use 512 for the en-
coder and the decoder embedding dimensions and
2048 hidden features in the feed-forward layers.
The vocabularies are based on unigram Sentence-
Piece (Kudo, 2018), with size 8,000 for the English
source and 16,000 for the target (either German
or Spanish). The total number of parameters of
our models is 133M. The final models are obtained
by averaging the last 7 checkpoints obtained from
the trainings, which are performed on 4 NVIDIA
Ampere GPU A100 (64GB VRAM). At inference
time, when long unsegmented audios have to be
subtitled, the audio is first segmented into smaller
audio chunks with SHAS4 (Tsiamas et al., 2022).
The code used to create the models is available at:
https://github.com/hlt-mt/FBK-fairseq.

Training Data. The models are trained on most
of the datasets admitted for the “constrained” sub-
mission type. These include all the available ST
corpora, namely MuST-Cinema (Karakanta et al.,
2020), EuroParl-ST (Iranzo-Sánchez et al., 2020),
and CoVoST v2 (Wang et al., 2020). Also, we lever-
age most of the available ASR datasets (Common-
Voice (Ardila et al., 2020), LibriSpeech (Panay-
otov et al., 2015), TEDLIUM v3 (Hernandez et al.,
2018), and VoxPopuli (Wang et al., 2021)), by
automatically translating the transcripts into the

4https://github.com/mt-upc/SHAS

two target languages using the NeMo MT mod-
els.5 <eol> and <eob> tags are added to both tran-
scripts and translations of all datasets, except for
MuST-Cinema that already include them, using the
multimodal segmenter by Papi et al. (2022).

2.2 Cascade Subtitling

As stated in the introduction, within the EU
AI4Culture project, we developed a cascade sub-
titling system combining free-to-use components
only. Most of them are taken off-the-shelf, while
others were developed in-house. The entire sys-
tem is publicly available at https://github.com/
hlt-mt/FBK-subtitler.

The pipeline is shown in Figure 1 and concate-
nates the following modules:

Audio segmenter: Speech recognition and speech
translation models are unable to process long au-
dios, which then have to be split into shorter seg-
ments. As in the direct architecture, here too SHAS
is used to carry out this task. It is worth noting that,
in general, each audio segment contains multiple
subtitles. SHAS code and models are released un-
der the very permissive MIT license.

Speech recognition system: To transcribe the in-
put speech, we opted for Whisper6 (large-v3) to
date one of the best ASR systems covering English,
licensed under the MIT license. Whisper generates
transcripts already split in subtitles, each supplied
with start and end timestamps. However, two main
issues can affect Whisper’s outputs: hallucinations
and lack of segmentation in lines, both handled by
specific modules of the pipeline.

Hallucination removal filter: It removes hallu-
cinations, a well-known concern of LLMs, which
refers to the generation of text that is erroneous,
nonsensical, or detached from reality. Here, only
shallow hallucinations are considered, i.e. those
involving the syntax of subtitles but not their se-
mantics. We observed two types of shallow hal-
lucinations, within and across subtitles. The first
type refers to the repetition of single words or short
n-grams many consecutive times within a subti-
tle. The second type refers to instances where the
same transcript is repeated an anomalous number
of times across consecutive subtitles. We imple-
mented a script which heuristically detects and

5Publicly available at: https://docs.nvidia.com/
deeplearning/nemo/user-guide/docs/en/main/nlp/
machine_translation/machine_translation.html

6https://github.com/openai/whisper
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Figure 1: The cascade subtitling system based on pre-trained LLMs.

removes such phenomena from subtitles; in the
pipeline, it is used downstream of both the ASR
and the MT models.

Machine translation system: It performs the trans-
lation of a text (here: the text in each subtitle gener-
ated by Whisper, amended by hallucinations) from
a source language into the target language. Various
freely usable pre-trained LLMs have been tested
in a preliminary investigation, namely NLLB,7

mBART-50,8 Helsinki Opus-MT.9 The outcomes
indicated the Helsinki Opus-MT as the best per-
former. Code and models are released under the
MIT license.

Text segmenter: In general, its goal would be split-
ting the input text into fragments suitable, in terms
of both quality and compliance to spatio-temporal
constraints, to be displayed on the screen. However,
since here the goal is solely to split too long, single
line subtitles generated from the previous stages
of the pipeline into two lines, we implemented a
script that splits subtitles longer than 42 characters
into two lines rewarding: the compliance of both
lines with the 42-character limit, a similar length
of the two lines, and the presence of a punctuation
mark at the end of the first line.

2.3 Subtitle Compression

The newly introduced Subtitle Compression task
required participants to rephrase subtitles provided
by the task organizers that did not comply with the
reading speed constraint of 21 CPS.

The material to be automatically processed was
presented to participants as standard SRT (Sub-
Rip File Format) files that include: i) the text of
sequentially numbered subtitles, which can be ei-

7https://github.com/facebookresearch/fairseq/
tree/nllb/

8https://huggingface.co/facebook/
mbart-large-50

9https://huggingface.co/models?sort=trending&
search=Helsinki-NLP

ther one or two lines, and ii) timing information
for each subtitle (i.e. timestamps in the format
hours:minutes:seconds,milliseconds), indi-
cating how long the subtitle should stay on the
screen. As per the task guidelines, the goal was to
exclusively work at the text level, compressing sub-
titles’ text when necessary and without modifying
the time boundaries. To achieve this, given the lack
of indications on which automatic subtitles needed
correction, we relied on the subtitle compliance
script also provided by the task organizers. This al-
lowed us to reliably identify the subtitle candidates
requiring text compression and focus exclusively
on rephrasing them.

The identified subtitles (39.8% and 30.0% of the
total for en-de and en-es, respectively) underwent
the compression phase, for which we devised two
strategies. The first one, selected for our primary
submission, is user-oriented: its goal is to target
the CPS constraint with an LLM-based, fluency-
driven approach aimed at preserving the readability
of the compressed subtitles and, in turn, user ex-
perience. The second strategy, selected for our
contrastive submissions, is more metric-oriented.
Its goal is to shorten non-CPS-compliant subtitles
by removing function words with varying levels of
aggressiveness.

User-oriented approach (GPT – primary). Our
LLM-based compression approach exploits GPT-4
(OpenAI, 2024) (model gpt-4-0613, with default
parameters except for the temperature, which we
set to 0), which was prompted in zero-shot mode
with the instruction: “Shorten this [LANGUAGE]
text to a maximum of [TARGET_NUMCHARS]
characters while preserving the original
words as much as possible: [TEXT]”, where:

• LANGUAGE indicates the language of the subti-
tle, either “German” or “Spanish”;

• TARGET_NUMCHARS specifies the maximum al-
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lowed length for the compressed subtitle, mea-
sured in characters including spaces. The
target value is calculated based on the total
on-screen time of the subtitle, which is deter-
mined by subtracting its start time from its
end time and then multiplying this duration by
21 (e.g., with 3.2 seconds of on-screen time,
TARGET_NUMCHARS is 67.2, truncated to 67);

• TEXT is the original subtitle that needs to be
compressed.

The choice of the overall approach was driven
by the aim to preserve the user experience by lever-
aging the generation capabilities of large language
models. In fact, simpler and more aggressive meth-
ods, such as the metric-oriented ones presented in
the next paragraph, can easily improve the rate of
subtitles compliant with the CPS limit but at the
cost of losing important information and detract-
ing their readability. In an opposite direction,
our LLM-based approach aims to strike a balance
between improving CPS values and retaining the
original information through targeted and meaning-
preserving rephrasing.

Our zero-shot prompting strategy was primar-
ily driven by fast-development reasons. In fact,
we expect significant improvements by feeding the
model with exemplars, i.e., via in-context learn-
ing (Brown et al., 2020). We opted for a simpler,
cheaper, and more conservative approach to estab-
lish a starting point and a reference baseline for fu-
ture in-depth comparative experiments. For similar
reasons, we opted for a solution that concentrates
on individual subtitles instead of operating on full
sentences. Though likely more effective, letting the
LLM reformulate full sentences in a shorter way
would have introduced the additional burden of re-
arranging the resulting content into timed subtitles
afterward. This is certainly a promising direction
for future improvements.

Metric-oriented approach (Del_* – contrastive).
For our contrastive submissions, we designed
“metric-oriented” solutions that aim to improve
CPS by aggressively reducing the length of sub-
titles through simple character or word deletions.
The goal was to measure the extent to which
this baseline approach affects the readability of
subtitles. Along this direction, we explored a
range of options which share the common trait
of removing from the non-CPS-compliant subti-
tles specific categories of function words iden-

tified from pre-compiled lists downloaded from
the web.10 Word removal is carried out with
varying levels of aggressiveness, ranging from
i) the deletion of articles (Del_articles) to ii)
the deletion of articles, prepositions, and adverbs
(Del_art/prep/adv), and iii) the deletion of all
function words (Del_all-func-wrds). On the one
side, these strategies avoid the loss of important
content in the original subtitles and the presence of
incomplete words in the output, as it happens in the
Baseline approach proposed by the task organizers.
On the other side, they intervene in the syntactic
structure of the subtitles, altering them in a way that
improves CPS but penalizes both readability and
automatic evaluation with reference-based metrics.

3 Results

As a recap, FBK submitted the following runs:

Automatic Subtitling task

• Primary run in Constrained condition:
FBKdrct

24 (§2.1)
• Primary run in Unconstrained condition:
FBKcscd

24 (§2.2)

Subtitle Compression task

• Primary run: GPT
(§2.3, paragraph “User-oriented approach”)

• Contrastive1 run: del all func wrds
(§2.3, “Metric-oriented approach”)

• Contrastive2 run: del art/prep/adv
(§2.3, “Metric-oriented approach”)

3.1 Automatic Subtitling
Results on subtitling task are provided in Ta-
bles 1, 2, and 3. Table 1 compares the SubER
(Wilken et al., 2022) scores,11 the primary metric
of the task, computed on the subtitles of the devel-
opment set generated by our systems and by the
best systems at IWSLT 2023 in constrained and
unconstrained conditions. Table 2 shows global
results, i.e., on subtitles of all domains, on test23
of our runs as provided to us by organizers, and of
the best primary runs at IWSLT 2023, as published
in (Agarwal et al., 2023). Table 3 gathers results,
global and on each domain, on test24 of our runs

10https://github.com/Yoast/javascript/tree/
develop/packages/yoastseo/src/researches

11When we do state otherwise, we compute SubER without
casing and punctuation, as done in the previous evaluation
campaign for the sake of fair comparison with previous scores.
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en-de

system cnd
TED ITV PELOTON AVG

SubER SubER SubER SubER
cased uncased cased uncased cased uncased cased uncased

AppTekcscd23 C - 63.0 - 83.6 - 87.6 - 78.1
FBKdrct23 C 69.4 - 83.7 - 79.1 - 77.4 -
AppTekcscd23 U - 64.3 - 71.4 - 71.9 - 69.2
FBKdrct24 C 61.6 62.1 80.0 80.7 75.6 78.2 72.4 73.7
FBKcscd24 U 69.0 69.0 79.3 78.9 73.4 76.1 73.9 74.7

en-es

system cnd
TED ITV PELOTON AVG

SubER SubER SubER SubER
cased uncased cased uncased cased uncased cased uncased

AppTekcscd23 C - 48.8 - 82.1 - 79.0 - 70.0
FBKdrct23 C 52.5 - 82.2 - 80.3 - 71.7 -
TLT23 U - 45.9 - 71.3 - 74.9 - 64.0
FBKdrct24 C 49.5 47.5 79.1 79.5 79.3 80.8 70.3 70.3
FBKcscd24 U 49.2 48.0 72.2 73.5 73.9 76.9 65.1 66.1

Table 1: SubER (↓) comparison with the best cascade (AppTekcscd23 – Bahar et al. 2023 – and TLT23 – Perone 2023
– for en-es) and direct (FBKdrct

23 ) models trained on constrained/unconstrained (C/U of column cnd) conditions from
the IWSLT 2023 Evaluation Campaign on automatic subtitling for en-de and en-es validation sets. The results of
our systems are reported in bold.

Subtitle Translation Subtitle
quality quality compliance

en- system cnd SubER↓ BLEU↑ ChrF↑ BLEURT↑ CPS↑ CPL↑ LPB↑

-de

FBKdrct24 C 74.26 13.08 34.77 .3742 72.75 89.35 99.96
AppTekcscd23 C 77.14 12.40 33.17 .3300 93.01 100.00 100.00
FBKcscd24 U 73.78 16.46 39.07 .4454 61.44 93.04 100.00
AppTekcscd23 U 70.23 15.10 37.39 .4291 87.87 100.00 100.00

-es

FBKdrct24 C 70.09 19.16 41.58 .3972 73.08 91.64 99.97
AppTekcscd23 C 72.33 17.72 38.49 .3467 95.30 100.00 100.00
FBKcscd24 U 66.02 23.87 46.53 .4811 67.56 94.25 100.00
TLT23 U 67.29 22.54 46.40 .4993 85.51 99.53 100.00

Table 2: Global subtitling results (ALL) of 2024 FBK submissions and of 2023 best primary runs on test2023.

Subtitle Translation Subtitle
quality quality compliance

en- system dmn SubER↓ BLEU↑ ChrF↑ BLEURT↑ CPS↑ CPL↑ LPB↑

-de

FBKdrct24

TED 57.50 25.79 54.78 .6114 83.10 83.69 100.00
ITV 78.90 9.67 28.43, .2911 70.45 90.04 99.97
PLT 80.68 7.71 30.45 .3542 82.16 92.77 100.00
ALL 73.99 13.48 36.12 .3775 76.19 88.86 99.99

FBKcscd24

TED 63.26 22.94 53.70 .5872 79.99 89.52 100.00
ITV 79.92 14.86 35.16 .4048 54.20 91.12 100.00
PLT 78.34 11.30 34.13 .4202 76.52 96.99 100.00
ALL 75.56 16.23 40.10 .4503 64.64 91.79 100.00

-es

FBKdrct24

TED 39.86 45.63 69.63 .7441 82.43 86.59 100.00
ITV 77.00 11.91 31.95 .2986 70.61 92.60 100.00
PLT 79.70 11.88 40.05 .4329 82.26 89.58 100.00
ALL 67.13 22.03 44.69 .4277 76.00 90.35 100.00

FBKcscd24

TED 40.75 45.69 69.20 .7500 83.42 90.31 100.00
ITV 70.82 18.92 40.17 .4262 60.85 93.46 100.00
PLT 74.17 16.18 44.42 .5108 80.24 97.03 100.00
ALL 63.01 26.60 49.64 .5174 69.97 93.28 100.00

Table 3: Detailed subtitling results of FBK submissions on test2024.
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as provided to us by organizers. Besides SubER
that measures overall subtitle quality, Table 2 and
Table 3 include BLEU (Papineni et al., 2002), ChrF
(Popović, 2015) and TER (Snover et al., 2006) for
translation quality and CPS, CPL and LPB confor-
mity12 for subtitling guideline compliance.

By looking at SubER scores of Table 1 and Ta-
ble 2, we notice that our direct system outperforms
not only the best direct system submitted last year
but also the best cascade in constrained conditions.
This superiority is consistent over all domains and
language pairs. Also, focusing on Table 2, this is
confirmed by all the translation quality metrics on
test2023. In the unconstrained setting, instead, the
results are less clear. Our cascade system achieves a
lower (hence, better) SubER than the unconstrained
submissions from last year on the en-es section of
test2023 while, on the en-de section, it has a higher
SubER than AppTekcscd23 , in contrast with the defi-
nitely higher translation quality scores.

Back to the comparison between our direct con-
strained system and our cascade unconstrained so-
lution, we notice consistent trends over all the eval-
uation sets (validation, test2023, test2024). The
direct system achieves better scores on the TED do-
main, which is the only one covered by the training
data allowed for the constrained setting, but falls
behind by a large margin on the other two (ITV and
PELOTON), especially on en-es. This result is not
surprising as the unconstrained system has been
trained on a wide range of domains and is therefore
more robust to domain shifts. Regarding subtitle
compliance, interesting trends emerge: the cascade
system has higher CPL compliance (∼+3% across
all settings), while the direct system outperforms it
in terms of CPS compliance (+6-12%). The latter
aspect may be motivated by the direct access to the
source audio of the direct system (which is also
guided by the CTC module that directly maps the
audio sequence to the textual output).

3.2 Subtitle Compression

The results for the subtitle compression task are re-
ported in Table 4 in terms of BLEURT and CPS (as
a measure of reading speed compliance). BLEURT
results are computed in two ways, either consider-
ing the provided subtitles as references or by using
the actual subtitle references. The former results

12Computed with the script provided by Papi et al.
(2023a): https://github.com/hlt-mt/FBK-fairseq/
blob/master/examples/speech_to_text/scripts/
subtitle_compliance.py

serve as a proxy of translation quality, as well as a
way to measure the distance between the original
subtitles to be modified and the resulting modi-
fied ones (i.e. as an indicator of how radical the
applied changes are). The latter ones, instead, pro-
vide real translation quality measurements. For the
sake of discussion, the table includes the results
of the Baseline as provided by the task organiz-
ers and those of an unsubmitted metric-oriented
solution (Del_articles), besides those of our of-
ficial primary (GPT) and contrastive submissions
(Del_all-func-wrds and Del_art/prep/adv).

Overall, the scores for the two languages indi-
cate different levels of difficulty but exhibit similar
trends. Specifically, en-es appears to be an easier
direction, as indicated by higher translation quality
(BLEURT) and reading speed compliance scores
(CPS) compared to en-de. Unsurprisingly, the
BLEURT scores computed against the provided
original subtitles (i.e., vs. [1]) are significantly
higher than those computed against the actual ref-
erences (vs. [0]). This indicates the tendency of
the proposed methods to apply rather conservative
changes. This holds particularly for the metric-
oriented approaches (Del_*), which are actually de-
signed to do so. Still, the relatively high BLEURT
results of the user-oriented approach (GPT) are a
symptom of local and rather moderate changes,
which likely do not suffer from major issues re-
lated to hallucinations and/or under-generation into
too short subtitles. Regarding the BLEURT scores
computed against the actual subtitle references
(i.e., vs. [0]), the results drop significantly, attest-
ing that a large quality gap between all methods
and human subtitles still exists. Interestingly, how-
ever, the gap between metric and user-oriented ap-
proaches shrinks on en-es and even disappears on
en-de, where GPT achieves results that are substan-
tially equivalent to those of Del_art/prep/adv.

For both languages and evaluation conditions
the higher conservativeness of metric-oriented
approaches is not sufficient to yield acceptable
CPS results. First, the least aggressive one (the
unsubmitted Del_articles), which consistently
achieves the highest BLEURT computed on the
provided references, is definitely the worst one
in terms of CPS. Second, also the other ones
(our contrastive submissions Del_art/prep/adv
and Del_all-func-wrds) attain lower reading
speed conformity compared to the LLM-based user-
oriented approach. Aimed to strike a balance be-
tween translation quality and CPS conformity, our

140

https://github.com/hlt-mt/FBK-fairseq/blob/master/examples/speech_to_text/scripts/subtitle_compliance.py
https://github.com/hlt-mt/FBK-fairseq/blob/master/examples/speech_to_text/scripts/subtitle_compliance.py
https://github.com/hlt-mt/FBK-fairseq/blob/master/examples/speech_to_text/scripts/subtitle_compliance.py


de es
id Subtitles BLEURT↑ CPS↑ BLEURT↑ CPS↑vs. [0] vs. [1] vs. [0] vs. [1]
0 Reference - - 86.47 - - 89.98
1 Provided .1946 - 60.25 .2136 - 69.97
2 Baseline .1720 .7871 100.00 .1892 .8766 100.00

method submission
3 Del_articles not submitted - .9230 65.92 - .9700 73.80
4 Del_art/prep/adv FBK contrastive2 .1890 .9071 67.94 .2113 .9572 75.74
5 Del_all-func-wrds FBK contrastive1 .1811 .8365 83.36 .2033 .9123 87.48
6 GPT FBK primary .1895 .8370 84.81 .2063 .9062 90.66

Table 4: Subtitle Compression results. For both languages, BLEURT scores are computed both against the reference
subtitles ([0]) and the provided original subtitles ([1]).

primary submission (GPT) consistently achieves the
best CPS scores (84.81 for en-de, 90.66 for en-es).
Paired with the above observations about transla-
tion quality, these results suggest that LLM-based
approaches to subtitle compression are a promising
direction for future explorations.

The trade-off between BLEURT and CPS is fur-
ther highlighted by the plot in Figure 2 where, be-
tween the two extremes represented by Provided
([1]) and Baseline ([2]) subtitles, the subtitles gen-
erated through metric-oriented strategies ([4] and
[5]) are placed according to a nearly linear relation-
ship. The exception are GPT’results which slightly
deviate from this linear trend, as a confirmation of
our intuition: generative, user-oriented strategies
are capable to perform pinpointed text reductions
to pursue CPS compliance without a catastrophic
loss of the original subtitles’ meaning.

Overall, our results indicate that, even though it
is a sub-task of a very complex problem such as
automatic subtitling, subtitle compression has its
own difficulties. On the one hand, the generative
approach based on LLMs is intuitively promising
because, unlike rough trimming strategies that are
incompatible with the user experience, it targets a
compression that is respectful of the subtitles’ se-
mantic content. On the other hand, however, this
approach faces the challenge of reformulating text
material that is potentially error-prone and often
does not come in the form of well-formed sentences
but rather as text spans representing sentence por-
tions or words spanning contiguous phrases. At
least in the zero-shot prompting modality, the com-
bination of these two aspects makes the task ex-
tremely challenging for LLMs. As a matter of
fact, upon preliminary analysis of the generated
compressions, LLMs often reveal a tendency to
generate sentence-like outputs, attempting to “com-
plete” their generations with hallucinated content,

a behavior that can only be exacerbated in the pres-
ence of errors in the subtitle to be compressed.
The opposite potential issue, represented by “over-
compressing” the subtitle beyond the allowed num-
ber of characters, is rarely observed.

Figure 2: Scatter plot of compression results from Ta-
ble 4 (BLEURT against the reference subtitles).

4 Conclusions

We presented the FBK’s submissions to the Auto-
matic Subtitling and Subtitle Compression tasks of
the IWSLT 2024 Evaluation Campaign. For Au-
tomatic Subtitling, we proposed two systems: a
direct model trained under constrained conditions
and a cascade architecture integrating free-to-use
components. Our direct model showcased superior
performance compared to constrained direct and
cascade submissions of the last year. The cascade
solution proved competitive with top-performing
unconstrained and fine-tuned 2023 runs. For Subti-
tle Compression, our primary submission exploits
GPT in zero-shot prompting mode to shorten subti-
tles exceeding the reading speed limit of 21 CPS.
While promising, this approach revealed the com-
plexities of compressing out-of-context automati-
cally generated sentence fragments, underscoring
the necessity for further research in this area.
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Abstract

The IWSLT low-resource track encourages in-
novation in the field of speech translation, par-
ticularly in data-scarce conditions. This paper
details our submission for the IWSLT 2024 low-
resource track shared task for Maltese-English
and North Levantine Arabic-English spoken
language translation using an unconstrained
pipeline approach. Using language models, we
improve ASR performance by correcting the
produced output. We present a 2 step approach
for MT using data from external sources show-
ing improvements over baseline systems. We
also explore transliteration as a means to further
augment MT data and exploit the cross-lingual
similarities between Maltese and Arabic.

1 Introduction

There are a variety of challenges inherent in spoken
language translation for low-resource languages.
By definition, these languages have very limited
data available to use for natural language process-
ing (NLP) tasks. The majority of current work
on NLP targets just 20 out of the approximately
7,000 languages used worldwide, leading to a sig-
nificant gap in research and negative impacts on
excluded speech communities (Joshi et al., 2020;
Magueresse et al., 2020). While most machine
learning tasks are performed using vast amounts of
data, models for low-resource languages must be
adapted to work with less data or other strategies
must be employed to augment the existing data.

In this paper, we present our submission for the
2024 IWSLT low-resource shared task. Concretely,
we submit two systems for speech translation to
English, from Maltese and North Levantine Arabic.
The main motivation for focusing on these two
languages is their similarity to one another which
we aim to exploit to improve the performance of
our pipeline speech translation system.

As a well-known case of diglossia, the Arabic
language has a notable distinction between the for-
mal variety used in written communication, politi-
cal speech, and the educational system – known as
Modern Standard Arabic (MSA) – and the informal
varieties primarily used in spoken communication
– collectively referred to as Dialectal Arabic (DA).
These dialects exhibit considerable diversity influ-
enced by geographical and socio-economic factors,
diverging significantly from MSA in phonology,
morphology, lexicon, and syntax (Zbib et al., 2012).
On the other hand, Maltese is a Semitic language
derived from Siculo-Arabic (Borg and Azzopardi-
Alexander, 1997), with a notable mutual intelligi-
bility with Tunisian DA (Čéplö et al., 2016). Its
evolution independently from the Arab world – par-
ticularly its substantial influence from Italian and
English and its use of a modified Latin alphabet
– makes it a distinct language and not an Arabic
dialect.

We split the task of spoken language translation
into two sequential tasks consisting of automatic
speech recognition (ASR) and machine translation
(MT). This process transforms speech in a low-
resource language into text in a high-resource lan-
guage, namely English for this shared task. At the
same time, splitting the task into ASR and MT al-
lows us to exploit existing multilingual models and
source larger corpora for each sub-task to improve
their performance in the target language. All of our
code is made publicly available.1

2 Related Work

In order to examine past approaches to low-
resource spoken language translation, this literature
review includes an overview of previous IWSLT
low-resource track submissions and our ASR and

1https://github.com/saranabhani/
iwslt-2024-um-pipeline
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MT systems as well as our innovative approach to
data augmentation through transliteration.

2.1 Previous IWSLT Low-Resource Track
Approaches

For the 2023 IWSLT Shared Task (Agarwal et al.,
2023), Williams et al. (2023a) submitted five sys-
tems for Maltese-English spoken language trans-
lation as part of the low-resource track in the un-
constrained setting. This marked the first time that
Maltese was included in the IWSLT low-resource
track campaign, with this submission being the
sole entry in its category, making it a unique ap-
proach in this context. All of the systems employed
a pipeline approach, making use of XLS-R (Con-
neau et al., 2020) for ASR and mBART-50 (Tang
et al., 2020) for MT, fine-tuned using various train-
ing data. In their primary approach, their model
was exclusively fine-tuned on Maltese data result-
ing in a BLEU score of 0.6. Contrasting with the
Maltese-only model, they explored four alternative
approaches by incorporating corpora from Arabic,
French, Italian, or a combination of all three in
conjunction with the Maltese data. The most suc-
cessful configuration, with a BLEU score of 0.7,
was achieved by fine-tuning the ASR system on a
combination of Maltese data with 50 hours each of
Arabic, French, and Italian data from the Common-
Voice speech corpus (Williams et al., 2023a).

While our submission utilizes a pipeline ap-
proach, the alternative is an end-to-end system
where a single neural network is trained to jointly
perform both ASR and MT (Sethiya and Maurya,
2023). This approach offers several advantages by
significantly reducing training time, allowing for
quicker development of models, and necessitating
lower memory resources compared to other meth-
ods, which can be particularly beneficial for envi-
ronments with constraints on computational pro-
cessing power. Additionally, by integrating ASR
and MT into an end-to-end system, it mitigates
the risk of errors propagating from the ASR out-
put to the MT input, which is a common problem
in pipeline systems (Sethiya and Maurya, 2023).
However, speech translation systems that operate
end-to-end require parallel data containing both
speech audio signals on the source side and trans-
lated transcriptions on the target side. Acquiring
such parallel data can pose challenges, even for
languages with readily available components for
pipeline-based systems. Consequently, the pipeline
approach is often deemed more feasible and realis-

tic (Alves et al., 2020).
For the 2023 IWSLT Quechua-Spanish speech

translation task in the low-resource track, E. Or-
tega et al. (2023) utilized a variety of systems
both constrained and unconstrained, with one of
the few pipeline-based methods submitted for this
task. The primary constrained system employed
a direct speech translation model based on the
Fairseq speech-to-text (S2T) framework (Wang
et al., 2020). To create audio representations, this
system made use of log mel-scale filter banks for
features and a transformer for translations. With
a BLEU score of 1.25, their primary system sur-
passed the performance of the pipeline alternatives
in the constrained setting. On the other hand, the
primary unconstrained system employed a pipeline
approach on the additional 60 hours of speech data
made available, where speech transcriptions were
generated using a pretrained XLS-R based multi-
lingual model augmented by a fine-tuned language
model (Park et al., 2019), and translations were
generated using the fine-tuned Flores-101 model
from Guzmán et al. (2019). The unconstrained
pipeline approach performed much better with a
BLEU score of 15.36 for the primary model. Their
findings reveal that the use of a pretrained language
model with fine-tuning is necessary for cascaded
spoken language translation (ASR and MT com-
bined in a pipeline) in low-resource scenarios for
Quechua to Spanish translation. This work further
demonstrates the immense value of access to addi-
tional data, which yielded nearly 14 BLEU points
improvement for the unconstrained task when ap-
plied to both ASR and MT systems compared to the
limited data used in the constrained setting (E. Or-
tega et al., 2023). Accordingly, our approach also
utilizes an unconstrained pipeline of an XLS-R-
based ASR model and a fine-tuned pretrained MT
model considering it was found to have the best
results for this submission.

2.2 Automatic Speech Recognition
Due to their extensive multilingual pretraining,
Wav2Vec 2.0 models (Baevski et al., 2020) are able
to acquire and utilize cross-lingual speech represen-
tations to improve accuracy for ASR. The XLS-R
model presented by Babu et al. (2022) underwent
pretraining of Wav2Vec 2.0 models for as many
as 128 distinct languages including Maltese, using
436,000 hours of unannotated speech data from di-
verse sources including the Mozilla Common Voice
(Ardila et al., 2020), BABEL (Gales et al., 2014),
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and Multilingual LibriSpeech (Pratap et al., 2020)
speech corpora. Specifically, this system incorpo-
rates 9,000 hours of unannotated Maltese speech
sourced from the Voxpopuli corpus (Wang et al.,
2021). Notably, the largest model is pretrained
using a cumulative total of 56 thousand hours of
speech data (Conneau et al., 2020). This repre-
sents an increase in both the amount of data and
the languages covered.

A common practice in the field of ASR is to
use a language model to reduce errors in the gen-
erated transcription. This technique was used in
the development of Wav2Vec 2.0 (Baevski et al.,
2020) and Deepspeech 2 (Amodei et al., 2016).
Leveraging an external language model trained on
domain-specific textual data has the potential to in-
crease the accuracy of ASR systems by minimizing
errors in content.

Moreover, due to the scarcity of high-quality la-
belled data in DA, the models based on XLS-R
emerge as optimal solutions for leveraging avail-
able datasets and adapting ASR to distinct Arabic
variants through fine-tuning, as highlighted by Wa-
heed et al. (2023) in their work on VoxArabica.
These models not only capitalize on existing re-
sources but also offer the adaptability to accommo-
date the nuances of various Arabic dialects, thus
addressing the challenges associated with the lim-
ited availability of labelled data for DA.

2.3 Machine Translation
Past approaches to multilingual neural machine
translation treat it as a sequence-to-sequence task,
where an encoder is utilized to process an input
sequence in the source language and a decoder is
used to generate the corresponding output sequence
in the target language. With massively multilingual
translation, a model undergoes training on multiple
translation directions simultaneously. While this
approach can facilitate advantageous cross-lingual
transfer among related languages, it also carries the
risk of amplifying interference between unrelated
languages.

In this work we make use of the NLLB model
(NLLB Team et al., 2022) for MT. It uses a single
SentencePiece model to tokenize the text sequences
by training it across all languages using a total of
100M sentences sampled from primary bitext data.
For equitable representation of low-resource lan-
guages, high-resource ones are downsampled and
low-resource ones are upsampled, using a sampling
temperature of five. The resulting vocabulary size

of the trained SentencePiece model is 256,000, en-
suring comprehensive representation across the di-
verse range of supported languages. The choice of
this model is highly motivated by its inclusion of
a large number of languages, notably Maltese and
North Levantine Arabic (NLLB Team et al., 2022).

2.4 Transliteration

From a simplified linguistic perspective, Maltese
can be regarded as a variant of Arabic with a sig-
nificant level of code-switching to Italian and a
modified Latin alphabet. Past work suggests that
transliterating Maltese could serve as a viable strat-
egy for benefiting from cross-lingual similarities
with Arabic (Micallef et al., 2023). In the approach
taken by Micallef et al. (2023), the transliteration
process involves two main steps: mapping and rank-
ing. Initially, Maltese text tokens and characters in
Latin script are mapped to one or more correspond-
ing alternatives in Arabic script. Subsequently, a
separate component either ranks these alternatives
or employs a deterministic hard-coded baseline.

This approach is further developed in Micallef
et al. (2024) by taking a mixed pipeline and integrat-
ing a combination of transliteration and translation
based on the etymology of Maltese words. This is
motivated by the results of Micallef et al. (2023),
where the advantages of transliterating Arabic-
origin words were limited by the corresponding dis-
advantages of distancing Italian and English-origin
words from their etymological source through
transliteration. A mixed pipeline gave promising
results on downstream tasks, establishing the tech-
nique as a competitive approach for Maltese NLP
tasks.

3 Automatic Speech Recognition

3.1 Data Sources

For Maltese, we use the training sets provided by
the shared task namely Common Voice 7.0 (Ardila
et al., 2020) and MASRI (Hernandez Mena et al.,
2020). The speech corpus is made up of around 50
hours of Maltese speech data.

To train our Arabic ASR system, we opted to use
a 50-hour subset from the Common Voice project
(Ardila et al., 2020), as this would contain roughly
the same data that we used for Maltese ASR. While
a training set for North Levantine Arabic would
have been preferred, there was no data provided for
the shared task, nor were we able to find ASR data
for North Levantine Arabic. Furthermore, even
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though a Tunisian Arabic training set could be used,
we did not make use of this to train, since North
Levantine Arabic is more closely related to MSA
than Tunisian Arabic (Kwaik et al., 2018).

3.2 Approach
For the ASR component of the pipeline, we con-
tinue to build off of previous work done for both
DA and Maltese ASR. As concluded in Williams
et al. (2023b), fine-tuning the Wav2Vec 2.0 XLS-R
model (Babu et al., 2022) with around 50 hours
of Maltese speech data produces the best Maltese
ASR model to date and was used in the IWSLT
2023 submission by Williams et al. (2023a). A
similar XLS-R based ASR model is employed for
DA by leveraging data for MSA.

In addition, for Maltese, we incorporate lan-
guage models with the ASR system to get more
accurate speech transcriptions. For this we use n-
gram models built using the KenLM language mod-
elling toolkit (Heafield, 2011), which assign scores
to sequences of words. This aids in selecting the
best candidates through beam search for improved
ASR output. We use KenLM mainly as it has been
used for other state-of-the-art ASR publications as
well as in previous work on Maltese in particular.
We make use of the 6-gram word-level LM pro-
duced by Hernandez Mena et al. (2020) as a base-
line to compare our own KenLM n-gram models
which was trained on Korpus Malti v3.0 (Gatt and
Čéplö, 2013). We produce 2 additional word-level
n-gram language models for Maltese: a 3-gram and
a 4-gram, both trained on the Korpus Malti v4.1
Shuffled train dataset2 (Micallef et al., 2022). We
note that Korpus Malti v4 used here is substantially
larger than the v3 used for the 6-gram baseline.

3.3 Results and Discussion
Table 1 shows the WER score for all languages
considered on the shared task development set. For
both Maltese and North Levantine Arabic, a single
model is trained, but for Maltese we show the mod-
els’ performance without adding a language model
as well as incorporating each language model.

For Maltese, we see that all models perform com-
parably, but models using a language model give
better results. In addition, when using the 3-gram
and 4-gram models, these give better results than
the 6-gram model, which we attribute to the larger
data used to train the former models.

2https://huggingface.co/datasets/MLRS/korpus_
malti/tree/4.1.0/data/shuffled

Data Language Model Dev Set
WER ↓

CV+MASRI - 0.12
CV+MASRI 3-gram 0.10
CV+MASRI 4-gram 0.10
CV+MASRI 6-gram 0.11

(a) Maltese

Data Language Model Dev Set
WER ↓

Common Voice - 1.08
(b) North Levantine Arabic

Table 1: Speech Recognition Results

The overall performance of our Arabic approach
was limited by the lack of North Levantine Arabic
speech data, which severely impacted the accuracy
of the ASR system when tested on Levantine data.
We provide a brief qualitative error analysis of the
Arabic ASR outputs to highlight this.

We looked at a sample of the ASR output gener-
ated from North Levantine Arabic audio data using
our model trained on MSA. The analysis of specific
examples reveals various errors that significantly
impact the usability of the ASR system for Lev-
antine speech recognition. Table 2 shows a few
examples of the output, highlighting various incon-
sistencies with the reference text.

Phonetic errors were a common issue across the
examples. For instance, in Sample 2c, the system
outputted “ �IÓX


A�” for “ �IÓY�® 	̄” (I applied) likely

due to the similar pronunciation of “�” and “ 	¬” at
the start of word, and the dialect-specific pronunci-
ation of “ ��” (qaf) as a glottal stop [P] in Levantine

Arabic, which is similar to “Z” (hamza). Addition-
ally, in Sample 2a, segmentation errors featured
prominently, as seen where “ 	àA¾J
J
ë” should have

been segmented into “ 	àA¿ ù
 ë” (she was). In Sample

2d, “PñÓ

BAK
ñ ���� �� ÉJ.ÓA 	JË AJ. K
P


A�K” exemplifies improper

segmentation, where “ø
 ñ
��” (a little) and “PñÓB@”

(matters) were incorrectly merged as “PñÓ

BAK
ñ ���� ��".

Lexical errors were evident, particularly in Sam-
ple 2b, where “ 	á�
J
ºJ
 ����Ë @” (the Czechs) was incor-

rectly outputted as “Õæ
º ����", missing both the prefix

“È@” (the) and misinterpreting the main noun due to

a phonetic mix-up of “Ð” and “ 	à”, which are both
nasal consonants. Phonetic confusion also occurred
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Reference ÉJ
 	ª ���� �é�®K. A�Ó AêÖÞ� @ 	àA¿ ù
 ë
Transcription [tSaGi:l] [musa:baPat] [Pisme:ha] [ka:n] [hiyye]
ASR Output ÉJ
 	ª ���� �éÒ�JÓ AÖÞ� @ 	àA¾J
J
ë
Transcription [tSaGi:l] [maTmat] [Pisma] [hiyyeka:n]

(a)

Reference 	á�
J
ºJ
 ����Ë @ 	á« ú
¾k@ h@P ��Ó
Transcription [ittSi:kijji:n] [Qan] [Paèki] [ra:è] [miS]
ASR Output Õæ
º ���� 	á« ½gQÓ
Transcription [tSaki:m] [Qan] [marèak]

(b)

Reference AîD
Ê« �IÓY�® 	̄
Transcription [Qalejha] [faqaddamat]

ASR Output ú
Î«
�IÓX


A�

Transcription [Qali] [saPaddamat]

(c)

Reference A��K
Pñ� ú

	̄ PñÓ


B@ ø
 ñ

�� �I ��ÊK. AJ. K
Q�®�K AÓ
Transcription [su:rja] [fi:] [ilPumu:r] [Swayy] [ballaSat] [taqri:ban] [ma]

ASR Output �é��K
Pñ� ú
G. PñÓ

BAK
ñ ���� �� ÉJ.Ò 	JË AJ. K
P


A�K AÓ

Transcription [su:rja] [bi:] [taPri:ba:lnmbal] [SatSwa:ilPumu:r] [ma]

(d)

Table 2: Reference transcription samples compared to the system output produced by our ASR system

in Sample 2d, where “ú

	̄ [fi:]” (in) was replaced

with “ú
G. [bi:]”. In the case of “ AK
Pñ�” (Syria), the

ASR output was “ �éK
Pñ�", only differing by the final
character. These two characters have the same pro-
nunciation in word-final position, so the difference
is just orthographic.

The analysis revealed that the Character Error
Rate (CER) was consistently better than the Word
Error Rate (WER), highlighting that while indi-
vidual characters are often recognized correctly,
the system struggles to assemble these into correct
word forms. This indicates foundational compe-
tence at the character level but significant chal-
lenges in managing the complexity of word forma-
tion, especially considering the morphological and
contextual nuances of North Levantine Arabic.

Whilst some character-level errors seem to be
due to similar phonetic characteristics of different
characters, it is clear that multiple errors can be at-
tributed to Levantine-specific dialectal differences,
most prominently the “ ��” (qaf) and “Z” (hamza) dis-
tinction. These character-level errors impact word-
level recognition and subsequent performance on
the downstream machine translation task.

The prevalence of errors due to dialectal differ-
ences underscores the need to integrate Levantine-
specific training data and develop a dedicated lan-
guage model to handle the nuances brought by di-
alectal variations.

4 Machine Translation

4.1 Data Sources
To train our translation models we make use of a
variety of sources for parallel data including those
provided for the shared task as well as others which
we could find. The datasets used are summarized
in Table 3.

To train our Maltese translation model, we
used a combined dataset of Common Voice (CV)
(Ardila et al., 2020) and MASRI project (Hernan-
dez Mena et al., 2020) (henceforth referred to as
CV+MASRI), both of which were the datasets pro-
vided officially for the shared task. In addition, we
also used OPUS-100, which is a comprehensive
English-focused dataset (Zhang et al., 2020; Tiede-
mann, 2012). The dataset consists of 100 languages
and English is common in every 99 translated lan-
guage pairs. We chose this dataset because of its
vastness, especially considering it offered 1M par-
allel sentences for the English and Maltese pair.
We preprocessed the data to drop any data points
that were empty as well as duplicate instances.

For our Arabic translation systems, we utilized a
range of datasets. Specifically, we used the North
Levantine (APC)-MSA-English textual data pro-
vided for the task (Sellat et al., 2023), along with
the IWSLT 2022 Tunisian Arabic (AEB) speech
translation data (Anastasopoulos et al., 2022). Ad-
ditionally, the MSA data, which was included with
both the Tunisian and Levantine datasets, was also
used. However, since the size of this data was
miniscule, we also incorporated the Arab-Acquis
MSA-English parallel data (Habash et al., 2017).
To further augment the Arabic data, we also incor-
porated the CV+MASRI Maltese dataset, which
was transliterated to match the script of our pri-
mary data as detailed in Section 4.2 (referred to
as MLTARA). We merged datasets from the same
dialect or language obtained from multiple sources
and shuffled them to ensure diversity and random-
ness in our training process.

Since the speech transcriptions do not produce
casing and punctuation information, and the evalu-
ation for the shared task also ignores these features,
we preprocess all translation data as such. For both
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Dataset Train Size Validation Size
CV 3,773 1,235
MASRI 4,811 648
CV+MASRI 8,584 1,883
OPUS-100 672,196 -

(a) Maltese Model

Language/Dialect Train Size Validation Size
APC 99,519 21,081
AEB 173,612 -
MSA 133,074 -
MLTARA 8,886 1,883

(b) Arabic Model

Table 3: Data used to train the MT models and size in number of sentences

languages, preprocessing included text normaliza-
tion such as converting to lowercase and removing
punctuation, while retaining hyphens and apostro-
phes for Maltese datasets, as these characters hold
linguistic significance in Maltese. In addition, for
Arabic we also remove diacritics.

4.2 Transliteration

Following Micallef et al. (2023, 2024), we explored
integrating transliteration of Maltese into Arabic
script, due to the close relationship between Mal-
tese and Arabic as Semitic languages. We took
inspiration from this approach to supplement the
data used for training the Arabic Machine Transla-
tion system. Since Micallef et al. (2024) saw more
promising results when using a mixed pipeline of
transliteration, that involved transliterating Maltese
words of Arabic origin and translating the other
words, we continue with this mixed approach. We
utilize the etymology model and mapping systems
from Micallef et al. (2024). Specifically, we follow
the Xara/Tara pipeline, which transliterates tokens
of Arabic-origin and symbols, translating every-
thing else to Arabic.

However, we make certain modifications to this
to better suit our approach. Firstly, we modify the
translation component by swapping out the pre-
computed word translations from Google Translate
with a pretrained NLLB model (NLLB Team et al.,
2022), as extracting translations using Google
Translate was too expensive, especially consid-
ering the different outputs produced by the ASR
while experimenting. Translation is performed into
Tunisian Arabic (AEB) instead of MSA, using En-
glish as a pivot language. The reason for doing this
is that translating through English generally yields
better results rather than going directly to Arabic,
due to the larger availability of parallel data, and
this is also observed empirically in Micallef et al.
(2024).

Secondly, we merge tokens to more closely re-
flect the way in which Arabic is written, reducing

the signals from Maltese tokenization. For exam-
ple, “u il-kelma” (English ‘and the word’), are writ-
ten together in Arabic script as one word, “ �éÒÊ¾Ë@ð”,

where “ð” is the conjunction corresponding to “u”

(and), “È@” is the definite article corresponding to
“il-” (the), and the rest of the word corresponds
to “kelma” (word). The annotation for such token
mappings from Micallef et al. (2023), includes spe-
cial markers indicating that such words would be
merged in Arabic, so given the 3 tokens u, il-, and
kelma, the system would initially output +ð, +È@,
and �éÒÊ¿, which we merge into a single word. While
Micallef et al. (2023, 2024) ignore this signal as
they mostly deal with token tagging tasks, we use
this signal to merge words. Note that using this
method, punctuation symbols are still space sepa-
rated, but since the data is preprocessed to remove
such symbols, this is not an issue in our case.

We applied the transliteration pipeline to the
Maltese datasets provided for the shared task
(CV+MASRI). The training dataset provided addi-
tional data for training the Arabic MT model. In
addition to the data augmentation benefit of inte-
grating transliterated Maltese (henceforth referred
to as MLTARA) for Arabic-English MT, this also
increases the cross-lingual capacities of our Arabic
MT model, allowing for the evaluation of MLTARA
ASR outputs using the Arabic MT model.

4.3 Approach

We explored various machine translation (MT) sys-
tems for translating North Levantine Arabic and
Maltese into English. Initially, we established a
baseline by fine-tuning the NLLB 1.3B model3

(NLLB Team et al., 2022) on the shared task data,
specifically on the CV+MASRI dataset for Maltese
and the AEB dataset for Arabic.

Subsequently, we experimented with different
fine-tuning strategies. We first attempted a two-

3https://huggingface.co/facebook/nllb-200-1.
3B
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Fine-Tuning Data Dev Set
Stage 1 Stage 2 BLEU ↑

- CV+MASRI 60.3
OPUS-100 - 37.6
OPUS-100 CV+MASRI 60.6

MSA APC+AEB+MLTARA 37.0
(a) Maltese

Fine-Tuning Data Dev Set
Stage 1 Stage 2 BLEU ↑

- APC 34.3
MSA APC 39.5
MSA APC+AEB 37.6
MSA APC+AEB+MLTARA 37.4

(b) Levantine Arabic

Table 4: Machine Translations Results

stage fine-tuning process where we fine-tune with
a large dataset from a different domain or dialect.
For the first stage, we considered the OPUS-100
data for the Maltese model and the MSA data for
the Arabic model, while the second stage included
the same data used for the baseline for both lan-
guages. Additionally, for the Arabic we tested fine-
tuning with a mix of Levantine (APC) and Tunisian
(AEB) data, as well as a combination of Levantine
(APC), Tunisian (AEB), and transliterated Maltese
(MLTARA) data. The training on MLTARA, allows
us to evaluate this system on both the Maltese and
North Levantine development sets.

The same hyperparameters were applied across
both MT systems: a learning rate of 2e-5, and a
weight decay of 0.01. The training was conducted
over three epochs.

4.4 Results and Discussion

Table 4 reports the BLEU scores of the Maltese and
Arabic models on the transcriptions having refer-
ence translations from the respective development
sets for Maltese and North Levantine Arabic.

The results for Maltese are reported in Table 4a.
We see that fine-tuning using OPUS-100 only,
is detrimental compared to the baseline system
trained only on CV+MASRI. However, including
both OPUS-100 and CV+MASRI yields the best
performance. Furthermore, when evaluating the
Arabic model trained on transliterated Maltese, in
addition to other Arabic data, we observe that it is
the worst-performing model. However, the perfor-
mance is quite comparable to that obtained for the
model fine-tuned only on OPUS-100.

Table 4b shows the performance of each of the
experimented machine translation systems on the
APC validation set. Among the experimented meth-
ods, the best performance on the North Levantine
Arabic development set was achieved using the two-
stage fine-tuning process that started with MSA
data followed by Levantine data.

An important observation that arose from our ex-
perimentation was the impact of adding MLTARA
data to the training of the Arabic MT system. We
can see that the system fine-tuned firstly on MSA
data and subsequently on APC, AEB, and MLTARA
gave very competitive results for Arabic MT, with
a difference in dev performance of just 0.2 BLEU
compared to the same system without MLTARA
data. By comparison, the same system performed
comparably to Arabic on the Maltese dev set (after
being transliterated) with a BLEU of 37.0. Whilst
the machine translation systems fine-tuned specif-
ically for Maltese still significantly outperformed
the Arabic system fine-tuned with MLTARA data,
we note that adding MLTARA data in the fine-tuning
of Arabic MT systems can vastly improve the cross-
lingual capacity of the model, with substantial ben-
efits to the performance on Maltese, and very little
impact on the MT performance for Arabic.

5 Speech Translation Pipeline

Following our evaluation on individual tasks in
Sections 3 and 4, we now combine both systems by
first getting the transcription using an ASR system
and then passing this transcription through the MT
system to get the translation. The best-performing
ASR and MT systems on our validation sets were
selected for the pipelines.

For Maltese, we only choose the MT sys-
tem trained with the 2 stage training, OPUS-
100+CV+MASRI (which we refer to as MLTLAT)
and combine it with the ASR systems with the
3-gram, 4-gram, and 6-gram models, to com-
pose our Primary, Contrastive 1, and Contrastive
2 systems, respectively. For North Levantine
Arabic, we use the only trained model for ASR,
paired with all 3 MT systems which made use
of 2 stage training, namely MSA+APC+AEB,
MSA+APC+AEB+MLTARA, and MSA+APC, to
compose our Primary, Contrastive 1, and Con-
trastive 2 systems, respectively. Table 5 sum-
marises the results obtained with these pipelines on
the development and testing sets, on ASR only and
Speech Translation (ASR+MT). For the Arabic test
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Pipeline ASR System MT System Dataset Dev Set Test Set
WER ↓ BLEU ↑ WER ↓ BLEU ↑

Primary 3-gram MLTLAT

CV 0.098 58.4 0.094 60.9
MASRI 0.239 42.9 0.233 43.9
CV+MASRI 0.10 52.1 0.143 52.4

Contrastive 1 4-gram MLTLAT

CV 0.097 58.4 0.094 60.9
MASRI 0.239 42.9 0.233 43.9
CV+MASRI 0.10 52.1 0.143 52.4

Contrastive 2 6-gram MLTLAT

CV 0.096 58.3 0.093 60.9
MASRI 0.238 42.7 0.234 43.7
CV+MASRI 0.11 51.9 0.143 52.3

(a) Maltese

Pipeline ASR System MT System Dev Set Test Set
WER ↓ BLEU ↑ BLEU ↑ COMET ↑ ChrF ↑

Primary Common Voice MSA+APC+AEB 1.08 5.0 4.74 53.69 24.10
Contrastive 1 Common Voice MSA+APC+AEB+MLTARA 1.08 4.8 5.09 53.78 24.50
Contrastive 2 Common Voice MSA+APC 1.08 3.7 3.53 51.96 21.56

(b) North Levantine Arabic

Table 5: Speech Translation Pipeline Results

set, only Speech Translation results were provided.
As seen in Table 5a, all Maltese systems per-

form competitively with each other. Similar to the
findings for the ASR system reported in Section 3,
the Primary and Contrastive 1 systems get the best
results with the 3-gram and 4-gram models, and
the Contrastive 2 system is slightly behind with
the 6-gram model. The best systems obtain 52.4
BLEU on the test set.

The results on the North Levantine Arabic data
are shown in Table 5b. The systems all achieve low
overall BLEU scores, due to the poor performance
on ASR as outlined in Section 3. With a pipeline,
we observe that using APC data only in addition to
MSA performs the worst (Contrastive 2), and that
adding data from other languages and dialects we
achieve better BLEU scores with the Primary and
Contrastive 1 systems.

6 Conclusion

Overall, this paper presented our findings for Mal-
tese and North Levantine Arabic spoken language
translation into English with a pipeline system in
the unconstrained setting for the 2024 IWSLT low-
resource track shared task. For our approach we
fine-tune a Wav2Vec 2.0 XLS-R model for ASR,
and an NLLB model for MT. We enhance the ASR
model by correcting the outputs with a language
model. Moreover, we augment the MT data from

additional sources and employ a two-stage fine-
tuning process to improve performance. Addition-
ally, we exploit the cross-lingual similarities be-
tween Maltese and Arabic by transliterating Mal-
tese to Arabic script, observing interesting perfor-
mance boosts.

In terms of limitations, the lack of training data
for North Levantine Arabic impeded the progress
of our ASR system. By using MSA to train our
Arabic ASR models, the resulting system strug-
gled with non-standard pronunciation and dialect-
specific variation. Furthermore, the absence of test-
ing data for Tunisian Arabic hindered our models
considering its close similarity with Maltese.

More general improvements could be undertaken
in future work such as hyper-parameter tuning and
supplementing currently available data with back-
translation. Rather than relying solely on paral-
lel data, implementing backtranslation with larger
monolingual corpora holds promise for improving
the MT systems discussed in this paper.
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Abstract

This paper presents our IWSLT-2024 shared
task submission on the low-resource track. This
submission forms part of the constrained setup;
implying limited data for training. Following
the introduction, this paper consists of a liter-
ature review defining previous approaches to
speech translation, as well as their application
to Maltese, followed by the defined method-
ology, evaluation and results, and the conclu-
sion. A cascaded submission on the Maltese
to English language pair is presented; consist-
ing of a pipeline containing: a DeepSpeech
1 Automatic Speech Recognition (ASR) sys-
tem, a KenLM model to optimise the transcrip-
tions, and finally an LSTM machine translation
model. The submission achieves a 0.5 BLEU
score on the overall test set, and the ASR sys-
tem achieves a word error rate of 97.15%. Our
code is made publicly available1.

1 Introduction

Speech Translation (ST) may be defined as the task
of transforming audio in a source language to its
transcription in a target language. ST is gener-
ally tackled through two main approaches: the first
being an end-to-end approach; with the source lan-
guage audio serving as input to the model, which in
turn produces a transcription in the target language
as output, the second being a pipeline or cascad-
ing approach; suggesting multiple systems with
varying responsibilities, primarily generating ASR
transcription and machine translation. A Meta-Net
White Paper series confirms the Maltese language
as low-resourced; meaning it has little support for
speech technology, including translation tasks (Ros-
ner and Joachimsen, 2012).

This paper introduces a cascading system that
utilises an ASR system to generate transcriptions in
the source language, a language model to improve

1https://github.com/melanie-galea/uom_
constrained

the transcriptions and finally, a machine translation
system to produce the transcription in the target lan-
guage. The following sections define the current
state of research into low-resource speech transla-
tion, followed by a methodology and discussion.

2 Literature Review

The literature review focuses on previous attempts
at Automated Speech Recognition (ASR) and Ma-
chine Translation (MT), in particular, when applied
to the Maltese language. Furthermore, the main
models attempted for this task are defined, these
being: HMM, DeepSpeech 1 for ASR, LSTM and
Transformers for MT.

2.1 Previous IWSLT Low-Resource Track
Attempts

In 2023, the shared task set by IWSLT consisted of
“benchmarking and promoting speech translation
technology for a diverse range of dialects and low-
resource language”.

Among other attempts, QUESPA (E. Ortega
et al., 2023a) submitted two cascade systems to
the constrained setting, where ASR and MT were
combined together in a pipeline. One of these
cascade systems used wav2letter+ (Pratap et al.,
2019) - a fast open-source speech recognition sys-
tem; the other one was an implementation of a con-
former architecture along with OpenNMT transla-
tion system (Klein et al., 2017), which was trained
on constrained ST and MT data. Both of these
models demonstrated relatively poor performance
compared to the other submissions, with a BLEU
score of less than 1.

Previous attempts in both constrained and un-
constrained settings, proved that this task is still
a major challenge. Using powerful massively pre-
trained ASR models; such as Wav2Vec 2.0, in com-
bination with multilingual decoders has been an
emerging trend, and oftentimes produces excellent
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results. Training a self-supervised model and pro-
ducing artificial supervision has proven to be an
effective approach (Zanon Boito et al., 2022). Ad-
ditionally, several methods were employed to im-
prove the performance of cascade systems, such as
voice activity detection for segmentation (Zhang
et al., 2022; Ding and Tao, 2021), as well as train-
ing the ASR on synthetic data with noise filter-
ing and domain-specific fine-tuning (Zhang et al.,
2022).

2.2 HMM and DeepSpeech for Maltese ASR
Our work attempts two instruments for ASR: Hid-
den Markov Model and DeepSpeech 1. The former
used to be a preferred method since the 1970s (Ra-
biner, 1989). As demonstrated by Ellis and Morgan
(1999), the size of a model plays a significant role,
especially when it comes to the quantity of training
data and the trainable parameters. The latter was
made difficult due to hardware and design limita-
tions. A survey conducted by Nagpal et al. (2019)
showed that deep learning approaches could still
deliver effective results for ASR.

This led to the development of end-to-end super-
vised neural network models such as DeepSpeech
1 (Hannun et al., 2014) and then DeepSpeech 2
(Amodei et al., 2015), which had successfully out-
performed Hidden Markov Models for English
ASR. In speech-related fields, labelled data is usu-
ally referred to as annotated data. Although the use
of large amounts of annotated data proved benefi-
cial for these models, access to data at these scales
became a limitation for development, especially
in the case of low-resource languages. This led to
the use of unannotated data in unsupervised train-
ing, with cases described in Lee et al. (2009)’s and
Radford et al. (2016)’s work, or self-supervised
learning, namely the work done on the Wav2Vec
system (Schneider et al., 2019).

These acoustic models have the capacity to gen-
erate understandable transcriptions at the character
level. Yet, these transcriptions often harbour inac-
curacies, such as substituting phonetically similar
words or misspelling due to language orthography
idiosyncrasies. Consequently, enhancing ASR sys-
tems by incorporating an external language model
trained on domain-specific text can boost their per-
formance. A common strategy employed is the use
of a simple n-gram model. The KenLM language
modelling tool (Heafield, 2011) is able to achieve
high processing efficiency and language modelling
quality by assigning a score to a sequence of n

words. This is particularly useful in ASR to be
able to select between multiple possible candidates
through beam search. Deepspeech supports the in-
tegration of KenLM language models to enhance
the quality of the ASR output.

2.3 Machine Translation
While some systems have reached human parity in
certain domains in machine translation, this is yet
to be achieved for low-resource languages (Hassan
et al., 2018). The primary challenge lies in paral-
lel data scarcity. The efforts in solving this issue
focus on various other aspects such as exploiting
shared language features between a high and low
resource language as well as techniques for data
augmentation.

Her and Kruschwitz (2024) used German-
Bavarian parallel data to train a transformer model
and then used that to back-translate and augment
the training set. They then used that data to fine-
tune a German-French neural translation model
given its similarity to the source language. Nzey-
imana (2024) focused on improving the perfor-
mance of machine translation models by improving
predictions of the morphological features. Their
method was based on the fact that sub-word tok-
enizers split the words on a surface level and are
prone to losing morphological features. Encoding
morphological features as input to the model im-
proves performance. E. Ortega et al. (2023b) used
the Transformer architecture (Vaswani et al., 2017)
to develop a machine translation system as part of
their pipeline for an automatic speech recognition
system for Quechua to Spanish.

Before Transformers (Vaswani et al., 2017),
RNN (Rumelhart et al., 1986) was widely used
for natural language processing. RNN with
self-attention proved quite effective for machine
translation, achieving state-of-the-art performance
(Sutskever et al., 2014), (Bahdanau et al., 2014).

Research on machine translation for Maltese is
quite limited. One of the earliest works was on
statistical machine translation where the authors fo-
cused their attention on phrase extraction for proper
phrase alignment (Rosner and Bajada, 2007). In
their work on Maltese automatic speech recogni-
tion (ASR), Williams et al. (2023) leveraged the
pre-trained mBART model. However, their system
was evaluated as a whole (ASR - MT) and does
not represent the model’s true capability for ma-
chine translation on Maltese as the input is the ASR
output.
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3 Methodology

3.1 Automatic Speech Recognition

3.1.1 Hidden Markov Models

Hidden Markov Models (HMMs) were trained for
ASR (Rabiner, 1989) on the MASRI dataset, to-
taling to 6 hours and 39 minutes. The model was
trained using Mel Frequency Cepstral Coefficient
(MFCC) features derived from the WAV files and
their corresponding verbatim transcription.

3.1.2 DeepSpeech

A DeepSpeech v1 (Hannun et al., 2014) model
was trained on both MASRI and CV datasets, con-
taining 6 hours 39 minutes and 5 hours 11 min-
utes respectively, totalling nearly 12 hours. The
model was trained using Maltese WAV files and
their corresponding verbatim transcription. Devel-
opment, Testing and Training csv files therefore
contain the WAV file dataset root, its correspond-
ing transcription, and file size in bytes. The text
was pre-processed; characters cases were converted
to lower-case, non-alphabetic characters removed
except for the hyphen and apostrophe. Accented
letters were included in order to better support the
model’s understanding of pronunciation. An alpha-
bet was created including special Maltese charac-
ters.

The training code was cloned through the git
DeepSpeech branch, and all required dependencies
were installed. Finally, the training, development
and testing files, along with a layer size of 64 units
wide, rather than the default 2048. The dropout
was set to 0.4, and a batch size of 100 was used
to train the model. The model was trained for 250
epochs. The hyper-parameters were set with the
limited data-set size in mind. The relatively smaller
size of the model parameters was beneficial for
our experiment; it is usually the case that a larger
parameter size causes the model to over-fit when
trained on a small training set such as ours.

The DeepSpeech model was selected over the
HMM due to higher performance. The HMM
scored a WER of 112.33%, whilst DeepSpeech
model scored a WER of 97.15%.

3.2 KenLM

Initial experimentation involved investigating the
impact of both word-level and character-level n-
grams on a set of erroneous test data. Upon ex-
amining the alterations made by KenLM on this

sample dataset, it was deduced that a word-level
KenLM model was more apt for the task.

The KenLM toolkit (Heafield, 2011) was used
to train a probabilistic 3-gram model on the Kor-
pus Malti v4.0 Shuffled training subset (Micallef
et al., 2022) 2, which is resource referred to by
the shared task organizers. Before training said
model, the corpus was pre-processed to not include
punctuation, apart from the hyphen and apostro-
phe, with all text lowercased. The KenLM model,
once trained, served as a tool to decode the ASR
output, employing a beam search algorithm. This
process converted probabilities into textual tran-
scripts, which were subsequently delivered by the
system.

3.3 Machine Translation
All models are built using the Fairseq (Ott et al.,
2019) library. The Fairseq library allows for easy
implementation of a MT system through CLI com-
mands, meaning minimal code is needed to create
a fully working MT system.

Three different architectures were experimented
with, namely Transformer (base), Transformer
(large) and an LSTM. The base transformer ver-
sion (Vaswani et al. (2017)) has six encoder and
decoder layers with 512 dimensions each. There
are eight attention heads for both the encoders and
decoders, with 2048 dimensions for each. The
large version of the transformer architecture has
1024 dimensions for each layer and 4096 dimen-
sions for each attention head. There are also 16
attention heads in total. Thirdly, an LSTM archi-
tecture (Hochreiter and Schmidhuber, 1997) was
used, which consists of a single-layer bidirectional
encoder-decoder model with a hidden size of 512
for both the encoder and decoder.

LSTMs have generally fallen out of favour re-
cently due to Transformers achieving better results.
However, it was hypothesised that given the lack
of data, LSTMs may still prove to be just as ef-
fective in this scenario. This is due to the fact
that Transformers require a lot of data to be effec-
tive, and in low-resource settings such as this one,
older techniques such as LSTM may perform better
(Przystupa and Abdul-Mageed, 2019).

The data was pre-processed by training a Senten-
cePiece tokenizer from scratch on the given training
set. The training set was then pre-processed using
this tokenizer.

2https://huggingface.co/datasets/MLRS/korpus_
malti/viewer/shuffled
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The 3 defined models (LSTM, base Transformer
and large Transformer) were trained with the same
hyperparameters. We performed an evaluation of
all three models on the dev set and achieved the
results in Table 1. It was ultimately concluded
that LSTMs performed best. The LSTM model
was therefore selected, and further hyperparameter
tuning was performed for improved results.

Table 1: Results of the different architectures on the
development set

Architecture BLEU CHRF-2
LSTM 25.76 44.57

Transformer (Base) 24.54 44.15
Transformer (Large) 25.20 43.57

For hyperparameter tuning, Akiba et al. (2019)
was used to find optimal values for learning rate,
dropout, warm-up duration and weight decay. The
optimal learning rate was found to be 0.003 and
dropout at 0.04. The learning rate scheduler was set
with warm-up updates of 8522. Each model was
trained for a maximum of 1,000,000 steps but all
of them converged much sooner. The final LSTM
model was trained for 4 minutes with early stop-
ping. The training was stopped early when the
validation BLEU did not improve for 10 steps.

4 Evaluation and Results

This section presents and discusses the models’
results. The official results for our constrained task
submission are presented in Tables 2 and 3. The
final pipeline result was significantly influenced by
the ASR performance. It can be extrapolated that
the high Word Error Rate (WER) of the ASR is a
result of the limited training data, which was not
adequate to train a capable ASR system. Incoherent
speech recognition outputs were considered ‘out of
domain’ by the machine translation system since it
was trained on meaningful data.

Table 2: Official results for the constrained task - BLEU
score

Test Set BLEU score
CV 0.6

Masri 0.2
Overall 0.5

To further evaluate and understand the results,
specific outputs of both the ASR as well as the MT
system were analysed.

Table 3: Official results for the constrained task - Word
Error Rate

Test Set Word Error Rate
CV 97.0%

Masri 97.43%
Overall 97.15%

Table 4: Results of the pipeline system with and without
the use of a KenLM.

Test Set BLEU CHRF-2
Without KenLM CV 0.48 15.79

Masri 0.23 14.50
With KenLM CV 0.52 15.97

Masri 0.21 14.73

It may be noted that the ASR output is relatively
poor; with most outputs consisting of invalid Mal-
tese words. In addition to using Deepspeech 1, we
made use of a KenLM trained specifically for this
task, but whilst some improvements were seen, as
illustrated in Table 4, it was not enough to com-
pensate for the model’s inability to accurately tran-
scribe the Maltese language.

To further illustrate the ASR issues, the first au-
dio file of the CV test set was transcribed by the
model as: “dan ma sarqat". The first two words
were predicted correctly, however, the last word
was invalid. The correct transcription should have
been: “dan ma sar qatt", meaning “this was never
done".

Since this is a pipeline setup, the resulting tran-
scription was passed to the MT system. The trans-
lated output was “this doesn’t happen to him". The
output here was not surprising, since the two words
that the ASR got correct (dan ma) roughly mean
he has never [...]. Since the word that the ASR got
incorrect does not exist in the Maltese language
(sarqat), it is likely that the MT system treated it
as an unknown token.

Admittedly, this was one of the few examples
that the ASR system performed well in. Results
were exceptionally poor when a named entity was
included. For example, the name Simon Busuttil
was outputted as sajminbużutiel. This is expected
due to the small size of the training data. Apart
from this, the ASR model struggled to understand
when a word starts and ends. In most cases, the
output sounds phonetically similar to what the ac-
tual transcription should be, however, the spelling
is incorrect. For example, the word mhux was tran-
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scribed as mux, which is understandable as the
‘h’ is silent. Overall, the ASR model performed
poorly, with most resulting sentences not resem-
bling the actual transcription, highlighted by the
97.15% WER.

These errors naturally propogated to the MT sys-
tem. Since the dataset of the MT system is also
constrained and very limited in nature, it did not
have the implicit understanding of the language to
identify the typos written by the ASR system (such
as mux instead of mhux). This is even harder with
phonetic misspellings. Generally, the MT system
output a (seemingly) random response since the
input given by the ASR system is equally poor.

Overall, it is evident that an increase in training
data would have yielded better results. The ASR
set-up makes it difficult to evaluate the MT system
alone, given the model pipelining and overall poor
performance.

5 Conclusion and Future Work

This paper presents the different approaches to ST
for low-resource languages under constrained set-
tings. A short overview of previous research into
challenges associated with speech translation was
presented, as well as specific attempts and pipelines
used for the task. The final pipeline consisted of a
DeepSpeech 1 model, KenLM model and LSTM
model, each fine-tuned for the task at hand. The fi-
nal results show that the constrained setting has an
extreme impact on the models performance, with
a final WER of 97.15%. The very poor ASR per-
formance highlights the challenges present in low-
resource settings. Future work on ASR includes
the use of higher-quality training data, as well as
dealing with named entities in the data itself. It is
also suspected that pre-trained models would likely
yield better results in low-resourced environments,
helping to compensate for data scarcity.
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Abstract

We propose a pretraining method to use Self-
Supervised Speech (SSS) model to creating
more compact Speech-to-text Translation. In
contrast to using the SSS model for initializa-
tion, our method is more suitable to memory
constrained scenario such as on-device deploy-
ment. Our method is based on Discrete Speech
Units (DSU) extracted from the SSS model. In
the first step, our method pretrains two smaller
encoder-decoder models on 1) Filterbank-to-
DSU (Fbk-to-DSU) and 2) DSU-to-Translation
(DSU-to-Trl) data respectively. The DSU thus
become the distillation inputs of the smaller
models. Subsequently, the encoder from the
Fbk-to-DSU model and the decoder from the
DSU-to-Trl model are taken to initialise the
compact model. Finally, the compact model
is finetuned on the paired Fbk-Trl data. In ad-
dition to being compact, our method requires
no transcripts, making it applicable to low-
resource settings. It also avoids speech dis-
cretization in inference and is more robust to
the DSU tokenization. Evaluation on CoVoST-
2 (X-En) shows that our method has consistent
improvement over the baseline in three met-
rics while being compact i.e., only half the SSS
model size.

1 Introduction

In Speech-to-text Translation (ST), using Self-
Supervised Speech (SSS) models, such as wav2vec
2.0 and HuBERT (Baevski et al., 2020; Hsu et al.,
2021), as model initialization is now common to
obtain the SOTA result (Agarwal et al., 2023). Nev-
ertheless, such model initialisation makes the ST
model less memory-adaptive and could impose a
large memory footprint. These factors hinders on-
device deployment that is crucial for privacy and
useful in the absence of internet connection.

How can we use the SSS model(s) to create
a more compact ST model? When using the
SSS model for initialization, the corresponding ST

model uses the dense representations of the SSS
model for its task. Alternatively, an informative
proxy, which requires less memory to obtain, for
the dense representation may make the ST model
more compact.

Discrete Speech Units (DSU) extracted from the
SSS model can be such a good proxy. DSU are
K-Means clusters of speech representations from
selected layers of the SSS model. It represents
sequence of discrete tokens, which are easier to
model within a text processing architecture (Polyak
et al., 2021; Chou et al., 2023). DSU sequences1

are far smaller than the sequences of dense repre-
sentations. Therefore, a straightforward method
to distill the SSS models is to use DSU as speech
inputs, aka the DSU-to-Translation (DSU-to-Trl)
model. Although using DSU as inputs allows for
transfer learning and a memory-adaptive model, us-
ing them at inference still requires storing and call-
ing the quantization modules, i.e, the SSS model
and the K-Means model.

We thus propose to use DSU for pretraining (PT)
rather than as model input to make ST models more
compact. Our method distils the SSS model by pre-
training smaller models on the corresponding DSU.
More specifically, our method firstly pretrains two
smaller encoder-decoder models on 1) Filterbank-
to-DSU (Fbk-to-DSU) and 2) DSU-to-Trl data re-
spectively. The DSU thus become the distillation
inputs of the smaller models. Subsequently, the en-
coder from the Fbk-to-DSU model and the decoder
from the DSU-to-Trl model are taken to initialise
the compact model. Finally, the compact model is
finetuned on the paired Fbk-Trl data. Under this for-
mulation, (1) we can use the SSS model to create a
ST model that is adaptive to the memory footprint.
(2) Our method requires no transcripts, unlike ASR-
pretraining, making it applicable to low-resource

1In this paper, DSU and DSU sequences are used inter-
changeably. When we need to focus on a few units of the
sequence, we call them DSU tokens.
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settings. (3) Our method avoids using the quanti-
zation modules in inference. (4) Extensive results
also show that our method is more robust to DSU
tokenization than the DSU-to-Trl method.

We evaluate our method on CoVoST-2 (Wang
et al., 2021) X-En language directions (21 in total)
using multilingual ST. By using a HuBERT-Base
model to extract the DSU, our method shows strong
and consistent improvements in three evaluation
metrics with respect to a ST model that is trained
from scratch. Our main contributions are:

• We propose a pretraining method to distil the
SSS model to creating a more compact ST
model. Rather than competing with the SOTA
ST models, adaptability to the memory foot-
print is our key focus.

• Our method uses DSU for pretraining rather
than as model inputs. This lowers the infer-
ence cost, especially for on-device purpose,
by avoiding the quantization modules (storage
and running).

• We conduct extensive analysis to study the
effect of DSU tokenization to both using DSU
as model inputs and as pretraining. Our pre-
training method is found to be more robust to
different tokenizations.

2 Related Work

There are a number of related works that use DSU
to enhance ST. Fang and Feng (2023) and Zhang
et al. (2023b) use DSU to create more training data
in a back-translation fashion. Chang et al. (2023)
and Zhang et al. (2023b) explore the replacement
of Filterbank by DSU as speech input. Further-
more, Yan et al. (2024) proposes a multi-tasking
learning framework with hard parameter sharing,
i.e., using a joint vocabulary for text tokens and
DSU, to improve the speech-text modality gap. In
contrast, we use DSU and its translation model for
pretraining, resulting in a better Fbk-to-Trl model
that has a shorter inference pipeline.

In the case of pretraining, Wu et al. (2023) use
a single Speech-to-DSU model in pretraining for
general speech-to-text purposes whereas we tailor
the use for ST by using a pair of encoder-decoder
models. Zhang et al. (2022b) also decompose ST
into speech-to-unit and unit-to-text tasks. Their
training is based on masked unit prediction, and it
requires an extra unit-encoder module in inference.
In contrast, we resort to supervised training on the

DSU in acoustic pretraining and require no extra
module in inference. More importantly, our goal is
to make (multilingual) ST more compact, aiming
also at low-resource settings where transcripts are
not easily available, rather than learning a joint
semantic space for both transcripts and audios.

3 Method

Figure 1: Illustration of the Fbk-to-DSU model. It is
like an auto-encoding training process, but between a
continuous format (log Mel Filterbank) and its discrete
format (DSU) that is extracted from a HuBERT model.

Our method uses DSU in the form of pretraining
to distil knowledge from the SSS (dense) represen-
tations to creating a more compact ST model.

In the first step, our method pretrains two smaller
encoder-decoder models on 1) Fbk-to-DSU and 2)
DSU-to-Trl data respectively. The Fbk-to-DSU
model takes the log Mel Fbk as the encoder in-
put and predicts the DSU sequence. The model is
trained by an interpolation of Connectionist Tem-
poral Classification (CTC, Graves et al. (2006))
loss that is applied to the last encoder layer and
label-smoothed Cross-Entropy (CE) loss:

LFbk-to-DSU = (1−λα)LCE(U|F)+λαLCTC(Ũ|F)
(1)

where F ∈ RTxD, U ∈ U and Ũ ∈ Ũ =
{U , blank} are the Fbk, DSU and the CTC label
sequences respectively. The CTC vocabulary cor-
respond to an union of the same vocabulary used
in the CE loss and a blank label. The idea is simi-
lar to an autoencoder, but the Fbk-to-DSU model
is trained to map the Fbk inputs to its discrete
form from the SSS model in a multi-task learn-
ing fashion (Figure 1). The DSU-to-Trl model
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learns via CE to predict the translations Y given
U: LDSU-to-Trl = LCE(Y|U). In essence, we use
the DSU to bridge the speech and text modalities.

Next, we use the encoder of the Fbk-to-DSU
model and the decoder (and its output layer) of the
DSU-to-Trl model to initialise the compact model,
followed by finetuning on the paired Fbk-Trl data
using both CE and CTC loss (Gaido et al., 2021;
Zhang et al., 2023a) on the translations:

LFT = (1− λβ)LCE(Y|F) + λβLCTC(Ỹ|F) (2)

where Ỹ ∈ Ỹ = {Y, blank}.

3.1 Tokenization of DSU in different models

Figure 2: Aligning the DSU tokenization of the Fbk-to-
DSU, DSU-to-Trl and compact ST model.

The discrete nature of DSU makes the above
training process similar to the transcripts-based
pretraining. However, DSU is self-supervised,
whereas transcripts require human annotations.
DSU are also much longer and can be represented
with various sets of symbols.

The length issue could be relieved by merging
sequential repetitions (Ao et al., 2022), e.g., ’#1 #1
#1 #456 #456 #23’ becomes ’#1 #456 #23’, where
each DSU token is denoted by a #{integer}. Byte
Pair Encoding (BPE) (Sennrich et al., 2016) could
be applied to reduce the DSU sequence length fur-
ther, e.g., ’#1 #456 #23’ could be split into a single
subword unit: ’#1#456#23’.

Since both Fbk-to-DSU and DSU-to-Trl models
map to different targets, and DSU can be repre-
sented with various set of symbols, we align the
tokenizations (or called vocabularies2) of the two
models. Figure 2 provides an illustration. The vo-
cabulary of the Fbk-to-DSU model (Vocabulary A)
is identical to the source vocabulary of the DSU-to-
Trl model (their weights are not shared since these
two models are trained independently), whereas

2We use vocabulary and tokenization interchangeably,
since we did not apply subword regularisation.

the target vocabulary (Vocabulary B) of the DSU-
to-Trl model is identical to the target vocabulary of
the final compact model (their weights are shared
during initialisation). The DSU-to-Trl model is
similar to a text translation model, so we also ex-
periment of using separate vocabularies or a joint
vocabulary. If a joint vocabulary of English sub-
word units and DSU (BPE or not) is used, all the
three models would have the same vocabulary, and
the weights of the source and target vocabularies
of the DSU-to-Trl model are also tied.

4 Experiments

4.1 Data Preprocessing

We follow standard practices to preprocess the
CoVoST-2 X-En data. For speech inputs using
80-D log Mel Fbk, we computed the features for
every 10ms with a 25ms window and then normal-
ized them using its mean and variance computed
over each channel. We use the BPE implementa-
tion from SENTENCEPIECE (Kudo and Richardson,
2018) and obtain vocabulary of size 8K on the En-
glish target, 16K on the (non-English) transcripts
and 32K on the DSU, unless otherwise specified.

We use HuBERT-Base3 model to extract the
DSU by first downsampling the CoVoST-2 au-
dio to 16KHz. Each audio data utterance is then
converted into the DSU, i.e., the clustering in-
dexes, by applying K-Means clustering (K=1, 000;
MiniBatchKMeans from SKLEARN) on its Hu-
BERT representation from the 6th layer (Lakhotia
et al., 2021). To train the K-Means model, we di-
vide the 21 language pairs into three groups: 1) {ar,
cy, et, id, ja, lv, mn, sl, sv, ta, tr}, 2) {nl, pt, ru,
zh} and 3) {ca, de, es, fa, fr, it}. We then sample
1K instances for each language pair in group 1),
which becomes 3K in group 2) and 12.5K in group
3), to create a multilingual training dataset of 98K
instances for the K-Means model.

4.1.1 On the choice of using HuBERT-Base
Given the rapid advance in the SSS models, there
are many alternatives, such as XLS-R (Babu et al.,
2021) and Wavlm (Chen et al., 2022), for extracting
the DSU for our method. These models are larger
in scale and could be multilingual, thus provid-
ing DSU of higher qualities. The improvement of
our method by using DSU from the HuBERT-Base
would probably be a lower-bound, considering its

3https://github.com/facebookresearch/fairseq/
tree/main/examples/textless_nlp/gslm/speech2unit
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relatively poor qualities to the bigger models. Since
our goal is about compactness via DSU pretrain-
ing rather than comparing the DSU qualities across
the SSS models, we took a simple HuBERT-Base
model to illustrate the idea. Pretraining only on En-
glish audio data could also suggest hints on whether
the DSU and our method could be generalised to
languages that are unseen to the SSS models.

4.2 Model Configuration

All models are based on Transformer (Vaswani
et al., 2017) with implementations from FAIRSEQ

(Ott et al., 2019; Wang et al., 2020). In the Fbk-
to-Token (i.e. transcriptions, DSU, or translations)
models, the encoder has convolutional layers to
downsample the Fbk by a factor of 4. There are
12-6 layers in the transformer encoder-decoder,
whereas the embedding and feed-forward network
(FFN) dimensions are 256 and 4, 096 respectively,
unless otherwise specified. It is worth noting that:
(1) The Fbk-to-DSU model is not trained on the
translations, so it is not directly comparable to the
ST models. Its effect on ST lies on its pretrained en-
coder (Table 2). (2) The DSU-to-Trl model is a ST
model which decoder can be used for initialization.

Scratch is a ST model trained on the paired speech-
translation data without pretraining.

ASR Pretraining refers to a ST model whose en-
coder is initialized by a speech recognition task
with CTC regularisation on the transcripts.

DSU-to-Trl follows the Transformer used in text
translation. We use 6-6 layers in the encoder-
decoder which the dimension of embedding and
FFN is 256 and 2, 048 respectively. In addition, we
use "pre" layer-normalization (Nguyen and Salazar,
2019). Despite its smaller model size, its inference
requires the quantization modules.

Hu-Transformer uses the entire HuBERT as
the speech encoder initialization (Fang and Feng,
2023). For comparison to our DSU-Adapter, its
subsequent encoder-decoder also has 1-6 layers.

DSU-Adapter is our proposed method. To better
align the two pre-trained components, we also ex-
periment with adding an extra encoder layer as a
simple adapter layer after the pre-trained encoder.
Because of the small model size, all model param-
eters are trainable. Since its decoder is initialized
by the DSU-to-Trl method, its decoder FFN dimen-
sion is 2, 048.

Enc-Init is a ST model that has its encoder initial-
ized by the Fbk-to-DSU encoder. EncDec-Init is a
DSU-Adapter model without the adapter layer.

4.3 Training and Inference

It is worth noting that we do not use extra audio
data, e.g., Libri-Light (Kahn et al., 2020) in our
(pretraining) experiments. Furthermore, we apply
the following conditions in (pre-)training:

• We skip training data that are longer than 30
seconds (audio) or 1, 024 target tokens.

• We apply SpecAugment (Park et al., 2019)
with parameters: {F = 30, T = 40,mF =
2,mT = 2} on Filterbank inputs.

• We share the embedding weights when using
a joint vocabulary in the DSU-to-Trl model.

• We set λα and λβ in CTC to 0.3 and the
smoothing parameter to 0.1

• We initialize the encoder (decoder) with the
last (best) checkpoint from the PT model.

• We use Adam optimizer with inverse square
root scheduler for all model training.

• In all Fbk-to-Token models, the effective mini-
batch size, warm-up steps, peak learning rate
and training steps are 32K frames, 25K, 2e−3
and 60K steps respectively.

• Similarly, in all DSU-to-Trl models, we use
80K tokens, 10K, 5e−4 and 50K steps.

• Similarly, in Hu-Transformer, we use 4M
frames, 4K, 1e−4 and 300K steps.

In inference, we average the last 5 checkpoints and
use beam size of 5 in generation. All experiments
are run on Nvidia A100 GPUs. It takes about 1 day
for 2 A100 (40GB) GPUs to complete an experi-
ment that uses Filterbank as speech inputs.

5 Results and Analysis

Before discussing the results, it is worth noting
that (1) Hu-Transformer is not memory-adaptive,
and (2) ASR-Pretraining requires transcripts, un-
like DSU which is self-supervised. Both methods
are introduced for reference purposes of if such
resources are available.
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AST model (#Params)
BLEU chrF COMET-22-DA

High Mid Low All High Mid Low All High Mid Low All

Scratch (52M) 19.4 7.91 0.73 5.99 43.6 27.2 14.6 23.1 0.605 0.498 0.433 0.481
ASR-Pretraining (52M) 26.5 12.2 1.82 9.00 51.9 32.8 16.4 27.1 0.680 0.537 0.443 0.511
Hu-Transformer (113M) 24.3 11.4 2.18 8.60 49.9 31.9 17.0 26.8 0.650 0.522 0.439 0.499

DSU-Adapter (48M) 26.5 12.9 1.76 9.13 52.1 33.9 16.5 27.4 0.681 0.548 0.442 0.513

Table 1: Results in BLEU, chrF and COMET-22-DA on the test set of CoVoST-2 (X-En) by resource group. In all
metrics, DSU-Adapter is much better than Hu-Transformer, which is 2.3 times larger, in both "High" and "Mid"
groups. DSU-Adapter, which does not requires transcripts in training, is also on a par with ASR-Pretraining. The
best result in each group is denoted by ’_’.

5.1 Improvement brought by DSU-Adapter

We divide the 21 language pairs by resource level
into: 1) "High": {ca, de, es, fr}, 2) "Mid": {fa, it,
pt, ru and zh}, 3) "Low": {ar, cy, et, id, ja, lv, mn,
nl, sl, sv, ta, tr} and 4) "All": the 21 languages pairs.
We report the average BLEU4 and chrF5 over the
test sets of each group using SACREBLEU (Post,
2018). In addition, we also provide the result in
WMT22-COMET-DA (Rei et al., 2022), which the
source inputs are the gold-reference transcripts.

Table 1 compares our DSU-Adapter and the base-
lines. Our DSU-Adapter is 3 BLEU (in the group
"All") higher than the Scratch model. This shows
that our proposed method of using DSU-pretraining
can strengthen direct end-to-end ST without requir-
ing transcripts and remain flexible in memory foot-
print (smaller in size than the HuBERT model).
Furthermore, it is better than Hu-Transformer in
spite of having half the parameters. For "Mid"
and "High", the improvement in BLEU is 1.49 and
2.23 points respectively, but it falls short by 0.42
points for "Low". We also compare to ASR pre-
training, which is not always applicable, e.g., in
low-resource setting or perhaps even in an unwrit-
ten language (Zhang et al., 2022a). Surprisingly,
our adapter is on a par with it, and its BLEU is 0.13
points better. The result remains consistent when it
is measured in chrF and COMET.

5.1.1 Language-specific performance
Figure 3 shows the performance on each language
pair in BLEU, chrF and COMET-22-DA. Our DSU-
Adapter (in green triangles) show consistent im-
provement over the Scratch model (in blue circles)
in all language pairs. Such improvement is rather
surprising since HuBERT-Base was trained solely
on English audio data. We hypothesized that the

4nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1
5nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.3.1

cross-lingual improvement is related to HuBERT’s
ability to capture language independent features,
e.g. phonetic properties (Pasad et al., 2023).

Compared with Hu-Transformer, DSU-Adapter
maintains an evident improvement over most lan-
guage pairs in both "High" and "Mid" groups. Ex-
ceptions are in "fa" and "pt", but the lags are al-
most negligible. In group "Low", Hu-Transformer
is slightly better, especially in "nl" and "sv" pairs.
However, most translation in this group is barely
around 2 BLEU, and the lags are small.

In most language pairs, DSU-Adapter performs
similarly to ASR-pretraining (in red diamonds),
except translating from "ru" audios. The improve-
ment in this "ru-en" pair makes DSU-Adapter to
have an evident advantage of 0.7 BLEU in the
group "Mid".

5.2 Tokenization effect to the DSU-to-Trl
method and the DSU-Adapter method

In this section, we investigate how tokenization,
including BPE, affects the DSU-to-Trl method and
the DSU-Adapter method. We are particularly in-
terested in their robustness toward the tokenization,
especially using BPE on the DSU, since tuning the
quantization process and retraining the subsequent
models is computationally expensive.

In Table 2, the 1st column "Has BPE on DSU?"
indicates if BPE is applied on the DSU. If "Yes",
multiple DSU could be merged into one subword
unit, e.g., ’#1 #456 #23 #999’ could be merged into
’#1#456#23#999’. The 2nd column "|V|" shows
the vocabulary configuration: its size, and if the
model has a joint vocabulary. For example, "1K-
8K" means that we use a vocabulary of size 1K
for DSU and a second vocabulary of size 8K for
English so that the DSU-to-Trl model would have
separate vocabularies for the source (DSU) and
target (English) sides. All results are in BLEU
averaged over all language pairs, i.e., group "All".
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Has BPE |V| DSU Length DSU-to-Trl Enc-Init EncDec-Init DSU-Adapter
on DSU? Length Ratio (20M to 27M) (52M to 70M) (46M to 64M) (48M to 67M)

No

1K-8K 176 12.9 6.73 7.70 7.87 8.54
1K-16K " 14.1 6.36 7.50 8.00 8.43
1K-32K " 14.9 6.30 7.23 7.65 7.94

8K " 12.7 6.88 7.64 8.05 8.26
16K " 14.0 6.33 7.41 7.91 8.17
32K " 14.9 6.26 6.66 7.41 7.68

Yes

1K-8K 221 16.3 4.52 8.23 8.44 8.61
16K-8K 129 9.5 5.06 8.51 8.76 8.95
32K-8K 115 8.5 4.43 8.67 9.02 9.13

8K 150 7.6 7.02 8.33 8.51 8.82
16K 133 7.7 6.50 8.57 8.61 8.93
32K 118 7.8 5.07 8.30 8.44 8.70

Table 2: (DSU) tokenization effect on 4 ST methods. Each ST model’s performance on the CoVoST-2 test set is
measured by BLEU on group "All". All 4 methods could perform better than the Scratch model of 5.99 BLEU as
shown on Table 1. In general, darker (brighter) cells refer to weaker (stronger) models. The best two models apply
both BPE on the DSU and separate vocabularies in PT (cells in yellow).

5.2.1 DSU-to-Trl: robust to tokenization?
When BPE is not applied on the DSU, those 6 DSU-
to-Trl models have 6.48 ± 0.26 BLEU. Despite
having smaller model size (<30M), they are better
than the Scratch model of 5.99 BLEU.

When BPE is applied, the sequence length of
DSU (DSU Length) could be shortened, which
could in turn improve the performance, e.g. the
best DSU-to-Trl model happens at configuration
"8K" with 7.02 BLEU. However, the DSU-to-Trl
method is quite unstable to the use of BPE, as
reflected by the 5.12 ± 0.83 BLEU in the other
5 configurations. The correlation between the DSU
sequence length, the source-target length ratio, and
the ST performance is also not straightforward. For
an example, the "32K" model (DSU length of 118)
is about 2 BLEU behind to the "8K" model (DSU
length of 150). Therefore, applying BPE on the
DSU for length reduction should remain cautious.

5.2.2 The DSU-Adapter is more robust
Unlike DSU-to-Trl method, DSU-Adapter benefits
more when BPE is applied to the DSU. Our pro-
posed method has 8.86 ± 0.19 BLEU (over the 6
corresponding configurations), as opposed to 8.17
± 0.32 BLEU when BPE is not applied. This obser-
vation is opposed to the DSU-to-Trl method which
only scores 5.54 ± 1.07 BLEU (with also larger
variance) when BPE is applied on the DSU but
6.48 ± 0.26 when BPE is not used. The improved
mean score and its smaller variance suggests that

the DSU-Adapter method is more (DSU) tokeniza-
tion robust. We see this as a benefit of introducing
the DSU, i.e., the SSS model knowledge, via PT
rather than as model inputs.

On top of applying BPE on the DSU, using sepa-
rate vocabularies in PT is preferred (the two yellow
cells on Table 2) since it performs slightly better,
and the DSU, which are not needed in the ST out-
put, would not occupy the target vocabulary.

5.2.3 Ablation: initialisation in DSU-Adapter
Having similar model sizes, e.g. about 50M pa-
rameters (Table 2), DSU-Adapter is better than
both EncDec-Init and Enc-Init methods. The trans-
lation performance in BLEU (averaged over the
12 vocabularies) is 8.51 ± 0.44, 8.22 ± 0.51, and
7.99 ± 0.61 respectively. Encoder-initialization
seems more crucial than decoder-initialization, as
reflected by the fact that the best DSU-Adapter
model comes from a combination with the weakest
DSU-to-Trl model of 4.43 BLEU.

5.3 Is CTC applicable also to DSU?

Similar to ST methods that use pretrained compo-
nents, our method could be limited by the pretrain-
ing modality gap (Liu et al., 2020; Le et al., 2023).
Motivated by prior works, we investigate mitigat-
ing it with CTC. A crucial difference to the prior
works is that our method uses DSU for pre-training
rather than transcripts.

We thus study applying CTC in our method at
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Has CTC in High Mid Low AllDSU PT? ST FT?

No No 25.81 9.91 1.46 8.14
No Yes 26.10 11.35 1.69 8.71
Yes No 25.94 10.82 1.51 8.44
Yes Yes 26.12 11.53 1.73 8.74

Table 3: Effect of CTC on Fbk-to-DSU PT and/or ST FT
to the DSU-Adapter method. All results are in BLEU
and the best in each group is denoted by ’_’.

different training stages. Owing to the large num-
ber of vocabulary configurations on Table 2, we
only experiment with: 1) "No-BPE 1K-8K", 2)
"BPE 8K", 3) "BPE 32K" and 4) "BPE 32K-8K".
In each training stage, we report the effect of CTC
to the ST performance (per resource group) by av-
eraging the BLEU of these 4 configurations.

Table 3 presents the analysis of applying CTC
on our DSU-Adapter method. The training con-
dition "Has CTC in DSU PT" refers to the case
of applying CTC on the discrete speech units in
Fbk-to-DSU pretraining, whereas "Has CTC in ST
FT" refers to the case of applying CTC on the
translations in ST finetuning, i.e., on the paired
Fbk-Trl data. Our result shows that CTC helps on
either stage, but the gain is 0.27 BLEU more in ST
finetuning. Using them jointly still helps, but the
marginal gain is barely 0.03 BLEU.

6 Limitations and future works

In the previous sections, we discuss the noticeable
benefits of our DSU-pretraining method in creating
a more compact ST model. In spite of this, there
are several factors that are not thoroughly explored
and could improve the model performance further:

K-Means clustering We did not inspect the clus-
tering size (fixed to 1, 000) and the number of train-
ing instances (only fixed to 98, 000) used in train-
ing the K-Means clustering model. Apart from tun-
ing its hyper-parameters, using other techniques,
such as residual vector quantisation (Zeghidour
et al., 2021; Défossez et al., 2022) and multiple
codebooks (Guo et al., 2023), might bring better
improvement.

Other acoustic encoders We did not experiment
other acoustic encoders, such as conformer (Gulati
et al., 2020; Papi et al., 2023) and E-Branchformer
(Peng et al., 2023). This stronger encoders should
provide further gains for our method since they also
enjoy the benefit of pretraining.

A stronger pretrained decoder Apart from
strengthening the encoder, the DSU-to-Trl model
and hence its decoder (used in initialisation) could
also be improved, e.g. via back-translation, up-
sampling the textual sequence (Yan et al., 2024)
and pretraining with more text data, while main-
taining the small decoder size.

Further analyses In addition to improving our
pretraining method for better model compactness,
there are other related research directions worth
further analyzing. One direction would be how,
in terms of acoustic pretraining, DSU compared
with transcripts (if available in that language) over
different data scales. Another interesting research
direction would be the comparison and analysis of
using DSU or dense features in a large pretrained
model setting, such as Whisper (Radford et al.,
2023) and Large Language Models.

7 Conclusion

In this paper, we consider a memory-constrained
setting for ST. Our proposed method uses DSU in
the form of pretraining to distil the knowledge from
the Self-Supervised Speech model to creating more
compact Speech-to-text Translation. Our compact
model, i.e., the DSU-Adapter, shows strong and
consistent improvements in three evaluation met-
rics over the baselines. In contrast to using DSU
as model inputs, our method does not require quan-
tization modules in inference and shows stronger
robustness to the DSU tokenization. Finally, our
method requires no transcripts, making it also suit-
able for low-resource setting.
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Borg, Marine Carpuat, Roldano Cattoni, Mauro Cet-
tolo, Mingda Chen, William Chen, Khalid Choukri,
Alexandra Chronopoulou, Anna Currey, Thierry De-
clerck, Qianqian Dong, Kevin Duh, Yannick Es-
tève, Marcello Federico, Souhir Gahbiche, Barry
Haddow, Benjamin Hsu, Phu Mon Htut, Hirofumi
Inaguma, Dávid Javorský, John Judge, Yasumasa
Kano, Tom Ko, Rishu Kumar, Pengwei Li, Xutai Ma,
Prashant Mathur, Evgeny Matusov, Paul McNamee,
John P. McCrae, Kenton Murray, Maria Nadejde,
Satoshi Nakamura, Matteo Negri, Ha Nguyen, Jan
Niehues, Xing Niu, Atul Kr. Ojha, John E. Ortega,
Proyag Pal, Juan Pino, Lonneke van der Plas, Peter
Polák, Elijah Rippeth, Elizabeth Salesky, Jiatong Shi,
Matthias Sperber, Sebastian Stüker, Katsuhito Su-
doh, Yun Tang, Brian Thompson, Kevin Tran, Marco
Turchi, Alex Waibel, Mingxuan Wang, Shinji Watan-
abe, and Rodolfo Zevallos. 2023. FINDINGS OF
THE IWSLT 2023 EVALUATION CAMPAIGN. In
Proceedings of the 20th International Conference on
Spoken Language Translation (IWSLT 2023), pages
1–61, Toronto, Canada (in-person and online). Asso-
ciation for Computational Linguistics.

Junyi Ao, Ziqiang Zhang, Long Zhou, Shujie Liu,
Haizhou Li, Tom Ko, Lirong Dai, Jinyu Li, Yao Qian,
and Furu Wei. 2022. Pre-Training Transformer De-
coder for End-to-End ASR Model with Unpaired
Speech Data. In Proc. Interspeech 2022, pages 2658–
2662.

Arun Babu, Changhan Wang, Andros Tjandra, Kushal
Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh,
Patrick von Platen, Yatharth Saraf, Juan Pino, et al.
2021. Xls-r: Self-supervised cross-lingual speech
representation learning at scale. arXiv preprint
arXiv:2111.09296.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
Advances in neural information processing systems,
33:12449–12460.

Xuankai Chang, Brian Yan, Kwanghee Choi, Jeeweon
Jung, Yichen Lu, Soumi Maiti, Roshan Sharma, Jia-
tong Shi, Jinchuan Tian, Shinji Watanabe, et al. 2023.
Exploring speech recognition, translation, and under-
standing with discrete speech units: A comparative
study. arXiv preprint arXiv:2309.15800.

Sanyuan Chen, Chengyi Wang, Zhengyang Chen,
Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
Kanda, Takuya Yoshioka, Xiong Xiao, et al. 2022.
Wavlm: Large-scale self-supervised pre-training for
full stack speech processing. IEEE Journal of Se-
lected Topics in Signal Processing, 16(6):1505–1518.

Ju-Chieh Chou, Chung-Ming Chien, Wei-Ning Hsu,
Karen Livescu, Arun Babu, Alexis Conneau, Alexei

Baevski, and Michael Auli. 2023. Toward joint lan-
guage modeling for speech units and text. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 6582–6593, Singapore.
Association for Computational Linguistics.

Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and
Yossi Adi. 2022. High fidelity neural audio compres-
sion. arXiv preprint arXiv:2210.13438.

Qingkai Fang and Yang Feng. 2023. Back translation
for speech-to-text translation without transcripts. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 4567–4587, Toronto, Canada.
Association for Computational Linguistics.

Marco Gaido, Mauro Cettolo, Matteo Negri, and Marco
Turchi. 2021. CTC-based compression for direct
speech translation. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
690–696, Online. Association for Computational Lin-
guistics.

Alex Graves, Santiago Fernández, Faustino J. Gomez,
and Jürgen Schmidhuber. 2006. Connectionist tem-
poral classification: labelling unsegmented sequence
data with recurrent neural networks. In Machine
Learning, Proceedings of the Twenty-Third Interna-
tional Conference (ICML 2006), Pittsburgh, Pennsyl-
vania, USA, June 25-29, 2006, volume 148 of ACM
International Conference Proceeding Series, pages
369–376. ACM.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang,
Zhengdong Zhang, Yonghui Wu, and Ruoming Pang.
2020. Conformer: Convolution-augmented Trans-
former for Speech Recognition. In Proc. Interspeech
2020, pages 5036–5040.

Liyong Guo, Xiaoyu Yang, Quandong Wang, Yuxiang
Kong, Zengwei Yao, Fan Cui, Fangjun Kuang, Wei
Kang, Long Lin, Mingshuang Luo, et al. 2023. Pre-
dicting multi-codebook vector quantization indexes
for knowledge distillation. In ICASSP 2023-2023
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1–5. IEEE.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-
rahman Mohamed. 2021. Hubert: Self-supervised
speech representation learning by masked prediction
of hidden units. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 29:3451–3460.

Jacob Kahn, Morgane Rivière, Weiyi Zheng, Evgeny
Kharitonov, Qiantong Xu, Pierre-Emmanuel Mazaré,
Julien Karadayi, Vitaliy Liptchinsky, Ronan Col-
lobert, Christian Fuegen, Tatiana Likhomanenko,
Gabriel Synnaeve, Armand Joulin, Abdelrahman Mo-
hamed, and Emmanuel Dupoux. 2020. Libri-light: A
benchmark for ASR with limited or no supervision.
In 2020 IEEE International Conference on Acous-
tics, Speech and Signal Processing, ICASSP 2020,

170

https://doi.org/10.18653/v1/2023.iwslt-1.1
https://doi.org/10.18653/v1/2023.iwslt-1.1
https://doi.org/10.21437/Interspeech.2022-10368
https://doi.org/10.21437/Interspeech.2022-10368
https://doi.org/10.21437/Interspeech.2022-10368
https://doi.org/10.18653/v1/2023.findings-emnlp.438
https://doi.org/10.18653/v1/2023.findings-emnlp.438
https://doi.org/10.18653/v1/2023.acl-long.251
https://doi.org/10.18653/v1/2023.acl-long.251
https://doi.org/10.18653/v1/2021.eacl-main.57
https://doi.org/10.18653/v1/2021.eacl-main.57
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.21437/Interspeech.2020-3015
https://doi.org/10.21437/Interspeech.2020-3015
https://doi.org/10.1109/ICASSP40776.2020.9052942
https://doi.org/10.1109/ICASSP40776.2020.9052942


Barcelona, Spain, May 4-8, 2020, pages 7669–7673.
IEEE.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Kushal Lakhotia, Eugene Kharitonov, Wei-Ning Hsu,
Yossi Adi, Adam Polyak, Benjamin Bolte, Tu-Anh
Nguyen, Jade Copet, Alexei Baevski, Abdelrahman
Mohamed, and Emmanuel Dupoux. 2021. On gen-
erative spoken language modeling from raw audio.
Transactions of the Association for Computational
Linguistics, 9:1336–1354.

Phuong-Hang Le, Hongyu Gong, Changhan Wang, Juan
Pino, Benjamin Lecouteux, and Didier Schwab. 2023.
Pre-training for speech translation: CTC meets op-
timal transport. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pages
18667–18685. PMLR.

Yuchen Liu, Junnan Zhu, Jiajun Zhang, and Chengqing
Zong. 2020. Bridging the modality gap for speech-
to-text translation. arXiv preprint arXiv:2010.14920.

Toan Q. Nguyen and Julian Salazar. 2019. Transformers
without tears: Improving the normalization of self-
attention. In Proceedings of the 16th International
Conference on Spoken Language Translation, Hong
Kong. Association for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Sara Papi, Marco Gaido, Andrea Pilzer, and Matteo
Negri. 2023. When good and reproducible results are
a giant with feet of clay: The importance of software
quality in nlp. arXiv preprint arXiv:2303.16166.

Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D. Cubuk, and Quoc V. Le.
2019. SpecAugment: A Simple Data Augmentation
Method for Automatic Speech Recognition. In Proc.
Interspeech 2019, pages 2613–2617.

Ankita Pasad, Bowen Shi, and Karen Livescu. 2023.
Comparative layer-wise analysis of self-supervised
speech models. In ICASSP 2023-2023 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1–5. IEEE.

Yifan Peng, Kwangyoun Kim, Felix Wu, Brian Yan,
Siddhant Arora, William Chen, Jiyang Tang, Suwon
Shon, Prashant Sridhar, and Shinji Watanabe. 2023.

A Comparative Study on E-Branchformer vs Con-
former in Speech Recognition, Translation, and Un-
derstanding Tasks. In Proc. INTERSPEECH 2023,
pages 2208–2212.

Adam Polyak, Yossi Adi, Jade Copet, Eugene
Kharitonov, Kushal Lakhotia, Wei-Ning Hsu, Ab-
delrahman Mohamed, and Emmanuel Dupoux. 2021.
Speech Resynthesis from Discrete Disentangled Self-
Supervised Representations. In Proc. Interspeech
2021, pages 3615–3619.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In International Conference on Machine
Learning, pages 28492–28518. PMLR.

Ricardo Rei, José G. C. de Souza, Duarte Alves,
Chrysoula Zerva, Ana C Farinha, Taisiya Glushkova,
Alon Lavie, Luisa Coheur, and André F. T. Martins.
2022. COMET-22: Unbabel-IST 2022 submission
for the metrics shared task. In Proceedings of the
Seventh Conference on Machine Translation (WMT),
pages 578–585, Abu Dhabi, United Arab Emirates
(Hybrid). Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Changhan Wang, Yun Tang, Xutai Ma, Anne Wu,
Dmytro Okhonko, and Juan Pino. 2020. Fairseq
S2T: Fast speech-to-text modeling with fairseq. In
Proceedings of the 1st Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 10th International Joint Conference
on Natural Language Processing: System Demon-
strations, pages 33–39, Suzhou, China. Association
for Computational Linguistics.

Changhan Wang, Anne Wu, Jiatao Gu, and Juan Pino.
2021. CoVoST 2 and Massively Multilingual Speech
Translation. In Proc. Interspeech 2021, pages 2247–
2251.

Felix Wu, Kwangyoun Kim, Shinji Watanabe,
Kyu Jeong Han, Ryan McDonald, Kilian Q. Wein-
berger, and Yoav Artzi. 2023. Wav2seq: Pre-training
speech-to-text encoder-decoder models using pseudo

171

https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.1162/tacl_a_00430
https://doi.org/10.1162/tacl_a_00430
https://proceedings.mlr.press/v202/le23a.html
https://proceedings.mlr.press/v202/le23a.html
https://aclanthology.org/2019.iwslt-1.17
https://aclanthology.org/2019.iwslt-1.17
https://aclanthology.org/2019.iwslt-1.17
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.21437/Interspeech.2019-2680
https://doi.org/10.21437/Interspeech.2019-2680
https://doi.org/10.21437/Interspeech.2023-1194
https://doi.org/10.21437/Interspeech.2023-1194
https://doi.org/10.21437/Interspeech.2023-1194
https://doi.org/10.21437/Interspeech.2021-475
https://doi.org/10.21437/Interspeech.2021-475
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://aclanthology.org/2022.wmt-1.52
https://aclanthology.org/2022.wmt-1.52
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://aclanthology.org/2020.aacl-demo.6
https://aclanthology.org/2020.aacl-demo.6
https://doi.org/10.21437/Interspeech.2021-2027
https://doi.org/10.21437/Interspeech.2021-2027
https://doi.org/10.1109/ICASSP49357.2023.10096988
https://doi.org/10.1109/ICASSP49357.2023.10096988


languages. In IEEE International Conference on
Acoustics, Speech and Signal Processing ICASSP
2023, Rhodes Island, Greece, June 4-10, 2023, pages
1–5. IEEE.

Brian Yan, Xuankai Chang, Antonios Anastasopoulos,
Yuya Fujita, and Shinji Watanabe. 2024. Cross-
modal multi-tasking for speech-to-text translation
via hard parameter sharing. In ICASSP 2024 -
2024 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages
11941–11945.

Neil Zeghidour, Alejandro Luebs, Ahmed Omran,
Jan Skoglund, and Marco Tagliasacchi. 2021.
Soundstream: An end-to-end neural audio codec.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 30:495–507.

Biao Zhang, Barry Haddow, and Rico Sennrich. 2022a.
Revisiting end-to-end speech-to-text translation from
scratch. In International Conference on Machine
Learning, pages 26193–26205. PMLR.

Biao Zhang, Barry Haddow, and Rico Sennrich. 2023a.
Efficient CTC regularization via coarse labels for
end-to-end speech translation. In Proceedings of the
17th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 2264–
2276, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

Dong Zhang, Rong Ye, Tom Ko, Mingxuan Wang,
and Yaqian Zhou. 2023b. DUB: Discrete unit back-
translation for speech translation. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 7147–7164, Toronto, Canada. Associa-
tion for Computational Linguistics.

Ziqiang Zhang, Long Zhou, Junyi Ao, Shujie Liu,
Lirong Dai, Jinyu Li, and Furu Wei. 2022b.
SpeechUT: Bridging speech and text with hidden-
unit for encoder-decoder based speech-text pre-
training. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 1663–1676, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

172

https://doi.org/10.1109/ICASSP49357.2023.10096988
https://doi.org/10.1109/ICASSP48485.2024.10447926
https://doi.org/10.1109/ICASSP48485.2024.10447926
https://doi.org/10.1109/ICASSP48485.2024.10447926
https://doi.org/10.18653/v1/2023.eacl-main.166
https://doi.org/10.18653/v1/2023.eacl-main.166
https://doi.org/10.18653/v1/2023.findings-acl.447
https://doi.org/10.18653/v1/2023.findings-acl.447
https://doi.org/10.18653/v1/2022.emnlp-main.108
https://doi.org/10.18653/v1/2022.emnlp-main.108
https://doi.org/10.18653/v1/2022.emnlp-main.108


Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024), pages 173–181
August 15-16, 2024 c©2024 Association for Computational Linguistics

QUESPA Submission for the IWSLT 2024
Dialectal and Low-resource Speech Translation Task

John E. Ortega1, Rodolfo Zevallos2, William Chen3, Ibrahim Said Ahmad1

1Northeastern University, USA, 2Universitat Pompeu Fabra, Spain
3Carnegie Mellon University, USA

contact email: j.ortega@northeastern.edu

Abstract

This article describes the QUESPA team
speech translation (ST) submissions for the
Quechua to Spanish (QUE–SPA) track featured
in the Evaluation Campaign of IWSLT 2024:
dialectal and low-resource speech translation.
Two main submission types were supported in
the campaign: constrained and unconstrained.
This is our second year submitting our ST sys-
tems to the IWSLT shared task and we feel that
we have achieved novel performance, surpass-
ing last year’s submissions. Again, we were
able to submit six total systems of which our
best (primary) constrained system consisted of
an ST model based on the Fairseq S2T frame-
work where the audio representations were cre-
ated using log mel-scale filter banks as fea-
tures and the translations were performed us-
ing a transformer. The system was similar to
last year’s submission with slight configuration
changes, allowing us to achieve slightly higher
performance (2 BLEU). Contrastingly, we were
able to achieve much better performance than
last year on the unconstrained task using a
larger pre-trained language (PLM) model for
ST (without cascading) and the inclusion of
parallel QUE–SPA data found on the inter-
net. The fine-tuning of Microsoft’s SpeechT5
model in a ST setting along with the addition
of new data and a data augmentation technique
allowed us to achieve 19.7 BLEU. Additionally,
we present the other four submissions (2 con-
strained and 2 unconstrained) which are part of
additional efforts of hyper-parameter and con-
figuration tuning on existent models and the
inclusion of Whisper for speech recognition.

1 Introduction

Speech Translation (ST) has historically been a dif-
ficult task due to the lack of parallel data required
to train neural end-to-end systems. As such, the
traditional approach to this task has been to use a
cascade of distinct modules, separating ST into the
subtasks of Automatic Speech Recognition (ASR)

and Machine Translation (MT). While this allows
ST systems to benefit from the advances in Pre-
trained Language Models (PLMs) for ASR and
MT, creating usable models for low-resource lan-
guages has remained a challenge due to the lack
of support for these languages in PLMs. Findings
from previous iterations of IWSLT (Antonios et al.,
2022; Agarwal et al., 2023a) clearly show this phe-
nomena: large-scale ensembling and multilingual
supervised pre-training are required to even reach
15 BLEU (Papineni et al., 2002) in low-resource
pairs such as Quechua–Spanish.

This year, the IWSLT 2024 (Agarwal et al.,
2023b) evaluation campaign for low-resource and
dialect speech translation has included several lan-
guage pairs for which many teams have submit-
ted to the unconstrained task. Some language
pairs such as Bemba–English have recorded BLEU
scores as low as 0.5. We feel that as second-time
entries we are able to rely on previously built ST
systems to leverage our work on the Quechua to
Spanish (QUE–SPA) language pair.

Quechua is an indigenous language spoken by
more than 8 million people in South America. It
is mainly spoken in Peru, Ecuador, and Bolivia
where the official high-resource language is Span-
ish. It is a highly inflective language based on its
suffixes which agglutinate and found to be similar
to other languages like Finnish. It is worthwhile to
note that previous work (Ortega and Pillaipakkam-
natt, 2018; Ortega et al., 2020) has been somewhat
successful in identifying the inflectional proper-
ties of Quechua such as agglutination where an-
other high-resource language, namely Finnish, can
aid for translation purposes achieving nearly 20
BLEU on religious-based (text-only) tasks. The
average number of morphemes per word (synthe-
sis) is about two times larger than English. English
typically has around 1.5 morphemes per word and
Quechua has about 3 morphemes per word. There
are two main region divisions of Quechua known
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as Quechua I and Quechua II. This data set consists
of two main types of Quechua spoken in Ayacucho,
Peru (Quechua Chanka ISO:quy) and Cusco, Peru
(Quechua Collao ISO:quz) which are both part of
Quechua II and, thus, considered a “southern” lan-
guages. We label the data set with que - the ISO
norm for Quechua II mixtures.

The QUESPA team this year consists of four
organizers from three different institutions: North-
eastern University, Carnegie Melon University, and
Pompeu Fabra University. A new organizer has
been introduced this year who has expertise in
African languages. All of the IWSLT 2023 organiz-
ers have continued to work on the project; all of the
previous organizers have had experience with the
QUE–SPA language pair in the past. In this arti-
cle, we report the QUESPA consortium submission
for the IWSLT 2024 and once again focus on the
low-resource task at hand by combining all the two
dialects Quechua I and II into one.

The rest of this article is organized as follows.
Section 2 presents the related work. The experi-
ments for QUE–SPA low-resource track are pre-
sented in Section 3. Section 4 provides results from
the six submitted systems and concludes this work.

2 Related Work

In this section, we first cover the different ap-
proaches used in previous speech processing shared
tasks for Quechua (Section 2.1). We then discuss
prior work that used a similar strategy to our pri-
mary submission to the unconstrained track (Sec-
tion 2.2).

2.1 Quechua Speech Processing

The previous iteration of IWSLT (Agarwal et al.,
2023a) was the first time that Quechua–Spanish
was featured in the low-resource ST track. Due to
the small amount of available paired data, the par-
ticipants focused on exploiting PLMs for speech
and/or text in the unconstrained track. The teams
all converged on using XLS-R 128 (Babu et al.,
2021) as the pre-trained speech encoder, while
NLLB 200 (NLLB Team et al., 2022) was the most
popular text PLM. However, the teams used the
PLMs in very different manners. QUESPA (E. Or-
tega et al., 2023) separated the PLMs into distinct
systems for an ASR+MT cascade, GMU (Mbuya
and Anastasopoulos, 2023) performed full fine-
tuning on XLS-R for direct ST, and NLE (Gow-
Smith et al., 2023) combined the two PLMs via

adapter fine-tuning. By using PLMs for both the
input and output modalities, NLE and QUESPA
obtained the best performances at 15.7 and 15.4
BLEU respectively. For the constrained track, de-
veloping a usable system was far more difficult to
achieve. In this setup, the best performing model
was a direct ST system by GMU that achieved 1.46
BLEU. The QUESPA team adopted a near-identical
strategy to achieve 1.25 BLEU.

Quechua–Spanish ST was also featured as part
of a similar competition in the 2022 edition of
AmericasNLP (Ebrahimi et al., 2022). Similar
to IWSLT 2023, participants experimented with
different ways of leveraging PLMs. XLS-R and
NLLB were popular choices, but some teams also
experimented with DeltaLM (Ma et al., 2021) and
Whisper (Radford et al., 2023).

Quechua was most recently part of the 2023
ML-SUPERB Challenge (Shi et al., 2023), which
tasked participants on evaluating different self-
supervised (SSL) speech encoders on long-tail lan-
guages. Chen et al. (2023a) found that XLS-R 128
outperformed all other SSL encoders on Quechua,
further validating its popularity in the other compe-
titions.

2.2 Multilingual Speech Processing

Multilingual training is a common strategy to fa-
cilitate cross-lingual transfer learning, with the
goal of boosting performance on low-resource lan-
guages. While this is generally done by pairing
high-resource languages with low-resource ones,
it can also be beneficial in settings where only
low-resource languages are available. Chen et al.
(2023b) trained multilingual ASR systems on 102
languages, each in a low-resource setting, and
obtained state-of-the-art (SOTA) results on the
FLEURS benchmark (Conneau et al., 2023). Rad-
ford et al. (2023) and Peng et al. (2023) then com-
bined multilingual ASR and ST at scale, developing
SOTA models through supervised training on hun-
dreds of thousands of audio. Our strategy for the
unconstrained track can be viewed as a combina-
tion of these two methods, enhancing performance
on Quechua–Spanish using multilingual ST train-
ing with other low-resource languages.

3 Quechua-Spanish

In this section we present our experiments for the
QUE–SPA dataset provided in the low-resource ST
track at IWSLT 2024, identical to the dataset from
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IWSLT 2023. As a reminder, the audio consists
of contains 1 hour and 40 minutes of constrained
speech along with its corresponding translations
and nearly 48 hours of ASR data (with transcrip-
tions) from the Siminichik (Cardenas et al., 2018)
corpus. As an additional constrained setting, the
dataset offers the QUE–SPA MT corpus from pre-
vious neural MT work (Ortega et al., 2020). The
audio and corresponding transcriptions along with
their translations are mostly made of radio broad-
casting from the mountainous region in the Andes,
Peru. This dataset has been used in other tasks but
not in its entirety (Ebrahimi et al., 2023, 2022).

We present the six submissions for both the con-
strained and unconstrained as follows:

1. a primary constrained system that uses a direct
ST approach with a extra small transformer
(Vaswani et al., 2017; Wang et al., 2020);

2. a contrastive 1 constrained system that uses a
direct ST approach with a medium (default)
transformer (Vaswani et al., 2017; Wang et al.,
2020) along with several data augmentation
techniques;

3. a contrastive 2 constrained system that uses a
direct ST approach with a medium (default)
transformer (Vaswani et al., 2017; Wang et al.,
2020) without data augmentation techniques;

4. a primary unconstrained system consisting of
a SpeechT5 model fine-tuned for speech trans-
lation with one data augmentation technique;

5. a contrastive 1 unconstrained system consist-
ing of a SpeechT5 model fine-tuned for speech
translation with two data augmentation tech-
niques;

6. a contrastive 2 unconstrained system consist-
ing of a Whisper (Radford et al., 2023) ASR
model fine-tuned for speech translation and
cascaded with the NLLB MT system.

We present the experimental settings and results
for all systems starting off with constrained sys-
tems in Section 3.1 and continuing with the uncon-
strained systems in Section 3.2. Finally, we offer
results and discussion in Section 4.

3.1 Constrained Setting

Identical to last year, the IWSLT 2024 constrained
setting for QUE–SPA consists of two main datasets.

Figure 1: Training set audio lengths vary from 1 to 30
seconds while validation and test set are 30 seconds
long.

First, the speech translation dataset consists of 1
hour and 40 minutes divided into 573 training files,
125 validation files, and 125 test files where each
file is a .wav file with a corresponding transcription
and human-validated translation from Siminchik
(Cardenas et al., 2018). Secondly, there is a MT
data set combined by previous work (Ortega et al.,
2020) which consists of 100 daily magazine arti-
cle sentences and 51140 sentences which are of
religious context in nature.

This year, one of the findings we observed is
that the dataset has uneven distributions between
training and validation/test. The training set largely
consisted of utterances shorter than 20 seconds
(Figure 1), while the validation and test set was
almost exclusively 30 seconds long inputs. This is
something that the organizers plan to rearrange for
next year’s challenged, but this type of mismatch
can be considered a hurdle due to the difference
(smaller utterances result in unbalance). For this
submission, we found it somewhat difficult to train
direct ST systems under the constrained settings.
However, we present the following systems that
mitigate the concern considering that our results
outperform the best performing constrained sys-
tems.

Development of the Primary, Contrastive 1, and
Contrastive 2 systems consisted of an extension of
the original ST systems built in IWSLT 2023. Dur-
ing development, several experiments led us to the
best performing systems (Primary and Contrastive
2). The developmental process is documented in
Table 1 for a historical way of showing our path to
the final systems.
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Model Type Optimization Learning Rate Checkpoint BLEU
s2t_transformer Adam 0.002 best of the last 10 on 500 epochs 0.9
s2t_transformer_xs Adamax 0.0001 best of the last 10 on 500 epochs 0.6
2t_transformer_xs Adamax 0.0001 best of the last 10 on 500 epochs 0.6
s2t_transformer_xs Adam 0.0001 best of the last 10 on 500 epochs 0.7
s2t_transformer_large Adam 0.001 best of the last 10 on 500 epochs 0.0
s2t_transformer Adamax 0.001 best of the last 10 on 500 epochs 1.0
s2t_transformer Adamax 0.001 best of the last 10 on 400 epochs 1.0
s2t_transformer Adamax 0.001 best of the last 10 on 300 epochs 1.0
s2t_transformer Adamax 0.001 best of the last 10 on 200 epochs 1.0
s2t_transformer Adamax 0.001 best of the last 10 on 100 epochs 1.0
s2t_transformer Adamax 0.001 avg of the last 10 on 400 epochs 1.4

Table 1: BLEU scores on developmental models for the contrained settings using beam size of five.

3.1.1 Primary System
The Primary System is similar to previous work
(Ortega et al., 2023). The dataset has not changed
since their work and our system consists of the use
of a direct ST approach.

Again, we use the Fairseq (Ott et al., 2019)
toolkit to perform direct ST using the 573 train-
ing files, a total of 1.6 hours of audio. The use
of feature extraction through log mel-filter bank
(MFB) features and is still based on the S2T ap-
proach by (Wang et al., 2020). Identically, we
generate a 1k unigram vocabulary for the Span-
ish text using SentencePiece (Kudo and Richard-
son, 2018), with no pre-tokenization. This year’s
model consists of a convolutional feature extractor
and transformer encoder-decoder (Vaswani et al.,
2017), also known as the “extra-small transformer”,
(s2t_transformer_xs) with 6 encoder layers and 3
decoder layers. Error is measured using cross en-
tropy and optimization is done using Adam. Our
model was run for 500 epochs with a learning rate
of .0002. For this submission, the main difference
is that we use a device that allows us to average
the 10 last checkpoints through PyTorch1. We com-
pared the average to the best of the last 10 check-
points and found that the average performed better.

3.1.2 Contrastive 1 System
The Contrastive 1 system is based on a transformer
much like the Primary system. However, Con-
trastive 1 uses two novel techniques introduced
that were not present in the IWSLT 2023 QUESPA
submission (Ortega et al., 2023): (1) a new model
size which contains more layers and (2) five new
data augmentation techniques based on the data at
hand.

As was done in the Primary system, the Fairseq
(Ott et al., 2019) toolkit is used to perform direct

1https://pytorch.org/

ST on the training data of 1.6 hours of audio. Iden-
tical feature extraction techniques are used via the
log mel-filter bank (MFB) features from the S2T
approach in previous work (Wang et al., 2020).
Also, we generate a 1k unigram vocabulary for
the Spanish text using SentencePiece (Kudo and
Richardson, 2018), with no pre-tokenization.

The first main difference is the model. The
Contrastive 1 model consists of a convolutional
feature extractor and transformer encoder-decoder
(Vaswani et al., 2017); but it uses the medium-
sized transformer, also known as the “transformer”,
(s2t_transformer) with 12 encoder layers and 6 de-
coder layers. Additionally, Contrastive 1 has 8
decoder attention heads as opposed to 4 in the Pri-
mary system.

The second difference we consider a major dif-
ference – the use of data augmentation to increase
the input size. Augmentation techniques were used
from previous work using LibRosa2. More specifi-
cally, code can be found online3 to reproduce our
experiments. The increase in the input training
dataset increased four fold using the following four
techniques for augmentation: Noise, Roll, Time,
and Pitch. The noise addition (augmentation) is
done using an aggregation of 0.009. The Roll ad-
justment is of sr/10. Time is through a stretch
factor of 0.4 and Pitch is of -5. With the increase
of input size, experiments ran slower yet were not
of significant impact. We save further iterations
of data augmentation as future work as we believe
that is has had an impact here.

Error is measured using cross entropy and op-
timization is done using Adam. Other hyper-
parameter choices that were not the same as
the Primary submission include the exclusion of
SpecAugment (Park et al., 2019) as an audio aug-

2https://librosa.org/
3https://colab.research.google.com/gist/keyurparalkar/5a
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Figure 2: The best-performing unconstrained speech translation pipeline. We use a pre-trained SpeechT5 (Ao et al.,
2022) on English, and fine-tune it on direct Quechua-to-Spanish ST.

mentation technique and the choice of 200 epochs
as opposed to 500 used in the Primary submission.
An average checkpoint method was used identical
to the one in the Primary system (average of the
last 10 checkpoints using Pytorch).

3.1.3 Contrastive 2 System

The Contrastive 2 System is identical to the con-
strained Primary system in Section 3.1.1 with
one main difference – model size. The model
size of this Contrastive 2 system uses a medium-
sized transformer known as the “transformer”,
(s2t_transformer) with 12 encoder layers and 6 de-
coder layers identical to the Contrastive 1 system
defined in Section 3.1.2. All other hyperparame-
ters were identical to the Primary system with the
exception of the number of epochs which was 400
as opposed to 500.

3.2 Unconstrained Setting

Just like in IWSLT 2023, the organizers provided
a total of 48 hours of audio along with their cor-
responding transcriptions. In addition, we trans-
lated the 48 hours of audio provided by the or-
ganizers into Spanish. Furthermore, we utilized a

portion of the AmericasNLP4 (ANLP) 2022 speech
translation competition corpus, which consists of
19 minutes of Guarani and 29 minutes of Bribri,
fully translated into Spanish. Although it is not
a Quechua corpus, these languages have morpho-
logical similarities with Quechua, so we decided
to experiment to see if that improves our models.
Finally, all the datasets described in this section
allowed for further fine-tuning of the previously
trained end-to-end speech translation model.

3.2.1 Primary System
The Primary System for the unconstrained setting
consists of a pre-trained model called SpeechT5
(Ao et al., 2022) , which was trained on 960 hours
of audio from LibriSpeech. SpeechT5 consists of
12 Transformer encoder blocks and 6 Transformer
decoder blocks, with a model dimension of 768,
an internal dimension (FFN) of 3,072, and 12 at-
tention heads. Additionally, the voice encoder’s
pre-net includes 7 blocks of temporal convolutions.
Both the pre-net and post-net of the voice decoder
used the same configuration as in Shen et al. (2018),
except that the number of channels in the post-net
is 256. For the text encoder/decoder’s pre/post-

4https://turing.iimas.unam.mx/americasnlp/
2022_st.html

177

https://turing.iimas.unam.mx/americasnlp/2022_st.html
https://turing.iimas.unam.mx/americasnlp/2022_st.html


Team QUESPA BLEU and CHRF Scores

Constrained

System Description BLEU CHRF
primary mfb + s2t-extrasmall + avg 2.0 30.0
contrastive 1 mfb + s2t-med + aug + avg 1.3 30.9
contrastive 2 mfb + s2t-med + avg 1.4 30.3

Unconstrained

System Description BLEU CHRF
primary speechT5 + aug 16.0 52.2
contrastive 1 speechT5 + anlp + da-tts + nlpaug* 19.7 43.1
contrastive 2 whisper asr + nllb mt 11.1 44.6

Table 2: Team QUESPA results for the Quechua to Spanish low-resource task at IWSLT 2024.

net, a shared embedding layer with a dimension of
768 is utilized. For vector quantization, two code-
books with 100 entries each are used for the shared
codebook module. The model was trained using
the normalized training text from the LibriSpeech
language model as unlabeled data, which contains
400 million sentences. Training was optimized us-
ing Adam (Kingma and Ba, 2015), with a learning
rate that linearly increases during the first 8% of
updates up to a maximum of 0.0002.

We fine-tuned SpeechT55 for Speech Translation
using the SpeechT5 fine-tuning recipe6 for Speech-
Translation with the same hyperparameter settings.
We used the 48 hours of audio provided by the
organizers. We applied nlpaug a data augmenta-
tion technique (noise, distortion, duplication)7 (Ma,
2019), resulting in a total of 96h: 48h original +
48h synthetic data.

3.2.2 Contrastive 1 System
The Contrastive 1 system is nearly identical to
the Primary System for the unconstrained setting.
However, we used the 48 hours described in 3.2,
totally translate to Spanish. Moreover, we added
19 minutes of Guarani and 29 minutes of Bribi,
along with their translations as described 3.2. Ad-
ditionally, we applied two data augmentation tech-
niques: (1) nlpaug (Ma, 2019) and (2) DA-TTS
(Zevallos et al., 2022), which involves generating
synthetic text and audio using a delexicalization
algorithm and a TTS system for the source lan-
guage (Quechua). These two data augmentation
techniques generated 48 hours and 48 hours respec-
tively. We used in total 151h and 48 min: 55h (new

5https://github.com/microsoft/SpeechT5
6https://github.com/microsoft/SpeechT5/tree/

main/SpeechT5
7https://github.com/makcedward/nlpaug

dataset) + 48 min (ANLP dataset) + 48h nlpaug +
48h DA-TTS.

3.2.3 Contrastive 2 System
The Constrastive 2 system is a new introduction
this year for our team. We felt that the Whisper
(Radford et al., 2023) ASR model would outper-
form QUESPA’s 2023 cascaded system (Section 4
Table 1, called fleurs+lm+floresmt) (Ortega et al.,
2023). However, despite the use of the same ma-
chine translation system (floresmt) (NLLB Team
et al., 2022), we were unable to achieve better per-
formance.

We use a Whisper ASR model that has been
pre-trained on multiple languages (multi-lingual).
In total, the Whisper model is trained on 680,000
hours of which 117,000 is multilingual, including
nearly 96 languages. We use the medium variant of
Whisper, which has 770M parameters. In our ex-
periments, we fine-tune the Whisper model on the
ASR training data, as the first part of an ASR+MT
cascade. The output from Whisper (Quecha text) is
then used as input to the same MT system from last
year (called floresmt) that translates that Quechua
text to Spanish.

4 Results and Discussion

Results are presented in Table 2. The constrained
systems continue to be a difficult problem to solve
with our best-performing system scoring a maxi-
mum of 2 BLEU (1.96 when measured with two
decimal points). It is clear that a constrained sys-
tem of this nature could not be deployed in the wild
at this point. Nonetheless, it is a promising increase
of nearly 1 BLEU point when compared to IWSLT
2023 results. Additionaly, the novel addition of
data augmentation has proven to be a good first
step to solving the constrained problem. In past
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IWSLT tasks and in the current one, constrained
systems are not realistically able to achieve much
more than 5 BLEU points when the audio data is
less than 5 hours in length.

For the unconstrained setting, our findings have
shown that in the past year several novel PLMs
have been created that surpass previous models. It
is clear that Speech Translation as a task is becom-
ing more solvable with pre-trained techniques that
perform transfer learning. The combination of the
Microsoft Speech T5 model with data augmenta-
tion as shown in Figure 2 is a new approach that has
not been applied to the QUE–SPA language pair in
the past and can be considered the best performing
system as of this date to our knowledge. Previous
systems based on w2vletter (Pratap et al., 2019)
performed well but did not surpass the Microsoft
Speech T5 Model in our experiments.

5 Conclusion and Future Work

Our submission to the IWSLT 2024 (Agarwal et al.,
2023b) evaluation campaign for low-resource and
dialect speech translation has included novelties
based on the most state-of-the-art techniques for
ASR and ST. More specifically, we have been suc-
cessful by changing the sizes of the models in the
constrained setting and changing the type of mod-
els in the unconstrained setting. Additionally, we
have shown that different data augmentation tech-
niques can be used for increased performance on
both tasks.

We save for future work the experimentation
of data augmentation techniques which seem to
be the most advantageous novelty in this year’s
submission. In our opinion, data augmentation
can be used for benefits in both the unconstrained
and constrained tasks. Our plan for future IWSLT
tasks is to experiment with and without features
like SpecAugment, roll addition, and more.
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Abstract

We created a collection of speech data for 48
low resource languages. The corpus is ex-
tracted from radio broadcasts and processed
with novel speech detection and language iden-
tification models based on a manually vetted
subset of the audio for 10 languages. The data
is made publicly available. 1

1 Introduction

While automatic speech recognition systems have
seen great gains in recognition accuracy, even un-
der challenging acoustic conditions, this success is
highly uneven across the languages in the world.
For many languages in the world, even reliable
audio training data is not easily available.

Motivated by this, we set out to collect and make
publicly available speech data for languages that
fall below the top one hundred languages, broadly
measured by number of speakers and commercial
relevance. We present a novel audio data set for
48 low resource languages. We report on manual
efforts to vet collected audio data as well as auto-
matic methods to extract speech from mixed audio
data (especially discarding music) and language
identification.

We collected this data mostly from radio broad-
casts by recording audio streams available at Ra-
dio Garden2. These audio broadcasts are identi-
fied by location which gives us some guidance to
which broadcasts are likely to contain audio in a
desired language. We record audio snippets of 10–
60 seconds in length. Since much of the audio

1https://huggingface.co/datasets/jhu-clsp/
radio-broadcast

2https://radio.garden/

data contains music, we developed a speech de-
tection model to automatically identify audio files
that consist of speech data and not music or other
non-speech data.

Since there are no reliable speech language iden-
tification models or even identified speech data for
a subset of these languages, we manually vetted
audio data for 10 languages to create a corpus of
about 5 hours of audio per language that has been
verified by native speakers to be speech in each of
the targeted languages.

With these tools in place (speech crawling,
speech detection, speech language identification),
we scaled up the effort to 48 languages. The result-
ing corpus of speech data consists of about 3000
hours of clean raw speech suspected to be in these
low-resourced languages. Upon further filtering
with language identification (LID) systems, this
results in about 450 hours of clean speech.

2 Related Work

Foley et al. (2024) use audio data from Radio
Garden to learn a mapping from speech to a ge-
ographic location. Conneau et al. (2022) create
a dataset of 101 languages by recording audio
from native speakers. The audio recorded stems
from the Flores-101 dataset which consists of En-
glish sentences from Wikipedia translated into 101
languages. Pratap et al. (2023) introduce a mas-
sively multilingual dataset for over 1000+ lan-
guages based on recordings of publicly available
religious texts. They further train self-supervised,
automatic speech recognition, text-to-speech syn-
thesis, and language identification models on this
dataset. Radford et al. (2022) introduce a large-
scale multilingual weakly supervised dataset con-
sisting of about 680k hours of audio for speech
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recognition. They showed that scaling the amount
of data greatly improves the performance and ro-
bustness of speech recognition systems.

Unlabeled speech data has many uses in building
speech applications. Representation learning meth-
ods like HuBERT (Hsu et al., 2021) and w2v-BERT
(Chung et al., 2021) use raw speech data to distill
semantic speech tokens from audio. Large-scale
models such as Whisper (Radford et al., 2022),
MMS (Pratap et al., 2023), or Seamless (Commu-
nication et al., 2023) rely partly on raw speech data
to scale to hundreds of languages.

3 Corpus Collection

The sources of our data are radio broadcasts that are
transmitted freely over the Internet. We use Radio
Garden to discover and identify stations that broad-
cast in languages we target. Radio Garden iden-
tifies radio stations with the location from which
they broadcast — which provides a pool of candi-
date stations for each language, based on the region
where the language is spoken. The broadcasts are
accessible through an API call.

We filter this pool of candidate stations by check-
ing manually if they likely broadcast in the targeted
language (opposed to, say, English) or exclusively
broadcast music. Since this effort often relies on
researchers that are not familiar with the languages,
the process is necessarily imperfect. Another ob-
stacle is that some radio station broadcasts are not
reliably delivered over the Radio Garden platform,
leading to gaps in the data collection.

We break up the audio signal into segments of
different lengths, ranging from 10 to 60 seconds.
The raw audio is also converted to the FLAC files
and re-sampled to 16kHz. We collected this data
throughout 2023 and early 2024.

4 Speech Detection

To filter out audio files containing music, we use
a convolutional recurrent neural network (CRNN)
(Hung et al., 2022) which was trained on a high-
quality dataset (Hung et al., 2022) of speech and
music activity labels. The CRNN model predicts
the probability of music and speech for each audio
frame.

We also use a feature-based model that calcu-
lates the average energy in each chunk of the audio
spectrogram. This energy level indicates the in-
tensity of the audio within that chunk. Chunks

with energy levels higher than 0.5 are classified as
music.

We set the detection threshold of the CRNN
model to 0.9 and that of the feature-based model
to 0.5. Audio files classified as not having music
in them by both models are kept and the rest are
discarded.

5 Manual Vetting

We are addressing several languages for which
we do not have reliable language identification
methods, or even any speech data that is verified to
be in the presumed language. Hence, we engaged
speakers of these languages to verify that speech
audio that we presumed to be in their language was
indeed in their language.

We carried out this manual vetting for Igbo, Luo
(a.k.a. Dholuo), Ganda (a.k.a. Luganda), Nyanja,
Maithili, Marwari, Santali, Meitei (a.k.a. Ma-
nipuri), Yue Chinese, and Central Kurdish. We re-
cruited native speakers of these languages through
language service providers. We carried out this
vetting process through three phases, with increas-
ingly larger quantities and more detailed questions.

Phase 1 Since we collected audio from only a few
radio stations, our first question was to know which
of them are reliable sources of speech data in the
targeted languages. We sampled about a hundred
30-second speech segments per language and asked
the language experts to assess whether those were
indeed in their language. We also encouraged them
to identify other language(s) that may be present in
utterances, as well as the presence of non-speech
or incomprehensible audio. For several languages,
the experts also reported code-mixing with other
languages, especially for Maithili, Marwari, Meitei,
and Santali. Table 1(a) shows the results of the
study. We considered as good those samples that
have at least 90% audio in the targeted language.
For 3 languages, we repeated the exercise since
the first phase did not yield sufficient positively
identified audio segments.

Phase 2 In the second phase, we scaled up the
experiment to more audio samples. Here, the au-
dio samples were of different lengths (10s, 20s,
30s, and 60 seconds). We also asked detailed ques-
tions about music being present in the background,
speech being spontaneous or scripted, and about
the presence of multiple speakers. Table 1(b) shows
the results of the study. For most of the languages,
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(a) Phase 1: Language identification
Language Good Total Other languages detected
Central Kurdish 1+45 67+119 Arabic, Kurdish Bahdini, Kurdish Kurmanji, English
Ganda 47 95 English, Swahili
Igbo 12 90 Nigerian Pidgin English, Latin American Spanish, English-

Spanish (Spanglish), Yoruba, US English, Pidgin, Nigerian
English, British English

Luo 73 94 Swahili, English
Maithili 80 104 Nepali, Hindi, English
Marwari 55+92 120+120 -
Meitei 94 99 Hindi
Nyanja 58 91 English
Santali 0+45 107+120 Bengali, Hindi, English
Yue 59 91 Mandarin

(c) Phase 2: Larger sample, more detailed questions
Language Total Good Music (yes/no) Scripted/Spontaneous Speakers (1/more)
Central Kurdish 640 407 44 363 71 336 190 217
Ganda 645 577 296 281 262 315 306 271
Igbo 636 235 185 50 157 78 96 139
Luo 645 473 463 10 441 32 396 77
Maithili 480 352 31 321 195 157 245 107
Marwari 640 208 176 32 173 35 139 69
Meitei 624 516 89 427 175 341 263 253
Nyanja 644 435 282 153 267 169 256 180
Santali 640 309 105 204 248 61 125 184
Yue 646 354 58 296 24 272 51 248

(c) Phase 3: Scaling up data sizes for some languages with cleaner sources
Language Total Good Music (yes/no) Scripted/Spontaneous Speakers (1/more)
Central Kurdish 240 237 4 213 41 196 131 106
Ganda 105 102 17 85 55 47 60 42
Igbo 216 195 11 184 0 195 145 50
Maithili 337 331 21 263 47 284 72 191
Meitei 222 222 8 213 164 57 172 49
Nyanja 222 216 15 201 138 78 115 101
Santali 640 640 57 573 42 598 380 260
Yue 285 284 4 280 17 267 41 243

Table 1: Manual vetting of speech data by language experts: The goal of this study was to identify 5 hours of vetted
audio in the targeted language to be able to train language identification models.
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FLEURS

C.Kurdish Ganda Igbo Luo Marwari Maithili Meitei Nyanja Santali Yue

MMS 98.3 99.8 98.3 99.6 - - - 95.1 - 99.9
Ours 87.7 88.9 10.6 0.4 - - - 46.3 - 88.5

RADIO BROADCAST

C. Kurdish Ganda Igbo Luo Marwari Maithili Meitei Nyanja Santali Yue

MMS 99.2 62.8 85.1 61.6 - 54.5 43.4 98.1 86.1 99.9
Ours 99.9 92.4 64.7 93.2 - 97.1 99.9 88.7 95.2 99.3

Table 2: Comparing the accuracy of our LID model to the MMS LID model (Pratap et al., 2023) on the FLEURS
and radio broadcasts test sets

Language Hours

Central Kurdish 3.30
Ganda 4.96
Igbo 1.14
Luo 4.00
Maithili 1.95
Manipuri 4.38
Marwari 1.65
Nyanja 3.56
Santali 2.63
Sorani 3.39
Yue 2.96

Table 3: Amount of data per language used to train our
LID models.

there is often some music in the background. The
amount of scripted vs. spontaneous speech as well
the number of speakers in the audio varies by lan-
guage.

Phase 3 Since our goal was to collect at least
5 hours of vetted audio, we repeated the Phase 2
study on additional audio samples using the same
vetting protocol. Table 1(c) shows the results.
Given the feedback from the second phase, we were
able to identify generally cleaner audio sources to
be vetted, resulting in a much larger ratio of them
assessed to be good and without background music.
For logistical reasons, we were not able to do this
for Luo and Marwari.

We will release the audio with meta data from
the annotation effort publicly.

6 Language Identification

The LID system follows Villalba et al. (2023). Es-
sentially, our LID uses log-Mel-filter banks with

64 filters as feature extractor. The features were
short-time mean normalized with a 3-second win-
dow. Silence portions (frames) were removed using
an energy voice activity detector (VAD) based on
Kaldi. This VAD classifies each frame as speech
or non-speech based on the average log-energy in
a window.

The language embedding architecture follows
the x-vector process (Snyder et al., 2017, 2018) as
described by Villalba et al. (2023). It consists of
an encoder that extracts frame-level discriminant
embeddings, a pooling mechanism, and a classifi-
cation head. We used the Res2Net architecture as
the encoder. The system uses the datasets in the
Training Open condition for training the language
embedding. For the backend, the system employs
a linear Gaussian classifier with a single Gaussian
per target language, and a shared-covariance across
languages. The system is trained on about 30 hours
of audio in 10 languages. Table 3 shows the distri-
bution of data per language.

As shown in Table 2, we compare the perfor-
mance of our LID model to the MMS LID model
(Pratap et al., 2023) on the FLEURS (Conneau
et al., 2022) benchmark and a carefully selected
test set comprising radio broadcast recordings.
FLEURS is in a similar domain to the data used
to train the MMS model, and the test set of radio
broadcasts is in the same domain as the data used to
train our model. The MMS LID model was trained
on 1000 times more data as compared to ours.

Luo’s severe performance drop on FLEURS is
due to the difference in the dialects in FLEURS and
radio broadcast test sets. The poor performance of
Igbo on both test sets is due to the small amount of
data in Igbo used in training the LID system. For
most languages, our LID model outperforms the
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MMS model on the radio broadcast data.

7 Corpus

With all the tools in place, we scaled up the effort to
collect audio speech data for all the targeted 48 lan-
guages. Table 4 gives details about the number of
hours of audio data we handled at various process-
ing stages: (1) the number of hours of crawled au-
dio expected to be in the targeted language, (2) the
number of hours after speech detected, and (3) what
remained after a language ID filter.

For the 10 targeted languages (bold in the ta-
ble), we collected substantial amounts of data, rang-
ing from 12.43 hours (Marwari) to 178.55 hours
(Maithili) after music detection and language ID
filtering.

Scaling up to 48 language was challenging as
we could not repeat the expensive first stage of an-
notations to identify radio stations which broadcast
in the languages of interest. We randomly pick ra-
dio stations within locations we believe speak the
languages of interest and collect data from them.
Since we did not run annotations for the new lan-
guages we did not have ground-truth data to train
LID models for those languages. We rely on the
MMS LID model for these languages. Specifically,
we use the variant trained on 4017 languages.

The amount of data collected per language varies
due to the number of radio stations we collected
data from at each time. For some languages, we
identified many radio stations that broadcast in the
language of interest, enabling us to collect hun-
dreds of hours of data. Also, we aggressively fil-
tered the corpus for music, which greatly affected
the amount of data we collected for some languages.
We could not report on the amount of data after LID
for Egyptian, Morrocan, and Pashto as the MMS
model does not support them. Other languages
with no data after LID had none of the top predic-
tions of the audio files to be in the language. This
data was collected from early 2023 to early 2024.

8 Conclusion

We collected a large corpus of speech audio for 48
languages from audio sources. We focused spe-
cial attention to 10 languages for which we built
language identification models based on manually
vetted audio data. We will release all audio data
(manually vetted and automatically filtered) open
source with a liberal license for research and com-
mercial use. We hope that this data fosters research

Languages Crawled Clean LID
Amharic 83.74 20.44 7.94
Armenian 82.35 9.03 2.13
Assamese 85.03 16.77 0.13
Azerbaijani 96.71 4.45 1.79
Belarusian 101.53 0.84 0.10
Bosnian 63.48 3.67 1.29
Cebuano 64.53 1.00 0.02
C. Kurdish 75.53 46.74 23.51
Egyptian 108.19 10.32 -
Galician 75.35 31.60 0.69
Ganda 293.65 125.97 24.25
Georgian 65.25 1.42 0.05
Gujarati 95.99 0.13 0.02
Icelandic 134.99 11.22 5.47
Igbo 137.95 12.12 4.21
Irish 200.41 15.62 0.06
Javanese 25.37 5.97 0.14
Kannada 40.53 1.94 0.96
Kazakh 83.67 4.07 1.58
Khmer 21.99 2.59 2.07
Konkani 72.93 4.01 -
Kyrgyz 51.05 6.75 1.26
Lao 108.27 10.19 1.91
Luo 409.3 243.38 48.46
Macedonian 62.66 0.51 0.24
Maithili 2860.84 1722.91 178.55
Maltese 89.75 14.68 4.51
Meitei 299.50 129.97 18.13
Marathi 139.25 25.06 9.24
Marwari 155.46 118.05 12.43
Mongolian 33.25 2.91 0.66
Moroccan 184.80 11.73 -
Nepali 53.15 3.61 0.81
Nyanja 251.11 79.20 22.41
Odia 106.61 1.20 -
Oromo 117.52 14.77 0.18
Panjabi 45.63 0.57 -
Pashto 40.81 6.58 -
Santali 272.65 120.06 20.45
Shona 70.19 15.71 3.17
Sindhi 33.22 10.38 0.19
Swiss German 584.60 86.86 -
Tajik 26.34 1.21 0.49
Telugu 28.98 0.51 0.10
Uzbek 49.71 5.88 2.44
Welsh 67.29 2.14 0.12
Yue 117.28 101.21 64.70
Zulu 49.51 24.03 0.04

Table 4: Statistics of the collected audio data (in hours).
The focus languages for which we performed manual
vetting and more thorough radio station selection are in
bold.186



in low resource speech technology.

Limitations

The legal status of web crawled data is currently in
a gray area. We argue that the released data set falls
under fair use since we are releasing disconnected
snippets and do not interfere with the commercial
use of the original broadcasts.
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Abstract

Johns Hopkins University (JHU) submitted sys-
tems for all eight language pairs in the 2024
Low-Resource Language Track. The main ef-
fort of this work revolves around fine-tuning
large and publicly available models in three pro-
posed systems: i) end-to-end speech translation
(ST) fine-tuning of SEAMLESSM4T v2; ii) ST
fine-tuning of Whisper; iii) a cascaded system
involving automatic speech recognition with
fine-tuned Whisper and machine translation
with NLLB. On top of systems above, we con-
duct a comparative analysis of different training
paradigms, such as intra-distillation of NLLB,
joint training and curriculum learning of SEAM-
LESSM4T v2, and multi-task learning and
pseudo-translation with Whisper. Our results
show that the best-performing approach differs
by language pairs, but that i) fine-tuned SEAM-
LESSM4T v2 tends to perform best for source
languages on which it was pre-trained, ii) multi-
task training helps Whisper fine-tuning, iii) cas-
caded systems with Whisper and NLLB tend
to outperform Whisper alone, and iv) intra-
distillation helps NLLB fine-tuning.

1 Introduction

With recent developments in data-driven machine
learning and Transformer-based models (Vaswani
et al., 2017), speech translation (ST) systems
(which accept spoken input in one language and
automatically output corresponding text in another)
have undergone major strides in performance (Rad-
ford et al., 2023; Barrault et al., 2023; Sperber and
Paulik, 2020). While these works demonstrate the
effectiveness of using large pretrained models for
speech translation between high-resource language
pairs and establish new state-of-the-art (SOTA) per-
formance in these setups, less attention has been
devoted to whether these advances also benefit low-
resource language pairs, and how they compare
with SOTA systems for these languages.

Figure 1: Proposed frameworks for fine-tuning.

Some of the populations with the greatest need
for ST tools are those speaking low-resource lan-
guages, which typically have less institutional sup-
port and funding for the development for NLP and
speech tools (He et al., 2024; Kesiraju et al., 2023b;
Karakasidis et al., 2023): some speak minority
languages in the areas where they live and need
translation tools to communicate across a language
barrier, or to consume or search for information
more effectively online (Neto et al., 2020). Cer-
tain populations speaking low-resource languages
may also have low literacy rates or limited writing
traditions in their native languages, increasing the
imperative for speech-based, rather than text-based,
translation systems (Besacier et al., 2006).

In this work, we developed ST systems for eight
language pairs, as organized in the IWSLT 2024
Dialectal and Low-resource Speech Translation
Shared Task. We approached this problem by lever-
aging systems pre-trained on a large amount of mul-
tilingual data and subsequently fine-tuning them for
specific tasks: both end-to-end speech ST and cas-
caded ST (i.e. transcription followed by text-based
translation). We compared different approaches
and pre-trained models for each language pair, and
we experimented with combining data from multi-
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ple related languages into the same train set.
Among the systems introduced, the approaches

based on SEAMLESSM4T v2 (Barrault et al., 2023)
outperform others for language pairs that it has
seen during pretraining and for which supervised
ST data are available (e.g. mar-hin, gle-eng,
bho-hin, and mlt-eng). In other cases, a cas-
caded system is the most successful of the proposed
approaches, namely, for apc-eng, bem-eng,
que-spa, and tmh-fra.

2 Prior Work

A number of prior studies introduce methods aim-
ing to address low-resource ST. In IWSLT’s evalu-
ation for low-resource and dialectal ST 2023, Agar-
wal et al. (2023) note three practices that consis-
tently help performance: (1) use of pre-trained
models, (2) systems combining both end-to-end
and cascaded models, and (3) synthetic data aug-
mentation. These recommendations inform our
decisions to fine-tune pre-trained models and ex-
periment with both cascaded and end-to-end ap-
proaches.

Williams et al. (2023) used cascaded ST systems
for Quechua-to-Spanish ST in IWSLT challenge
2023. Shanbhogue et al. (2023) fine-tuned pre-
trained speech models, and E. Ortega et al. (2023);
Laurent et al. (2023) leveraged both pre-trained
speech and text models in cascaded systems. Deng
et al. (2023); Hussein et al. (2023) explored both
end-to-end and cascaded ST. The most comparable
submission to ours from the 2023 challenge was
that of Mbuya and Anastasopoulos (2023), who
used pre-trained models and applied them to sev-
eral language pairs. With the findings and recom-
mendations from prior work, we adapt a similar
approach, but fine-tuning SEAMLESSM4T v2 (Bar-
rault et al., 2023), Whisper (Radford et al., 2023),
and NLLB (NLLB Team et al., 2022) instead of
self-supervised learning representations (SSLR).
Our approach differs from works described above,
primarily in that we fine-tune models trained for au-
tomatic speech recognition (ASR), machine trans-
lation (MT), and ST, rather than fine-tuning rep-
resentations obtained from language modeling ob-
jectives, such as wav2vec2 (Baevski et al., 2020),
HuBERT (Hsu et al., 2021), XLS-R (Babu et al.,
2022), or mBART (Liu et al., 2020a), for the tasks
of ASR, MT, and ST. The findings from our sys-
tems shed light on the potential benefits provided
by the pretrained multilingual models.

3 Task Description

On the challenge website this year,1 the organizers
stated, "The goal of this shared task is to bench-
mark and promote speech translation technology
for a diverse range of dialects and low-resource
languages." To forward this aim, this year’s task
focuses on ST for eight language pairs: Levantine
Arabic to English (apc-eng), Bemba to English
(bem-eng), Bhojpuri to Hindi (bho-hin), Irish to
English (gle-eng), Maltese to English (mlt-eng),
Marathi to Hindi (mar-eng), Quechua to Spanish
(que-spa), and Tamasheq to French (tmh-fra).
Levantine is one of the most spoken Arabic dialects,
with the majority native-speaking populations in
Syria, Lebanon, Palestine, and Jordan. Both Lev-
antine Arabic and Maltese are Semitic languages
of the Afroasiatic family. Bemba is a Bantu lan-
guage of the Niger-Congo family, spoken by over
30% of Zambia’s population (Sikasote and Anas-
tasopoulos, 2022). Bhojpuri, Hindi, and Marathi
are Indo-Aryan languages; Hindi and Marathi are
Scheduled languages in India and have government
backing for their support, whereas Bhojpuri, like
many other languages on the so-called Hindi Belt,
lacks official status, has a much smaller writing
tradition, and is only recently gaining attention in
NLP (Kumar et al., 2022; Mundotiya et al., 2021;
Bafna et al., 2023). Each of the source languages
is low-resource, with Tamasheq, Bemba, and Lev-
antine Arabic having the fewest Wikipedia articles
overall (Robinson et al., 2023). Despite their low
digital support, these languages have a large na-
tive speaker base, including Marathi’s 83 million,
according to Ethnologue.2

The organizers provide different varieties of data
for each of these language pairs. We used predomi-
nantly provided datasets, along with some external
data, all of which are outlined in Table 1. We
differentiate datasets of four types: ASR, indicat-
ing source language speech with corresponding
transcriptions; E2E, indicating source language
speech with corresponding target language trans-
lations that could supervise end-to-end ST; MT,
indicating source language text with correspond-
ing target language translations; and ST, indicating
source language speech with both corresponding
transcriptions and target language translations.

Though this year’s task accepts both uncon-
strained submissions, allowing the use of external

1https://iwslt.org/2024/low-resource
2https://www.ethnologue.com/
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datasets and pre-trained models, and constrained
submissions, our submission is limited to the un-
constrained track, since all of our methods involved
fine-tuning pre-trained models.

4 Proposed Methods

We introduce three primary frameworks, which are
applied to different language pairs according to
the availability of the data: (1) we fine-tune SEAM-
LESSM4T v2 for end-to-end ST using E2E data; (2)
we fine-tune Whisper (Radford et al., 2023) for end-
to-end ST using E2E (and optionally ASR) data;
(3) to form a cascaded ST system, we fine-tune
Whisper for ASR using ASR data, then fine-tune
NLLB for machine translation (MT) using MT
data. The fine-tuning approaches are illustrated
in Figure 1. Note that each ST dataset contains
exactly one E2E, ASR, and MT dataset implicitly.

We explore various methodological additions
to these methods. We look at joint fine-tuning
and curriculum learning with the SEAMLESSM4T
v2-based approaches. We investigate several fine-
tuning setups for the Whisper-based systems, in-
cluding pseudo-translation fine-tuning, multitask
training with ASR and MT as well as ASR-only
and ST-only fine-tuning. We also looked at intra-
distillation as a method of enhancing NLLB in MT.
These ideas are further detailed below.

4.1 SEAMLESSM4T v2-based systems

Barrault et al. (2023) introduce SEAMLESSM4T
v2, a model capable of end-to-end expressive and
multilingual translations in a streaming fashion.
SEAMLESSM4T v2 supports multilingual input and
output in both speech and text modalities, with a
dedicated sub-model handling each modality com-
bination. It has 2.3B parameters and is pretrained
on 1M hours of unlabeled audio in 143 languages,
using the w2v-BERT XL architecture (Chung et al.,
2021). It is then fine-tuned on text MT into English
(x-eng) for 95 languages, ASR for 96 languages,
ST into English for 89 languages, and speech-to-
speech translation into English for 95 languages,
and out of English eng-x for 35 languages. The
pretraining languages of SEAMLESSM4T v2 in-
clude English, Irish, Maltese, Hindi, Marathi, and
Arabic,3 but not Quechua, Tamasheq, or Bemba.

3We assume that the pretraining corpus also contains some
Levantine and Tunisian Arabic, but these languages are not
labeled distinctly from each other.

Our Systems We fine-tune SEAMLESSM4T v2
on E2E ST data, aiming to leverage the vast pre-
training and ASR and ST capabilities of SEAM-
LESSM4T v2, which we expect to be beneficial
in data-scarce scenarios. Although the SEAM-
LESSM4T v2 models are evaluated mostly on
X-Eng/Eng-X directions in Barrault et al., 2023,
we hypothesize that they will succeed in X-X
directions post-finetuning, due to ASR pretrain-
ing in source and target languages. Note that
this approach is only applicable to language pairs
where E2E data are available (gle-eng, mlt-eng,
aeb-eng, bem-eng, que-spa, tmh-fre,
mar-hin, bho-hin). We also evaluate the zero-
shot performance of SEAMLESSM4T v2 on these
language pairs.

Experimental Setup For each language pair,
we fine-tune SEAMLESSM4T v2-large for four
epochs, with a learning rate of 1× 10−6 and batch
size of 32. For que-spa translation, we use learn-
ing rate 1 × 10−8 for 15 epochs due to its small
dataset size. For bem-eng and tmh-fra, a learning
rate of 1×10−7 is used for training. The full hyper-
parameter list and details of hyperparameter tuning
are included in Appendix A.1.

4.1.1 Multilingual training
Mixed Data Training For pairs with the
same target language (gle-eng+mlt-eng,
bho-hin+mar-hin), we fine-tune SEAMLESSM4T
v2 on the combined dataset created by concate-
nating and shuffling the data, using the same
hyperparameter settings as in Section A.1.

Curriculum Training Tunisian Arabic (aeb)
and Maltese are both Semitic languages and share
close linguistic relationships. We use a 12.6-hour
subset of the Tunisian Arabic-to-English (aeb-eng)
ST data used by Hussein et al. (2023) to conduct
a curriculum training attempt using Tunisian as an
augmentation for Maltese. The model undergoes
initial fine-tuning on aeb-eng ST for two epochs
with a learning rate of 1 × 10−6, followed by a
5-epoch-fine-tuning on mlt-eng at a learning rate
of 1× 10−7.

4.2 Whisper-based systems

Whisper (Radford et al., 2023) is an end-to-end
multi-task speech model based on a transformer-
like encoder-decoder architecture. For this study,
we focus primarily on its LARGE-V2 variant, which
is pre-trained on 680k hours of multilingual ASR
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Lang. Type Amount Size Genre(s) Sources

apc-eng
ASR 28h 3.2GB Spontaneous speech Makhoul et al. (2005)
MT 120k lines 84MB Subtitles Sellat et al. (2023)

bem-eng
ST 180h 21GB Dialogue description Sikasote et al. (2023)

ASR 24h 3.0GB Read speech Sikasote and Anastasopoulos (2022)

bho-hin E2E 25h 2.6GB News audio Agarwal et al. (2023)

gle-eng E2E 11h 2.2GB Read speech Agarwal et al. (2023)

mlt-eng
ST 14h 1.6GB Telephone speech CV; Hernandez Mena et al. (2020)
MT 2.1M lines 710MB Web-crawled Bañón et al. (2023, 2020)

mar-hin
E2E 30h 3.5GB News audio Agarwal et al. (2023)
ASR 1100h 150GB Read speech; News CV; He et al. (2020); Bhogale et al. (2022)

que-spa
ST 1.7h 300MB Radio Ortega et al. (2020)

ASR 48h 5.2GB Radio Cardenas et al. (2018)
MT 26k lines 3.7MB Mixed; Magazine Tiedemann (2012); Ortega et al. (2020)

tmh-fra E2E 19h 2.2GB Radio Zanon Boito et al. (2022)

Table 1: Data information. "CV" refers to Common Voice (https://commonvoice.mozilla.org/).

and X-to-Eng speech translation data. During pre-
training, the model is exposed to over 90 languages,
including English, Marathi, Hindi, Maltese, and
modern standard Arabic. However, Bemba, Bho-
jpuri, Quechua, Levantine Arabic, and Tamasheq,
are absent from the pre-training data.

To address the gaps in language coverage and en-
hance model performance across diverse linguistic
settings, we fine-tune the model in various ways tai-
lored to specific scenarios. As the original model’s
pre-training setup, we manipulate the prompt and
supervision of the utterances at fine-tuning time
to guide the model to perform different tasks, as
detailed in the subsequent sections. In addition, for
languages previously unseen by the model, we ex-
pand its vocabulary and embedding layer to create
new language tags for the model to take condition
on.

4.2.1 Fine-tuning paradigms
ASR-only Fine-tuning For language pairs with
only ASR data or a limited amount of E2E or
ST data, such as apc-eng and que-spa, Whisper
is trained with only the ASR objective to serve
as an ASR module in a cascaded system. The
training and decoding prompt used is the con-
ventional <|src-lang|><|transcribe|>. The re-
sulting cascaded system’s MT module is an NLLB
model described in § 4.3.

E2E-only Fine-tuning We train with Whisper’s
ST-only objective for the tmh-fra pair. However,
because Whisper is pre-trained for X-Eng ST only,
instead of directly translating into French, we fine-
tune the system to translate Tamasheq speech into

English text. Specifically, we translate the French
labels of the E2E data into English using NLLB
out of the box to formulate a tmh-eng E2E dataset.
We then fine-tune Whisper with this dataset and
utilize the trained model as the ASR module for
a cascaded system, whose MT module is also
NLLB. Similarly, English-to-French translation is
conducted out-of-the-box.

Pseudo-translation For bho-hin and mar-hin
language pairs, due to the absence of 3-way paral-
lel ST data, the phylogenetic proximity between
the languages, and the non-English-centric trans-
lation directions, we explore a novel adaptation
of the model which we call pseudo-translation.
Specifically, to enable Whisper to translate into
non-English languages, we prompt the model
to "transcribe" the source language speech sig-
nals with the target language transcription prompt,
i.e. <|tgt-lang|><|transcribe|>. Conceptu-
ally, this is equivalent to treating Bhojpuri and
Marathi as pseudo-Hindi speech and conducting
ASR (an approach that is especially linguistically
motivated in the case of Bhojpuri, as it is closely
related to Hindi). Such design is motivated by
the fact that Whisper is pre-trained with weakly
supervised data, which implicitly empowers the
model’s audio-conditioned language model to per-
form some extent of de-noising. Consequently, we
may model the non-English translation process as a
noisy transcription task with the proposed prompts.

Multi-task Learning Previous yet unpublished
experiments suggest that multi-task learning (MTL)
tends to improve the model’s performance across
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downstream metrics. Hence, for bem-eng and
mlt-eng, as the 3-way parallel ST data is sufficient,
we fine-tune Whisper on both the ASR and E2E ST
tasks with E2E X-Eng ST being the end goal. In
particular, we create the ASR and E2E ST dataset
objectives respectively with their corresponding
prompts, i.e. <|src-lang|><|transcribe|> and
<|src-lang|><|translate|>, and concatenate
them to form a multi-task dataset for fine-tuning,
allowing the sampler to draw samples with differ-
ent supervisions stochastically. Kesiraju et al.’s
(2023a) use a large amount of Marathi ASR data
(He et al., 2020; Bhogale et al., 2022) for Marathi-
to-Hindi ST. Therefore, we further extend the idea
of constructing data to mar-hin, which has abun-
dant non-parallel ASR and E2E ST data yet no
3-way parallel data. We combine the pseudo-
translation technique to perform non-parallel ASR
and E2E pseudo-ST multi-task training.4

4.2.2 Whisper training details
We employ a range of techniques to expedite the
training of Whisper and optimize the utilization
of our hardware resources. Specifically, we adopt
Low-Rank Adapters (LoRA) (Hu et al., 2021), gra-
dient checkpointing (Chen et al., 2016), and Zero
Redundancy Optimizer (ZeRO) (Rajbhandari et al.,
2020) to fine-tune all Whisper models. We allow
trainable decomposed weight matrices with a rank
of 200 for the embedding layer, all the attention
layers, and the first feed-forward layer in the trans-
former blocks, resulting in a total of 289,157,200
trainable parameters, approximately 16% of the
original model’s parameter count.

We apply conventional speech data augmenta-
tion in the fine-tuning process, including SpecAug
(Park et al., 2019) and speed perturbation (Ko et al.,
2015) with parameters 0.9, 1.0, 1.1.

4.3 NLLB fine-tuning

NLLB Team et al.’s (2022) NLLB is an encoder-
decoder framework designed for extensive multilin-
gual translation across more than 200 languages. It
incorporates the sparsely gated mixture of experts
(Du et al., 2022) to balance enhanced modeling ca-
pacity with efficient training and inference. Train-
ing of the NLLB model involves three objectives—
translation loss, denoising loss, and language mod-
eling loss—all calculated using the negative log-
likelihood (NLL) loss function but with distinct

4Note that in this case, since the ST data is used for pseudo-
translation, only <|translate|> tags are used.

datasets. Translation loss utilizes clean parallel
texts, while denoising loss employs techniques
from denoising auto-encoders (Liu et al., 2020b)
that introduce noise into the source text. The lan-
guage modeling objective of NLLB uses monolin-
gual data to train the decoder.

Vanilla Fine-tuning We fine-tune the open-
source NLLB model5 with the released MT corpora
for apc-eng, bem-eng, and que-spa. Specifically,
we use the distilled 600M-parameter NLLB model
as the base model and fine-tune the model with
NLL loss. Following NLLB Team et al. (2022),
we append language tokens on both source and
target sequences during training and force decode
the target language token during inference. We use
a learning rate of 1× 10−4 and set the maximum
number of target tokens per batch to 1600. We train
all translation models on a single V100 machine
and accumulate gradient updates every 4 steps.

Fine-tuning with Intra-distillation We also fine-
tune with intra-distillation (ID), which is an effec-
tive task-agnostic training method, aiming to en-
courage all parameters to contribute equally (Xu
et al., 2022, 2023). Given an input batch, ID needs
to forward pass the model K times to obtain K out-
puts and each time a random subset of parameters
is zeroed out. The core idea of ID is to minimize
the difference of these K outputs to approximately
minimizing the contribution gap of the parame-
ters that are zeroed-out, because the K outputs
are forced to be the same with different zeroed
parameters. Let {p1, · · · , pi, · · · , pK} denote the
K outputs. The ID loss is then formulated by the
X-divergence (Xu et al., 2022) to minimize the
difference of K outputs as

Lid =
1

K

K∑

i=1

KL(pi ∥ p̄) +KL(p̄ ∥ pi)

where p̄ =
1

K

K∑

i=1

pi

Let the original task loss be Li for the ith pass.
Then, the total loss is a combination of the original
task loss and ID loss, given as

min
1

K

K∑

i=1

Li + αLid

5Available at: https://huggingface.co/docs/
transformers/en/model_doc/nllb

192

https://huggingface.co/docs/transformers/en/model_doc/nllb
https://huggingface.co/docs/transformers/en/model_doc/nllb


where α is a hyper-parameter to control the strength
of ID.

5 Results and Discussion

Table 2 displays the results for all of our MT sys-
tems. We calculate scores using the same BLEU
(Papineni et al., 2002) configuration as the task or-
ganizers.6 We include scores from internal Dev
and Test sets when available, as well as the of-
ficial Eval scores. Details of data splitting are
in Appendix A.2. The results show that SEAM-
LESSM4T v2 systems perform best for half of the
language pairs: bho-hin, gle-eng, mar-hin, and
mlt-eng. Cascaded systems employing Whisper
and NLLB for MT performed best for the others:
apc-eng, bem-eng, que-spa, and tmh-fra. (Note
these first three language pairs employed Whisper
for ASR and a fine-tuned NLLB model for MT,
while tmh-fra employed Whisper for X-Eng ST
and NLLB out of the box for MT into French.)

5.1 End-to-end ST

The SEAMLESSM4T v2 models’ poor performance
on bem-eng, que-spa, and tmh-fra is likely due
to the absence of Bemba, Quechua, or Tamasheq
in its pre-training corpus. We include zero-shot
results for SEAMLESSM4T v2 out of the box in
Table 3, which illustrate that the pre-trained model
already performs well on mlt-eng and gle-eng,7

but poorly on unseen language pairs.
We remark that our fine-tuning process brings

notable improvements for bho-hin, mar-hin, and
mlt-eng. In particular, SEAMLESSM4T v2 is suc-
cessful for bho-hin despite not being pre-trained
explicitly on Bhojpuri data, possibly because the
Hindi pretraining data contains some Bhojpuri, or
because SEAMLESSM4T v2 is capable of extrap-
olating fairly well to Bhojpuri given its high lin-
guistic similarity to Hindi. Interestingly, the mixed
data training (comb.) for language pairs sharing
a target language does not significantly improve
performance for either source language, though we
expected it to benefit the lower-resource pair. In the
case of gle,mlt-eng, there are domain differences
(read speech vs. telephonic speech) between the

6With sacrebleu signature nrefs:1 | case:lc |
eff:no | tok:13a | smooth:exp | version:2.0.0.

7There is a considerable discrepancy between the gle-eng
dev and test scores from IWSLT 2023, with the latter being
suspiciously high. Mbuya and Anastasopoulos (2023) suggest
that the inflated test scores may be due to overlap between
train and test sets.

fine-tuning corpora, possibly resulting in unhelp-
ful or negative interference; Irish and Maltese are
also not linguistically related, limiting cross-lingual
transfer. On the other hand, with bho,mar-hin,
Marathi and Bhojpuri both belong to the Indic sub-
family of languages, and the speech translation data
for both respective language pairs is from the news
domain, averaging about 7 seconds each. The lack
of success of joint fine-tuning for both these setups
resonates with the findings of Sun et al. (2023),
which presents several experiments showing that
multilingual training for speech translation may
not always benefit low-resource languages. We
also note that curriculum training likewise did not
improve performance for mlt-eng.

In our evaluation of Whisper systems, we em-
phasize two significant observations. Firstly, as
anticipated, the BLEU scores for the mar-hin and
bho-hin language pairs validate the efficacy of the
proposed pseudo-translation method. This find-
ing not only demonstrates that the model is ca-
pable of handling non-English translations with
minimal fine-tuning, but also underscores its adapt-
ability to linguistically similar language pairs. Sec-
ondly, the consistent performance gain observed
with Whisper MTL over Whisper E2E as illustrated
by the mar-hin results underscores the advantages
of multi-task learning. This method treats fine-
tuning on multiple tasks as involving one primary
task and several auxiliary tasks, which collectively
contribute to enhanced outcomes on all tasks in-
volved.

5.2 Cascaded ST
Cascaded ST via fine-tuned Whisper for ASR and
fine-tuned NLLB for MT is our best-performing
approach for apc-eng, bem-eng, and que-spa,
though it is much better for apc-eng and bem-eng
than for que-spa. The relatively low performance
of que-spa can be possibly attributed to it being a
non-English-centric translation direction.

Table 4 presents the ASR performance of the
fine-tuned Whisper models on 5 language pairs
with different objectives. Those trained with the
ASR-only objective are used solely as the ASR
module in cascaded systems, while the systems
trained with the multi-task learning objective are
used for both direct translation and ASR for cas-
caded systems. Interestingly, we observe that for
Bemba, the CERs (25.1 for dev and 17.9 for the
test1 set) are significantly lower than the WERs.
We find through manual inspection that the model
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Lang. System Submisson Dev Test Eval Lang. System Submisson Dev Test Eval

apc-eng
Whisper+NLLB+ID primary - 32.0 16.0

tmh-fra
Whisper+NLLB primary 8.0 7.0 6.1

Whisper+NLLB contrastive1 - 30.2 14.7 Seamless contrastive1 0.3 1.3 0.5

bem-eng

Whisper+NLLB+ID primary 26.3 30.4 32.6

mar-hin

Seamless primary 32.1 40.9 37.7
Whisper+NLLB contrastive1 22.6 29.0 27.0 Seamless comb. contrastive1 31.0 39.4 37.3
Whisper MTL contrastive2 23.5 27.8 26.7 Whisper MTL contrastive2 26.3 34.9 28.5
Seamless - 6.6 15.4 - Whisper E2E - 24.4 32.8 -

bho-hin
Seamless primary 34.9 - 24.4

que-spa
Whisper+NLLB+ID primary 15.7 11.7 12.5

Seamless comb. contrastive1 34.5 - 23.9 Whisper+NLLB contrastive1 6.9 6.1 6.4
Whisper E2E contrastive2 28.6 - 12.2 Seamless contrastive2 1.8 0.9 0.9

mlt-eng

Seamless primary 52.9 54.2 -
Seamless curr. contrastive1 47.3 47.1 -

gle-eng
Seamless primary 25.2 52.7 15.3

Whisper MTL contrastive2 34.5 35.1 - Seamless comb. contrastive1 27.6 51.6 16.0
Seamless comb. - 51.6 53.1 -

Table 2: BLEU scores for each system. Dev and Test denote our internal tuning and test sets, when available.
Eval denotes the official evaluation. apc-eng Test scores are from text-only MT, since our data had no source
speech-to-translation alignments for ST evaluation. "ID" indicates use of intra-distillation with NLLB fine-tuning.
"Comb." refers to mixed data training, and "curr." refers to curriculum training.

Lang. Devzero Devft

bem-eng 0.9 6.6
gle-eng 27.7 25.2
mar-hin 0.0 32.1
mlt-eng 47.8 52.9
que-spa 1.9 1.8
tmh-fra 0.4 8.0

Table 3: Zero-shot and fine-tuned performance of
SEAMLESSM4T v2 on dev set. Model generally
improves after fine-tuning, except for que-spa and
gle-eng.

Lang. Objective Dev Test

apc-eng ASR-only 11.5 10.4
que-eng ASR-only 34.4 34.5
bem-eng MTL 57.3 47.3
mar-hin MTL 37.2 37.3
mlt-eng MTL 23.8 -

Table 4: WER of the Whisper model fine-tuned on each
language. ASR-only suggests that the model is trained
to perform ASR-only to serve as an ASR module for a
cascaded system, whereas MTL suggests that the model
is trained to perform E2E ST and ASR.

tends to make minor spelling errors, presumably
due to its unfamiliarity with the language’s writing
system, as suggested by the decent proficiency in
its translation performance. This may cause error
propagation in cascaded ST.

In our MT module, we implemented intra-
distillation to enhance ST results by balancing the
contributions of the model parameters. Consistent
with prior studies Xu et al. (2022, 2023), intra-
distillation consistently improves performance
across all evaluated translation directions, with
the most significant enhancement observed for

que-spa. MT performance was reasonably high
for the three language pairs for which we employed
cascaded ST. The cascaded approach for mlt-eng
performs poorly, likely because our Maltese bitexts
were noisy. Additionaly, NLLB has already been
pre-trained on Maltese and may not benefit further
from the noisy post-training.

6 Conclusion and Future Work

In this work, we describe our submitted systems for
all eight language pairs in the IWSLT 2024 Low-
Resource Language Track. We explore various
fine-tuning approaches for large publicly available
pre-trained models, compare end-to-end and cas-
caded systems, as well as investigate the benefits
of joint and curriculum training, multitask learn-
ing, as well as intra-distillation. We find that the
best-performing strategy is language-pair depen-
dent, with fine-tuned SEAMLESSM4T v2 generally
performing best on languages that are included in
its pretraining corpus. Fine-tuned Whisper gener-
ally performed better with multi-task fine-tuning
than standard fine-tuning, and better still when em-
ployed in a cascaded system with fine-tuned NLLB
(with best results employing intra-distillation).

For future improvements, augmenting MT fine-
tuning data with ASR hypotheses, as in Gow-Smith
et al. (2023), could equip NLLB better for cascaded
ST. Future work could also employ data augmenta-
tion of text and speech data, as in Shanbhogue et al.
(2023), via textual back-translation (Sennrich et al.,
2016), speech synthesis for augmentation (Rossen-
bach et al., 2020; Robinson et al., 2022), or other
methods. Lastly, future research could employ the
use of SSLR, or employ the large amounts of raw
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audio available—particularly for Tamasheq—to
train SSLR systems, following Gow-Smith et al.
(2023).
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A Additional Experimental Details

A.1 SEAMLESSM4T v2 hyperparameters
For SEAMLESSM4T v2 models, the longest audio
length is truncated at 30 seconds. To ensure full
reproducibility of the result, a random seed of 42 is
deployed. We perform a minimum hyperparameter
search for each language pair between the learning
rate of {10−5, 10−6, 10−7}. For each language
pair, we fine-tune a SEAMLESSM4T v2-large for

four epochs, with a learning rate of 1× 10−6 and
batch size of 32. For Quecha-to-Spanish (que-spa)
translation, a learning rate of 1× 10−8 is used for
training 15 epochs due to its small dataset size.
For all the training trials, a constant learning rate
scheduler and a warm-up step of 50 is used. Dur-
ing inference, the maximum generation length is
constrained to 256 tokens with greedy decoding.

A.2 Split details

We split data into train, dev, and test when possi-
ble, for tuning and internal evaluation. We split
Makhoul et al.’s (2005) Levantine Arabic ASR
data, Sikasote et al.’s (2023) Bemba ST data,
He et al.’s (2020) Marathi ASR data, Cardenas
et al.’s (2018) Quechua ASR data, and Tiede-
mann’s (2012) que-spa MT bitext ourselves us-
ing a 90-5-5 split. We split Sellat et al.’s (2023)
apc-eng MT bitext ourselves with a 90-5-5 split
but then performed our internal test on a 1000-line
subset of the held out data. For the large mlt-eng
MT bitexts from Bañón et al. (2023, 2020), we
split the data ourselves with a 99-0.5-0.5 and a
98-1-1 split, respectively. We also split Bhogale
et al.’s (2022) large Marathi ASR dataset ourselves
with a 99-0.5-0.5 split. We used the creator’s own
splits for Sikasote and Anastasopoulos’s (2022) Be-
mba ASR data, Agarwal et al.’s (2023) mar-hin
E2E data, Tiedemann’s (2012) que-spa MT bitext,
Zanon Boito et al.’s (2022) tmh-fra E2E data, and
the Hindi ASR data from Common Voice. We
did the same with Agarwal et al.’s (2023) gle-eng
E2E data, using the test set from the 2023 chal-
lenge as our internal test set. For the mlt-eng ST
data from Common Voice and Hernandez Mena
et al. (2020) and the que-spa ST data from Ortega
et al. (2020), we used their own train and dev splits
and then split the dev set in half to create an inter-
nal test set. We used Agarwal et al.’s (2023) own
train and dev splits without creating an internal test
set.

B Instance Length Distribution

We show the length distribution in Figure 2 and
Figure 3. Overall, most datasets show a normal
distribution with a slightly skewed tail except for
que-spa, the amount of instances for which is the
smallest. However, we identify some extraordinar-
ily long instances in bem-eng training set. These
outlier instances can lead to out-of-memory in-
stances if left untreated. Therefore, we truncate
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the instances that are over 30 seconds when train-
ing SEAMLESSM4T v2 and limit the generation
length to 256 new tokens.
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(a) bem-eng TRAINING SET (b) bem-eng DEVELOPMENT SET

(c) bho-hin TRAINING SET (d) bho-hin DEVELOPMENT SET

(e) gle-eng TRAINING SET (f) gle-eng DEVELOPMENT SET

(g) tmh-fra TRAINING SET (h) tmh-fra DEVELOPMENT SET

Figure 2: Length distribution (seconds) for each language pair.
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(a) mlt-eng TRAINING SET (b) mlt-eng DEVELOPMENT SET

(c) mar-hin TRAINING SET (d) mar-hin DEVELOPMENT SET

(e) que-spa TRAINING SET (f) que-spa DEVELOPMENT SET

Figure 3: Length distribution (seconds) for each language pair (continued).
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Abstract

This paper describes CMU’s submission to the
IWSLT 2024 Simultaneous Speech Translation
(SST) task for translating English speech to
German text in a streaming manner. Our end-to-
end speech-to-text (ST) system integrates the
WavLM speech encoder, a modality adapter,
and the Llama2-7B-Base model as the decoder.
We employ a two-stage training approach: ini-
tially, we align the representations of speech
and text, followed by full fine-tuning. Both
stages are trained on MuST-c v2 data with
cross-entropy loss. We adapt our offline ST
model for SST using a simple fixed hold-n pol-
icy. Experiments show that our model obtains
an offline BLEU score of 31.1 and a BLEU
score of 29.5 under 2 seconds latency on the
MuST-C-v2 tst-COMMON.

1 Introduction

This paper presents CMU’s submission to the
IWSLT 2024 (Carpuat et al., 2024) Simultane-
ous Speech Translation (SST) task, focusing on
streaming English speech to German text transla-
tion. Recent advancements in large language mod-
els (LLMs) have demonstrated their potential to
be a strong backbone for offline ST (Huang et al.,
2023; Zhang et al., 2023). In this year’s submis-
sion, we build an end-to-end offline ST model with
WavLM (Chen et al., 2022) and Llama2-7B-Base
(Touvron et al., 2023) following the practice of
LST (Zhang et al., 2023). Then we adapt the of-
fline model for simultaneous translation.

We prepare our end-to-end ST model in the fol-
lowing steps:

1. Offline ST with WavLM and Llama2-7B-base.

2. Online adaptation of offline model via hold-n
policy and incremental beam search.

∗Equal contribution.

2 Task Description

The IWSLT 2024 SST track1 English-German di-
rection is a shared task for streaming speech-to-text
translation of English TED talks. The task requires
the system to generate the translation without mod-
ifying its previous outputs. The average lagging
(AL) (Ma et al., 2019) of SST systems must be be-
low 2 seconds on MuST-C v2.0 tst-COMMON set
(Di Gangi et al., 2019). Note that AL has been mod-
ified from its original definition (Ma et al., 2020a).

Following the constraint of data and pretrained
weights, we use MuST-C v2.0 as the only training
set and leverage pretrained models of WavLM and
Llama2-7B-Base.

3 System Description

As shown in Figure 1, our offline ST models con-
sists of three primary components: a speech en-
coder, an adapter, and a LLM decoder.

For the speech encoder, we employ the WavLM
model 2, which has been pre-trained on 94,000
hours data including LibriLight (Kahn et al., 2020),
VoxPopuli (Wang et al., 2021) and GigaSpeech
(Chen et al., 2021). We use the output of last en-
coder layer as the speech representation.

The modality adapter consists of two compo-
nents: a length adapter and a modality adapter. The
length adapter consists of two 1-dimensional con-
volutional layers with a kernel size of 5, a stride
size of 2, padding of 2, and a hidden size of 1024.
The modality adapter is a linear layer that projects
the output of the length adapter to the embedding
space of LLM.

We use Llama2-7B-Base as the LLM decoder.
The LLM decoder takes the output of the modality
adapter and autoregressively generate the target
text translation.

1https://iwslt.org/2024/simultaneous
2https://huggingface.co/microsoft/

wavlm-large
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Figure 1: Offline ST model architecture based on WavLM encoder and Llama2 7B decoder.

3.1 Offline Speech Translation (ST)
For each sample, given speech XS , the reference
translation XT , and the prompt XP , we initially
transform the speech signal into a feature represen-
tation via the speech encoder:

HS = Encoder(XS), (1)

where HS = [hS1 , . . . , h
S
T ] with T denoting the

sequence length of the feature representation. To
reconcile the length difference between the speech
feature sequence HS and its corresponding text,
we downsample the speech with a length adapter.

To clarify further, the length adapter transforms
HS using a pair of 1-dimensional convolutional
layers, which can be represented as:

ZS = Length adapter(HS ; k, s, p, h), (2)

where k is the kernel size, s is the stride, p is the
padding, and h denotes the number of convolutional
filters. The reduced temporal dimension is ZS =
[zS1 , . . . , z

S
N ], where

N =

⌊
T − k + 2p

s

⌋
+ 1, (3)

Next, a projector is applied to transform the speech
features ZS into ES with the same dimension as
the LLM input embedding. We use a single hidden
layer as the projector,

ES = Linear(ZS). (4)

Finally, we feed the speech embedding ES , trans-
lation embedding ET , and prompt embedding EP

into the template to compose the final input E of
LLM,

ET = Emb(Tokenizer(XT )), (5)

EP = Emb(Tokenizer(XP )), (6)

E =

{
Template(ES , EP , ET ) if training,
Template(ES , EP , ẼT ) if inference,

(7)
where Emb is the LLM embedding layer, ẼT is the
embedding of model’s previously generated tokens.

The template is formatted as:

<P> USER: <S> ASSISTANT:<T>

where <P> represents the system prompt3, <S>
denotes the speech embedding, and <T> is the
target reference or generated translation.

We finetune our offline ST model following a
2-stage strategy. In the first stage, we finetune the
speech encoder together with the adapters, while
keeping the LLM frozen. In the second stage, we
finetune the entire model. We employ cross entropy
loss in both stages. In addition, we apply rule-
based filtering (Ouyang et al., 2022) of the dataset

3We use the following system prompt: "You are a large
language and speech assistant. You are able to understand
the speech content that the user provides, and assist the user
with a variety of tasks using natural language. Follow the
instructions carefully and explain your answers in detail."
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MODEL QUALITY LATENCY

OFFLINE SPEECH TRANSLATION (ST) SACREBLEU ↑ AL ↓ LAAL ↓ LAAL_CA ↓
WavLM-LLaMA2 (Ours) 31.1 5.85 5.85 7.09

SIMUL SPEECH TRANSLATION (SST) SACREBLEU ↑ AL ↓ LAAL ↓ LAAL_CA ↓
WavLM-LLaMA2-AlignAtt (Papi et al., 2023) 27.8 2.00 2.21 2.93
WavLM-LLaMA2 (Ours) 29.5 1.96 2.22 3.16

Table 1: Results of our English to German ST/SST models on MuST-C-v2 tst-COMMON. Latency for offline ST is
calculated using a wait-k policy with k set to infinity.

Algorithm 1 Selective Output of Speech Chunk
Hypotheses
1: procedure SELECTIVEOUTPUT(hyps, n)
2: prunedHyps = {}
3: for c ∈ {1, . . . , C} do
4: W (c) = hyps[c]

5: l = |W (c)|
6: if source_finished then
7: prunedHyps[c] = W (c)

8: else
9: n′ = min(n, l)

10: W
(c)
prefix = W

(c)

0:l−n′

11: if W (c)
prefix is not empty then

12: prunedHyps[c] = W
(c)
prefix

13: else
14: action = Read
15: break
16: end if
17: end if
18: end for
19: return prunedHyps
20: end procedure

to clean the unnecessary speaker names from the
training set.

3.2 Simultaneous Speech Translation (SST)

We adapt our offline ST model for streaming in-
ference using hold-n policy. Our scheme uses a
fixed duration (e.g. 2 seconds) to compute the en-
coder representations on chunks of input speech.
With each new chunk, we re-compute the encoder
representations using the entire given input speech.

As shown in Algorithm 1, for each chunk c, we
obtain the corresponding hypotheses W (c) using
beam search given partial speech input. We then
determine the number of tokens n′ to withhold
based on the minimum of the predefined value n
and the length of the current chunk’s hypotheses
l. The prefix W

(c)
prefix is obtained by selecting the

tokens from index 0 to l − n′.

4 Experimental Setup

We use the AdamW optimizer with a cosine learn-
ing rate decay and a warmup ratio of 0.2. The
learning rate commences at 2e-4 for the first train-
ing stage and is reduced to 2e-5 for the second
stage. We train the first stage for 6 epochs and train
the second stage for 1 epoch.

We employ an early stopping strategy with a
patience of 6 epochs, evaluating every 1000 steps
in Stage 1 and every 200 steps in Stage 2. The
batch size is set to 128 for both stages. All models
are trained on 4 Nividia A6000 GPUs with Deep-
speed’s ZeRO training strategy. The training times
for the first and second stages are approximately
29 hours and 9 hours, respectively. We select the
checkpoints with the lowest dev loss for testing.

For offline testing, we use a beam size of 4 to
generate translations. In the simultaneous testing
scenario, we set the start seconds to 2, indicat-
ing the initial wait time before processing speech
chunks. We employ a hold-n strategy with n set to
7, meaning that the last 7 tokens of each chunk are
withheld until more context is available. The beam
size is set to 4, and the chunk size is set to 2500ms.

We evaluate translation quality using Sacre-
BLEU (Post, 2018). We evaluate translation la-
tency for SST with average lagging (AL) (Ma
et al., 2020b) and length-adaptive average lagging
(LAAL) (Papi et al., 2022) using SimulEval toolkit
(Ma et al., 2020b).

5 Results

Table 1 shows the quality and latency of our SST
system as measured on En-De tst-COMMON. We
also include the offline ST performance of our
model for reference. We implement the Alignatt
policy (Papi et al., 2023) as a baseline for our
model, we set start seconds to 2, speech segment
size to 1000ms. We set number of frames to 20 and
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Wav2vec WavLM

LLM Stage1 Stage2 Stage1 Stage2

TowerInstruct - - 29.64 -
Tower 29.35 30.53 30.11 31.64
LLaMA2 - 30.02 25.50 30.31

Table 2: SacreBLEU score of different Speech Encoder
and LLMs, all models are trained on the original MuST-
C 2.0 data without data cleaning.

use attention from all layers of the LLM decoder
with greedy decoding.

From ST to SST, we observe a 5% quality degra-
dation (31.1 to 29.5 SacreBLEU). However, this
comes with significant latency improvements. The
Average Lagging (AL) decreases from 5.85 to 1.96
seconds, a 66.5% reduction. The Length Adaptive
Average Lagging (LAAL) improves from 5.85 to
2.22 seconds, a 62.1% decrease.

We also investigate the impacts of different
LLMs and speech encoders, as shown in Ta-
ble 2. We compare WavLM with a CTC fine-tuned
Wav2vec 2.0 large model4. This Wav2vec model
was pre-trained on 53.2k hours of untranscribed
speech from LibriVox and fine-tuned on 960 hours
of transcribed speech from Librispeech, as well as
on pseudo-labels. Our results show that replacing
Wav2vec with WavLM yields a significant improve-
ment: a 1.1 BLEU score increase when using the
Tower LLM (Alves et al., 2024) as the decoder, and
a 0.3 BLEU score increase with LLaMA2 as the
decoder. This suggests that the performance gains
from a well-pretrained speech encoder are more
pronounced when coupled with LLMs of higher
translation capability.

Our analysis of the performance between differ-
ent LLMs used as decoders shows that the Tower
LLM5, subjected to continued pre-training on a cu-
rated multilingual dataset of 20 billion high-quality
tokens, exhibits a marked performance advantage
over LLaMA2 in the initial stage of training. How-
ever, during the second stage, when the LLM back-
end is trainable, Tower quickly overfits, implying
potential overlap between the MuST-C corpus and
the data involved in Tower’s pretraining. Tower

4https://dl.fbaipublicfiles.com/
fairseq/wav2vec/wav2vec_vox_960h_pl.pt

5https://huggingface.co/Unbabel/
TowerBase-7B-v0.1

Instruct6, which undergoes supervised fine-tuning
(SFT) on instruction dataset for various translation-
related tasks, achieves a slightly lower BLEU score
compared to the base model. To mitigate overfit-
ting during the second stage of training with Tower,
a reduced learning rate of 7e-6 is used, compared to
the 2e-5 learning rate applied to LLaMA2 training.

6 Conclusion

In this paper, we describe the submission of CMU’s
English to German simultaneous speech-to-text
translation systems for the IWSLT 2024 Simultane-
ous track. We start by building a offline speech-to-
text system which leverages self-supervised speech
and text foundation models. We then adapt this
offline model for streaming inference, enabling si-
multaneous speech-to-text translation.
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Abstract
In this work, we submitted our systems to the
low-resource track of the IWSLT 2024 Speech
Translation Campaign. Our systems tackled the
unconstrained condition of the Dialectal Arabic
North Levantine (ISO-3 code: apc) to English
language pair. We proposed a cascaded solu-
tion consisting of an automatic speech recog-
nition (ASR) model and a machine transla-
tion (MT) model. It was noted that the ASR
model employed the pre-trained Whisper-large-
v3 model to process the speech data, while
the MT model adopted the Transformer archi-
tecture. To improve the quality of the MT
model, it was stated that our system utilized
not only the data provided by the competition
but also an additional 54 million parallel sen-
tences. Ultimately, we reported that our final
system achieved a BLEU score of 24.7 for apc-
to-English translation.

1 Introduction

The IWSLT 2024 Speech Translation Campaign
featured a low-resource track that posed a chal-
lenging task: translating dialectal Arabic speech
to English text. This language pair is particularly
demanding due to the scarcity of available training
data and the complexity of handling dialectal Ara-
bic variations. To tackle this problem, we propose
a cascaded approach that leverages state-of-the-art
models for automatic speech recognition (ASR)
and machine translation (MT).

End-to-end models, which directly map audio
inputs to translated text outputs, heavily rely on
the availability of paired audio and transcription
data. For low-resource tasks, acquiring such data
can be exceptionally challenging. Consequently,
we adopted a cascaded model architecture, which
decouples the speech recognition and translation
components. This approach allows us to leverage
additional parallel text data to enhance the MT
module’s performance, ultimately benefiting the
overall speech translation task.

Our ASR model is built upon the whisper-large-
v3 architecture, a powerful pre-trained model that
has demonstrated impressive performance in tran-
scribing diverse speech data.By employing this
model, we aim to accurately transcribe the dialectal
Arabic speech inputs, to capture the nuances and
variations present in the spoken language.

For the MT component, we adopt the Trans-
former architecture(Vaswani et al., 2017), which
has become the de facto standard for modern neu-
ral machine translation systems. The Transformer
model is known for its ability to effectively capture
long-range dependencies and produce high-quality
translations, making it well-suited for the task at
hand.

To further enhance the performance of our MT
system, we augment the provided training data with
a substantial amount of additional parallel data, to-
taling 54 million sentence pairs. This data aug-
mentation strategy aims to improve the model’s ro-
bustness and generalization capabilities, enabling
it to better handle the complexities of translating
between dialectal Arabic and English.

By combining the strengths of these two power-
ful models in a cascaded fashion, we aim to deliver
a robust and accurate speech-to-text translation sys-
tem for the IWSLT 2024 low-resource track, push-
ing the boundaries of what is achievable in this
challenging language pair.

2 Data

2.1 Data Source
We used two sets of data to train our machine trans-
lation (MT) model. Firstly, we utilized a dataset
provided by the IWSLT 2024 competition, compris-
ing approximately 42 million lines of MSA-English
bilingual data. This data is sourced from various
platforms including Opensubtitles1, UN2,QED3

1https://opus.nlpl.eu/OpenSubtitles-v2018.php
2https://conferences.unite.un.org/UNCorpus
3https://opus.nlpl.eu/QED-v2.0a.php
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,TED4,GlobalVoices5,News-Commentary6. These
datasets are of high quality and provide a solid
foundation for our MT model to learn the corre-
spondences and translation patterns between the
two languages.

However, due to the inherent differences be-
tween dialectal Arabic and MSA, relying solely
on the official dataset may not cover all linguis-
tic phenomena of the target language pair. There-
fore, to enhance the generalization capability of
our MT model, we additionally utilized approxi-
mately 73 million lines of Arabic-English bilingual
data. These datasets cover a wider range of dialec-
tal language phenomena, enabling our MT model
to better understand dialectal Arabic and produce
more accurate and fluent translations into English.
The data size is shown in Table 1.

Data Source Volume
IWSLT 2024 Official Dataset 42M

Additional Arabic-English Bilingual Data 73M

Table 1: Uncleaned Bilingual used for training.

2.2 Data Pre-processing

The data preprocessing pipeline follows our previ-
ous work (Wei et al., 2021). We employed various
strategies, including deduplication, XML content
processing, language identification based on langid
(Lui and Baldwin, 2012), and filtering using fast-
align (Dyer et al., 2013). These preprocessing steps
help improve the quality of the corpus and ensure
consistency in the training data.

For the sake of conciseness, we will not elab-
orate on the specific details of the preprocessing
steps. Interested readers can refer to the relevant
papers for more information. Overall, this estab-
lished set of data preprocessing strategies provides
high-quality training data for our machine transla-
tion system, laying the foundation for achieving
excellent translation performance. The size of the
preprocessed data is shown in Table 2.

3 Methods

We employed a cascade approach for the Spo-
ken Language Translation (ST) task, leveraging
both Automatic Speech Recognition (ASR) and

4https://opus.nlpl.eu/TED2020-v1.php
5https://opus.nlpl.eu/GlobalVoices-v2017q3.

php
6https://opus.nlpl.eu/News-Commentary-v16.php

Data Source Volume
IWSLT 2024 Official Dataset 27M

Additional Arabic-English Bilingual Data 54M
Total 81M

Table 2: Cleaned Bilingual used for training.

Machine Translation (MT) models. The cascade
model consists of two stages: the ASR stage and
the MT stage.

3.1 ASR
The automatic speech recognition (ASR) module
plays a crucial role in speech-to-text translation sys-
tems. To obtain high-quality speech transcriptions,
we chose to employ the whisper-large-v3 model
proposed by OpenAI as our system’s ASR module.

Whisper(Radford et al., 2023) is a powerful
speech recognition model that has learned to map
raw audio to speech units through self-supervised
pretraining. It not only excels in high-resource
languages like English but also demonstrates out-
standing performance in various low-resource lan-
guages. The latest large-v3 version further scales
up the model size and leverages larger datasets for
pretraining, thereby enhancing its recognition ac-
curacy.

One of the primary motivations for adopting
the whisper-large-v3 model, is its robust ability
to handle diverse language variations and accents.
Dialectal Arabic exhibits a rich variety of speech
variations, necessitating the ASR system to pos-
sess sufficient robustness to accommodate these
differences. Whisper, with its powerful modeling
capabilities, can effectively adapt to such speech
diversity, laying the foundation for subsequent ma-
chine translation processes.

3.2 MT
Our cascaded system utilizes the Transformer archi-
tecture as the MT module, which has become the
predominant approach for machine translation in re-
cent years. Remarkably, the Transformer achieves
impressive results even with its original architec-
ture requiring minimal modifications. To further
boost the performance of our offline MT model, we
employed a variety of training strategies.

3.2.1 LaBSE
LaBSE (Feng et al., 2020) acts as a natural fil-
ter for parallel corpora, efficiently extracting high-
quality bilingual data. We can utilize this filtered
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high-quality bilingual data to fine-tune our mod-
els, thereby acting as a natural denoising process.
We applied this method to the current competition,
resulting in a subtle improvement in BLEU scores.

3.2.2 Curriculum Learning
A practical curriculum learning (CL) approach for
NMT should address two key issues: ranking train-
ing examples by difficulty and modifying the sam-
pling procedure based on ranking (Zhang et al.,
2019). For ranking, we estimate example difficulty
using domain features (Wang et al., 2020). The
domain feature is calculated as:

q(x, y) =
logP (y|x; θin)− logP (y|x; θout)

|y|
(1)

Where θin is an in-domain NMT model, while
θout is an out-of-domain model. The novel domain
is treated as in-domain.

We fine-tune the model on the valid set to get the
teacher model and select top 40% of the highest
scoring data for finetuning.

3.2.3 Regularized Dropout
Regularized Dropout (R-Drop) (Wu et al., 2021)
improves performance over standard dropout, es-
pecially for recurrent neural networks on tasks
with long input sequences. It ensures more con-
sistent regularization while maintaining model un-
certainty estimates. The consistent masking also
improves training efficiency compared to standard
dropout. Overall, Regularized Dropout is an en-
hanced dropout technique that often outperforms
standard dropout.

4 Experiments

4.1 ASR

Whisper is a powerful speech recognition model
based on self-supervised pretraining, exhibiting ex-
ceptional performance across multiple languages,
particularly in handling diverse speech variations
and accents. Given the rich variety of dialects
in Arabic, the robustness of the ASR model is
paramount. With its outstanding modeling capabil-
ities, Whisper can effectively adapt to such speech
diversity. Considering Whisper’s remarkable per-
formance in multilingual ASR tasks, we directly
employed its latest large-v3 version without any
modifications to the model itself. Our objective is
to fully leverage this powerful pretrained model as

the core ASR component within our cascaded sys-
tem, providing high-quality speech transcription
inputs for the entire speech translation pipeline.

4.2 MT
Model For our experiments using the MT
model,we utilize the Transformer deep model ar-
chitecture.The configuration of the MT model is as
follows:nencoder layers = 35, ndecoder layers = 3,
nheads =8, dhidden = 512, dF F N = 2048.

Training We use SacreBLEU (Post, 2018) to
measure system performances. We utilize the open-
source Fairseq (Ott et al., 2019) for training, with
the following main parameters: each model is
trained using 8 GPUs,with a batch size of 2048,
a parameter update frequency of 4, and a learn-
ing rate of 5e-4. Additionally, a label smoothing
value of 0.1 was used,with 4000 warmup steps and
a dropout of 0.1,The Adam optimizer is also em-
ployed, with 1 = 0.9 and 2 = 0.98. During the
inference phase, a beam size of 4 is used. The
length penalties are set to 1.0.

5 Results

The multi-step fine-tuning method first pretrains a
base model on large-scale general-domain corpora,
and then conducts multiple rounds of fine-tuning
on the task-specific data, with each round optimiz-
ing the model based on the previous round. This
approach leverages general knowledge, addresses
data distribution mismatch issues, and avoids over-
fitting. After each round of fine-tuning, the BLEU
metric is used to evaluate the translation quality,
serving as the basis for determining whether to pro-
ceed with the next round of fine-tuning. Through
this gradual fine-tuning process, the model’s per-
formance can be progressively enhanced.Table 3
shows our baseline results and the fine-tuning re-
sults at each step.

Traing Stategies BLEU
All Bilingual baseline 17.6
+ LaBSE bitext Finetune 17.7
+ Curriculum Learning +R-Drop 24.7

Table 3: BLEU scores of apc→en NMT system on
IWSLT low-resource test set.

5.1 Ablation study of different bilingual data
According to the experimental results shown in Ta-
ble 4, we conducted an ablation study to determine
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whether the additional bilingual data contributes to
improving the performance of the machine trans-
lation model. We can clearly see that by adding
Arabic-to-English bilingual data, the model can
better capture dialectal Arabic knowledge.

Traing Stategies BLEU
IWSLT 2024 Official Bilingual baseline 15.7
All Bilingual baseline 17.6

Table 4: BLEU Scores for Different Bilingual Data

6 Conclusion

Our research has led to the following key conclu-
sions: Firstly, for the Arabic-to-English transla-
tion task, incorporating additional bilingual cor-
pus data significantly enhanced model performance.
These corpora contained rich knowledge of Ara-
bic dialects, enabling the model to better learn and
translate these special language variants, thereby
improving the overall translation quality. Sec-
ondly, we adopted advanced training strategies
such as Curriculum Learning and R-drop, which
also brought substantial performance gains to the
machine translation model. Curriculum Learning
facilitated gradual learning from easy to difficult
scenarios, while R-drop effectively mitigated over-
fitting issues and improved the model’s general-
ization capability. These strategies were the core
methods employed in our submission, yielding out-
standing practical results.

References
Chris Dyer, Victor Chahuneau, and Noah A Smith. 2013.

A simple, fast, and effective reparameterization of
ibm model 2. In Proceedings of the 2013 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 644–648.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen
Arivazhagan, and Wei Wang. 2020. Language-
agnostic bert sentence embedding. arXiv preprint
arXiv:2007.01852.

Marco Lui and Timothy Baldwin. 2012. langid. py: An
off-the-shelf language identification tool. In Proceed-
ings of the ACL 2012 system demonstrations, pages
25–30.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for

sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53.

Matt Post. 2018. A call for clarity in reporting bleu
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, page 186.
Association for Computational Linguistics.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In International Conference on Machine
Learning, pages 28492–28518. PMLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Wei Wang, Ye Tian, Jiquan Ngiam, Yinfei Yang, Isaac
Caswell, and Zarana Parekh. 2020. Learning a multi-
domain curriculum for neural machine translation. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7711–
7723.

Daimeng Wei, Zongyao Li, Zhanglin Wu, Zhengzhe Yu,
Xiaoyu Chen, Hengchao Shang, Jiaxin Guo, Ming-
han Wang, Lizhi Lei, Min Zhang, et al. 2021. Hw-
tsc’s participation in the wmt 2021 news translation
shared task. In Proceedings of the Sixth Conference
on Machine Translation, pages 225–231.

Lijun Wu, Juntao Li, Yue Wang, Qi Meng, Tao Qin, Wei
Chen, Min Zhang, Tie-Yan Liu, et al. 2021. R-drop:
Regularized dropout for neural networks. Advances
in Neural Information Processing Systems, 34:10890–
10905.

Xuan Zhang, Pamela Shapiro, Gaurav Kumar, Paul Mc-
Namee, Marine Carpuat, and Kevin Duh. 2019. Cur-
riculum learning for domain adaptation in neural ma-
chine translation. In Proceedings of NAACL-HLT,
pages 1903–1915.

211



Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024), pages 212–217
August 15-16, 2024 c©2024 Association for Computational Linguistics

CMU’s IWSLT 2024 Offline Speech Translation System:
A Cascaded Approach For Long-Form Robustness

Brian Yan*1 Patrick Fernandes*1 Jinchuan Tian1 Siqi Ouyang1

William Chen1 Karen Livescu1,2 Lei Li1 Graham Neubig1 Shinji Watanabe1,3
1Language Technologies Institute, Carnegie Mellon University, USA

2Toyota Technological Institute at Chicago, University of Chicago, USA
3Human Language Technology Center of Excellence, Johns Hopkins University, USA

{byan, pfernand}@cs.cmu.edu

Abstract

This work describes CMU’s submission to the
IWSLT 2024 Offline Speech Translation (ST)
Shared Task for translating English speech to
German, Chinese, and Japanese text. We are
the first participants to employ a long-form
strategy which directly processes unsegmented
recordings without the need for a separate
voice-activity detection stage (VAD). We show
that the Whisper automatic speech recognition
(ASR) model has a hallucination problem when
applied out-of-the-box to recordings contain-
ing non-speech noises, but a simple noisy fine-
tuning approach can greatly enhance Whisper’s
long-form robustness across multiple domains.
Then, we feed English ASR outputs into fine-
tuned NLLB machine translation (MT) models
which are decoded using COMET-based Min-
imum Bayes Risk. Our VAD-free ASR+MT
cascade is tested on TED talks, TV series, and
workout videos and shown to outperform prior
winning IWSLT submissions and large open-
source models.

1 Introduction

CMU’s submission to the IWSLT 2024 Offline
Speech Translation shared task is a cascaded auto-
matic speech recognition (ASR) and machine trans-
lation (MT) system designed to effectively translate
English speech from long unsegmented recordings,
such as TED talks, TV series, and workout videos,
into German, Chinese, and Japanese text.

Typically systems are short-form, meaning they
are dependent on some voice-activity detection
to first convert long recordings which contain
speech and non-speech noises into short segments
of speech. This makes it relatively easy to train
a short-form model and test it on similar clean
speech segments. However, these systems exhibit
alarming brittleness in the wild; results from recent
iterations of the Offline ST track have shown large
fluctuations in performance between different seg-
mentations of the same test set (Anastasopoulos

et al., 2021, 2022; Agarwal et al., 2023).
Why are these short-form systems brittle in-the-

wild (or in IWSLT by proxy)? Our view is that
these systems are plagued by train/test mismatch.
Common training sets, e.g. MuST-C (Di Gangi
et al., 2019), are produced using sentence-level
forced alignment. In other words, this training seg-
mentation can only be obtained given a reference.
For a blind test set however, forced alignment is
not possible. Instead, practitioners have resorted
to using VAD with additional tricks to reduce the
train/test mismatch, such as heuristically replicat-
ing segment characteristics (Inaguma et al., 2021)
or modeling the segmentation pattern of training
data (Tsiamas et al., 2022). These methods of ap-
proximating the training data segmentation may
work within a single domain but are complex to
configure for multi-domain scenarios.

In this work, we explore long-form processing
of unsegmented recordings via a 30 second sliding
window as an alternative to segment-dependent
speech processing. Our system consists of:

1. Whisper-based ASR (Radford et al., 2023) ap-
plied in long-form inference §3.1.1, after a sim-
ple noisy fine-tuning procedure which greatly
enhances robustness to non-speech noises §3.1.2

2. NLLB-based MT (Costa-jussà et al., 2022), fine-
tuned and decoded via Minimum Bayes-Risk
§3.2

Our experiments first show that Whisper out-of-
the-box has a hallucination problem caused by non-
speech noises during long-form inference. We then
show that our noisy fine-tuning broadly addresses
these hallucinations. Finally, we show the ultimate
cascaded ST performance across multiple domains:
TED talks, TV series, and workout videos.

2 Task Description

The IWSLT 2024 Offline Speech Transla-
tion shared task consists of three language
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Figure 1: Summary of our cascaded system. ASR: long-form processing of unsegmented recordings. MT: sentence-
based translation with Minimum Bayes-Risk decoding.

pairs: English-to-German, English-to-Chinese, and
English-to-Japanese. For all three language pairs,
unsegmented TED talks (5-20 min) are given
as shared task evaluation data. As a dev set,
we use the provided tst2020 (TED’20), tst2021
(TED’21), and tst2022 (TED’22) for English-to-
German and tst2022 (TED’22) for English-to-
Chinese and English-to-Japanese.

For English-to-German, systems are also tested
on additional domains: TV series (45-60 min),
workout videos (10-20 min), and accented speech
(5-20 min). We therefore use two additional dev
sets obtained from the IWSLT 2024 Subtitling
shared task: ITV and Peloton.

We evaluate ASR using case-sensitive punctu-
ated word error-rate (WER ↓) against recording-
level references. We evaluate MT systems using
COMET ↑ (Rei et al., 2020) against sentence-level
references. We evaluate ST systems using COMET
after first performing minimum WER alignment of
our hypothesis to sentence-level references. Note
that for Chinese and Japanese, this alignment is
done at the character level.

We use MuST-C v3 (Di Gangi et al., 2019)
for fine-tuning ASR models on the TED do-
main. We use TED2020 for fine-tuning English-to-
German MT and MuST-C for English-to-Chinese
and English-to-Japanese. For multi-domain fine-
tuning we also add Bazinga TV series ASR data
(Lerner et al., 2022) and a 500k subset of OpenSub-
titles MT data (Creutz, 2018). Note that our use of
Bazinga (as well as the use of Whisper) puts our
system under the "Unconstrained" designation.

3 System Description

Figure 1 summarizes the components in our
ASR+MT cascade. The following section describes

the system in greater detail, referring at times to
the summary figure.

3.1 ASR

3.1.1 Long-Form Inference
As illustrated in Steps 1 and 2 of Figure 1, we de-
ploy Whisper in a long-form mode. Under this
scheme, the window size is always 30 seconds
(or the remainder of the recording). Although the
window size is fixed, the hop size is dynamic and
based on the predicted time-boundaries of speech
segments. As shown in Step 2, the final speech
segment in a window is considered to be truncated
if the predicted end-time is within 1 second of the
end of the window. To avoid transcribing with a
truncated utterance, the next window starts from
the start-time of the truncated utterance.

For non-speech noises, the expected behavior
is that the model produces a special symbol, e.g.
(NOISE), along with time-boundaries. However,
we found that Whisper Large-v2 frequently hal-
lucinates on non-speech such as music and ap-
plause.1 These errors can be categorized as oscil-
lations in which the auto-regressive decoder enters
a bad state causing long repeated garbage outputs.

Whisper applies an inference time patch to ad-
dress these oscillations, somewhat obscuring the
lack of long-form robustness in the model out-of-
the-box. This patch detects oscillations via a heuris-
tic repetition factor, then if high repetitions are de-
tected then it falls back to sampling. If the sampling
output is still high in repetitions, then it falls back
to sampling with greater and greater temperature.
Eventually, the model either escapes from the oscil-
lations (typically by producing EOS) or exhausts

1We also tested Large-v3 and found that hallucinations to
be more severe than Large-v2, perhaps due to error compound-
ing from the semi-supervision used in Large-v3.
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MODEL TED’20 TED’21 TED’22 ITV PELOTON

Whisper 54.9 8.3 5.8 38.9 47.9
+ Fallback on Oscillation 1.6 2.4 2.1 6.5 4.2
Whisper ft on TED + Baz 0.9 1.2 1.9 6.9 5.9
+ Fallback on Oscillation 0.9 1.2 1.1 3.5 3.4

Table 1: Insertion error-rates of Whisper out-of-the-box
vs Whisper after Noisy Fine-tuning. High insertions
indicates frequent oscillation.

the allotted number of fallback decodings.

3.1.2 Noisy Fine-tuning

Motivated by the apparent lack of long-form ro-
bustness described in the previous section, we pro-
pose a simple fine-tuning strategy to improve the
Whisper’s ability to predict the special non-speech
token: (NOISE). We prepare fine-tuning data by
taking consecutive 30 second segments from the un-
segmented recordings. Using given sentence-level
forced alignments, we obtain references containing
transcribed speech and noises. Critically, the 30
second segments also include untranscribed noises;
these non-speech portions were originally cut out
via forced alignment (they represent the durations
between speech segments). If these untranscribed
non-speech portions exceed 1 second in duration,
we add a new (NOISE) token in the target.

In practice (see §4.1), this noisy fine-tuning en-
compasses non-speech noises that Whisper out-
of-the-box struggles with. After fine-tuning, the
model does not produce oscillations and rather pro-
duces the (NOISE) token which is cleaned before
scoring ASR and feeding into MT.

3.2 MT

ASR outputs, which are cased and punctuated, are
concatenated at a recording-level (Step 3). This
recording-level ASR output is then split into sen-
tences and subsequently fed into our MT model.

For each language-pair, we fine-tune NLLB 1B
and NLLB 3B on TED data. For English-German
we also fine-tune a separate NLLB 1B model on
TED + OpenSubtitles data.

During inference, we generate a set of candidate
translations via epsilon-sampling (Step 4). We then
(optionally) pool the candidate translations across
multiple MT systems. Finally, the 1-best trans-
lation is chosen using COMET-based Minimum
Bayes-Risk decoding (Yan et al., 2022).

4 Results

4.1 Noisy Fine-Tuning Improves Whisper’s
Long-Form Robustness

Table 1 shows ASR insertion error-rates for Whis-
per out-of-the-box versus Whisper with noisy fine-
tuning. As can be seen from the high insertion error-
rates in row 1, Whisper without fine-tuning and
without relying on the fallback-based inference-
time patch (described in §3.1.1) has a major oscil-
lation problem. Noisy fine-tuning greatly reduces
this problem, as can be seen from row 3. Our results
show that noisy fine-tuning improved performance
on all domains, so we have reason to believe that
the improved long-form robustness generalizes to
some extent. The fallback method still improves
the fine-tuned model, indicating that some oscilla-
tions still remain, but this inference-time patch is
not critical as it was out-of-the-box.

Note that fallback is applied in all subsequent
ASR results unless otherwise indicated.

4.2 ST Results

Table 2 shows the ASR, MT, and ST performances
of our fine-tuned models versus their out-of-the-
box counterparts for English-German. For ASR,
fine-tuning on TED + Bazinga versus fine-tuning
on TED-only improved the TV series performance
(ITV) while maintaining the performance on TED.

For MT, the NLLB 3B fine-tuned model was
the best across all sets. The NLLB 1B models
fine-tuned on TED versus on TED + OpenSubtitles
performed similarly. We use all three MT models
in our final ensemble.

Table 3 shows a single-domain version of
the same story for English-Chinese and English-
Japanese. For these pairs, we use the TED-only
fine-tuned ASR model and we do not use any TED
+ OpenSubtitles fine-tuned MT models.

4.3 COMET-Based Minimum Bayes-Risk

Table 4 shows the impact of COMET-based MBR
compared to beam search. We observed improve-
ments up to 50 samples per system. Further, en-
sembling slightly improves results.

4.4 Benchmarking vs. Prior Works

Finally, Table 5 compares our VAD-free cascaded
approach to prior works. Note we’re showing
BLEU score (Post, 2018) in this table for com-
patibility with prior studies.

214



MODEL TED’20 TED’21 TED’22 ITV PELOTON TED AVG NON-TED AVG

ASR WER ↓
Whisper (Large-v2) 10.8 10.1 9.3 30.9 24.2 10.1 27.6
Whisper ft on TED 8.8 7.5 7.8 27.5 22.3 8.0 24.9
Whisper ft on TED + Bazinga (Baz) 8.7 7.7 7.8 25.0 22.4 8.1 23.7

MT COMET ↑
NLLB 1B 0.8093 0.7825 0.7845 0.6322 0.6162 0.7921 0.6242
NLLB 1B ft on TED 0.8229 0.8006 0.7977 0.6638 0.6348 0.8071 0.6493
NLLB 1B ft on TED + OpenSubtitles (OS) 0.8219 0.7991 0.7943 0.6598 0.6396 0.8051 0.6497
NLLB 3B 0.8171 0.7892 0.7892 0.6472 0.6200 0.7985 0.6336
NLLB 3B ft on TED 0.8242 0.8053 0.8010 0.6697 0.6548 0.8102 0.6623

ST (ASR→MT) COMET ↑
Whisper→ NLLB 1B 0.7891 0.7622 0.7691 0.5920 0.6119 0.7735 0.6020
Whisper→ NLLB 3B 0.7954 0.7705 0.7779 0.6012 0.6152 0.7813 0.6082
Whisper ft on TED→ NLLB 1B ft on TED 0.8050 0.7872 0.7844 0.6311 0.6111 0.7922 0.6211
Whisper ft on TED + Baz→ NLLB 1B ft on TED (➀) 0.8053 0.7856 0.7855 0.6501 0.6087 0.7921 0.6294
Whisper ft on TED + Baz→ NLLB 1B ft on TED + OS (➁) 0.8018 0.7872 0.7827 0.6537 0.6086 0.7906 0.6312
Whisper ft on TED + Baz→ NLLB 3B ft on TED (➂) 0.8059 0.7911 0.7875 0.6562 0.6183 0.7948 0.6373

MBR Ensemble (➀ + ➁ + ➂) - - 0.8104 0.6647 0.6293 - 0.6470

Table 2: ASR/MT/ST results for English-German across TED and non-TED domains.

LANG MODEL MT ST

En-Zh NLLB 1B 0.7864 0.7309
En-Zh NLLB 1B ft on TED (➀) 0.8362 0.8082
En-Zh NLLB 3B 0.7464 0.7279
En-Zh NLLB 3B ft on TED (➁) 0.8362 0.8078

En-Zh MBR Ensemble (➀ + ➁) - 0.8295

En-Ja NLLB 1B 0.8300 0.7568
En-Ja NLLB 1B ft on TED (➀) 0.8625 0.8086
En-Ja NLLB 3B 0.7854 0.7715
En-Ja NLLB 3B ft on TED (➁) 0.8639 0.8046

En-Ja MBR Ensemble (➀ + ➁) - 0.8363

Table 3: MT/ST results for English-Chinese and
English-Japanese.

MODEL DECODING TED’22 ITV PELOTON

NLLB 1B ft on TED Beam (5) 0.7855 0.6501 0.6087
NLLB 1B ft on TED (➀) MBR (50) 0.8038 0.6570 0.6180

NLLB 1B ft on TED + OS Beam (5) 0.7827 0.6537 0.6086
NLLB 1B ft on TED + OS (➁) MBR (50) 0.8009 0.6628 0.6207

NLLB 3B ft on TED Beam (5) 0.7875 0.6562 0.6183
NLLB 3B ft on TED (➂) MBR (50) 0.8076 0.6632 0.6286

Ensemble (➀ + ➁ + ➂) MBR (50 ea.) 0.8104 0.6647 0.6293

Table 4: Beam search vs. MBR decoding.

5 Conclusion

We describe our IWSLT 2024 Offline Speech Trans-
lation system which is based on long-form process-
ing of unsegmented recordings. Our system con-
sists of fine-tuned Whisper and NLLB components
of a cascade. We evaluate our system on TED talks,
TV series, and workout videos.

TYPE MODEL USES VAD TED’22

Cascade IWSLT 2022 Top (Zhang et al., 2022) ✓ 23.9
Cascade Our Single Best Model ✗ 24.5

Direct SeamlessM4T (Barrault et al., 2023) ✓ 16.2
Direct WavLM+mBART (Yan et al., 2023) ✓ 19.2
Direct OWSM 3.1 (Peng et al., 2024b) ✗ 18.4
Direct OWSM-CTC (Peng et al., 2024a) ✗ 19.6

Table 5: BLEU score comparison with prior works.
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Abstract

This paper describes NAIST’s submission to the
simultaneous track of the IWSLT 2024 Evalua-
tion Campaign: English-to-{German, Japanese,
Chinese} speech-to-text translation and English-
to-Japanese speech-to-speech translation. We
develop a multilingual end-to-end speech-to-
text translation model combining two pre-
trained language models, HuBERT and mBART.
We trained this model with two decoding poli-
cies, Local Agreement (LA) and AlignAtt. The
submitted models employ the LA policy be-
cause it outperformed the AlignAtt policy in
previous models. Our speech-to-speech trans-
lation method is a cascade of the above speech-
to-text model and an incremental text-to-speech
(TTS) module that incorporates a phoneme esti-
mation model, a parallel acoustic model, and a
parallel WaveGAN vocoder. We improved our
incremental TTS by applying the Transformer
architecture with the AlignAtt policy for the
estimation model. The results show that our up-
graded TTS module contributed to improving
the system performance.

1 Introduction

This paper presents NAIST’s simultaneous speech
translation (SimulST) systems for the English-to-
{German, Japanese, Chinese} speech-to-text track
and the English-to-Japanese speech-to-speech track
within the simultaneous track of the IWSLT 2024
Evaluation Campaign.

Simultaneous translation involves generating
translations incrementally based on partial input,
and it requires interpreters who can provide accurate
and fluent translations while minimizing delay.

Early SimulST systems are based on a cascade of
automatic speech recognition (ASR) and machine
translation modules (e.g., Fügen et al., 2007; Ban-
galore et al., 2012; Yarmohammadi et al., 2013;
Oda et al., 2014; Arivazhagan et al., 2020), but they
suffer from error propagation and added latency

imposed by the ASR module. Recently, an end-to-
end approach has become popular (Agarwal et al.,
2023), and this approach has been demonstrated to
achieve a better quality-latency trade-off.

Conventional end-to-end SimulST models have
employed training strategies and architectures de-
signed for a simultaneous setting. However, that
approach not only requires additional effort in sys-
tem development but also results in high compu-
tational costs. To alleviate such problems, Papi
et al. (2022a) proposed a single model trained on of-
fline translation data for the simultaneous scenario.
Applying a simultaneous decoding policy to an
offline speech translation (ST) model in SimulST
inference enables the model to generate outputs
similar to simultaneous translation. Furthermore,
a decoding policy determines whether to generate
partial output or wait for more input.

Using an offline ST model with a simultaneous
decoding policy has become popular because no
specific task adaptation is required for a SimulST
task. Among several simultaneous decoding poli-
cies (Cho and Esipova, 2016; Dalvi et al., 2018;
Ma et al., 2019, 2020b; Nguyen et al., 2021), Lo-
cal Agreement (LA) (Liu et al., 2020) is widely
used and won the SimulST task at the IWSLT 2022
Evaluation Campaign (Anastasopoulos et al., 2022).
The LA policy extracts the longest common prefixes
from the 𝑛 consecutive chunks as stable hypotheses.
However, it requires a long computation time to
obtain the longest common prefix.

Since simultaneous translation requires real-time
translation, a policy that runs fast is desirable. Papi
et al. (2023) proposed a decoding policy called Alig-
nAtt, which takes the alignments of the source and
target tokens using cross attention information. Un-
der computation-aware settings, Papi et al. (2023)
have shown that AlignAtt can generate translations
with lower latency compared to the LA policy, and
it is capable of reaching a latency of 2 sec or less.

For the IWSLT 2024 Evaluation Campaign, we
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developed two types of speech-to-text translation
models with different decoding policies and com-
pared them. One is based on LA and the other on
AlignAtt. The LA-based model demonstrates better
quality than the AlignAtt-based one within the given
latency constraints, while the AlignAtt policy works
better in a low-latency region in computation-aware
settings.

For the English-to-Japanese speech-to-speech
track, we developed a cascade of the above SimulST
model and an incremental text-to-speech module
using a phoneme and prosodic symbol estimation
model, a parallel acoustic model, and a parallel
WaveGAN vocoder. In last year’s submission, our
speech-to-speech translation method suffered from
the quality of the synthesized speech and possible
ASR errors (Fukuda et al., 2023). The authors
reported that the character error rate of the NAIST
2023 speech-to-speech translation output exceeded
that of the SimulST text output by over 28%. There-
fore, we upgraded our TTS module by incorporating
Transformer architecture and AlignAtt in the esti-
mation model.

2 System Architecture

This section describes the architecture of our
SimulST systems. First, we explain the decod-
ing policies used for our translation modules. Then,
we present the details of our simultaneous speech-
to-text and speech-to-speech translation methods.

2.1 Decoding Policies
2.1.1 Local Agreement
Liu et al. (2020) introduced the concept of Local
Agreement to find a stable prefix translation hypoth-
esis in simultaneous translation scenarios where
inputs are processed in fixed-length chunks. This
method assesses the stability of a hypothesis at
step 𝑡 by comparing it with the hypothesis at step
𝑡 + 1, thus determining the agreeing prefix (i.e., the
longest common prefix) between them. The under-
lying principle is that the translation outputs with
consistent agreeing prefixes, as the input prefixes
increase, are likely to be reliable. Building upon
this idea, Polák et al. (2022) extended it to encom-
pass agreement among prefixes over 𝑛 consecutive
steps (LA-𝑛), with their experiments showing that
𝑛 = 2 performs effectively in the context of SimulST.
Based on these findings, we employed LA-2 as a
SimulST policy and adjusted the input chunk length
(in milliseconds) to manage the trade-off between

quality and latency.

2.1.2 AlignAtt
Papi et al. (Papi et al., 2023) proposed AlignAtt,
a method that leverages encoder-decoder attention
information in Transformer to establish alignment
between source and target tokens during inference.
According to the AlignAtt policy, if a target token
aligns with tokens beyond the last 𝑓 tokens of the
source speech, it implies that adequate information
has been provided to generate that token. Conse-
quently, if a target token aligns solely with the last
𝑓 tokens from the source, generation is paused to
await additional speech input. In our implementa-
tion, we use cross attention from the decoder to the
length adapter for AlignAtt.

2.2 Simultaneous Speech-to-Text Translation
Our speech-to-text SimulST system uses multilin-
gual offline speech translation models for the prefix-
to-prefix translation required for SimulST. These
models are based on large-scale pre-trained speech
and text models adopting Hidden-Unit BERT (Hu-
BERT) (Hsu et al., 2021) and mBART50 (Tang et al.,
2020), following Polák et al. (2022). We initialized
our ST models with the HuBERT speech encoder
and the mBART50 text decoder, which were fine-
tuned using English ASR data and multilingual MT
data, respectively. In addition, we applied Inter-
connection (Nishikawa and Nakamura, 2023) for
the concatenated ST model. Inter-connection is a
method that aggregates the information from each
layer of a pre-trained speech model with weighted
sums and then passes it into the decoder by connect-
ing the intermediate layer of the speech encoder
and the text decoder. We also fine-tuned the mul-
tilingual ST model using bilingual prefix pairs in
English-to-{German, Japanese, Chinese} extracted
using Bilingual Prefix Alignment (Kano et al., 2022).
Bilingual Prefix Alignment is a method used to gen-
erate augmented prefix-to-prefix data based on a
pre-trained offline model, and the SimulST model
fine-tuned on those data will generate high quality
output in a low-latency range compared to a model
trained solely on offline data. After training these
models, we applied the decoding policies in Section
2.1 to the ST model for controlling latency ranges.

2.3 Simultaneous Speech-to-Speech
Translation

Our English-to-Japanese speech-to-speech simulta-
neous translation is a cascade of the speech-to-text
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translation model (Section 2.2) and the incremental
TTS module. In decoding steps, prefixes gener-
ated from the translation model are passed to the
TTS module incrementally. Then, the TTS module
judges whether to wait for more inputs or generate
a partial hypothesis.

2.3.1 Incremental Text-to-Speech Synthesis

Incremental TTS consists of three modules: a
phoneme estimator with a prosodic symbol for the
Japanese language, an acoustic feature predictor,
and a neural vocoder.

The phoneme estimator predicts the phonemes
of SimulST outputs and prosodic symbols in the
Japanese language in parallel using a Transformer
model. This module uses three prosodic symbols
to represent rising and falling pitches, and phrase
boundary. It works simultaneously with the input
based on the AlignAtt policy using models trained
in full-sentence conditions. In TTS, it is assumed
that there is monotonicity between input and output
sequences, so there is little need to make delayed
decisions and reorder, as is the case in LA. There-
fore, we applied AlignAtt to TTS in this study. We
modified the original Transformer architecture by
adding two embedding input layers and two linear
output layers to its decoder. The self-attention mask
was applied to both the encoder and the decoder
sides because the subsequent sequences should not
be used in the inference time in the incremental
condition.

The acoustic feature predictor predicts acoustic
features from the phonemes and prosodic symbols
mentioned above, and then the neural vocoder syn-
thesizes speech in parallel. Its acoustic model
is based on FastPitch (Łańcucki, 2021) with an
additional adapter as an average phoneme power
predictor. Its encoder uses two independent embed-
ding layers for phoneme and prosodic sequences
and concatenates their embedding vectors into a
single sequence as the input to the Transformer
model. Fastpitch estimates an acoustic feature se-
quence with predicted duration, pitch, and power in
parallel. Parallel WaveGAN synthesizes a speech
waveform for the given acoustic features and noise
sequences.

3 Experimental Setting

3.1 Data
3.1.1 Simultaneous Speech-to-Text

Translation
We trained our multilingual ST model on MuST-C
v2.0 (Di Gangi et al., 2019) and CoVoST-2 (Wang
et al., 2020) for all language pairs: English-to-
German (En-De), English-to-Japanese (En-Ja), and
English-to-Chinese (En-Zh). For the En-De setting,
we also used MuST-C v1.0, Europarl-ST (Iranzo-
Sánchez et al., 2020), and TED-LIUM (Rousseau
et al., 2012). In our training data, the development
and test portions of CoVoST-2 and Europarl-ST
were also included. We used the MuST-C v2.0
tst-COMMON data as the evaluation data. We tok-
enized all of the text data in the corpora using a mul-
tilingual SentencePiece tokenizer with 250,000 sub-
word units, distributed with the mBART50 model.

For the En-Ja setting, we trained a model that
applied a data filtering approach on the prefix trans-
lation pairs for the Bilingual Prefix Alignment data.
We empirically set the ratio of the number of sam-
ples in the input speech to the number of tokens
in the output at 4000. Any utterance exceeding
the maximum ratio was excluded from the training
data. In order to prevent discrepancies in sentence
structure and word order between the source and tar-
get languages in fine-tuned models and thus avoid
favoring shorter output.

3.1.2 Incremental Text-to-Speech Synthesis
We used the JSUT corpus (Sonobe et al., 2017)
for training our FastPitch and Parallel WaveGAN.
The numbers of sentences in the training, devel-
opment, and test data were 7196, 250, and 250,
respectively. For JSUT labels, we used the open-
source repository 1. We used the Balanced Corpus
of Contemporary Written Japanese (Maekawa et al.,
2014) for training the phoneme and prosodic symbol
estimation model. These symbols were obtained
from the text using Open Jtalk2 for training the
estimation system. The same algorithm converted
these symbols (Kurihara et al., 2021), and symbols
were separated into two sequences by adding blank
tokens in prosodic symbols. The training, devel-
opment, and test data were approximately 1.4 M,
10 K, and 10 K sentences, respectively. We also
used the training portion of MuST-C as additional
training data.

1https://github.com/r9y9/jsut-lab
2https://open-jtalk.sourceforge.net
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3.2 Simultaneous Speech-to-Text Translation
We developed an end-to-end speech-to-text model
by initializing it with two pre-trained models: Hu-
BERT for the speech encoder and mBART50 for the
text decoder. Furthermore, the encoder and decoder
are interconnected via Inter-connection (Nishikawa
and Nakamura, 2023) and a length adapter (Tsiamas
et al., 2022). Speech input is provided as wave-
forms sampled at a rate of 16 kHz, which are then
normalized to have zero mean and unit variance.

We applied checkpoint averaging to the offline
SimulST model. During checkpoint averaging,
model checkpoints were saved every 1000 training
steps, and the averaged parameter values from the
five best models, based on loss in the development
data, were selected for the final model.

Subsequently, one epoch of fine-tuning was con-
ducted on the training data, focusing solely on prefix
alignment pairs in MuST-C v2. For this fine-tuning
stage, the learning rate was reduced to 2.5 × 10−5,
using translation pairs obtained via Bilingual Prefix
Alignment.

For our SimulST strategies, we implemented both
Local Agreement and AlignAtt policies. Specifi-
cally, we used Local Agreement with 𝑛 = 2 (LA-2).
To adaptively control the quality-latency trade-off,
we varied the chunk size from 200 to 1000 ms. Dur-
ing hypothesis generation for input chunks, a beam
search with a beam size of five was employed. For
the AlignAtt policy, we set the chunk size to 800
ms. In AlignAtt, the parameter 𝑓 directly governs
the model’s latency: smaller values of 𝑓 imply that
fewer frames are considered inaccessible by the
model, thereby reducing the likelihood of the stop-
ping condition being met and the resulting lower
latency occurring. To adjust the quality-latency
trade-off, we varied the parameter 𝑓 from 1 to 12.
See Appendix A for the detailed parameters of the
speech-to-text model.

3.3 Simulaneous Speech-to-Speech
Translation

Our simultaneous speech-to-speech system was a
cascade of the speech-to-text translation module
and the incremental TTS module. The parameter
settings for the translation module were the same
as those for the speech-to-text model, as described
in Section 3.2

3.3.1 Incremental Text-to-Speech Synthesis
The incremental TTS is composed of three modules:
a phoneme estimator with a prosodic symbol for the

Japanese language, an acoustic feature predictor,
and a neural vocoder.

For the phoneme estimator, the input vocabulary
size was set to 21001. The output vocabulary was
set to 40 for phoneme and 4 for prosodic symbols.
The parameter of the AlignAtt policy 𝑓 was set
to 1 in the phoneme and prosodic symbol estima-
tion modules. See Appendix B for the detailed
parameters of the TTS model.

Speech was downsampled from 48 kHz to 22.05
kHz, and an 80-dimensional Mel spectrum was used
for the acoustic features. The size of the Fourier
transform, frameshift length, window length, and
window function were 2048, 10 ms, 50 ms, and
Hann window, respectively.

Our acoustic feature predictor mostly followed
FastPitch structures, and the power predictor was
added behind the pitch predictor.

For the neural vocoder, experimental conditions
for Parallel WaveGAN were the same as in the
original paper, except for the parameters related to
acoustic features and speech.

3.4 Evaluation
We assessed our systems using the SimulEval (Ma
et al., 2020a) toolkit3 and evaluated the translation
quality of the SimulST systems using BLEU with
sacreBLEU4. We also measured translation latency
by the following metrics:

• Average Lagging (AL) (Ma et al., 2019)
• Length Adaptive Average Lagging (LAAL)

(Papi et al., 2022b)
• Average Token Delay (ATD) (Kano et al.,

2024)
• Average Proportion (AP) (Cho and Esipova,

2016)
• Differentiable Average Lagging (DAL)

(Cherry and Foster, 2019)

For the SimulS2S system, translation quality was
evaluated using BLEU scores obtained after tran-
scribing the output speech with Whisper (Radford
et al., 2022) (ASR_BLEU). Translation latency was
evaluated using ATD along with Start_Offset and
End_Offset (Agarwal et al., 2023).

AL is a widely used latency metric for both text-
to-text and speech-to-text simultaneous translation.
However, while AL focuses on the time translation

3https://github.com/facebookresearch/
SimulEval

4https://github.com/mjpost/sacrebleu
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Table 1: Results of submitted speech-to-text systems on MuST-C v2 tst-COMMON

Language pair Chunk size BLEU LAAL AL AP DAL ATD
En-De 960 ms 29.978 2193.352 1973.799 0.846 2863.481 1887.436
En-Ja 835 ms 15.329 2269.591 1868.759 0.893 2878.447 541.729
En-Zh 910 ms 22.300 2245.997 1959.588 0.839 2811.262 897.994
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Figure 1: Results of Local Agreement and AlignAtt policies with AL on the speech-to-text systems. Circled dot in
LA graph indicates our submitted system. Circled dot in AlignAtt graph indicates the best model satisfying the task
requirement of IWSLT 2024 Shared Task.
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Figure 2: Results of Local Agreement and AlignAtt policies with AL_CA on the the speech-to-text systems

Table 2: Results of offline ST in submitted speech-to-text
systems on MuST-C v2 tst-COMMON

Language pair BLEU
En-De 31.00
En-Ja 15.98
En-Zh 24.98

begins, it does not adequately consider the time
each input chunk’s translation ends. In scenarios
where speech segments are generated sequentially,
as in speech-to-speech translation, the translation
output may be delayed if the preceding outputs
occupy the speech output channel. Consequently,
AL may not be suitable for evaluating the latency of
speech-to-speech simultaneous translation. Instead,
we employ ATD, which includes delays caused by
output in the latency calculation. ATD computes

delays by calculating the average time difference
between each source token and its corresponding
target token. In the SimulEval setup, assuming
each word requires 300 ms to be spoken, both the
input and output speech are segmented into 300-ms
intervals, treating these segments as tokens for ATD
calculations.

4 Experiment Results

4.1 Simultaneous Speech-to-Text System

We chose one submission for each language di-
rection, ensuring that the settings met the task
requirement of 𝐴𝐿 ≤ 2 sec. The submission model
is based on the LA policy, since it outperformed
the AlignAtt policy used in earlier models.

5
222



4.1.1 NAIST 2023 model vs. 2024 model
Table 1 shows the results of the submitted speech-
to-text systems evaluated on MuST-C v2 tst-
COMMON. Although the system architecture of
our submitted models was the same as that of last
year’s models, the chunk size settings were different
in every language pair. Using different chunk size
settings slightly improved the BLEU scores in every
language pair (see Appendix C for the scores for
our 2023 submission). We also show the results of
the offline ST in submitted speech-to-text systems
on MuST-C v2 tst-COMMON in Table 2.

4.1.2 Local Agreement vs. AlignAtt Policies
Figure 1 shows BLEU and AL trade-offs in non-
computation-aware conditions. When comparing
the results of the LA and AlignAtt policies, there
was little difference observed in En-Ja (Figure 1
(b)), while there were relatively large gaps in BLEU
in En-De and En-Zh, especially in the high latency
region (Figures 1 (a) and (c)).

Figure 2 shows the BLEU and AL trade-offs
in computation-aware conditions. In all language
pairs, the AlignAtt policy was better in the low-
latency region, while the LA policy was better in
the high-latency regions.

4.1.3 Non-Computation-Aware vs.
Computation-Aware Latency

The quality-latency trade-off results differed signifi-
cantly between the non-computation-aware and the
computation-aware conditions. The LA policy re-
quires a relatively long computation time to obtain
the longest common prefixes. This is especially
true when the source speech is divided into many
small segments. Therefore, the latency increases
significantly when a small chunk size is set (see
Figure 2).

The main constraint of the IWSLT 2024 Shared
Task (i.e., latency is measured in a non-computation-
aware setting) may have been advantageous for the
LA policy. In fact our LA-based system outper-
formed our AlignAtt-based one. However, in real-
ity, the LA policy is time-consuming, and thus the
AlignAtt policy may be better suited to practical
applications.

4.2 Simultaneous Speech-to-Speech System
We submitted a model with the LA policy for
the En-Ja speech-to-speech track. We selected a
model configured with a chunk size of 950 ms,
which satisfies the task requirement Start_Offset

≤ 2.5 sec. Table 3 shows the results of our speech-
to-speech model (LA (NAIST 2024)). We also
developed a model with the AlignAtt policy, but
the LA model achieved higher ASR_BLEU than
the AlignAtt model. The quality-latency trade-offs
in non-computation-aware and computation-aware
conditions are shown in Figures 3 and 4.

4.2.1 NAIST 2023 model vs. 2024 model
Our submitted model outperformed our last year’s
submission (LA (NAIST 2023)). We compared
our 2024 submission with the 2023 one to clarify
what contributed to improving the score. The
significant difference between the two systems lies
in the upgraded TTS, which has an estimation
model based on Transformer architecture with the
AlignAtt policy (see Section 3.3).

When comparing the output from the speech
translation modules, there was little difference in
BLEU scores between the two systems (2023 sys-
tem: 14.93; 2024 system: 15.44)5. However, the
performance of our 2024 system, which was mea-
sured by ASR_BLEU, was more than 2 points
higher than that of our 2023 system. The results
suggest that our new TTS contributed to the im-
proved score. We listened to samples of synthesized
speech and observed that the outputs from the 2024
system tended to be more natural in accent and in-
tonation compared to those from the 2023 system.

4.2.2 Local Agreement vs. AlignAtt Policies
We further compared the model with the LA policy
(our 2024 submission) with the model with the Alig-
nAtt policy. Comparing the translation modules of
the two systems, the difference in translation quality
measured by BLEU was about 0.4 points (15.44
and 15.09 for the LA and the AlignAtt models,
respectively). This gap is almost the same as the
gap in the evaluation scores of the speech-to-speech
systems (ASR_BLEU, see Table 3).

Although no difference was observed in BLEU
scores, a comparison between the output from the
speech-to-speech system (i.e., transcribed speech)
with the output from the translation module sug-
gests that the policy difference affects the TTS
performance. We extracted sentences that satisfy
the following criteria: (1) translations from the
translation modules were identical between the two
policies, but (2) transcribed speeches were different
between the two systems.

5The chunk size setting for the 2024 speech-to-speech
system was different from that for the 2024 speech-to-text
system.
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Table 3: Results of submitted SimulS2S system on the MuST-C v2 tst-COMMON

System Chunk size ASR_BLEU Start_Offset End_Offset ATD
LA (NAIST 2023) 650 ms 9.873 2495.010 4134.752 3278.809
LA (NAIST 2024) 950 ms 12.082 2425.485 3745.743 3792.405
AlignAtt 800 ms ( 𝑓 =6) 11.650 2493.908 3505.377 3682.920
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Figure 3: Results of Local Agreement and AlignAtt policies with ATD, Start_Offset, and End_Offset on speech-to-
speech systems. Circled dot in LA graph indicates submitted system. Circled dot in AlignAtt graph indicates the
best model satisfying the task requirement of IWSLT 2024 Shared Task.
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Figure 4: Results of Local Agreement and AlignAtt policies with ATD_CA, Start_Offset_CA and End_Offset_CA
on speech-to-speech translation systems.

We computed BLEU scores using extracted sen-
tences (𝑁=414) while regarding the outputs from
the translation modules as references. The score
for the LA policy was more than 2 points higher
than that for the AlignAtt policy (67.79 and 65.46,
respectively). In addition, the transcribed speech
for AlignAtt was shorter than that for LA (sys_len:
6364 and 6464, respectively). These results sug-
gest that the manner of passing the translations
to the TTS was different between the two decod-
ing policies (e.g., timing) and affected the TTS
performance.

Our analysis suggests that the output from the
LA policy was more suitable for our TTS than that
from the AlignAtt policy because the LA policy
generated longer partial output with more confident
agreement. On the other hand, the AlignAtt policy
tended to generate prefixes whose boundaries did

not correspond to meaningful units and sometimes
divided a word in the middle of it. Figure 5 shows
an example of the timing difference in passing the
translations to the TTS. This figure compares the
output prefixes generated from the translation mod-
ules with different decoding policies and the output
prefixes generated from the TTS module along with
the timing information. In this example, the trans-
lations generated from the translation modules are
identical between the LA and AlignAtt policies.
However, the prefixes (see Tgt text in Figure 5)
and the timing when they were passed to the TTS
module were different between the two decoding
policies. In this example, the LA policy tended
to generate semantically coherent prefixes, which
resulted in more successful output from the TTS
module (see Tgt speech). On the other hand, the
AlignAtt policy divided the word “フォーミュ

7
224



[In the old days]

[in a Formula 1 race]

[if we want to win, the budget] [bet on a good driver and a good car]

[good]

[In the old days, in a Fogyura 1 race]

[win]

[if we want to, we bet the budget on a good driver and a good car]

(a) LA (chunk size = 950 ms)

[In the old days, Form] [if we want to win, the budget] [bet on and a good car]

[if you want to win, goodness]

[in a race of ula 1]

[In the old days, in a race of Forgura 1]

[a good driver]

[we bet on 's good driver and a good car]

(b) AlignAtt (chunk size = 800 ms, 𝑓 = 6)

Figure 5: Example of timing difference in passing translations to the TTS between the LA and AlignAtt policies.
Translations generated by speech-to-text models were identical between the two policies, but outputs from the TTS
module were different.

ラワン [Formula 1]” into two prefixes, “フォー
ミ [Form]” and “ュラワン [ula 1].” When the
boundaries of the prefixes do not correspond to
the meaning units or words are divided into pre-
fixes, it might be difficult to capture the context of
a sentence, which results in poor performance of
the TTS module. In this example, the word “予
算 [budget]” (pronounced as yosan) was wrongly
recognized as “良さ [goodness]” (pronounced as
yosa) in the system with the AlignAtt policy. The re-
sults suggest that feeding stable prefixes to the TTS
module is important in our speech-to-speech sys-
tem. Future study will involve making the AlignAtt
policy generate more stable prefixes.

4.2.3 Non-Computation-Aware vs.
Computation-Aware Latency

Figures 3 and 4 show the results in non-computation-
aware and computation-aware settings, respectively.
When the latency was measured by the Start_Offset
and the End_Offset, there were no large differ-
ences between the results in non-computation-
aware and computation-aware settings. How-
ever, when latency was measured by ATD, the
quality-latency trade-offs exhibited different trends
in non-computation-aware and computation-aware
settings.

Start_Offset does not include computation time

as a delay because Start_Offset is measured only at
the start of translation. Therefore, Start_Offset is
not appropriate as the latency metric in computation-
aware settings. Moreover, Start_Offset and
End_Offset measure the delay at a single point
in the translation and does not consider the delays
in the middle section of the translation.

In contrast, ATD measures the delay at multiple
points and has a higher correlation with Ear-Voice
Span, which is often used as a reference latency
metric in human interpretation research (Kano et al.,
2024). As the segments become smaller, the num-
ber of segments increases. This increases the num-
ber of comparison processes at the inference of LA.
Therefore, the computation time becomes larger as
the segment size becomes smaller and BLEU be-
comes lower in the low-latency range of LA, which
is only shown in Figure 4a.

In a computation-aware setting, we observed that
the AlignAtt policy outperformed the LA policy
in the low-latency region (Figure 4). In practical
situations, the LA policy might be time-consuming
for a speech-to-speech system. One future direction
would be improving the performance of a model
with the AlignAtt policy.
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5 Conclusions
In this paper, we described our SimulST systems
for the IWSLT 2024 Simultaneous Speech Trans-
lation task. Experimental results demonstrated
the effectiveness of AlignAtt by comparison to
Local Agreement in terms of computation-aware
latency, especially in the low-latency range. Our
speech-to-speech translation system also showed
the effectiveness of applying AlignAtt to the TTS
model and resulted in better performance compared
to our IWSLT 2023 system. This time, our speech-
to-text method used HuBERT with the mBART
model, while our TTS method only used the Par-
allel WaveGAN vocoder. In the future, we will
investigate other methods such as WavLM (Chen
et al., 2022) and Hi-Fi GAN (Kong et al., 2020).
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A Speech-to-Text Parameter Settings

The speech encoder was initialized with HuBERT-
Large, comprising a feature extractor trained on
60 K hours of unlabeled speech data from Libri-
Light (Kahn et al., 2020), along with Transformer
encoder layers. The feature extractor consists of
seven convolutional layers with kernel sizes of (10,
3, 3, 3, 3, 2, 2), corresponding strides of (5, 2,
2, 2, 2, 2, 2), and 512 channels. The number of
Transformer encoder layers is 24. The text decoder
was initialized using the decoder component of
mBART50. The decoder is composed of twelve
Transformer layers, sharing an embedding layer and
linear projection weights sized at 250,000. Each
Transformer and feed-forward layer has dimensions
of 1024 and 4096, respectively, with 16 attention
heads. ReLU serves as the activation function,
and layer normalization is applied before attention
operations. The length adapter is implemented as a
three-layer convolutional network featuring 1024
channels, a stride of 2, and a Gated Linear Unit
(GLU) activation function. During training, each
source audio was augmented (Kharitonov et al.,
2020) prior to normalization, with a probability
of 0.8. Multilingual models were trained using
all of the data with a maximum source length
of 400,000 frames and a target length of 1024
tokens. To achieve a batch size of approximately 32
million tokens, we employ gradient accumulation
and data-parallel computations. We utilize the
Adam optimizer with 𝛽1 = 0.99, 𝛽2 = 0.98, and
a base learning rate of 2.5 × 10−4. A tri-stage
scheduler controls the learning rate, with warm-
up, hold, and decay phases set to 0.15, 0.15, and
0.70, respectively. The initial and final learning
rates are scaled to 0.01 compared to the base rate.
Sentence averaging and gradient clipping of 20
are applied, along with a dropout probability of
0.1. Time masking is used for 10-length spans
with a probability of 0.2, while channel masking is
applied to 20-length spans with a probability of 0.1
in the output of the encoder’s feature extractor. The
loss function employed is cross-entropy with label
smoothing of 20% probability mass.
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B Incremental Text-to-Speech Parameter
Settings

For the phoneme estimator, each Transformer layer,
head, dimension of head, or dimension of Trans-
former model was 2, 8, 64, or 512, respectively.
The embedded size of the encoder was the same
as the dimension of the Transformer, and the em-
bedding sizes of the decoder were 128 dimensions
for the prosodic symbols and 512 dimensions for
the phonemes. The batch size for training was 256.
We used Adam optimizer with a learning rate of
0.1, 𝛽1 = 0.99, 𝛽2 = 0.99, and 𝜖 = 1𝑒 − 8. The
warmup scheduler is the same as that of the original
Transformer. The size of the Fourier transform,
frameshift length, window length, and window
function were 2048, 10 ms, 50 ms, and Hann win-
dow, respectively. The changed settings were as
follows: We used two embedding layers with a
hidden size of 256, the hidden size in Transformer
was 256, the number of heads was 2, the encoder
and decoder had 4 layers, the first convolution layer
in each FFT block in FastPitch had a kernel size of
3 and 256/1024 input/output channels, the second
convolution layer in an FFT block had 1024/256
input/output channels with the same kernel size, the
first convolution layer in each predictor had a kernel
size of 3 and 256/256 input/output channels, and
the second convolution layer in each predictor had
256/256 input/output channels with the same kernel
size. We used Adam optimizer with a learning rate
of 0.1, 𝛽1 = 0.99, 𝛽2 = 0.99, and 𝜖 = 1𝑒 − 9. The
batch size was 48. The schedule for the warmup
followed FastPitch.

C NAIST 2023 Submission for
Speech-to-Text

Table 4 shows the results for all chunk size settings
for the En-De, En-Ja, and En-Zh models, respec-
tively, used in our 2023 submission (Fukuda et al.,
2023).
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Table 4: Results of submitted speech-to-text systems on MuST-C v2 tst-COMMON in IWSLT 2023

Language pair Chunk size BLEU LAAL AL AP DAL ATD
En-De 950 ms 29.975 2172.927 1964.329 0.846 2856.738 1893.749
En-Ja 840 ms 15.316 2290.716 1973.586 0.892 2889.950 547.752
En-Zh 700 ms 22.105 1906.995 1471.287 0.821 2436.948 667.780
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Abstract

Large Language Models (LLMs) are currently
under exploration for various tasks, including
Automatic Speech Recognition (ASR), Ma-
chine Translation (MT), and even End-to-End
Speech Translation (ST). In this paper, we
present KIT’s offline submission in the con-
strained + LLM track by incorporating recently
proposed techniques that can be added to any
cascaded speech translation. Specifically, we
integrate Mistral-7B1 into our system to en-
hance it in two ways. Firstly, we refine the
ASR outputs by utilizing the N-best lists gener-
ated by our system and fine-tuning the LLM to
predict the transcript accurately. Secondly, we
refine the MT outputs at the document level by
fine-tuning the LLM, leveraging both ASR and
MT predictions to improve translation quality.
We find that integrating the LLM into the ASR
and MT systems results in an absolute improve-
ment of 0.3% in Word Error Rate and 0.65%
in COMET for tst2019 test set. In challenging
test sets with overlapping speakers and back-
ground noise, we find that integrating LLM is
not beneficial due to poor ASR performance.
Here, we use ASR with chunked long-form
decoding to improve context usage that may
be unavailable when transcribing with Voice
Activity Detection segmentation alone.

1 Introduction

This paper provides an overview of Karlsruhe In-
stitute of Technology’s speech translation (ST) sys-
tem developed for the offline track of IWSLT 2024.
We participated in the constrained plus large lan-
guage models (LLMs) condition, focusing on the
translation direction from English to German. Un-
der this condition, LLMs with parameters of around
7 billion are allowed, and they have proven effec-
tive in many NLP tasks. One of the interesting
aspects of this condition is how one can effectively
integrate them into ST systems.

1mistralai/Mistral-7B-Instruct-v0.1

In recent years, there has been a significant
interest in developing several open-sourced and
medium-scale LLMs (Touvron et al., 2023; Jiang
et al., 2023). The adaptability of LLMs to di-
verse tasks, using techniques such as In-Context-
Learning (Brown et al., 2020) or Parameter-
efficient fine-tuning with 4-bit quantization (Hu
et al., 2021; Dettmers et al., 2024), enables their
exploitation even with limited resources.

With these recent advancements, exploiting
LLMs for ST shows great promise and offers sev-
eral potential benefits. For instance, one common
challenge in Automatic Speech Recognition (ASR)
is dealing with input noise, which can often ren-
der it difficult to comprehend the speaker’s words.
However, LLMs, trained on vast amounts of data,
may excel at predicting words compared to de-
coders trained solely during ASR. Moreover, LLMs
possess a richer vocabulary and understanding of
complex terminology that task-specific ASR sys-
tems may lack. Motivated by these advantages,
various studies have explored the integration of
LLMs into ASR (Chen et al., 2024; Pu et al., 2023),
Machine Translation (MT) (Koneru et al., 2023),
and ST (Hu et al., 2024).

Chen et al. (2024) employ the LLM to gener-
ate a new hypothesis based on the N-best list of
the ASR model. This strategy relies on the ob-
servation that N-best lists tend to exhibit enough
diversity, especially during uncertain conditions,
allowing accurate transcript prediction by examin-
ing the list. On the other hand, for MT, Koneru
et al. (2023) proposes leveraging the LLM to au-
tomatically postedit translations by analyzing the
source and hypothesis documents to rectify contex-
tual errors. Both approaches are system-agnostic
and have demonstrated successful enhancement of
system quality. Furthermore, it is also the case that
cascaded systems are shown to be superior than
end to end systems in previous IWSLT findings
and submissions making the leveraging of LLMs
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Figure 1: ASR Refinement: The ASR system generates a few candidate hypotheses with beam search, and the
LLM generates a new hypothesis based on all the candidates as proposed in Chen et al. (2024). We use the top 5
candidates in all our experiments.

easily compatible. (Agarwal et al., 2023; Liu et al.,
2023).

Our system builds on these two approaches to
effectively use the LLMs to improve the cascaded
ST pipeline by refining the intermediate outputs at
both ASR and MT while maintaining its modular
structure. We utilize pre-trained models to cre-
ate the individual components and fine-tune them
with the allowed data. Specifically, we employ
WavLM (Chen et al., 2022) and MBART50 (Liu
et al., 2020) to initialize the ASR, and NLLB-200
(3.3B) (Costa-jussà et al., 2022) for the MT module.
As for the LLM, we opt for Mistral 7B Instruction-
Tuned (Jiang et al., 2023), considering it to be the
most recent model within the allowable options.

We present our main findings below:

• We demonstrate that LLMs can be tailored
to enhance both ASR (Section 4.1) and MT
systems (Section 4.2), resulting in an abso-
lute improvement of 0.3% in Word Error Rate
and 0.65% in COMET, respectively, on the
tst2019 test set.

• While we observe significant enhancements in
in-domain scenarios, we find that these tech-
niques are not applicable in challenging sce-
narios (such as Overlapping Speakers, Back-
ground noise, etc.) due to poor ASR perfor-
mance.

• We demonstrate that employing chunked long-
form decoding2 significantly improves ASR
performance in challenging scenarios, such as
the case of the ITV dev set. Specifically, we
observe a decrease in the word error rate from
37.83% to 30.98%

2We derive the terminology from this blog post.

2 Data

This section describes the evaluation and training
data we use in our experiments. For evaluation, we
report results on the tst2019 and ACLdev (Salesky
et al., 2023) test sets to compare with findings from
previous works (Anastasopoulos et al., 2021; Agar-
wal et al., 2023). We also use the EPTV (European
Parlament activities), Itv (TV Series), and Pelo-
ton (Fitness TV) dev sets from the subtitling track
consisting of overlapping speakers with different
accents to evaluate the ASR performance in chal-
lenging scenarios.

As the data conditions did not change from
IWSLT23 to this year, we rely on the data pro-
cessed from last year’s submission (KIT’23) (Liu
et al., 2023). For the training data of ASR, we use
the same system that used Common Voice (Ardila
et al., 2020), LibriSpeech (Panayotov et al., 2015),
MuST-C v2 (Di Gangi et al., 2019), TED-LIUM
v3 (Hernandez et al., 2018), and VoxPopuli (Wang
et al., 2021).

While for MT fine-tuning, we use the cleaned
training data from last year created from the
available parallel data. This includes Europarl
v7 and v10 (Koehn, 2005), NewsCommentary
v16, OpenSubtitles v2018 (Lison and Tiede-
mann, 2016), Tatoeba (Tiedemann, 2012), ELRC-
CORDIS_News and TED2020 (Reimers and
Gurevych, 2020) and consists in total of 23 mil-
lion sentence pairs. For the rest of the paper, we
refer to the full parallel data as seed and TED2020
as in-domain.

3 Overview

In this section, we provide an overview of our pro-
posed cascaded system, detailing each individual
component. First, the input audio is sent to the
ASR system, which undergoes segmentation, and
N-best lists are generated for each segmented utter-
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ance. Next, the top candidates in the N-best list are
fed as input to the LLM, which is trained to refine
the ASR output and generate a final ASR hypothe-
sis. Following this, the final ASR hypotheses are
passed on to the sentence-level MT system, which
produces translations. Finally, the sentence-level
automatic transcripts and translations are fed into
another adapted LLM, which automatically post-
edits and generates a coherent document translation
of the talk.

3.1 Automatic Speech Recognition
We employed the ASR model from our previous
year’s submission (Liu et al., 2023), considering its
effectiveness in transcribing the TED domain. For
initialization, we utilized WavLM and mBART50
for the encoder and decoder, respectively, before
fine-tuning on the ASR data described in Section
2. However, we encountered below-par ASR per-
formance on the challenging sets EPTV, Itv, and
Peloton.

We identified several issues that hindered the
effectiveness of our ASR model with these sets.
Firstly, the model itself was trained on single-
talker datasets but inferred with multi-talker noisy
datasets, leading to a mismatch in data distribu-
tion. Secondly, our typical use of the SHAS model
for audio segmentation introduced challenges, as it
sometimes missed segmentations and overlooked
segments containing human speech.

Data shift is difficult to handle when the training
dataset has not changed since last year. We focused
more on handling the latter by incorporating long-
form decoding. The key idea is to better use context
(at the text or signal level) for decoding. The long
audio file is chunked into smaller segments with
a small overlap between adjacent segments. The
model is run over each chunk, and the inferred
text is joined at the strides by finding the longest
common sequence between overlaps.

3.2 ASR refinement
Once we have generated the N-best list, we select
the top 5 candidates and utilize an LLM to pro-
duce the final hypothesis as shown in Figure 1. In
this step, we can adapt the LLM to the task us-
ing either few-shot prompting or LoRA fine-tuning
techniques. We choose to fine-tune the LLM with
adapters based on the findings from (Chen et al.,
2024). However, it is crucial to train the LLM un-
der conditions that simulate the test environment,
where it should fix errors of our ASR output rather

than on the whisper generated in Chen et al. (2024).
To generate the dataset for fine-tuning, we per-

form inference on our in-domain training data using
the gold segmentation. We create pairs comprising
the N-best list and the corresponding reference. It
is worth noting that we utilized the same data to
train the ASR system, which is not ideal. How-
ever, resource constraints prevented us from fol-
lowing the augmentation procedure that mitigates
this, which we explain further in Section 3.4. De-
spite this limitation, manual analysis revealed that
the ASR did not memorize the training data and
produced similar N-best lists to those observed in
the test conditions.

Following this, we fine-tuned the Mistral 7B
Instruction-tuned LLM (Jiang et al., 2023) using
QLoRA (Dettmers et al., 2024), to predict the
gold reference based on the top candidates (see
the prompt format below). Importantly, we chose
not to shuffle the order of the top candidates when
providing it in the prompt, as doing so would elim-
inate the ranking information provided to the LLM,
which could be crucial for its performance.

Punctuate and Post-edit the hypothesis
based on the predictions:
Hyp 1 <SS> Hyp 2 <SS> Hyp 3 ..
Post-edited Hypothesis:
Gold Reference

3.3 Machine Translation

For building the MT system, we leverage the strong
pre-trained model NLLB 200 3.3B (Costa-jussà
et al., 2022) that is allowed in the constrained plus
LLM track. We perform a two-step fine-tuning
approach. Initially, we fine-tune the model on the
seed data to adapt it to the spoken language domain.
Subsequently, in the second step, we conduct in-
domain fine-tuning on TED (in-domain) data, given
its significance as one of the primary test sets in the
offline track. Additionally, we implement check-
point averaging to improve generalization with the
last 3 checkpoints.

3.3.1 Restoring Punctuations
It is important to note that the ASR outputs lack
punctuation. Therefore, we conducted experiments
with two punctuators. First, we utilized the punc-
tuations generated from the LLM ASR refinement
process described in Section 3.2. Second, we em-
ployed a DeltaLM-based punctuation model, which
was utilized in our previous year’s submission (Liu
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Figure 2: Document Level MT Refinement: The LLM trained to post-edit uses sentence-level transcripts and
translations to generate a final document-level coherent and consistent translation.

et al., 2023). We observed that while the punctu-
ations generated by the LLM were semantically
correct, they often resulted in long sequences and
led to a degradation in MT performance. As a
result, we decided to opt for the second choice
and segment the text into sentences using manually
crafted rules.

3.4 Document-level Automatic Post-Editing

After translating the individual sentences with the
fine-tuned NLLB, the outputs are not coherent as
they are translated in isolation. Moreover, any ASR
errors that might be fixed by observing the full doc-
ument will be translated incorrectly. To mitigate
this, we perform an additional step of document-
level automatic post-editing using the source tran-
scripts and sentence translations shown in Figure
2.

Similar to the situation outlined in Section 3.2,
we encountered a lack of data for fine-tuning the
LLM for document-level post-editing. Hence, we
adopted the approach proposed by Koneru et al.
(2023) to create the dataset. We divided the in-
domain TED data into two halves, each contain-
ing English audio, English transcript, and German
translation. Subsequently, we fine-tuned MT mod-
els on each half using the pre-trained models de-
scribed in Sections 3.1 and 3.3. Following this, we
conducted inference using the gold segmentation
with our ASR and MT models trained on one half to
the other half. This procedure generated a synthetic
dataset with noisy ASR input, MT predictions, and
corresponding gold references, leveraging the pro-
vided segmentation in the data.

We then use the synthetic dataset to create in-
stances of document-level post-editing. We go
through each talk and divide the transcripts into

chunks, each chunk containing a maximum of 256
tokens corresponding to the LLM tokenizer. Then
for each chunk, we use the transcript, hypothesis
and reference to transform them into the format
below and train the LLM to predict the gold refer-
ence given the noisy transcript and sentence-level
hypothesis.

Noisy English Transcript:
ASR Hyp 1 <SS> ASR Hyp 2 <SS> ....
German Translations:
MT Hyp 1 <SS> MT Hyp 2 <SS> ....
Post-Edited German Translations:
Ref 1 <SS> Ref 2 <SS> ....

We use the delimiter "<SS>" to align with the
input and perform sentence-level evaluation. Then,
we again fine-tune the Mistral 7B Instruction-tuned
LLM (Jiang et al., 2023) using QLoRA (Dettmers
et al., 2024), training it to predict the gold refer-
ence given the noisy transcript and translations.
We employ the sliding window with payload strat-
egy during decoding as described in Koneru et al.
(2023).

4 Results

4.1 Automatic Speech Recognition

To evaluate the benefit of the additional ASR re-
finement step described in Section 3.2, we compare
the word error rate of our ASR system before and
after post-editing, as shown in Table 1. The ASR
performance improves in both cases, with a higher
absolute improvement observed in the ACLdev set.
The LLM is particularly beneficial in the ACLdev
set, given that it contains terminology from the sci-
entific domain where the LLM excels. We also
observe a relative improvement of 10% in the TED
talks, indicating that ASR refinement is beneficial.
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tst2019 ACLdev2023

KIT’23 (Liu et al., 2023) ASR 3.1 11.3
KIT’23 ASR + LLM Refine 2.8 10.6

Table 1: ASR word error rate scores on tst2019 and ACLdev2023 test sets. + LLM refine indicates that the N-best
list was post-edited to generate the final hypothesis.

Model EPTV ITV Peloton

KIT’23 ASR 26.43 37.83 18.93
KIT’23 ASR + Gold Seg 16.84 37.21 25.88
KIT’23 ASR + long-form 17.54 30.98 20.79

Seamless v2 (Barrault et al., 2023) 40.94 56.94 43.47

Table 2: ASR word error rate scores on the EPTV, Peloton and ITV dev set. Best scores for each set are highlighted
in bold.

However, the performance of the same ASR sys-
tem on the challenge set was below par. We con-
ducted additional ablation studies and present the
results in Table 2 for the challenge dev sets. We
compared last year’s ASR system with three condi-
tions: providing gold segmentation, utilizing long-
form decoding, and using the recently developed
Seamless V2 (Barrault et al., 2023).

We observed that providing gold segmentation
achieved a score of 16.84, demonstrating its cru-
cial role in handling this challenging set for EPTV.
Moreover, long-form decoding significantly nar-
rowed the gap, decreasing the word error rate for
both EPTV and ITV. Meanwhile, our ASR shows
the best performance for Peloton without any mod-
ifications. Additionally, we evaluated Seamless to
assess its robustness and found that its performance
was severely lacking in comparison.

Based on these results, we use the ASR with
standard segmentation for TED and Peloton test
sets. For EPTV and ITV, we use the ASR system
with long-form decoding. We found that the LLM
cannot refine the N-best list given the poor WER
of KIT’23 ASR for the latter test sets and generates
long sequences with repetitions for most utterances.
Therefore, we do not perform any ASR or MT
LLM refinements for ITV and EPTV sets and
generate translations with a standard cascaded
ST pipeline.

4.2 Cascaded Speech Translation

In this section, we evaluate the final quality of our
cascaded ST using the mwerSegmenter to realign
the hypothesis with the reference segmentation. We

Model tst2019

BLEU Chrf2 COMET

KIT’23 TED* 28.4 58.8 78.87
NLLB 3.3B 26.6 57.7 77.41
Seamless v2 25.5 57.0 76.65

NLLB 3.3B + Seed 26.9 57.9 77.87
NLLB 3.3B + Seed + TED 27.6 58.5 78.49

Table 3: MT scores using KIT’23 ASR as input calcu-
lated by resegmenting with mwerSegmenter. * indicates
an unconstrained system that was trained on the same
data sources but in more languages than what is allowed
for IWSLT24. TED indicates the model adapted for
TED and not ACLdev which was the official submission
from KIT for IWSLT23

report results with BLEU (Papineni et al., 2002)
and Chrf2 (Popović, 2015) computed by Sacrebleu
(Post, 2018). We also report the COMET (Rei et al.,
2022) score using the default model3.

4.3 Two-step Fine-tuning

We presented a two-step fine-tuning approach to
adapt our MT system in Section 3.3 to the target do-
main. We report the translation quality on tst2019
test set with this approach (last row) and other mod-
els for comparison in Table 3.

Firstly, we observe that Seamless performs infe-
riorly to NLLB across all translation metrics. Con-
sequently, we proceeded with NLLB for further
experiments.

Subsequently, fine-tuning the seed parallel data
improved quality across all metrics, notably in-

3Unbabel/wmt22-comet-da
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Model
tst2019 ACLdev2023

BLEU Chrf2 COMET BLEU Chrf2 COMET

NLLB 3.3 26.6 57.7 77.41 35.0 63.9 74.83
NLLB 3.3 Seed 26.9 57.9 77.87 34.7 63.8 75.67

ASR Refine + NLLB 3.3 Seed 27.3 58.3 78.32 36.1 65.0 77.59
ASR Refine + NLLB 3.3 Seed + TED 28.3 58.8 78.98 34.8 63.7 77.25

ASR Refine + NLLB 3.3 Seed + TED + Doc APE 28.7 59.1 79.63 36.4 64.5 78.64

Table 4: MT scores using KIT’23 ASR as input calculated by resegmenting with mwerSegmenter. ASR Refine
indicates an additional ASR refinement step with the LLM. Seed and TED indicate fine-tuning the NLLB 3.3 with
seed alone or a two-step process with additional fine-tuning on TED. Doc APE indicates an LLM post-editing
refinement to generate a coherent and consistent document. Best scores in each metric and test set are highlighted in
bold.

creasing the score from 77.41 to 77.87 in COMET.
Following this, with the assistance of second-step
fine-tuning, we observed further improvements, re-
sulting in scores reaching 78.49. However, it is im-
portant to note that this system still lags behind last
year’s submission, which was specifically adapted
to the TED domain. Nevertheless, it’s worth high-
lighting that this system was trained across multiple
languages, placing it in the unconstrained condition
for IWSLT24. Moreover, we could not replicate
a similar adaptation process for NLLB due to re-
source and time constraints.

4.4 LLM Refinement

We proposed improving the ASR outputs and con-
verting sentence-level to document-level transla-
tions using fine-tuned LLMs. We evaluate the ben-
efits of the individual steps and report the results of
our final cascaded ST system in Table 4 on tst2019
and ACLdev2023 test sets.

First, the benefits of two-step fine-tuning, ASR
refinement, and document post-editing comple-
ment each other. Using KITs 23 ASR with NLLB
3.3 B as a baseline, we obtained 77.41 COMET in
tst2019 test set. However, including all enhance-
ments led to a total improvement of 2.23 COMET
points. Furthermore, the improvements are consis-
tent with both lexical and neural metrics.

Next, we observed that integrating LLMs pro-
vides significant benefits in the ACLdev set com-
pared to the TED dev sets. This is plausible due
to scientific terminology and accented speakers
in the ACLdev set. Both of these challenges are
well-suited for LLMs, as the quality of the initial
systems is sufficient to utilize context and rectify
mistakes reliably.

5 Conclusion

This system paper presented KIT’s submission for
the offline track in the constrained + LLMs con-
dition, focusing on the English-to-German trans-
lation direction. Using modular techniques, we
successfully integrated LLMs into any cascaded
ST pipeline. Additionally, we highlighted the bene-
fits of long-form decoding in scenarios involving
noisy and overlapping speech.

For future work, we aim to explore robust tech-
niques for integrating LLMs that can effectively
handle challenging scenarios where ASR quality is
sub-par. Furthermore, the translation’s latency is
quite high as it needs to call the LLM twice. How-
ever, integrating quality estimation techniques to
decide when we need the LLM can limit the effects
of the high latency problem.
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We use the transformers library (Wolf et al., 2019)
for fine-tuning our ASR and LLM and the fairseq
toolkit (Ott et al., 2019) for fine-tuning NLLB 3.3B.
For the ASR training, we set the batch size to 384,
resulting in approximately 128 minutes per batch.
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rate is initialized to 1e− 4.
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learning rate set to 5e− 5, label smoothing to 0.1,
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the Adam optimizer with betas to (0, 9, 0.98) and
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set after every epoch. We stopped the training after
the dev loss did not increase after 10 epochs. For
fine-tuning the LLM with QLoRA we use the peft
(Mangrulkar et al., 2022) along with the transform-
ers library. We add LoRA adapters to the target
modules [q_proj, k_proj, v_proj, o_proj, gate_proj,
up_proj, down_proj]. We set the adapter rank to
16, alpha to 32 and lora dropout to 0.1. We use a
batch size of 8, learning rate of 5e− 5 with other
parameters set to default. After every 200 steps,
we validate and terminate the training if it does not
improve 10 consecutive times.

During inference, we use beam search for all
ASR, MT and LLM components. The ASR and
MT decode with beam size of 5, whereas the LLM
does it with beam size of 3.
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Abstract

This paper presents ALADAN's approach to

the IWSLT 2024 Dialectal and Lowresource

shared task, focusing on Levantine Arabic

(apc) and Tunisian Arabic (aeb) to English

speech translation (ST).Addressing challenges

such as the lack of standardized orthography

and limited training data, we propose a solution

for data normalization in Dialectal Arabic, em

ploying a modified Levenshtein distance and

Word2vec models to find orthographic vari

ants of the same word. Our system consists

of a cascade ST system integrating two ASR

systems (TDNNF and Zipformer) and two

NMT modules derived from pretrained mod

els (NLLB200 1.3B distilled model and Co

hereAI's CommandR). Additionally, we ex

plore the integration of unsupervised textual

and audio data, highlighting the importance of

multidialectal datasets for bothASR andNMT

tasks. Our system achieves BLEU score of

31.5 for Levantine Arabic on the official vali

dation set.

1 Introduction

Speech translation (ST) systems play a crucial role

in facilitating communication across languages

and dialects, enabling access to information and

services for diverse linguistic communities. How

ever, developing accurate ST systems for dialec

tal Arabic poses significant challenges due to the

scarcity of annotated data and the lack of standard

ized orthography. In particular, dialectal variants

such as Levantine Arabic (apc) and Tunisian Ara

bic (aeb) are severely underresourced in terms of

Automatic Speech Recognition (ASR) and Neural

Machine Translation (NMT) datasets.

These limitations present a major bottleneck in

the development of highquality ST systems and

many works in previous IWSLT evaluations (Yan

et al., 2022; Anastasopoulos et al., 2022; Agar

wal et al., 2023; Hussein et al., 2023; Boito et al.,

2022) explored various transfer techniques on the

acoustic level by finetuning pretrained speech en

coders such as the Wav2vec 2.0 (Baevski et al.,

2020) and HuBERT (Hsu et al., 2021) for ASR,

or neural models such as NLLB200 (Costajussà

et al., 2022) and mBART (Liu et al., 2020) for

NMT. The use of Modern Standard Arabic (MSA)

datasets like MGB2 for dialect transfer (Costa

jussà et al., 2022; Tsiamas et al., 2022) has also

been proven effective.

In recent years, more sophisticated ASR archi

tectures such as the Zipformer (Yao et al., 2023)

emerged as a more effective alternative to other

transformerbased architectures like Conformers

(Gulati et al., 2020) and Branchformer (Peng et al.,

2022). In NLP, large language models (LLMs)

(Achiam et al., 2023; Brown et al., 2020; Touvron

et al., 2023; Le Scao et al., 2023; Jiang et al., 2023)

have demonstrated strong performance across var

ious tasks in mainstream languages, yet a notable

constraint persists in their limited support for low

resource languages and dialects.

Building upon these novelties, we propose an

approach that leverages pretrained models and

multidialectal resources for dialectal Arabic ST.

We adopt a cascade ST system comprising two

ASR systems (TDNNF and Zipformer) and two

NMT modules derived from pretrained models

(NLLB200 and CommandR). Additionally, we

develop a generic text normalization methodology

for Dialectal Arabic and integrate crowdsourced

NMT data and multidialectal datasets like PADIC

(Meftouh et al., 2015) to supplement the limited

training data. The outcomes for Levantine Arabic

(apc) are reported on the IWSLT2024 valid and

test2024 sets, while the results for TunisianArabic

(aeb) are provided for both validation and test set

test1 and dev published in IWSLT2022.
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2 Methods

2.1 Text normalization

Due to the lack of standardized conventions across

various dialects, it is necessary to design text nor

malization procedures in order to mitigate ambi

guity and facilitate dialectal data exploitation. In

this section, we detail the approach used to normal

ize transcripts and texts written in Dialectal Ara

bic. While our research primarily targets Levan

tineArabic (apc) and TunisianArabic (aeb), we opt

for the term "Dialectal Arabic" to denote a broader

range of dialects. Our text normalization process

includes characterlevel and wordlevel normaliza

tion to ensure consistency and accuracy in repre

senting linguistic content.

2.1.1 Character normalization

Multiple characterlevel normalizations were ex

plored in previous work on the IWSLT22 speech

translation task for Tunisian Arabic. Indeed, a

good improvement in ASR and ST performance

was reported in (Yan et al., 2022) after remov

ing diacritics and single character words, and ap

plyingAlif/Ya/TaMarbuta normalization. Despite

its reported efficiency, theAlif/Ya/TaMarbuta nor

malization can alter certain words, changing their

meaning; eg. the words ىلع ("on" in English) and

يلع ("Ali" in English) become one and the same

once this normalization is applied. For this specific

reason, this normalization will not be used in our

work, and more effort is invested into wordlevel

text normalization in order to fix the most frequent

Alif/Ya/TaMarbuta related problems. Moreover,

it's important to note that using the "single charac

ter words" filtering strategy can be harmful in the

case of LevantineArabic, which has the proclitic ,ع

a very frequent word, corresponding to a reduced

form of the ىلع preposition (meaning "to" or "on").

Removing such words can result in the loss of valu

able grammatical information and impact the per

formance of NMT models.

In our work, we start by applying a similar, but

less aggressive normalization, which consists of

converting all eastern Arabic numerals to western

Arabic numerals and removing all diacritics. Then,

we normalize rare characters like the nonArabic

letter ژ and other special characters representing

loan sounds such as پ for /p/, ڤ or ڥ for /v/,

and گ or ڨ for /g/. It is important to emphasize

the fact that the characterڤ typically denotes the

sound /g/ inTunisian andAlgerian dialects (usually

normalized as (ق but often represents /v/ in other

dialects (usually normalized asف).

Table 1 summarizes the character normalization

rules used in our experiments.

Dialect Normalizations

All dialects ژ => ر پ/ ب<=

Levantine Arabic ڤ orڥ ف<=

Tunisian Arabic ڤ => ق ڥ/ ف<=

Table 1: Characters normalization rules for different

Arabic dialects.

2.1.2 Word normalization

The second step in text normalization operates at

the word level and aims at fixing orthographic

inconsistencies (words written in different forms)

and limiting transcription errors (misspellings or

typos).

Long words normalization: While analyzing

the IWSLT "aeb" dataset, we noted a significant

prevalence of lengthy words (more than 180 oc

currences), often representing compound terms in

Arabic or French. In most instances, these elon

gated words encapsulate entire French sentences

and should be normalized to improve readabil

ity and reduce the amount of OutofVocabulary

(OOV) words. These words are segmented into

constituent parts based on their semantic meaning

in French as shown in Table 2.

A similar phenomenon can also be observed in

Arabic words, corresponding, in most cases, to

combinedwords. Asimplemethod to identify such

words is to search for final characters midword,

namely the "Alif maksura" (ى) and "Ta marbouta"

.(ة) One example is the word " مكوذاهةعامجلا ", which is

normalized as " مكوذاهةعامجلا ". This criterion can also

reveal spelling mistakes in frequent words like the

misspelled word حىحص (meaning "correct" or "true")

which should be normalized as حيحص .

Orthographic variant normalization:

In Dialectal Arabic transcripts, a single word

may be written in various forms due to multi

ple factors. This variability often arises from the

phonetic representation of words, where charac

ters with similar pronunciations can be used inter

changeably (such as "alif" and "alif maksura" at the

end of a word). This phenomenon is also prevalent

in foreign words where a word like "Google" can

be written as لقوق , لغوغ or لجوج depending on the

country or the region, which reflects different in

terpretations of the loan sound /g/. French words

containing nasal vowels (like /ɑ̃/, /ɔ/̃, /œ̃/ and /ɛ/̃)
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Example 1 Example 2

Original text ناومينسيلبيننومنارتنا نويسنوتأيفابانلأ

Corresponding French entraînement ni plus ni moins elle n'a pas fait attention

Normalized text ناومينسيلبيننومنارتنا نويسنوتأيفابانلأ

Table 2: Two examples of elongated words corresponding to French phrases in the "aeb" IWSLT transcripts (before

and after normalization).

can also be written in different ways; the most fre

quent ones being ناـ /aːn/ or نوـ /wn/.

To assist in our normalization efforts, we use

a combination of orthographic and semantic sim

ilarities at the word level, by designing a weighted

Levenshtein distance and using it in tandem with a

Word2Vec model.

Weighted Levenshtein distance: In a recent

work (Hajbi et al., 2024), a method for convert

ing Moroccan Arabizi text to MSA based on a

weighted Levenshtein distance was proposed. In

spired by this idea, we develop a weighted Lev

enshtein distance tailored specifically for Dialectal

Arabic. This adjusted metric employs a higher cost

when the insertion, removal, or substitution of a

character is likely to result in the creation of a new

word, particularly when consonants are altered in a

word. Conversely, it assigns a lower cost when the

insertion, removal, or substitution is attributable to

an orthographic variant of the same word.

1. Initialization: All insertion, deletion and

substitution costs (costI(.), costD(.) and

costS(., .) respectively) are initialized to 1.
2. Weights modification:

The costs are then modified as follows:





costI(vi) = costD(vi) = 0.1, ∀vi ∈ SV

costI(ci) = costD(ci) = 1.5, ∀ci ∈ C

costS(ci, cj) = 1.5,∀(ci, cj) ∈ C, i 6= j
costS(ci, cj) = 0.3, ∀(ci, cj) ∈ C1, i 6= j
costS(ai, aj) = 0.3,∀(ai, aj) ∈ A, i 6= j

Where:

• SV = ,ي,و} ;{ا semivowels + Alif.
• A = ,ا} ,أ ,إ ,آ ;{ٱ different variants of Alif.
• C = allArabic letters, excluding semivowels

(SV) and variants of Alif (A).

• C1 = ,(ص,س)} ,(ط,ت) ,د) ,(ذ ;{(ظ,ض)
pairs of consonants used interchangeably in

certain Arabic dialects (mainly emphatic con

sonants (Habash et al., 2012)).

It's important to mention that these cost values

are determined empirically and can be further op

timized to suit specific dialects.

By using this modified metric, the similarity be

tween words such as غنيكرب and غنكراب is diminished

(two variants of the word "parking"), while the dis

tance between غنيكراب and غنيكرام is increased ("park

ing" vs. "marking").

In practice, relying solely on the weighted Lev

enshtein distance proves insufficient for effec

tively identifying orthographic variants of a word.

This limitation arises primarily from the large size

of the search space requiring the computation of

distances between all pairs of words for each di

alect, alongside the laborintensive manual filter

ing requisite for determining the appropriate nor

malizations.

To address this challenge, we augment this

string distancebased approach with a "semantic"

proxy. This supplementary technique leverages

a Word2Vec model to identify semantically simi

lar words, thereby reducing the size of the search

space prior to the application of string distance

computation.

Word2vecmodel: Word2vec is a group of mod

els which aim to represent words in a continuous

vector space where words with similar meanings or

contexts are closer to each other. This is achieved

by learning representations of words based on the

context in which they appear in a large corpus of

text. Word2Vec identifies similar words by com

puting the cosine similarity (or other distance met

rics) between their corresponding vectors. This

model can either be implemented as a Continuous

Bag of Words (CBOW) (Mikolov et al., 2013a)

where a word is predicted given its context, or as

a Skipgram model (Mikolov et al., 2013b) where

the context is predicted given a word. In our work,

we use a CBOW model with a 100dimensional

word embeddings and a window size of 5. The sim

ilarity between the embeddings is computed as the

cosine similarity (range = [−1, 1]).
The following algorithm is used to find the or

thographic variants of each word:

For each word w in the vocabulary V:

1. Use the Word2vec model to find the 50 clos
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est words vk to w using the cosine distance

between their embeddings embvk :
{vk | cos(embw, embvk) > 0.3, ∀vk ∈ V}

2. Compute the weighted Levenshtein distance

levW and keep the words vk close tow: {vk |
levW (w, vk) < 3}

Following this process, the largest clusters of

words are identified and manually checked. These

are some examples of apc/aeb clusters:

• The Tunisian word for "anyway": ،وليساح

وليصاح،ولىصاح،هليصاح،ولوصاح،لويساح،ولصاح .

• The Syrian word for "the computer":

رتويبمكلا،ريتويبوكـلا .

• The French word "normalement": ،نلملمرن،

،نلمامرون،نومامرون،نولمومروننومللامرن،نومامرن

نولمامرون،نولمامامرون،ناملمرون،نمولمرون،نوملمرن .

2.2 ASR

Different architectures were tested in previous

IWSLT evaluations for Dialectal Arabic and most

of them opted for endtoend architectures such

as a Conformer encoder + CTC (Yan et al., 2022;

Boito et al., 2022), a Branchformer encoder + a

Transformer decoder (Hussein et al., 2023) show

ing the superiority of transformerbased architec

tures for this task. In recent years, the Zipformer

architecture (Yao et al., 2023) was introduced as

a more effective endtoend model where, differ

ently from Conformer that processes the sequence

at a fixed frame rate of 25Hz, models use a U

Netlike structure and learn temporal representa

tion at different resolutions in a more efficient way.

The Zipformer architecture achieves stateofthe

art performance while capturing longrange depen

dencies and contextual information.

In crafting our ASR system, we prioritized com

pactness and speed in the selection of architectures.

The ASR module developed in this work and used

for the speech translation (ST) task comprises two

distinct systems (TDNNF and Zipformer), whose

outputs are combined using the Recognizer Output

Voting Error Reduction (ROVER) algorithm (Fis

cus, 1997) for enhanced performance. Combining

a TDNNF model and an endtoend model like

Zipformer can be a powerful strategy to leverage

the strengths of both approaches and achieve im

provedASR performance. The TDNNFmodel ex

cels in its modular design, allowing for finetuning

of each component independently while Zipform

ers streamline theASR pipeline by implicitly learn

ing relevant features from raw data and capturing

longrange dependencies more effectively. More

over, this system combination can mitigate some

known limits of endtoend architectures, such as

high deletion errors, especially when dealing with

long utterances (Chiu et al., 2021; Fox et al., 2024).

2.3 ST

We classify the systems we have experimented

with based on their specificity into two categories:

MTonly and promptdriven LLMs.

2.3.1 MTonly

We experimented with multiple encoderdecoder

Transformer models (see Section 3.3).

2.3.2 Prompt driven LLMs

Context Traditional MT models in the majority

operate only on sentence level, without regard for

a larger surrounding context. LLMs however are

usually trained on longer chunks of text and can

innately use the information in the context.

A simple way to translate a whole conversation

using an LLM would be to use a prompt along the

lines ``Translate the following conversation into

English: conversation"
One practical problem with this approach is that

the task evaluation is still sentencelevel, mean

ing we need to keep the same sentence boundaries

across source and translated conversations. In our

experience, this was difficult to achieve reliably

with all the LLMs we have experimented with.

There are multiple possible approaches to obtain

the same segmentation as in the input:

• Sentence splitter  Unreliable and introduces

another tool into the pipeline

• Asking the model to keep the same number of

lines: only works for documents with a small

number of lines and even then, the model still

moves the content across sentence boundaries

• Using separator token, e.g. [s] in the input to
separate sentences and asking the model to

keep it in the corresponding position in the

translation  similar issues as above

• Only translating one sentence at a time, but

providing the whole context (source docu

ment and previously translated prefix) in the

prompt

We have chosen to use the last option based

on the experimental results. Our final prompt for

contextaware NMT is shown in Listing 1.

2.4 Finetuning

We finetune some of the models on datasets de

scribed in Section 3.1. For traditional MT mod
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We need to t r a n s l a t e a s i n g l e l i n e from conversat ion in Tunisian Arabic into Engl ish .
This i s the conversat ion : { src_context }
The s t a r t o f the conversat ion i s a lready t rans l a t ed into Engl ish : {prev_context}
Translate the f o l l ow ing l i n e from { src_lang } to {tgt_lang } .
Be very l i t e r a l , and only t r a n s l a t e the content o f the l ine , do not add any
explanat ions : { s rc_l ine }

Listing 1: The final contextaware prompt we used in our submission.

els, we finetune all the weights. For LLMs, we

use QLoRA (Dettmers et al., 2023). The hyperpa

rameters are described in Section 3.3.

2.5 Reranking

We rerank the outputs of multiple systems us

ing Minimum Bayes Risk (MBR) decoding (Goel

and Byrne, 2000; Kumar and Byrne, 2004; Fre

itag et al., 2021), with COMET22DA (Rei et al.,

2022) as the objective metric. MBR allows for

the use of referencebased metrics for reranking

even in cases where the reference is unavailable,

by instead using the initial translation candidates

as pseudoreferences. For the final submission, we

used a method introduced by Jon and Bojar (2023),

which combines MBR decoding with a genetic al

gorithm to combine and mutate the translation can

didates to create better quality translations.

3 Experiments

This section describes our experimental settings,

used data and results.

3.1 Data

In this subsection, we list the datasets we used for

training and evaluating our systems.

3.1.1 ASR data

Table 3 summarizes the audio data used to build

ourASRmodels. To improve the robustness of our

ASR system, these data are augmented using speed

perturbation, additive noise and reverberation.

3.1.2 NMT data

Table 4 summarizes the textual data used to train

the MT models and finetune the LLMs.

Constrained datasets: IWSLT22

(LDC2022E01) consists of "aeb" speech, ref

erence transcript and eng translations, containing

202k sentence pairs. The UFAL parallel dataset

(Krubiński et al., 2023) contains multilingual

parallel sentences (including "eng", "arb" and

"apc").

Dataset Dur.

Public supervised data

GALE (BN/BC) 2800h

Tunisian Arabic (CTS) / IWSLT22 160h

Moroccan Arabic (CTS) / Appen 1 30h

Levantine Arabic (CTS) / LDC 2 250h

Internal supervised data

Levantine Arabic (CTS) 365h

Egyptian Arabic (CTS) 135h

Algerian Arabic (CTS) 300h

Tunisian Arabic (Youtube) 20h

Moroccan Arabic (Youtube) 20h

Unsupervised data

Tunisian Arabic (Radio) 150h

Total 4230h

Table 3: List of datasets used to train the ASR module.

Dataset Dialect(s) # sents.

UFAL arb, apc 120k

LDC2012T093 arz, apc 176.1k

IWSLT224 aeb 202.4k

PADICENG
arb, aeb, arq,

apc, ary
44,8k

MADARENG 25 cities 12k

Interviews apc 4.8k

Global Voices arb 63k

Crowdsourced apc 9.5k

Table 4: Datasets used for NMT finetuning.

Crowdsourced data: We collaborate with our

ALADAN partner, Crowdee5, a microtask crowd

sourcing platform, to construct a parallel dataset

for Levantine Arabic (apc) to English (eng) NMT.

To ensure the high quality of the dataset, we de

sign a linguistic assessment test consisting of 40

questions in Levantine Arabic. These questions

cover various aspects, including Arabic grammar

and multiplechoice translation exercises between

"apc" and "eng".

In these tasks, transcripts from our internal Lev

antine Arabic CTS dataset (mentioned in Table 3)

dataset are used as input, and the resulting dataset

5Crowdee—https://www.crowdee.de/
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contains 9.5k parallel sentences.

PADICENG: PADIC (Meftouh et al., 2015)

is a multidialect dataset containing 6400 paral

lel sentences encompassing six distinct dialects:

two Algerian variants, along with Palestinian, Syr

ian, Tunisian, and MoroccanArabic, in addition to

MSA.We translated the MSA side into English us

ing the NLLB1.3B model.

MADARENG: MADAR (Bouamor et al.,

2018) is a 25waymultiparallel dataset collected in

25 Arabicspeaking cities. We also translated the

MSA side into English and paired the translation

with source sides from cities located in Levantine

or Tunisian Arabicspeaking regions.

Interviews: We scraped a website containing

interviews in English with refugees and their ex

perience with the integration in their new coun

tries6, resulting in 4.8k collected sentences. We

translated the text into "apc" using the NLLB1.3B

model and used the resulting dataset as a backtrans

lation finetuning data. We have selected this web

site based on the domain similarity with the valida

tion data.

LDC2012T09 contains dataset parallel sen

tences translated from Egyptian Arabic (arz),

North LevantineArabic (apc) and South Levantine

Arabic (ajp) to English (eng). It was developed by

Raytheon BBN, LDC, and Sakhr Software and pro

vided to our project consortium for the purposes of

the shared task free of charge by LDC.

GlobalVoices dataset was collected by the CAS

MACAT project. TheArabicEnglish part consists

of 63k parallel sentences.

Apcvalid is provided by the organizers.7

3.2 ASR

3.2.1 ASR models

(A)TDNNF:The first system, is based on the Fac

torized TimeDelay Neural Network (TDNNF) ar

chitecture as outlined in (Povey et al., 2018). This

model consists of 15 layers with approximately 28

million parameters. The ReLU layer dimension is

set to 1920, with linear bottlenecks of dimensions

{320, 240}. This acoustic model is coupled with
an ngram language model.

(B) Zipformer: The second system adopts an

EndtoEnd architecture utilizing the Zipformer de

sign, andmore specifically the "ZipformerM" con

figuration described in (Yao et al., 2023).

6https://socialscienceworks.org
7https://github.com/ufal/IWSLT2024_

Levantine_Arabic_data

(C) Zipformer+TDNNF: The output of the

two developed ASR systems (A) and (B) are com

bined using the ROVER algorithm.

3.2.2 Training procedure

First, we train generic models (TDNNF and Zip

former) using all available data to take advantage

of the acoustic and linguistic similarities between

different Arabic dialects. These pretrained multi

dialect models are then finetuned using "apc" (or

"aeb") only data.

The TDNNFmodel is pretrained for 10 epochs

(on all data) using lr=1e3, then finetuned us

ing LFMMIbased transfer learning (Ghahremani

et al., 2017) for 8 epochs using lr=2e5, a primary

lrfactor of 0.1 and a lrfactor of 1.0 for the last

layer. The Zipformer model is pretrained for 80

epochs (on all data) using the lr=4e3 then ran 50

epochs for finetuning by using dialectonly data

and lr=5e3.

3.2.3 Results

Table 5 summarizes the WERs achieved by our

ASR systems after applying the normalization pro

cedure detailed in Section 2.1. This normaliza

tion significantly improved WERs for "apc" and

"aeb" by 10% and 18%, respectively. The com

bined model achieved even greater improvements,

demonstrating the complementarity of the two

models and outperforming all WERs reported in

(Agarwal et al., 2023) for "aeb".

apc aeb

apcvalid dev test1

(A) TDNNF 26.5 39.9 40.8

(B) Zipformer 25.8 33.7 34.3

(C) Zipformer

+TDNNF
23.6 32.7 33.1

Table 5: WER (%) of ASR models on IWSLT24 Lev

antine Arabic (apc) validation and IWLST22 Tunisian

Arabic (aeb) dev/test sets.

3.3 ST

We compare lowercased BLEU (Papineni et al.,

2002), ChrF (Popović, 2015) and COMET22DA

(Rei et al., 2022) scores of multiple systems on

apcvalid, both on human transcriptions and in cas

caded setting with our ASR systems.

3.3.1 Baselines

We have compared multiple opensource MTmod

els (Costajussà et al., 2022; Kudugunta et al.,

2023) and LLMs (Mesnard et al., 2024; Jiang
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Type Model Human ASR

BLEU chrF COMET BLEU chrF COMET

MT

eTranslation 15.9 41 0.615 14.1 38.9 0.595
GoogleTranslate 29.9 55.7 0.780 26.3 51.6 0.747

MADLAD10B 18.4 42.4 0.711 15.9 39.0 0.678
NLLB2001.3B 21.1 47.5 0.739 18.7 44.6 0.716
NLLB200600M 20.7 47.2 0.745 18.7 44.1 0.715
NLLB2003.3B 21.1 47.4 0.728 18.1 43.9 0.700

OpusMT 10.5 36.5 0.595 10.1 35.7 0.579

LLM

Jais13B 21.9 45.5 0.755
Bloomz 13.9 36.2 0.703
1shot 15.1 37.5 0.716

Aya101 16.1 42.3 0.711
1shot 17.6 42.9 0.714
ALMA 7.1 32.0 0.587
1shot 7.8 30.3 0.593
Mistral 8.5 35.4 0.620
1shot 8.1 36.9 0.608

Gemma 6.7 31.8 0.563
1shot 6.8 27.7 0.561

CommandR full+context 29.5 54.1 0.805

CommandR 4bit 24.3 49.8 0.778 20.7 46.2 0.737
1shot 25.6 50.4 0.785 21.7 46.6 0.749
context 26.9 51.9 0.793 22.9 47.8 0.765

1shot + context 26.1 51.7 0.797 24.2 49.0 0.771

Table 6: Baseline models for ST. The first row displays the origin of the transcribed source file: Human are the

transcriptions provided by the task organizers, ASR are the outputs of our Zipformer+TDNNFASRmodel. Missing

values for +context in LLMs means that the given model was not able to provide the translation in the linebyline

format necessary for the evaluation. We did not evaluate most of the LLMs on the ASR transcriptions, since we

already ruled these models out from the further experiments.

et al., 2023; Üstün et al., 2024; Sengupta et al.,

2023; Muennighoff et al., 2022) in both sentence

tosentence and contextaware translation. In the

promptdriven LLMs, we used a simple prompt in

the form ``Translate the following sentence from

Levantine Arabic to English: {source_sentence}''

for sentencetosentence translation.

We evaluated the contextaware approach only

with the LLMs and we used the prompt shown in

Listing 1. We sample with temperature t = 0.2
based on preliminary experiments for the decod

ing. We compare 0shot and 1shot scenarios, with

a short example taken directly from the valid set, so

the model sees one short excerpt from the valida

tion set with the correct translation.

The results are shown in Table 6. We see that the

models vary greatly, with the best scores obtained

by the commercial engine in the case of sentence

level, traditional MT models, and CommandR in

the case of LLMs. The only LLM that responded

well to our contextaware prompt was Command

R, for the other models, the output was not usable.

3.3.2 Finetuning

We selected one model from each category (MT,

LLM): NLLB and CommandR, due to their best

scores and good instructionfollowing capabilities

in the case of the latter. We finetuned them on MT

datasets listed in Section 3.1. The results on apc

valid are shown in Table 7.

For CommandR finetuning, we used the 4bit

quantized model (due to hardware limitations) and

QLoRA with r values of 8, 16, 32 (at higher val
ues we ran into memory issues), α equal to either

r/2, r or 2r and learning rates set to either 1e− 4,
5e − 5 or 1e − 5. We did not see significant dif

ferences inmetrics scores between these configura

tions. We ran the finetuning for 5000 updates with

a batch size of 48, on a single A100 80GB GPU.

Even though the number of updates only covers

about 15% of the whole finetuning dataset, we did

not see any improvements from continued training.

We also experimented with multiple decoding

algorithms, namely sampling with temperature

(Hinton et al., 2015; Ackley et al., 1985), con

trastive search (Su and Collier, 2022; Su et al.,

2022), locally typical sampling (Meister et al.,

2023), and beam search (Graves, 2012). We did

not find any significantly better configuration than

sampling with t = 0.2.
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Human ASR

# Model BLEU chrF COMET BLEU chrF COMET

1 NLLB1.3B 21.1 47.5 0.739 18.7 44.6 0.716
2 +UFALAPC 21.4 44.4 0.723 17.7 40.5 0.686
3 +IWSLT22 25.1 52.2 0.741 21.3 47.9 0.702
4 +3transcribed 23.3 50.1 0.746 19.2 46.1 0.710
5 +LDC2012T09 27.8 53.6 0.764 23.8 49.8 0.725
6 +Interviews 21.8 49.9 0.740 19.2 46.8 0.707
7 +CrowdSourced 27.4 53.2 0.759 24 49.3 0.722
8 +GlobVoic 21.8 48.2 0.746 19.7 45.2 0.716
9 +MADARMT 19.5 44.1 0.734 17.3 41.2 0.701
10 +PADICENG 26.6 52.7 0.757 23.3 49.1 0.718
11 +2+3+4+5+10    29.1 53.1 0.753
12 +3+4+5+6+10 30.1 56 0.777 26.4 52 0.737
13 +3+4+5+6+7+10* 30.6 56.2 0.780 27 52.2 0.742

14 CommandR 4bit 26.9 51.9 0.799 22.4 50.2 0.743
15 +3+4+5+6+10 34.4 58.1 0.805 30 53.4 0.771
16 +3+4+5+6+7+10* 33.8 57.9 0.806 30.1 53.4 0.768
17 15+MBR 34.5 58.4 0.812 31.1 54.6 0.781
18 15+MBRGA    31.5 55 0.782

Table 7: Fintuning of NLLB1.3B and CommandR4bit models. Models marked with asterisk were trained after

the end of the shared task and are not a part of the submission. The first row displays the origin of the tran

scribed source file: Human are the transcriptions provided by the task organizers, ASR are the outputs of our

Zipformer+TDNNFASR model. Rows 18, 15, and 11 show our primary, first contrastive, and second contrastive

submissions, respectively.

3.4 Final submission

Our primary submission consists of 26 best val

idation BLEU checkpoints from the finetuned

CommandR model from row 15, combined us

ing MBR decoding and a genetic algorithm (Jon

and Bojar, 2023; Jon et al., 2023; row 18 in Ta

ble 7). We did not carry out the MBRGA combin

ing for the translations of the reference human tran

scriptions due to the computational requirements

of the process. Our first contrastive submission is

the translation from the single best LLM system

we trained before the end of the competition (row

15). The second contrastive submission is the best

NLLBmodel trained before the deadline, shown in

row 11.

3.5 Conclusion

In this paper, we introduced a generic data nor

malization method for dialectal Arabic text us

ing a modified Levenshtein distance metric and

Word2vec word embeddings, improving ASR per

formance by up to 18%. We demonstrated the ben

efits of multidialectal modeling and combining

models, achieving WERs of 23.6 on the "apc" val

idation set, 32.7 on the "aeb" dev set, and 33.1 on

the "aeb" test1 set. In the MT part, we compared

various MT models and LLMs, highlighting the

superior performance of LLMs due to their larger

context windows. By gathering additional training

datasets, we demonstrated the effectiveness of tra

ditional finetuning for NMT models and QLoRA

finetuning for LLMs. Combining multiple fine

tuned models yielded a BLEU score of 31.5 on the

"apc" validation set.

Acknowledgements

This work was funded by the the European

Defence Fund (EDF) 2021 project ALADAN

(Aibased LAnguage technology development

framework for Defence ApplicatioNs; Grant ID:

101102545). Views and opinions expressed are

however those of the author(s) only and do not

necessarily reflect those of the European Union or

the European Commission. Neither the European

Union nor the granting authority can be held re

sponsible for them. We would like to express our

gratitude to LDC for kindly providing the data used

in this study.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt4 technical re
port. arXiv preprint arXiv:2303.08774.

David H. Ackley, Geoffrey E. Hinton, and Terrence J.

247



Sejnowski. 1985. A learning algorithm for boltz
mann machines. Cogn. Sci., 9:147169.

Milind Agarwal, Sweta Agarwal, Antonios Anasta
sopoulos, Luisa Bentivogli, Ondřej Bojar, Claudia
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Abstract

In this paper, we propose a two-phase train-
ing approach where pre-trained large language
models are continually pre-trained on paral-
lel data and then supervised fine-tuned with
a small amount of high-quality parallel data.
To investigate the effectiveness of our proposed
approach, we conducted continual pre-training
with a 3.8B-parameter model and parallel data
across eight different formats. We evaluate
these methods on thirteen test sets for Japanese-
to-English and English-to-Japanese translation.
The results demonstrate that when utilizing par-
allel data in continual pre-training, it is essen-
tial to alternate between source and target sen-
tences. Additionally, we demonstrated that the
translation accuracy improves only for transla-
tion directions where the order of source and
target sentences aligns between continual pre-
training data and inference. In addition, we
demonstrate that the LLM-based translation
model is more robust in translating spoken lan-
guage and achieves higher accuracy with less
training data compared to supervised encoder-
decoder models. We also show that the highest
accuracy is achieved when the data for contin-
ual pre-training consists of interleaved source
and target sentences and when tags are added
to the source sentences.

1 Introduction

In machine translation, transformer encoder-
decoder models (Vaswani et al., 2017), such as
NLLB-200 (NLLB Team et al., 2022), mT5 (Xue
et al., 2021), and mBART (Liu et al., 2020) pre-
dominate. The emergence of pre-trained Large
Language Models (LLMs) composed solely of
the transformer decoder, such as GPT series
(Brown et al., 2020; OpenAI, 2023), has prompted
the development of pre-trained LLMs, including,
PaLM (Chowdhery et al., 2022), and LLaMA (Tou-
vron et al., 2023). When translating with these
LLMs, it is common to use in-context few-shot

learning. According to Hendy et al. (2023), GPT-3
demonstrates comparable or superior accuracy to
WMT-best for high-resource languages. Further-
more, as reported by Kocmi et al. (2023), GPT-
4’s 5-shot surpasses WMT-best’s accuracy in most
translation directions. However, Zhu et al. (2024)
noted that in 8-shot scenarios, relatively small-scale
LLMs (e.g., 7B parameters) exhibit lower accuracy
than supervised encoder-decoder models. There-
fore, it is necessary to investigate methods capable
of achieving translation accuracy equivalent to ex-
isting translation models with relatively small-scale
LLMs.

On the other hand, in models such as BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019),
which consist solely of transformer encoders, the
effectiveness of continual pre-training, where pre-
trained models are further trained on task-specific
data such as classification to improve the accuracy
of the task, has been reported (Jin et al., 2022; Ke
et al., 2022). In the context of LLMs, continual
pre-training has been reported to transfer models
primarily pre-trained in English, such as LLaMA,
to other languages (Cui et al., 2023). Additionally,
when building LLM-based translation models, the
effectiveness of conducting continual pre-training
with either monolingual data, parallel data, or both,
followed by supervised fine-tuning, has been re-
ported, mainly when basing the model on primarily
English pre-trained models such as LLaMA-2 (Xu
et al., 2024a; Alves et al., 2024; Guo et al., 2024).

Although those recent publicaion in the context
of LLMs are closely related to our study, this pa-
per presents research conducted independently of
those latest LLM-based translation studies such as
Xu et al. (2024a); Alves et al. (2024); Guo et al.
(2024). This paper proposes a two-phase training
approach: continual pre-training on parallel data
crawled from the web and supervised fine-tuning
using a small amount of high-quality parallel data
created by professional translators. To comprehen-
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sively investigate methods for improving transla-
tion accuracy through continual pre-training, we
conduct continual pre-training across eight data
formats for Japanese-to-English (Ja ⇒ En) and
English-to-Japanese (En⇒ Ja) translations using a
3.8B-parameter LLM. We evaluate the translation
accuracy on 13 test sets. Our paper’s novelty com-
pared to Xu et al. (2024a); Alves et al. (2024); Guo
et al. (2024) lies in the following aspects.

• When conducting continual pre-training on
data where source and target sentences appear
alternately, the direction of language in which
accuracy improves varies depending on the
order of source and target sentences.

• LLM-based translation model is more robust
in translating spoken language and achieves
higher accuracy with less training data com-
pared to supervised encoder-decoder models.

• When indicating the translation direction with
tags (“<2en>” etc.) on data for continual
pre-training, higher accuracy is achieved com-
pared to simply concatenating source and tar-
get sentences.

2 Related Work

Parallel Data in Pre-Training from Scratch
When pre-training LLMs from scratch, it is ex-
pected to use monolingual data. However, some
reports incorporating bilingual data, such as paral-
lel data, into the pre-training dataset can enhance
the accuracy of downstream tasks. Briakou et al.
(2023) show that incorporating parallel data into
pre-training 1B and 8B parameter LLMs enhances
translation accuracy in zero- and five-shot. Sepa-
rate studies further show that including parallel data
in the pre-training of the encoder-decoder model
also improved performance in downstream multi-
lingual and cross-lingual tasks (Kale et al., 2021;
Schioppa et al., 2023).

LLMs-Based Translation Models Zhang et al.
(2023) demonstrated that fine-tuning 15 multilin-
gual LLMs using QLoRA for French-to-English
translation surpasses the accuracy of both in-
context few-shot learning and models trained from
scratch. Conversely, Xu et al. (2024a) demon-
strated that models predominantly pre-trained on
English data, such as LLaMA-2, suffer reduced
translation accuracy when translating into non-
English target languages. Addressing this issue,

they introduced ALMA, a method that employs
fine-tuning monolingual data in the first stage, fol-
lowed by supervised fine-tuning with a small quan-
tity of high-quality parallel data in the second stage.
Furthermore, there exists a report on improving
translation accuracy by employing Contrastive Pref-
erence Optimization (CPO) for the second stage of
supervised fine-tuning in ALMA (Xu et al., 2024b).
In addition, the effectiveness of utilizing monolin-
gual and parallel data in the first stage has been
reported (Alves et al., 2024; Guo et al., 2024).

LLM-based translation models have only been
evaluated on test data from the WMT General Ma-
chine Translation Task (Kocmi et al., 2022, 2023)
and Flores-200 (NLLB Team et al., 2022). There-
fore, their effectiveness compared to conventional
supervised encoder-decoder models has not been
sufficiently validated across various types of data.
Additionally, the impact of continual pre-training
data on translation accuracy remains unclear. Our
study aims to address these two points.

3 Continual Pre-Training and Supervised
Fine-Tuning with Parallel Data

We introduce a two-phase training to enhance
the accuracy of translation of LLMs. In the
first phase, we perform continual pre-training us-
ing parallel data crawled from the web, such as
ParaCrawl (Bañón et al., 2020). Then, in the sec-
ond phase, we conduct supervised fine-tuning with
a small amount of high-quality parallel data. In
LLM fine-tuning, the importance of data quality
has been reported (Xu et al., 2024a; Zhou et al.,
2023). However, it has also been reported that
parallel data crawled from the web may have low
data quality (Thompson et al., 2024). Therefore,
we used data created by professional translators as
high-quality parallel data.

3.1 Continual Pre-Training

Continual pre-training involves training on data
where the source and target sentences ap-
pear alternately. Let the source sentences
be denoted as {x1, . . . , xn} and the target
sentences as {y1, . . . , yn}, creating a dataset
{x1, y1, . . . , xn, yn}. With the tokens of the cre-
ated dataset represented as z = {z1, z2, . . . , zm},
we train the model parameters θ to minimize the
following loss:

L1(θ) = −
∑

t

logP (zt|zt−c, . . . , zt−1; θ) (1)
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where c is the number of context lengths represent-
ing the maximum input length of LLMs. L1(θ) is
a standard causal language modeling loss, which
predicts the next word based on previous words
(Radford et al., 2018). Therefore, we train by ex-
tracting (zt−c, . . . , zt−1) from z in increments of c
tokens, such that the source and target sentences
alternate to predict the next word for each token.
Extracting c tokens may result in the input’s start
and end being in the middle of the source or target
sentence.

In pre-trained models such as LLaMA-2, primar-
ily pre-trained in English, it has been reported that
the effectiveness of utilizing monolingual data in
continual pre-training, in addition to parallel data,
is significant (Guo et al., 2024; Alves et al., 2024).
The rationale behind continual pre-training with
monolingual data is to acquire the generative ability
in languages other than English. Therefore, in mod-
els where pre-training with monolingual data has
been sufficiently conducted from scratch or where
continual pre-training with monolingual data has
been conducted, it is optional to conduct continual
pre-training with monolingual data.

3.2 Supervised Fine-Tuning
After continual pre-training, we perform supervised
fine-tuning with a small amount of high-quality
parallel data. Let the source sentence be denoted
by x, the target sentence corresponding to x by
y, and the prompt by I(x). We train the model
parameters to minimize the following loss:

L2(θ) = −
T∑

t=1

logP (yt|y<t, I (x) ; θ) (2)

where T represents the number of tokens in the tar-
get sentence, and yt is the t-th token of the target
sentence. While L2(θ) is also standard causal lan-
guage modeling loss, it computes the loss only for
the output of the target sentence (Xu et al., 2024a;
Zhang et al., 2024). Therefore, we combine the
prompt and target sentence (e.g., Translate “Good
morning” into Japanese: おはよう) and input it into
the model. The model predicts the next word for all
input words, including the prompt portion. How-
ever, this portion is not used during inference and
hence excluded from the loss.

4 Experiments

We conduct experiments on two NVIDIA RTX
A6000 GPUs. Due to severely limited com-

putational resources, we use a 3.8B parameters
LLM, rinna/bilingual-gpt-neox-4b (rinna-
4b)1, which is already pre-trained on Japanese and
English data, totaling 524B tokens, with 173B to-
kens in Japanese and 293B tokens in English. Since
rinna-4b has undergone sufficient pre-training from
scratch on monolingual data for both Japanese and
English, as stated in Section 3, we believe that
continual pre-training with monolingual data is un-
necessary. Given that the model we employ is pre-
trained on Japanese and English, we experiment
with Japanese-to-English and English-to-Japanese
translation tasks. All experiments utilizing rinna-4b
are conducted using the open-source huggingface
transformers library.2

4.1 Dataset
4.1.1 Continual Pre-Training
We utilize JParaCrawl v3.0 (Morishita et al., 2022)
as the web-based parallel data comprising 21.8M
parallel sentence pairs, the largest and newest
dataset of English-Japanese parallel data available.
From this dataset of 21.8M parallel sentence pairs,
we sample 20.8M sentence pairs using LEALLA-
large3 (Mao and Nakagawa, 2023) for train data.
Details on sampling are provided in Appendix A.
For dev data, we use the dev and test data from
WMT20 (Barrault et al., 2020) and the test data
from WMT21 (Akhbardeh et al., 2021).

4.1.2 Supervised Fine-Tuning
We utilize the dev and test data of WMT20 and
Flores-200 (NLLB Team et al., 2022), along with
the train data from KFTT (Neubig, 2011) as train
data, all created by professional translators. The
train data for KFTT utilized in experiments con-
sists of 10k instances randomly sampled from 440k
samples. The resulting train data comprise 15k
samples for both En⇒ Ja and Ja⇒ En. For dev
data, we utilize the WMT21 test data. We use the
prompts written in the following source language,
based on the report by Xu et al. (2024a).4

En⇒ Ja
Translate this from English to Japanese:
English: {source sentence}
Japanese:

1https://huggingface.co/rinna/
bilingual-gpt-neox-4b

2https://github.com/huggingface/transformers
3https://huggingface.co/setu4993/LEALLA-large
4The reason for writing prompts in the source sentence’s

language is that it is more natural to create translation prompts
in the source sentence’s language when translating.
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Ja⇒ En
これを日本語から英語に翻訳してください :
日本語 : {source sentence}
英語 :

4.1.3 Test Sets
We use the test sets employed by Morishita et al.
(2022) to evaluate translation accuracy. Since we
include the test data from WMT20 and WMT21 in
the train and dev data for continual pre-training and
supervised fine-tuning, we exclude these and add
the test data from WMT22. As a result, there are
13 test sets: 5 for the En⇒ Ja direction, 3 for the
Ja⇒ En direction, and 5 for both the En⇒ Ja and
En ⇒ Ja directions. For detailed information on
the test sets, please refer to Table 6 of Appendix D.

4.2 Models

4.2.1 Baseline Models
We establish two baseline models as described be-
low. The train data consists of the data described
in Section 4.1.1 and Section 4.1.2, and the dev data
is the WMT21 test data. Note that the data from
JParaCrawl v3.0 is created by randomly sampling
10.4M parallel sentences, which is 50% of the total
20.8M parallel sentences, to be used respectively
as the train data for En⇒ Ja and Ja⇒ En.

Transformer This model is a 1B-parameter
transformer trained from scratch. The model ar-
chitecture is based on mT5-large5, with two modi-
fications: reducing the vocab_size from 250,112 to
65,536, matching that of rinna-4b, and increasing
the feed-forward network dimension from 2,816 to
4,096. As a result, the model has 24 layers each
for the encoder and decoder, a model dimension
of 1,024, 16 attention heads, a feed-forward net-
work with GeGLU activation (Shazeer, 2020), and
a dropout (Srivastava et al., 2014) of 0.1. The to-
kenizer is newly created using the sentencepiece
library6 (Kudo and Richardson, 2018) with the sub-
word method set to unigram, character coverage to
0.9995, and byte-fallback enabled. Training is con-
ducted with a total batch size of 4,096 for 15 epochs
(38,160 steps), with validation every 1,000 steps,
and it is terminated if the validation loss does not
improve for three consecutive validations. We use
AdamW optimizer (Loshchilov and Hutter, 2019),
with β1 = 0.9, β2 = 0.98, ϵ = 1.0 × 10−8. We
set the weight decay and label smoothing (Szegedy

5https://huggingface.co/google/mt5-large
6https://github.com/google/sentencepiece

et al., 2016) to 0.1, and gradient clipping (Pascanu
et al., 2013) to 1.0. The peak learning rate is set
to 1.0 × 10−3, with a warmup ratio 0.1 and an
inverse square root scheduler applied. Addition-
ally, bfloat16, gradient checkpointing (Chen et al.,
2016), and the deepspeed7 (Rasley et al., 2020)
ZeRO stage 2 are applied during training. Training
is conducted on two NVIDIA RTX A6000 GPUs
with these settings, taking 17 days.

Direct-SFT Direct-SFT consists of the rinna-4b
directly supervised fine-tuning with parallel data,
using LoRA tuning (Hu et al., 2022). We con-
duct supervised fine-tuning of this model using
the prompts mentioned in Section 4.1.2. Further-
more, to approximate conditions for full-weight
tuning, we apply LoRA to the linear layers of self-
attention’s query, key, value, and output, as well
as the linear layers of the feed-forward network.
We set the rank of LoRA to 16, resulting in 25.9M
trainable parameters, which constitutes 0.68% of
the parameters in rinna-4b.

4.2.2 Source and Target Sentences Ordering
in Continual Pre-Training

We conduct continual pre-training with 4 patterns,
varying the order in which source and target sen-
tences. After continual pre-training with these 4
orders, we undergo supervised fine-tuning using
the data and prompts described in Section 4.1.2
with full fine-tuning and LoRA tuning.

Mono As stated in Section 3.1, instead of
alternating between source and target sen-
tences, the approach involves sequences such as
(x1, . . . , xn), (y1, . . . , yn), where only the source
or target sentences appear consecutively. Therefore,
either Japanese-only or English-only sentences ap-
pear consecutively.

En-Ja Concatenating a Japanese translation im-
mediately after each English sentence, making it
parallel data only in the En⇒ Ja.

Ja-En Concatenating an English translation im-
mediately after each Japanese sentence, making it
parallel data only in the Ja⇒ En.

Mix Randomly sampling 10.4M, which is 50%
from the total of 20.8M, from the En-Ja and Ja-En
without duplication.

7https://github.com/microsoft/DeepSpeed
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Baseline models Continual pre-training + Supervised fine-tuning

Mono En-Ja Ja-En Mix

Metrics Transformer Direct-SFT full LoRA full LoRA full LoRA full LoRA

BLEU
Avg. 13.9 12.2 6.3 5.9 15.4 15.5 7.3 7.2 14.7 14.9
# Sig. - 1 0 0 8 9 0 0 7 8

COMET
Avg. 79.0 79.6 75.6 74.8 83.5 83.3 76.9 76.8 82.9 82.9
# Sig. - 7 0 0 8 8 0 0 8 8

(a) En ⇒ Ja

Baseline models Continual pre-training + Supervised fine-tuning

Mono En-Ja Ja-En Mix

Metrics Transformer Direct-SFT full LoRA full LoRA full LoRA full LoRA

BLEU
Avg. 17.3 12.5 7.9 7.1 7.8 7.6 17.0 17.0 15.9 15.8
# Sig. - 0 0 0 0 0 0 0 0 0

COMET
Avg. 76.4 75.0 70.4 69.7 70.3 70.0 77.8 77.7 77.1 76.9
# Sig. - 0 0 0 0 0 7 6 5 5

(b) Ja ⇒ En

Table 1: Results of Baseline models and models continually pre-trained with four orders described in Section 4.2.2
then supervised fine-tuning. “Avg.” represents the average result across 12 test sets, “# Sig.” indicates the number of
test sets showing significant differences from Transformer (p < 0.05), and full represents full fine-tuning. Bold
numbers represent the highest scores in each line, and scores that surpass the Transformer are emphasized in
green .

4.3 Hyperparameters

4.3.1 Continual Pre-Training

We use the AdamW optimizer, with β1 =
0.9, β2 = 0.95, ϵ = 1.0×10−8. The context length
is 2048, the same as when pre-training rinna-4b
from scratch, and training is conducted for 1 epoch.
We perform validation every 100 training steps. We
use a cosine learning rate schedule with a warmup
ratio of 1% and a peak learning rate of 1.5× 10−4.
We use a weight decay of 0.1 and gradient clipping
of 1.0. We utilize two NVIDIA RTX A6000 GPUs,
processing 1 batch on each GPU with a gradient
accumulation step of 128, achieving an adequate
batch size 256. During training, bfloat16 precision,
gradient checkpointing, and deepspeed ZeRO stage
2 are employed. With these configurations, it takes
10 days.

4.3.2 Supervised Fine-tuning

We perform supervised fine-tuning on the model
that achieves the minimum validation loss in con-
tinual pre-training. We change the AdamW op-
timizer’s parameter used in Section 4.3.1 only
β2 = 0.95 to β2 = 0.999. Weight decay and gradi-
ent clipping are the same as Section 4.3.1. The peak

learning rate is set to 3.0×10−5 for full fine-tuning
and 2.0× 10−4 for LoRA tuning, with a warmup
ratio of 1% using an inverse square schedule. For
LoRA, we set r = 16, α = 32, and dropout to
0.05, applying to the linear layers of query, key,
and value in the multi-head attention, resulting
in approximately 6.4M trainable parameters cor-
responding to 0.17% of the rinna-4b’s parameters.
We conduct validation every 10% of the total train-
ing steps for Direct-SFT only, with 1 epoch and a
batch size of 256. For all other cases, validation is
performed every 100 training steps, with 5 epoch
and the batch size of 64.

4.3.3 Inference

All models use the one with the minimum vali-
dation loss for inference, applying bfloat16. The
Transformer, which has fewer parameters than the
rinna-4b, employs beam search with a beam size of
4 due to its smaller number of parameters. At the
same time, the rinna-4b-based models use greedy
decoding with the prompt described in Section ??
for inference.
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(a) En ⇒ Ja (b) Ja ⇒ En

Figure 1: Radar chart of COMET score. Blue line indicates the accuracy of the Transformer, while red line
represents the accuracy of the model continually pre-trained with Mix format followed by supervised fine-tuning
with full weight. Underlines indicate test sets with a significant difference compared to the Transformer (p < 0.05).

4.4 Metrics

We use BLEU8 (Papineni et al., 2002) and
COMET9 (Rei et al., 2022) as evaluation metrics.
We use Unbabel/wmt22-comet-da as COMET
model.

5 Results

5.1 The Impact of Source and Target
Sentences Order

Table 1 presents the results of baseline models com-
pared to models continually pre-trained with three
orders described in Section 4.2.2 and then super-
vised fine-tuning. All results of Table 1 can be
found in Table 7 and Table 8 of Appendix D. Direct-
SFT, which is directly fine-tuned, and Mono, which
was pre-trained with parallel data treated as mono-
lingual data, exhibit lower accuracy than the Trans-
former. On the other hand, continual pre-training
improves accuracy only in the translation direction
aligned with the parallel data. Therefore, continual
pre-training with data where source and target sen-
tences appear alternately is necessary to achieve
high accuracy. Despite data in both the En⇒ Ja
and Ja⇒ En translation directions, Mix exhibits
improved accuracy, even though the input data’s
translation direction is inconsistent. This result
suggests that LLMs can leverage the knowledge of
the translation direction matching the order of the
source and target sentences, and they can utilize the
knowledge acquired from parallel sentences mixed
in the training data.

8https://github.com/mjpost/sacrebleu
9https://github.com/Unbabel/COMET

5.2 Accuracy Comparison Across Test Sets
Figure 1 shows a radar chart of the COMET score
of a model in which the Transformer and rinna-4b
are continually pre-trained as a Mix, followed by
supervised fine-tuning with full weight. In particu-
lar, the LLM-based translation model significantly
outperforms the Transformer on the WMT19, 20
Robustness Task for the Reddit domain, and on the
TED (tst2015), IWSLT21 En-Ja Dev, and JESC for
the TED Talk and movie subtitles domains. This re-
sult suggests that the LLM-based translation model
is more robust than the traditional encoder-decoder
model regarding data containing spoken language.

6 Discussion

6.1 Data Format in Continual Pre-Training
Mixing data from two translation directions, as in
the case of Mix, improves accuracy for both trans-
lation directions, allowing one model to be used for
both. However, the accuracy is lower than contin-
ual pre-training with data from only one translation
direction. Therefore, we investigate methods to en-
hance translation accuracy by explicitly indicating
the translation direction for the data used in contin-
ual pre-training. Drawing inspiration from studies
incorporating parallel data during pre-training from
scratch, we conduct experiments on the following
four formats.

Interleaved Translations This format directly
concatenates the source and target sentences (Bri-
akou et al., 2023), identical to the Mix described in
Section 4.2.2.

Prefixed This format involves inserting the prefix
written in the source sentence’s language before the
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Interleaved Prefix Tagged JSON

Metrics Transformer full LoRA full LoRA full LoRA full LoRA

BLEU
Avg. 13.9 14.7 14.9 15.1 15.3 15.0 15.1 14.2 14.9
# Sig. - - - 4 4 6 2 1 1

COMET
Avg. 79.0 82.9 82.9 83.0 83.3 83.2 83.3 82.1 82.9
# Sig. - - - 0 5 4 4 0 1

(a) En ⇒ Ja

Interleaved Prefix Tagged JSON

Metrics Transformer full LoRA full LoRA full LoRA full LoRA

BLEU
Avg. 16.8 15.9 15.8 16.3 16.1 16.2 16.3 15.5 15.8
# Sig. - - - 0 0 0 0 0 0

COMET
Avg. 76.4 77.1 76.9 77.4 77.2 77.3 77.2 76.9 76.9
# Sig. - - - 3 3 3 1 0 0

(b) Ja ⇒ En

Table 2: Results of Transformer and models continually pre-trained with four formats described in Section 6.1
then supervised fine-tuning. “# Sig.” denotes the number of test sets showing significant differences for both
Transformer and models continually pre-trained with Interleaved Translations (Interleaved), followed by supervised
fine-tuning using the same fine-tuning method (p < 0.05). “Avg.”, bold numbers, and green numbers follow the
same conventions as Table 1.

En⇒ Ja (Average) Ja⇒ En (Average)

Continual pre-training Supervised fine-tuning BLEU COMET BLEU COMET

× × 0.6 40.2 0.8 46.0
✓ × 8.2 69.9 9.9 69.3
× ✓ 6.5 76.4 8.0 70.9
✓ ✓ 15.0 83.2 16.2 77.3

Table 3: Results of all combinations of continual pre-training and supervised fine-tuning. Continual pre-training is
conducted in Tagged format mentioned in Section 6.1, and supervised fine-tuning is performed with full weight,
utilizing the small amount of high-quality data and prompts described in Section 4.1.2. “✓” indicates whether
continued pre-training or supervised fine-tuning is conducted. In contrast, “×” indicates the absence of either. Bold
numbers indicate the maximum score in each column. When supervised fine-tuning is conducted, inference is
undergone with zero-shot, while inference is performed with five-shot for other cases.

source sentence, followed by the concatenation of
the target sentence (Kale et al., 2021). For En⇒
Ja, the prefix “translate to Japanese: ” is used,
while for Ja⇒ En, “英語に翻訳してください: ” is
employed.

Tagged This format involves inserting a tag be-
fore the source sentence that indicates the tar-
get sentence’s language, such as “<2en>” and
“<2ja>” (Schioppa et al., 2023).

JSON The JSON format is {“L1”: {source},
“L2”: {target}}, where “source” represents the
source sentence, “target” represents the target sen-
tence, and “L1”, “L2” are the names of the source
and target sentence’s languages written in the

source sentence’s language.10

We conduct continual pre-training with these
four formats and perform supervised fine-tuning
under the same conditions as Section 4. All for-
mats are conducted in the Mix format described
in Section 4.2.2, with the continual pre-training
data for En ⇒ Ja and Ja ⇒ En fixed to be the
same. Table 2 presents the results of the Trans-
former and models continually pre-trained with the
four formats. Among the four formats, Prefix and
Tagged showed significant differences in BLEU
and COMET metrics compared to the Transformer,
and the models are continually pre-trained in the in-

10Given that the pre-training data for rinna-4b includes
source code, this format aims to transfer the knowledge ob-
tained from the source code to translation.
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Figure 2: Data curves for BLEU and COMET scores on WMT22 test data for Transformer, Direct-SFT, and Mix.
Mix has been evaluated after completing supervised fine-tuning with LoRA tuning following continual pre-training.
We experimented with data amounts of 10%, 20%, 30%, 50%, and 100% due to computational resource constraints.
For the Transformer, we varied the proportion of data from JParaCrawl v3.0. At the same time, for Direct-SFT and
Mix, since training was conducted for only one epoch, we consider the proportion of checkpoints equal to that of
the training data and report the accuracy for each checkpoint.

terleaved translations format. This result suggests
that the prefixed or tagged format demonstrates
higher accuracy than interleaved translation, where
source and target sentences are concatenated, indi-
cating that from the convenience perspective, the
Tagged format can achieve the highest accuracy
most easily. Whether these formats can be applied
to other translation directions and models remains
a matter of our future work.

6.2 Effectiveness of Continual Pre-Training
and Supervised Fine-Tuning

As an ablation study, we experiment with all com-
binations of continual pre-training and supervised
fine-tuning. When supervised fine-tuning is con-
ducted, the inference is made with a zero-shot,
while for other cases, the inference is performed
with a five-shot. We randomly sample five transla-
tion examples from the WMT21 test data for five-
shot, and the same set of five samples is fixed for
all inferences. Continual pre-training is conducted
in the Tagged format as described in Section 6.1,
and all inferences utilize the prompts described in
Section 4.1.2 and employ bfloat16 precision and
greedy decoding. Table 3 presents the results, while
all results are shown in Table 10 of Appendix D.
These results suggest that achieving high accuracy
is most feasible when both continual pre-training
and supervised fine-tuning are conducted while
achieving high accuracy solely through continual
pre-training or supervised fine-tuning alone is chal-

lenging.

6.3 How Much Parallel Data is Needed?

Figure 2 presents the data curves for these three
models at 10%, 20%, 30%, 50%, and 100% data us-
age on the WMT22 test data. For the Transformer
model, only the sampling rate from JParaCrawl
v3.0 varies, while other settings remain the same
as described in Section 4.2.1. As mentioned in
Section 4.3, Direct-SFT performs supervised fine-
tuning for one epoch, and Mix also performs contin-
ual pre-training for one epoch. Therefore, for these
two models, the proportion of training data is equiv-
alent to the proportion of checkpoints, and we re-
port the accuracy for the checkpoints at 10%, 20%,
30%, 50%, and 100%. The Transformer shows
very low accuracy, up to 10% and 20%, but there
is a significant improvement in accuracy at 30%,
after which the increase becomes gradual. When at
20%, the accuracy decreased compared to at 10%,
possibly due to the instability in learning caused
by the smaller data. On the other hand, Direct-SFT
and Mix demonstrate significantly better accuracy
at 10% and 20% compared to the Transformer, and
like the Transformer, the accuracy increases gradu-
ally from 30% onwards. These results suggest that
LLM-based translation models can achieve higher
accuracy with less training data than supervised
encoder-decoder models. Additionally, COMET
scores for all three models show a gradual increase
in accuracy from 30%, while BLEU scores con-
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Source So, what started as a bit of an inside joke with myself and a willful provocation, as become a thing.

Reference
ちょっとした自虐ネタで気の利いた挑発をしたつもりが社会現象にまでなってしまいました

(What started as a bit of self-deprecating humor and a clever provocation has turned into a social phenomenon.)

Transformer
69.8

だから、私とのちょっとした内輪の冗談と意図的な挑発として始まったことは、ものになりました。

(So what started as a little inside joke and intentional provocation with me has become a thing.)
Mix (Ours)

77.8
それで、私と故意の挑発でちょっとした内輪の冗談から始まったものが、今では物議をかもすものになりました。

(So what started as a little inside joke between me and a deliberate provocation has now become a controversial thing.)

(a) IWSLT21 Simultaneous Translation En-Ja Dev

Source It’s a complex topic, so we’re just going to dive right in at a complex place: New Jersey.

Reference
複雑なトピックですから前置きはさておき複雑な所から始めましょうニュージャージー州です

(It is a complex topic, so let us skip the introduction and start with the complicated place. New Jersey.)

Transformer
82.4

それは複雑なトピックなので、私たちは複雑な場所に飛び込むつもりです:ニュージャージー。
(It is a complex topic, so we are going to jump into a complex place:New Jersey.)

Mix (Ours)
88.4

複雑な話題なので、まずはニュージャージー州の複雑な場所から始めよう。

(It is a complex topic, so let us start with the complicated places in New Jersey.)

(b) TED (tst2015)

Table 4: Specific En⇒ Ja translation results from the two test set comprising TED Talks domains. The numbers
under the model names indicate the COMET scores, and the English text below the Japanese sentences shows the
back-translations into English. The phrases requiring free translation and the corresponding reference and model
output phrases are highlighted in red for source sentences. The results for Mix indicate that supervised fine-tuning
with full weight is performed after continual pre-training.

tinue to improve even after 30%. This suggests that
at least 3M sentence pairs are needed for the transla-
tion model to output sentences containing the same
meaning as the reference, whereas more parallel
data than the 10.4M sentence pairs is required to
output sentences containing the exact words as the
reference.

6.4 Specific Results of Spoken Language

To analyze the differences in translation between
the LLM-based model and the encoder-decoder
model for spoken language, Table 4 presents
En ⇒ Ja translation examples from two test sets
comprising TED Talks domain. In these two
examples, the LLM-based translation model has
achieved higher COMET scores than the Trans-
former. In Table 4a, the source sentence contains
the phrase "a thing," which the reference trans-
lates as "社会現象" (a social phenomenon). In con-
trast, the Transformer translates "a thing" literally
as "もの", and the LLM-based model translates it
as "物議をかもすもの" (a controversial thing). Addi-
tionally, in Table 4b, the source sentence includes
the word "dive," which the reference translates
as "始めましょう" (let us start). The Transformer
translates "dive" literally as "飛び込む" (jump into),
whereas the LLM-based model correctly translates
it as "始めよう" (let us start). These results suggest
that the LLM-based translation model can perform
free translation better than the traditional encoder-
decoder model.

7 Conclusion

We propose a two-phase training approach compris-
ing continual pre-training with interleaved source
and target sentence data, followed by supervised
fine-tuning using a small amount of high-quality
parallel data. Our investigation comprehensively
explores methods for enhancing translation accu-
racy through continual pre-training across eight
data formats. Evaluation across 13 test sets reveals
that models trained with continual pre-training fol-
lowed by supervised fine-tuning outperform those
supervised fine-tuned solely on parallel data. Fur-
thermore, we observe variations in language direc-
tion accuracy improvement during continual pre-
training based on the order of source and target
sentences. We also demonstrate that LLM-based
translation models are more robust in translating
sentences containing spoken language, and achieve
higher accuracy with less training data, compared
to traditional encoder-decoder models. Addition-
ally, augmenting source sentences with tags or us-
ing prefixes yields higher accuracy than simple
concatenation. In larger LLMs than the rinna-4b
model we utilized, such as LLaMA-2 7B and 13B,
LoRA enables training with fewer computational
resources. LoRA has been reported to be effective
in translation tasks (Zhang et al., 2023; Guo et al.,
2024). Therefore, it is essential to experiment with
LoRA in the future to determine if similar results
can be achieved and to investigate if similar results
can be obtained with other LLMs.

259



8 Limitations

Our experiments and conclusions are based
only on two translation directions (English-
to-Japanese, Japanese-to-English) and
rinna/bilingual-gpt-neox-4b, which is
an LLM pre-trained in English and Japanese. Eval-
uation for other translation directions and LLMs
has yet to be conducted. While in Section 6.3, we
demonstrated that continual pre-training requires
3M parallel data, we anticipate that this may
vary depending on the translation direction and
model. Whether our approach applies to LLMs
primarily pre-trained in English, such as XGLM
and LLaMA, remains unverified, especially in low
resource languages is challenging. Additionally,
all the experiments are conducted using only
the parameters described in Section 4.3, and an
optimal hyperparameter search still needs to be
performed. Especially in Direct-SFT, it should be
noted that the importance of hyperparameters has
been highlighted by Dettmers et al. (2023), and
whether full fine-tuning and LoRA tuning demon-
strate the same performance varies depending on
the model, hyperparameters, and task.

9 Ethical statement

We have not conducted verification on significant
risks associated with our research. While we pro-
pose a method that may enhance translation accu-
racy using LLMs, it is worth noting that Zhu et al.
(2024) have reported GPT-4’s 8-shot translation
accuracy to be comparable to or below that of ex-
isting methods such as supervised encoder-decoder
models. Therefore, even if the proposed method
is applied to other LLMs, we do not think that
there is a potential risk that the proposed method
achieves too high translation accuracy so that it is
to be abused.

This study uses a dataset from Morishita et al.
(2022), available only for research and develop-
ment purposes, inheriting potential biases from
their datasets. We utilize open-source pre-trained
LLM, and our experimental codes also leverage
open-source libraries, as mentioned in Section 4.
Therefore, this study’s models, data, and tools ad-
here to the intended usages of those models, data,
and tools.
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En⇒ Ja (Avg.) Ja⇒ En (Avg.)

Model BLEU COMET BLEU COMET

ALMA-7B-Ja-V2 10.1 80.4 13.0 75.6
Tagged + SFT (full) 15.0 83.2 16.2 77.3

Table 5: Results of BLEU and COMET scores for
ALMA-7B-Ja-V2 and the rinna-4b-based translation
model. “Tagged + SFT (full)” represents the model con-
tinually pre-trained in the Tagged format as described
in Section 6.1, followed by supervised fine-tuning with
full weight.

A Sampling of JParaCrawl v3.0

We use 20.8M parallel sentences from JParaCrawl
v3.0, initially consisting of 21.8M parallel sen-
tences. We sample sentence pairs using cosine sim-
ilarity scores between 0.4 and 0.95 based on sen-
tence vector embeddings obtained from LEALLA-
large. Parallel sentences with a similarity score
below 0.4 are excluded, as a visual inspection re-
vealed a significant presence of inappropriate sam-
ples, such as Japanese and English sentences with
disproportionate lengths. Additionally, parallel sen-
tences with similarity scores of 0.95 or higher are
also excluded, as they consist of Japanese and En-
glish sentences that were nearly identical. This
sampling results in 1.8B tokens when tokenized
with the rinna-4b tokenizer.

B Comparison with ALMA

We compared with ALMA by using ALMA-7B-
Ja-V211, which was trained similarly to ALMA
with LLaMA-2 7B but with Russian replaced by
Japanese among the languages experimented with
ALMA. We compared against ALMA-Ja-V2 us-
ing the BLEU and COMET averages of 12 test
sets, as shown in the Table 5. From these results,
it is evident that the 3.8B LLM-based translation
model outperforms the LLaMA-2-based ALMA-
7B-Ja-V2. This result aligns with reports suggest-
ing higher accuracy when using parallel data for
continual pre-training (Alves et al., 2024; Guo et al.,
2024) and the consistency with reports indicating
that the influence of parallel data increases with
fewer parameters (Kale et al., 2021; Briakou et al.,
2023).
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Figure 3: Data Curves for BLEU and COMET scores
at each 10% checkpoint of En-Ja2Mix for En ⇒ Ja
on WMT22 test data. All models at checkpoints have
undergone supervised fine-tuning. The 0% on the x-axis
represents the accuracy of En-Ja.

C Analyzing Catastrophic Forgetting

We conducted continual pre-training on En-Ja and
then observed catastrophic forgetting by conduct-
ing continual pre-training on data, which was in
the reverse direction. Based on reports suggesting
preventing catastrophic forgetting by mixing data
from tasks that should not be forgotten (Scialom
et al., 2022), we mixed 1% of En-Ja data. This
model is named En-Ja2Mix. Figure 3 shows the
data curves for BLEU and COMET scores at each
10% checkpoint for En-Ja2Mix on the WMT22
test data, demonstrating En⇒ Ja. As an ablation
study, we also show the data curves for a scenario
where the 1% of En-Ja data added to En-Ja2Mix is
removed, and continual pre-training is conducted
entirely with Ja-En data. From these data curves,
it is observed that when conducting continual pre-
training with En-Ja data and subsequently with
data in the reverse direction, mixing 1% of the first
continual pre-training data can mitigate the degra-
dation in accuracy for En ⇒ Ja. Therefore, this
suggests that in the continual pre-training of LLMs,
incorporating a small proportion of data that one
does not wish to be forgotten can suppress catas-
trophic forgetting.

D Detailed Tables

11https://huggingface.co/webbigdata/
ALMA-7B-Ja-V2
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Direction Test set Domain # sentences

En⇔ Ja

ASPEC (Nakazawa et al., 2016) Scientific Papers 1,812
JESC (Pryzant et al., 2018) Movie Subtitles 2,000

KFTT (Neubig, 2011) Wikipedia Articles 1,160
TED (tst2015) (Cettolo et al., 2012) TED Talk 1,194

Business Scene Dialogue Corpus (BSD) (Rikters et al., 2019) Dialogues 2,120

En⇒ Ja

WMT19 Robustness En-Ja (MTNT2019) (Li et al., 2019) Reddit 1,392
WMT20 Robustness Set1 En-Ja (Specia et al., 2020) Wikipedia Comments 1,100
WMT20 Robustness Set2 En-Ja (Specia et al., 2020) Reddit 1,376

IWSLT21 Simultaneous Translation En-Ja Dev (Anastasopoulos et al., 2021) TED Talk 1,442
WMT22 General Machine Translation Task En-Ja (Kocmi et al., 2022) News, social, e-commerce, dialogue 2,037

Ja⇒ En
WMT19 Robustness Ja-En (MTNT2019) (Li et al., 2019) Reddit 1,111

WMT20 Robustness Set2 Ja-En (Specia et al., 2020) Reddit 997
WMT22 General Machine Translation Task Ja-En (Kocmi et al., 2022) News, social, e-commerce, dialogue 2,008

Table 6: Domain and Number of sentences in test sets. “# sentences” represents the number of sentences on the
English side.

Baseline Models Continual pre-training + Supervised fine-tuning

Mono En-Ja Ja-En Mix

Test set Transformer Direct-SFT full LoRA full LoRA full LoRA full LoRA

ASPEC 19.6 15.4 5.1 4.6 19.1 19.0 6.6 6.4 18.4 18.5
JESC 5.8 5.0 3.6 3.4 7.4* 7.3* 4.3 3.9 7.4* 7.0*
KFTT 12.8 8.7 6.7 6.1 15.5* 15.0* 7.1 6.3 14.1* 13.5
TED 12.2 10.9 5.4 5.1 12.7 12.8* 6.7 6.3 12.3 12.9*
BSD 12.5 13.1* 7.5 7.5 14.4* 15.5* 8.6 8.6 14.1* 15.2*

WMT19 R En-Ja 13.1 12.3 6.0 5.5 15.2* 15.1* 6.7 6.7 14.4* 14.7*
WMT20 R Set1 En-Ja 16.9 15.3 7.1 6.5 18.4* 19.5* 7.5 8.0 17.5 18.7*
WMT20 R Set2 En-Ja 12.9 12.1 5.5 4.9 14.8* 14.8* 6.8 6.8 13.9* 13.7*
IWSLT21 En-Ja Dev 12.2 9.8 5.3 5.2 13.2* 13.2* 6.6 7.0 12.8* 12.8*
WMT22 GMT En-Ja 21.2 19.1 11.0 9.8 23.1* 23.1* 11.9 11.7 22.0* 22.1*

Average 13.9 12.2 6.3 5.9 15.4 15.5 7.3 7.2 14.7 14.9
# Sig. - 1 0 0 8 9 0 0 7 8

(a) BLEU

Baseline Models Continual pre-training + Supervised fine-tuning

Mono En-Ja Ja-En Mix

Test set Transformer Direct-SFT full LoRA full LoRA full LoRA full LoRA

ASPEC 88.5 87.0 78.7 77.1 88.6 88.7 80.5 80.7 88.1 88.2
JESC 71.7 72.8* 71.4 70.8 76.0* 75.7* 72.4 72.4 75.7* 75.8*
KFTT 83.9 79.9 76.4 75.7 84.4 84.3 76.4 76.1 83.3 83.7
TED 79.7 80.6* 76.4 75.1 83.6* 83.2* 78.1 77.7 83.0* 83.0*
BSD 84.2 85.7* 81.3 81.2 87.5* 87.7* 82.9 83.1 87.0* 87.4*

WMT19 R En-Ja 75.8 77.0* 74.2 73.1 81.7* 81.5* 75.3 75.1 81.2* 81.0*
WMT20 R Set1 En-Ja 65.2 68.2* 64.6 63.7 76.8* 76.3* 65.6 66.3 76.2* 75.4*
WMT20 R Set2 En-Ja 74.0 76.1* 72.7 72.2 81.6* 81.1* 74.8 74.6 80.6* 80.4*
IWSLT21 En-Ja Dev 81.8 82.2 79.4 78.8 86.2* 85.9* 81.3 81.2 85.8* 85.8*
WMT22 GMT En-Ja 84.9 85.8* 80.8 79.8 88.3* 88.3* 82.1 81.0 87.8* 87.9*

Average 79.0 79.6 75.6 74.8 83.5 83.3 76.9 76.8 82.9 82.9
# Sig. - 7 0 0 8 8 0 0 8 8

(b) COMET

Table 7: Results of En⇒ Ja translation accuracy. Details of baseline models and models continually pre-trained
with four orders described in Section 4.2.2 then supervised fine-tuning. Bold numbers represent the highest
scores in each line, and scores that surpass the Transformer are emphasized in green . “*” indicates significant
differences compared to Transformer,“ # Sig.” indicates the number of test sets showing significant differences from
Transformer (p < 0.05).
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Baseline Models Continual pre-training + Supervised fine-tuning

Mono En-Ja Ja-En Mix

Test set Transformer Direct-SFT full LoRA full LoRA full LoRA full LoRA

ASPEC 21.8 16.0 8.8 7.9 9.4 8.5 20.3 20.4 19.1 19.4
JESC 8.9 6.3 4.6 4.0 4.1 4.3 8.5 8.8 7.9 7.7
KFTT 21.0 11.1 9.6 8.4 10.6 9.7 19.9 19.0 18.5 17.4
TED 14.7 10.6 7.4 6.3 6.9 6.6 14.7 15.2 14.3 14.4
BSD 19.8 16.0 9.4 8.8 8.5 9.2 20.1 20.4 18.7 18.6

WMT19 R Ja-En 17.2 14.2 8.3 6.9 8.3 7.1 18.0 17.1 16.4 16.5
WMT20 R Set2 Ja-En 14.3 10.8 5.6 5.4 5.4 5.4 13.9 14.1 13.0 13.0
WMT22 GMT Ja-En 21.0 15.0 9.5 9.4 9.3 9.9 20.8 21.1 19.1 19.3

Average 17.3 12.5 7.9 7.1 7.8 7.6 17.0 17.0 15.9 15.8
# Sig. - 0 0 0 0 0 0 0 0 0

(a) BLEU

Baseline Models Continual pre-training + Supervised fine-tuning

Mono En-Ja Ja-En Mix

Test set Transformer Direct-SFT full LoRA full LoRA full LoRA full LoRA

ASPEC 82.7 80.4 74.8 74.2 75.3 74.8 82.5 82.5 81.9 82.1
JESC 68.0 67.2 64.3 63.2 64.3 63.5 69.2* 69.3* 68.7* 68.6*
KFTT 77.4 73.5 70.1 69.4 70.5 70.3 78.2* 77.8 77.4 76.6
TED 77.6 75.9 71.2 70.4 71.2 70.9 78.7* 78.7* 78.3* 78.1*
BSD 81.1 79.9 74.4 74.1 74.1 74.2 82.9* 82.0* 81.4 81.1

WMT19 R Ja-En 74.0 74.2 69.6 68.6 69.0 68.4 76.8* 76.3* 76.5* 76.2*
WMT20 R Set2 Ja-En 70.6 70.6 65.7 64.8 65.0 65.0 72.8* 73.0* 72.2* 72.1*
WMT22 GMT Ja-En 79.9 77.9 73.4 72.6 72.7 72.9 81.0* 82.0* 80.5* 80.4*

Average 76.4 73.8 70.4 69.7 70.3 70.0 77.8 77.7 77.1 76.9
# Sig. - 0 0 0 0 0 7 6 5 5

(b) COMET

Table 8: Results of Ja⇒ En translation accuracy. Bold scores, green numbers , “*”, and “# Sig.” are the same in
Table 7.
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Interleaved Prefix Tagged JSON

Test set Transformer full LoRA full LoRA full LoRA full LoRA

ASPEC 19.6 / 88.5 18.4 / 88.1 18.5 / 88.2 18.8† / 88.5† 18.6 / 88.5† 18.8† / 88.5† 18.7 / 88.6† 18.5 / 88.3† 18.7 / 88.5†

JESC 5.8 / 71.7 7.4* / 75.7* 7.0* / 75.8* 7.8* / 75.7* 6.9* / 75.8* 7.4* / 75.9* 6.8* / 75.8* 7.2* / 75.3* 6.6* / 75.7*
KFTT 12.8 / 83.9 14.1* / 83.3 13.5* / 83.7 14.9*† / 83.7 13.9* / 84.0 14.2* / 83.6 14.1* / 83.6 14.0* / 83.3 13.9* / 83.7
TED 12.2 / 79.7 12.3 / 83.0* 12.9* / 83.0* 12.6 / 83.0* 13.0* / 83.2* 12.7*† / 83.4*† 13.1* / 83.2* 12.8*† / 83.0* 13.0* / 83.2*
BSD 12.5 / 84.2 14.1* / 87.0* 15.2* / 87.4* 14.7*† / 87.2* 15.1* / 87.5* 14.6*† / 87.2* 14.9* / 87.5* 14.2* / 86.9* 14.9* / 87.4*

WMT19 R En-Ja 13.1 / 75.8 14.4* / 81.2* 14.7* / 81.0* 15.3*† / 81.3* 15.4*† / 81.7*† 15.1*† / 81.9*† 14.9* / 81.6*† 14.3* / 80.9* 14.5* / 81.3*
WMT20 R Set1 En-Ja 16.9 / 65.2 17.5 / 76.2* 18.7* / 75.4* 17.8* / 76.2* 19.5*† / 76.7*† 18.0*† / 76.6* 19.2*† / 76.8*† 12.1 / 69.6* 18.1* / 74.0*
WMT20 R Set2 En-Ja 12.9 / 74.0 13.9* / 80.6* 13.7 / 80.4* 14.0* / 80.7* 14.8*† / 80.9*† 14.3*† / 81.1*† 14.5*† / 81.1*† 13.6* / 80.0* 14.3*† / 80.6*
IWSLT21 En-Ja Dev 12.2 / 81.8 12.8* / 85.8* 12.8* / 85.8* 12.7* / 85.9* 13.0* / 86.0*† 12.7* / 86.0* 12.6 / 86.0* 12.6 / 85.7* 12.7* / 86.1*†

WMT22 GMT En-Ja 21.2 / 84.9 22.0* / 87.8* 22.1* / 87.9* 22.7*† / 88.0* 22.7*† / 88.2*† 22.4*† / 88.2*† 22.4* / 88.3*† 22.2* / 87.9* 22.4* / 88.1*

Average 13.9 / 79.0 14.7 / 82.9 14.9 / 82.9 15.1 / 83.0 15.3 / 83.3 15.0 / 83.2 15.1 / 83.3 14.2 / 82.1 14.9 / 82.9
# Sig. - - - 4 / 0 4 / 5 6 / 4 2 / 4 1 / 0 1 / 1

(a) En ⇒ Ja

Interleaved Prefix Tagged JSON

Test set Transformer full LoRA full LoRA full LoRA full LoRA

ASPEC 21.8 / 82.7 19.1 / 81.9 19.4 / 82.1 19.6† / 82.3† 19.6 / 82.2 19.5 / 82.1 19.6 / 82.1 19.3 / 82.1 19.3 / 82.1
JESC 8.9 / 68.0 7.9 / 68.7* 7.7 / 68.6* 7.9 / 69.1*† 7.9 / 68.9*† 8.1 / 68.8* 8.0 / 68.7* 7.9 / 68.6* 7.8 / 68.7*
KFTT 21.0 / 77.4 18.5 / 77.4 17.4 / 76.6 18.9 / 77.6 18.4† / 77.2† 19.0† / 77.4 18.6† / 77.1† 18.7 / 77.3 17.6 / 76.7
TED 14.7 / 77.4 14.3 / 78.3* 14.4 / 78.1* 14.1 / 78.4* 14.4 / 78.3* 14.6 / 78.8*† 14.2 / 78.3* 13.3 / 78.0* 14.1 / 78.3*
BSD 19.8 / 81.1 18.7 / 81.4 18.6 / 81.1 19.5† / 81.6*† 19.3† / 81.6*† 19.0 / 81.6* 18.9 / 81.6* 18.6 / 81.5* 18.8 / 81.3

WMT19 R Ja-En 17.2 / 74.0 16.4 / 76.5* 16.5 / 76.2* 17.2† / 76.7* 16.8 / 76.2* 16.3 / 76.5* 16.9 / 76.5* 14.8 / 75.6* 15.9 / 75.6*
WMT20 R Set2 Ja-En 14.3 / 70.6 13.0 / 72.2* 13.0 / 72.1* 13.0 / 72.6* 13.4 / 72.6* 13.3 / 72.6*† 13.7 / 72.4* 12.1 / 71.7* 12.9 / 72.2*
WMT22 GMT Ja-En 21.0 / 79.9 19.1 / 80.5* 19.3 / 80.4* 19.8† / 80.8*† 19.3 / 80.8*† 20.0† / 80.8*† 20.3† / 81.0*† 19.2 / 80.6* 19.8 / 80.6*

Average 17.3 / 76.4 15.9 / 77.1 15.8 / 76.9 16.3 / 77.4 16.1 / 77.2 16.2 / 77.3 16.3 / 77.2 15.5 / 76.9 15.8 / 76.9
# Sig. - - - 0 / 3 0 / 3 0 / 3 0 / 1 0 / 0 0 / 0

(b) Ja ⇒ En

Table 9: Results of translation accuracy (BLEU / COMET). “*” indicates significant differences compared to
Transformer, † indicates significant differences compared to the same fine-tuning method as Iterleaved Translations
(Interleaved), bold numbers indicate significant differences in both Transformer and the same fine-tuning method
as Interleaved Translations, and “# Sig.” denotes the number of test sets where significant differences is observed in
both Transformer and the same fine-tuning method as Interleaved Translations. (p < 0.05)

BLEU COMET

Test set rinna-4b rinna-4b + CPT rinna-4b + SFT rinna-4b + CPT + SFT rinna-4b rinna-4b + CPT rinna-4b + SFT rinna-4b + CPT + SFT

ASPEC 0.3 8.9 5.2 18.8 45.3 72.4 79.0 88.5
JESC 0.2 3.1 3.6 7.4 36.1 64.4 71.9 75.9
KFTT 0.3 4.2 6.8 14.2 41.4 66.8 76.4 83.6
TED 0.3 9.1 5.4 12.7 40.5 72.0 77.2 83.4
BSD 0.4 8.8 7.6 14.6 40.6 77.7 81.7 87.2

WMT19 R En-Ja 0.6 6.5 6.7 15.1 40.2 64.7 75.1 81.9
WMT20 R Set1 En-Ja 2.0 7.1 7.7 18.0 39.3 49.3 66.5 76.6
WMT20 R Set2 En-Ja 0.4 7.4 6.1 14.3 39.5 65.0 74.3 81.1
IWSLT21 En-Ja Dev 0.2 7.6 5.6 12.7 40.7 73.2 80.6 86.0
WMT22 GMT En-Ja 1.4 19.3 10.3 22.4 38.3 83.5 81.3 88.2

Average 0.6 8.2 6.5 15.0 40.2 69.9 76.4 83.2

(a) En ⇒ Ja

BLEU COMET

Test set rinna-4b rinna-4b + CPT rinna-4b + SFT rinna-4b + CPT + SFT rinna-4b rinna-4b + CPT rinna-4b + SFT rinna-4b + CPT + SFT

ASPEC 1.0 15.5 8.9 19.5 53.0 77.7 75.0 82.1
JESC 0.3 4.0 4.5 8.1 41.5 62.3 64.6 68.8
KFTT 0.2 9.6 10.0 19.0 44.0 66.7 71.1 77.4
TED 0.3 6.6 7.4 14.6 49.6 66.6 72.0 78.8
BSD 0.3 13.3 9.0 19.0 48.1 76.5 74.6 81.6

WMT19 R Ja-En 1.4 8.3 8.5 16.3 49.9 65.2 69.6 76.5
WMT20 R Set2 Ja-En 0.5 6.7 6.0 13.3 46.4 62.6 65.7 72.6
WMT22 GMT Ja-En 2.0 15.3 9.8 20.0 39.3 76.6 73.4 80.8

Average 0.8 9.9 8.0 16.2 46.0 69.3 70.9 77.3

(b) Ja ⇒ En

Table 10: Results of all combinations of continual pre-training and supervised fine-tuning (BLEU / COMET).
Bold numbers indicate the highest scores in each line. “+ CPT” indicates continual pre-training in the Tagged
format, described in Section 6.1. At the same time, “+ SFT” represents supervised fine-tuning with a small amount
of high-quality parallel data, as described in Section 4.1.2. During supervised fine-tuning, zero-shot inference is
performed, and five-shot inference is performed for others.
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Abstract

This paper presents KIT’s submissions to the
IWSLT 2024 dialectal and low-resource track.
In this work, we build systems for translat-
ing into English from speech in Maltese, Be-
mba, and two Arabic dialects Tunisian and
North Levantine. Under the unconstrained con-
dition, we leverage the pre-trained multilin-
gual models by fine-tuning them for the target
language pairs to address data scarcity prob-
lems in this track. We build cascaded and
end-to-end speech translation systems for dif-
ferent language pairs and show the cascaded
system brings slightly better overall perfor-
mance. Besides, we find utilizing additional
data resources boosts speech recognition perfor-
mance but slightly harms machine translation
performance in cascaded systems. Lastly, we
show that Minimum Bayes Risk is effective in
improving speech translation performance by
combining the cascaded and end-to-end sys-
tems, bringing a consistent improvement of
around 1 BLUE point.

1 Introduction

In this paper, we describe KIT’s systems submitted
to IWSLT 2024 Dialectal and Low-resource Track.
We focus on three language pairs: Bemba (ISO
code: bem) to English, Maltese (ISO code: mlt)
to English, and Dialectal Arabic to English. The
Dialectal Arabic language pair evaluates the perfor-
mance of two Arabic vernaculars, namely Tunisian
(ISO code: aeb) and North Levantine (ISO-3 code:
apc). Maltese and Tunisian language pairs are avail-
able in IWSLT2023 (Agarwal et al., 2023), and
the others are newly included this year. The sub-
missions are under Unconstrained Conditions to
leverage pre-trained models and additional data
resources.

Recent advancements in dialectal and low-
resource speech translation show the benefits of
utilizing pre-trained models (Gow-Smith et al.,
2022; Laurent et al., 2023; Hussein et al., 2023;

Deng et al., 2023). Nowadays, the capacities of
pre-trained models are expanded by incorporating
more extensive data and expanding language cov-
erage. This work leverages the state-of-the-art pre-
trained models, including SeamelssM4T (Barrault
et al., 2023), MMS (Pratap et al., 2023), and NLLB
(NLLB Team et al., 2022).

Cascaded and End-to-End (E2E) are popular
Speech Translation (ST) systems. The Cascaded
system consists of Automatic Speech Recogni-
tion (ASR) and Machine Translation (MT) mod-
els, while the E2E systems integrate both func-
tions into one model. Recent work shows the E2E
system shows comparable performance to the cas-
caded system in speech translation(Liu et al., 2023;
Zhou et al., 2023; Huang et al., 2023; Hrinchuk
et al., 2023), while there needs research to show
which system performs better on dialectal and low-
resource scenarios (Deng et al., 2023; Laurent et al.,
2023; Kesiraju et al., 2023; Shanbhogue et al.,
2023; E. Ortega et al., 2023; Hussein et al., 2023).

Building ST systems for low-resource datasets
always suffers from data limitations. Accordingly,
we collect available training resources and inves-
tigate the training strategies for using them. Al-
though datasets other than the development data
might introduce domain differences that could po-
tentially model performance, we explore the ben-
efits of using extra-supervised data. Furthermore,
we investigate adapter fine-tuning training to ad-
dress data scarcity. By freezing the pre-trained
parameters and only fine-tuning the adapter pa-
rameters, this approach decreases the number of
trainable parameters.

In addition to building ST systems, this work
explores the decoding approach Minimum Bayes
Risk(MBR) to re-rank the candidate translation
(Kumar and Byrne, 2004; Hussein et al., 2023)
from the built systems. We explore the combination
of individual systems and across systems, and our
findings suggest combining translations from the
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cascaded and the E2E systems is effective for all
language pairs.

2 Data Description

2.1 Development and test data

The organizers provide the development data for
each language pair, which is from the same dataset
of the test data for evaluating systems. The devel-
opment data was released at the beginning, and
test data was released when the evaluation period
started for the final comparison of submissions. As
shown in Table 1, the development data of North
Levantine has only a validation split, indicating the
importance of transferring knowledge from other
data resources, such as standard Arabic. We report
the system performance on Tunisian development
data, although we have no submission for it due to
the unexpected unavailability of the test data at the
end of the evaluation period. The Maltese language
pair includes two datasets, and we report scores
only on the Masri dataset because we use the train
split of CV development for training. We evaluated
the Bemba systems on the test split of development
data, but we later found the test split was the same
as the test data.

Development Test
Lang. Train Valid Test
apc - 1126 - 974
aeb 202k 3833 4204 -

mlt_masri 4962 648 - 668
mlt_cv 3923 1235 - 1224

bem 82k 2782 2779 2779
bem_asr1 - - - 977
bem_asr2 - - - 3756

Table 1: Statistic on development and test data. Lang
is the language code of the source language. The value
indicates the number of sample. One sample of the
datasets consists of the audio, transcript, and translation
in English.

2.2 Additional data resource

Under the unconstrained condition, we collected
additional datasets of the language pairs and ex-
plored leveraging these resources to improve model
performance. The ASR data resources are publicly
available except for the SyKIT and MINI dataset,
which is the in-house dataset in the conversational
domain. SyKIT is a dataset that consists of peo-
ple from Syria conversing in dialogues on various
topics via a Zoom setup. The MINI dataset is read
speech and is based on an electronic version of

the M.I.N.I. (International Neuropsychiatric Inter-
view). The MT data resources are all from OPUS
collection (Tiedemann, 2009).

Lang. Corpus Type #Hour/#Sent.
apc LDC2005S08 ASR 60h

LDC2006S29 ASR 250h
SyKIT ASR 50h
Tatoeba MT 20

aeb SRL46 ASR 12h
GNOME MT 646

ara SLR148 ASR 111h
MGB ASR 1200h
MINI ASR 10h

CCMatrix MT 5M
NLLB MT 5M

OpenSubtitles MT 3M
bem BembaSpech ASR 24h

NLLB MT 427k
mlt MASRI-Headset v2 ASR 7h

MASRI-Farfield ASR 10h
MASRI-Booths ASR 2h
MASRI-MEP ASR 1h

MASRI-COMVO ASR 7h
MASRI-TUBE ASR 13h

NLLB MT 14M
DGT MT 3.5M

TildeMODEL MT 2M

Table 2: Overview of the additional data resources.

2.3 Pre-processing
Due to computational limitations, the ASR and ST
training data over 15 seconds is removed. Although
the training scenario is low-resourced, statistics
show only a very small portion of training samples
are removed. Afterwards, we introduce data aug-
mentation with Gaussian noise, time stretch, time
mask, and frequency mask 1.

3 Method

We conduct preliminary evaluations on Tunisian
dialects to assess systems performance and then
apply the promising approaches to other languages
for effective analysis. The motivation is that the
Tunisian language pair has effective systems from
IWSLT 2023 (Agarwal et al., 2023) for approach
analysis.

3.1 Cascaded Systems
The cascaded system is composed of ASR and MT
modules and allows each component to be opti-
mized independently. We explore the ASR and MT
modules individually to mitigate the requirement
on the supervised ST data, aiming to leverage the
supervised ASR and MT data individually.

1https://github.com/asteroid-team/torchaudiomentations
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3.1.1 ASR
We build two ASR systems with MMS and Seam-
lessM4T to leverage pre-trained multilingual mod-
els. The MMS system is the encoder-only model
with the CTC training loss, and the SeamelssM4T
model is the encoder-decoder model with cross-
entropy training loss. We build the MMS system
because the MMS model is pre-trained with more
than 1,400 languages, including Maltese and Be-
mba. The motivation for using SeamlessM4T is its
capacity for multilingual generation as an encoder-
decoder model.

Our initial findings indicated that the Seam-
lessm4t system exhibited superior performance on
Tunisian and North Levantine data over the MMS
system. Consequently, we directed our efforts to-
ward enhancing this particular model.

Given the scarcity of supervised ASR data we ex-
plore training strategies of using only the develop-
ment data or mixing all available training resources.
Using all available data increases the amount of su-
pervised data while bringing domain differences
that might lead to performance degradation. Conse-
quently, we explore the two-step fine-tuning serv-
ing as knowledge transfer. This entails initially
fine-tuning the pre-trained model using all avail-
able ASR data, followed by training the fine-tuned
model solely with the target data.

The amount of supervised data might be insuf-
ficient to fine-tune the parameters of the Seam-
lessM4T model fully. To address this, we explore
the parameter-efficient fine-tuning approach Low-
Rank Adapters (LORA) by adding and only fine-
tuning the LORA adapter (Hu et al., 2021).

3.1.2 MT
The pre-trained SeamlessM4T is a multitask model
that supports both audio and text inputs. Besides
ASR, we also explore its capacity for MT. Note that
Bemba and Maltest are covered in the pre-trained
SeamelssM4T model while the Arabic dialects are
not.

Apart from SeamlessM4T, we also fine-tune
NLLB (NLLB Team et al., 2022) because the pre-
trained model covers more language pairs, includ-
ing all three language pairs of this paper. Given
the large vocabulary size of 256K, we freeze the
word embedding to save memory. We also follow
the recommendations of Cooper Stickland et al.
(2021) regarding fine-tuning pre-trained MT mod-
els on many-to-English directions and freezing the
decoder apart from cross-attention.

Given the extremely limited MT data on the two
Arabic dialects (apc and aeb; Table 2), we fine-
tune SeamlessM4T or NLLB jointly on these lan-
guages along with modern standard Arabic (ara),
resulting in a many-to-English system for {apc,
aeb, ara}→eng.

3.2 End-to-End Systems
The E2E system mitigates the error propagation
issue in the cascaded system. We develop the E2E
model with pre-trained SeamlessM4T consisting of
a speech encoder and a text decoder. Since we don’t
have extra supervised data for ST, we focus on
using the development data for our E2E exploration.
In addition, we also investigate the effectiveness of
fine-tuning with adapters using LORA.

3.3 System Combination
In addition to building ST systems, we explore
combining the developed systems using Minimum
Bayes Risk (MBR) decoding. MBR decoding is
a method used to rerank the candidate translation
output. Given a pool of hypothesis translations,
MBR uses a utility metric to score each hypothesis
against a set of pseudo-references. The hypothesis
with the highest average score is then selected as
the final translation.

Since the main evaluation metric is the BLEU
score, we choose the utility metric as BLEU. For
the end-to-end system, we generate 50 hypotheses
using epsilon sampling (Hewitt et al., 2022) with
temperature 1.0 and epsilon threshold 0.02. For the
cascaded system, we generate 50 hypotheses using
sampling with a temperature of 0.75. We then com-
bine the hypotheses from both systems, resulting
in a hypothesis pool of 100 samples. We use this
same hypothesis pool as the pseudo-references to
score each individual hypothesis.

4 Experiments and Results

4.1 Model Configuration
ASR We use the pre-trained MMS model with
300M parameters to build the CTC-based ASR sys-
tem 2. Compared with other configurations, it has
fewer parameters to train and, therefore, fits better
to this track. As for the encoder-decoder-based
ASR system, we use the pre-trained SeamlessM4T
model of the latest version with the large config-
uration 3. To reduce the memory footprint, we

2https://huggingface.co/facebook/mms-300m
3https://huggingface.co/facebook/seamless-m4t-v2-large
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use the dedicated model of SeamlessM4T for the
speech-to-text task.

MT For the MT systems with SeamlessM4T, we
use the same pre-trained model as for ASR but a
dedicated model architecture for the text-to-text
task 3. Our finetuned NLLB models are based on
the 1B distilled model (NLLB Team et al., 2022).
Although the 3B variant gave better initial perfor-
mance when used out-of-the-box, we could not di-
rectly finetune it due to memory constraints. When
finetuning, we partially freeze the model as de-
scribed in §3.1.2.

E2E ST For the ST systems, the pre-trained
SeamlessM4T model is the same as for ASR and
MT. Here, we use the dedicated SeamlessM4T
model for the speech-to-text task3.

Adapter This work investigates fine-tuning the
adapters of LORA with SeamlessM4T models to
reduce trainable parameters. We add adapters to all
transformer layers of the encoder and decoder. The
details regarding our implementation can be found
in Appendix A

4.2 Evaluation

As the final evaluation uses lowercase and no punc-
tuation, we follow the setup 4 to process the pre-
diction and reference in the evaluation of this work.
Specifically, we process the ASR predictions and
references of Tunisian and North Levantine with
arabic_filter and the other predictions and refer-
ences with english_fiter in evaluation.

For the ASR task, we evaluate with Character Er-
ror Rate (CER) and Word Error Rate (WER) using
package jiwer5. We evaluate MT and ST tasks with
BLEU and chrF++ with package sacreBLEU6.

4.3 ASR

As Table 3 shows, we explore two ASR systems:
the encoder-only system with pre-trained MMS
(A1) and the encoder-decoder system with pre-
trained SeamlessM4T (A2). A2 outperforms A1
for Maltese and Tunisian and is comparable to A1
for Bemba. Considering the pre-trained languages
of MMS cover Maltese and Bemba while those of
SeamlessM4T only cover Maltese, we regard A2

4https://github.com/kevinduh/iwslt22-
dialect/blob/main/1_prepare_stm.py

5https://github.com/jitsi/jiwer
6https://github.com/mjpost/sacrebleu

with SeamlessM4T as a stronger ASR system for
this track and explore enhancing this system

With training data in addition to the development
data, we investigate training with all supervised
ASR data, including the development data. We
find using all data boosts Maltese with 5.1 WER
points, and gains Bemba with 3.5 WER points. For
Tunisian, we gain 3.8 WER points on the valida-
tion split but loss 5.2 WER points on the test split.
The overfitting to the validation split indicates the
importance of improving model robustness. We
notice a clear decrease in comparing the scores
between A2 and A3 for North Levantine, and we
assume the dialect and domain differences are the
main causes.

Building on A3, we investigate knowledge trans-
fer from all training datasets to the target dataset
with the second step of fine-tuning. Here, we ex-
plore full training (A4), which is the same as previ-
ous experiments, and adapter training with LORA
(A5) as described in subsection 4.1. We find knowl-
edge transfer is effective for North Levantine and
Tunisian while not for Maltese and Bemba. The
potential reason is the dialects have clear differ-
ences from other training datasets, and a second
step of fine-tuning enables the model to be spe-
cialized on the target dataset. While all training
datasets of Maltese or Bemba are from the same
languages, the second step of fully fine-tuning (A4)
fails to keep the knowledge learned in the first step
of fine-tuning and causes performance degradation
because of less supervised training data. On the
contrary, we observe the knowledge transfer with
adapter fine-tuning (A5) works on memorizing the
knowledge in the first step but leads to no improve-
ment over A3.

As described in subsection 2.1, the North Lev-
antine has only the valid split in development data,
so we implement different training strategies with
details in Appendix C. Besides, the training for
Tunisian A3 has modifications to other languages,
and details are available in Appendix B.

In Table 3, we report the CER and WER
scores with normalization for North Levantine and
Tunisian, same as (Hussein et al., 2023), for com-
parison with systems of previous years. The nor-
malization is performed on both the predictions and
references and implemented with the camel_tools
package 7. The ASR results without normalization
are in Appendix D. There are no scores for others

7https://github.com/CAMeL-Lab/camel_tools
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Model apc_valid aeb_valid aeb_test mlt_masri_valid bem_test
A1 wav2vec-mms - 26.2/59.3 29.1/63.6 19.2/61.5 10.0/37.3
A2 SeamlessM4T development data 39.1/55.3 21.5/46.5 24.5/45.7 7.2/21.8 10.0/36.6
A3 SeamlessM4T all data 48.0/72.8 21.0/42.7 26.7/ 50.9 5.7/16.7 9.3/33.1
A4 A3 + transfer 44.6/68.7 16.8/33.7 23.0/43.8 8.6/24.0 9.6/33.6
A5 A3 + transfer LORA - 20.9/42.1 25.7/49.1 5.9/17.6 9.3/33.1

2023 best ASR - -/36.5 -/41.7
B1 NLLB all MT data 24.9/53.6 30.4/52.6 26.8/50.2 31.2/53.7 28.4/52.1
B2 SeamlessM4T all MT data 17.9/44.8 16.9/37.9 13.2/34.9 41.6/63.8 28.0/52.9
B3 SeamelssM4T development data - 5.3/24.3 4.7/23.8 52.6/72.6 28.4/52.8

2023 best MT - 30.5/- 26.4/- - -
C1 Best ASR + B1 16.1/40.3 24.7/47.7 20.2/43.9 - 27.5/51.6
C2 Best ASR + B3 - - - 47.1/69.1 27.0/52.0
D1 SeamlessM4T - 22.3/44.9 19.3/42.7 47.2/69.2 27.7/51.3
D2 SeamelssM4T LORA - 8.2/27.5 6.9/26.4 44.3/66.9 14.1/35.3
E1 Best Cascaded - 24.4/47.1 20.6/43.6 47.3/69.3 27.6/51.6
E2 Best E2E - 22.6/44.5 19.9/42.2 48.0/69.5 27.1/49.6
E3 Best Cascaded & E2E - 25.5/47.9 21.3/44.3 50.6/71.2 29.3/52.3

2023 Best ST - 24.9/- 22.2/- - -

Table 3: Experimental results on development dataset. A, B, C, D, and E indicates the ASR, MT, cascaded ST, E2E
ST, and MBR systems. The results for ASR are in the format of CER/WER, and those for MT and ST are in the
format of BLEU/chrF++. The best ASR, MT and ST systems of 2023 IWSLT are both from (Hussein et al., 2023)

as they are new language pairs this year.

4.4 MT
As Table 3 shows, the system with pre-trained
NLLB (B1) suppresses the system with Seame-
lessM4T (B2) models for North Levantine and
Tunisian, and we assume the reason is that NLLB
is pre-trained with datasets of North Levantine and
Tunisian while SeamlessM4T not. In addition, we
notice B1 gives inferior performance for Maltese
and shows comparable performance for Bemba
compared with B2, although both models cover
these two languages in pre-training. We assume
the difference in pre-training datasets leads to in-
consistent findings for these language pairs because
SeamlessM4t and NLLB have similar architectures
and model sizes.

Rather than using all available training data, we
explore training with only the development data
to reduce the effects of domain differences (B3).
We notice B3 brings a significant performance de-
cline for Tunisian because its MT data is much less
than that for B1 (see Table 2). On the contrary,
we observe improvements for Maltese with 11.0
BLEU and 8.8 chrF points. We don’t build an MT
system (B3) for North Levantine as the supervised
MT data is too little.

4.5 ST
We build the cascaded systems from the best ASR
models, which are A2 for North Levantine, A4 for
Tunisian, and A3 for Maltese and Bemba. The
MT models for Arabic dialects are B1, and that

for Maltese is B3. We investigate both B1 and B3
for Bemba as they show comparable performance
as MT models, and we observe a slight improve-
ment in using B3 on BLEU. We explore building
a dedicated cascaded system with the normalized
transcriptions for Tunisian, while it gives inferior
results than the one without normalization.

Regarding E2E systems, we explore training
SeamlessM4T with full fine-tuning and adapter
fine-tuning. Full training shows clear advantages
over adapter training for all languages in the low-
resourced scenario, although more parameters need
to be trained. Therefore, we assume only adapting
the parameters of LORA is insufficient to fine-tune
the SeamlessM4T models on the target language
pairs.

4.6 Systems Combination
As can be seen from Table 3, when applying MBR
decoding on the output of a single system (E1 and
E2), the changes in BLEU and chrF scores are
minor. However, when applying MBR decoding
on the combined output of the best cascaded and
the best end-to-end systems (Row E3), we observe
consistent improvement of ≈ 1 BLEU point and
≈ 1 chrF point. This emphasizes the importance
of output diversity when using ensembing methods
like MBR decoding.

4.7 Submissions and Results
As for the final submission, we chose the MBR of
combining the best cascaded and E2E systems as
primary, and we chose cascaded as the contrastive1
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system and E2E as the contrastive2 system. In
addition, we submit the best ASR systems for eval-
uating the errors in acoustic recognition, which are
described in subsection 4.5. The evaluation scores
performed by the organizers are shown in Table 4.
We notice the primary and contrastive 1 systems for
North Levantine clearly outperform the contrastive
2 system, indicating the contributions of the mul-
tilingual MT model. We notice the ASR and ST
systems achieve very high scores for Maltese, es-
pecially the CV partition. We guess one of the
potential reasons is the pre-trained models touch
the test data because the CommonVoice dataset is
widely used in pre-training.

systems apc bem mlt masri mlt cv
ASR - 33.2 19.3 2.4

ST primary 20.9 28.8 50.5 67.4
ST contrastive 1 19.7 27.0 46.3 64.2
ST contrastive 2 11.9 28.1 46.7 65.7

Table 4: Evaluation results on test data. The ASR sys-
tem is evaluated with WER and the ST system is evalu-
ated with BLEU

5 Conclusion

In this work, we develop the cascaded and E2E
ST systems with pre-trained multilingual models.
The cascaded system outperforms E2E systems for
North Levantine and Tunisian and demonstrates
comparable performance for Maltese and Bemba.
While building the cascaded system, we find per-
formance improvement by involving additional re-
sources in ASR but observe performance degrada-
tion with that in MT. Furthermore, we demonstrate
combining the cascaded and E2E system with MBR
increases model performance for all language pairs.
Comparing our system with previous systems for
Tunisian, we note superior performance in the val-
idation split but lagging results in the test split,
suggesting the need for future investigations to en-
hance model robustness.
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A Adapter fine-tuning

We implement the adapters of LORA with pack-
age PEFT (Mangrulkar et al., 2022). We set the
hyperparameters to rank 8, alpha 32, dropout 0.1,
and bias as ’lora_only’. To add adapters for all lay-
ers in the encoder and decoders of SeamlessM4T,
the target modules are "q_proj, v_proj, linear_q,
linear_v".

B Tunisian ASR training

In our first endeavor, we gathered all available Ara-
bic data to fine-tune our model. The dataset used
for training is detailed in Table 2. To augment
the availability of dialectal data for training, we
adopted two approaches: utilizing default valida-
tion splits or selecting 0.15% of the training data
for validation. Subsequently, we combined the val-
idation sets, retaining only 1,500 utterances for
validation, and incorporating the remainder into
our training data. We applied the same method-
ology to other Arabic datasets. Thus, our consol-
idated validation sets comprised a total of 3,000
utterances, with 50% representing dialectal speech.
This model underwent training with early stopping
set to five epochs, with results documented as A3
in Table 3.

Subsequently, we implemented various strate-
gies further to enhance the model’s performance
on dialectal speech. In iteration A4, we conducted
additional fine-tuning using solely dialectal data.
We experimented with further fine-tuning the A3
model with exclusive Tunisian dialectal data and
a LORA module in A5. However, given the lack
of promising results and Tunisian’s exclusion from
the challenge, we discontinued further investigation
into this approach.

C North Levantine training

For the A2 North Levantine ASR model, we con-
tinued fine-tuning the entire model from A3. We
assume starting from the fine-tuned ASR models
could alleviate the need for training data. As we
only have the validation set, fine-tuning utilizes

apc_valid aeb_valid aeb_test
A1 - 27.4/62.9 31.1/68.4
A2 39.9/56.9 23.7/46.5 27.6/53.6
A3 49.6/75.7 23.1/47.4 29.6/58.9
A4 46.4/72.7 18.6/38.3 26.1/52.2
A5 - 23.1/47.0 28.7/57.0

Table 5: ASR results without normalization

90% of the validation set for training and reserves
the remaining for validating and early stopping.
Upon achieving convergence at a training epoch
number, we use the same hyperparameters to con-
duct a new fine-tuning from A3, utilizing the whole
validation set for training and stopping with the
same epoch number. This approach brings a risk of
overfitting to the validation set but could make full
use of the available data for training.

For the E2E ST system, we implement the same
training strategy as the ASR systems but start from
the pre-trained SeamlessM4T model.

D Tunisian and North Levantine ASR
scores without normalization

For comparison with ASR systems from previous
years, we report ASR scores with normalization in
Table 3d. Here, we report the scores with normal-
ization in Table 5.
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Abstract

This paper presents the methodologies imple-
mented for the Automatic Speech Recognition
and Machine Translation for the language pairs
Bhojpuri-Hindi and Marathi-Hindi for the Di-
alectal and Low-Resource shared task proposed
by The International Conference on Spoken
Language Translation (IWSLT) for 2024. The
implemented method uses the transcriptions
generated through a fine-tuned Whisper mod-
els(for Marathi-Hindi) and vakyansh-wav2vec
model (for Bhojpuri-Hindi) and generates the
translations using fine-tuned NLLB(No Lan-
guage Left Behind) Models for both the tasks.
The selection of more accurate translation is
done through sentence-embeddings generated
using the MuRIL(Multilingual Representations
for Indian Languages)(Khanuja et al., 2021)
model for the Marathi-Hindi task.

1 Introduction

India boasts a vast linguistic variety, with more than
100 official languages and numerous dialects spo-
ken all throughout the nation. Natural Language
Generation (NLG) tasks such as automated speech
recognition (ASR) and machine translation (MT),
are greatly hampered by the tremendous variety.
For millions of Indians who do not speak English
or other commonly spoken languages, ASR and
MT can be crucial in bridging the language gap and
granting them access to information and services in
a multi-linguistic country like India. However, the
creation of ASR and MT systems is a challenging
endeavour due to the inherent features of Indian
languages, such as rich morphology, the occurrence
of code-switching, and borrowing from other lan-
guages.
The ‘Dialectal and Low-Resource Track’proposed
by IWSLT 2024 requires the participants devise
creative approaches to leverage the disparate re-
sources available for 8 dialectal and low-resource
languages. The participants are required to sub-

mit under two conditions - namely constrained and
unconstrained. The constrained condition should
contain systems that are trained only on the datasets
provided by the organizers while the unconstrained
condition can contain systems trained with any re-
source including pre-trained and multilingual mod-
els. Our team participated in the unconstrained
condition for the language pairs - Marathi to Hindi
and Bhojpuri to Hindi. This paper will discuss
the implementation details of our ASR and MT
systems for the above-mentioned language pairs.

2 Related Work

Automatic Speech Recognition(ASR) and Machine
Translation(MT) in low-resource languages have
been the subject of extensive research in recent
years. Several approaches have been proposed
to address the challenges associated with low-
resource languages in ASR and MT. For instance,
multilingual training has been identified as an ef-
fective approach for compensating for the limited
amount of data in low-resourced ASR (Madikeri
et al., 2020). Additionally, transfer learning meth-
ods have been used to develop end-to-end ASR
systems for low-resource languages, demonstrating
their influence in addressing the challenges of low
data levels (Mamyrbayev et al., 2022). Further-
more, the use of self-supervised speech recognition
models has been hindered by the requirement for
considerable labeled training data, which poses a
challenge for their application to low-resource lan-
guages (Hameed et al., 2022).
In the context of MT, the scarcity of parallel data
for low-resource languages has been identified as a
significant challenge (Gao et al., 2020). Neural Ma-
chine Translation (NMT) systems, which require
large amounts of training data, face difficulties
in creating high-quality systems for low-resource
languages (Neubig and Hu, 2018). However, re-
search efforts have been directed towards improv-
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ing low-resource NMT, with studies exploring tech-
niques such as teacher-free knowledge distillation
to enhance performance in low-resource languages
(Zhang et al., 2020). The encoder-decoder frame-
work for NMT has also been found to be less effec-
tive for low-resource languages, highlighting the
need for specialized approaches to address the chal-
lenges of low-resource machine translation (Zoph
et al., 2016).
The use of transfer learning has shown effective-
ness in addressing the challenges of low-resource
NMT, particularly in scenarios where parallel data
is limited (Ji et al., 2019). Additionally, the de-
velopment of multilingual NMT systems has con-
tributed to improving the quality of translation, es-
pecially for low-resource language pairs, enabling
zero-shot translation and allowing the translation
of language pairs never seen in training (Escolano
et al., 2021).
Automatic Speech Recognition (ASR) and Ma-
chine Translation (MT) for Indian languages have
gained significant attention in recent years. The
development of ASR systems for Indian languages
has been a focus of research, with studies address-
ing low-resource challenges (Sailor et al., 2018),
multilingual and code-switching ASR systems (Di-
wan, 2021), and the impact of multilingual rep-
resentations on ASR and keyword search (Cui
et al., 2015). Research has also been conducted on
ASR for specific Indian languages such as Hindi,
Marathi, Bengali, and Oriya (Dash et al., 2018).
Furthermore, the potential of ASR to aid individu-
als with speech disabilities, such as dysarthria, has
been explored (Shahamiri and Salim, 2014). In the
realm of MT, efforts have been made to improve
the quality of translations for Indian languages
through techniques such as transliteration and part-
of-speech tagging ((Durrani et al., 2014; Ameta
et al., 2013). Moreover, the development of MT
systems for Indian languages and their approaches
have been a subject of interest (Saini and Sahula,
2015; Godase and Govilkar, 2015). Research has
also delved into rule-based machine translation and
inflection rules for specific Indian languages like
Marathi (Kharate and Patil, 2021). The significance
of ASR and MT for Indian languages is under-
scored by the need to break language barriers and
facilitate inter-lingual communication (Godase and
Govilkar, 2015). Furthermore, the development of
ASR and MT systems for Indian languages is cru-
cial for addressing the diverse linguistic landscape
of the country and enabling access to information

and services for non-English speakers.
In conclusion, the research on ASR and MT for
Indian languages has made substantial progress,
addressing challenges related to low-resource set-
tings, multilingualism, and specific language re-
quirements. These advancements are pivotal in en-
abling effective communication, accessibility, and
inclusivity for Indian language speakers.

3 Datasets

We utilized the datasets provided by the track orga-
nizers as indicated below:

3.1 OpenSLR

OpenSLR(Open Speech and Language Resources)
is a site devoted to hosting speech and language re-
sources, such as training corpora for speech recog-
nition, and software related to speech recognition.
This data set1(He et al., 2020) contains transcribed
high-quality audio of Marathi sentences recorded
by volunteers. The data set consists of .wav files,
and a TSV file (line-index.tsv). The file line-
index.tsv contains an anonymized FileID and the
transcription of audio in the file. Following are
some details about the dataset:
Identifier: SLR64
Summary: Dataset which contains recordings of
native speakers of Marathi
Category: Speech
License: Attribution-ShareAlike 4.0 International

3.2 Common Voice

We used the Common Voice 11.0 dataset(Ardila
et al., 2020) (Marathi) for the fine-tuning of Whis-
per. Common Voice is an open-source, multi-
language dataset of voices that anyone can use
to train speech-enabled applications. The dataset
consists of a unique MP3 and corresponding text
file. The dataset is available on the HuggingFace
Datasets Hub2 and can be directly imported from
there.

3.3 Samanantar

We have used the Indic2Indic part of the Samanan-
tar(Ramesh et al., 2022) dataset which is the largest
publicly available parallel corpora collection for In-
dic languages.

1https://www.openslr.org/64/
2https://huggingface.co/datasets/mozilla-

foundation/common_voice_11_0
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4 Methodology

4.1 Marathi - Hindi

For the Marathi-Hindi track(unconstrained condi-
tion), we have utilized a cascaded approach con-
sisting of two fine-tuned Whisper models for ASR
and a fine-tuned NLLB(NLLB Team et al., 2022)
model for MT.

4.1.1 ASR

In our submission, we have fine-tuned the
Whisper-small(Radford et al., 2022) pre-trained
checkpoint(244M parameters and Multilingual)3 to
obtain two fine-tuned models for ASR in Marathi.
The first model was obtained after fine-tuning
on the Common Voice 11.0 dataset while the
second model was generated after fine-tuning on
the OpenSLR dataset(SLR 64). We will call these
models as "whisper-ft-cv" and "whisper-ft-slr"
respectively. The following hyper-parameters were
used during training of both the models:
Learning Rate: 1e-05
Train Batch Size: 16
Eval Batch Size: 8
Seed: 42
Optimizer: Adam with betas=(0.9,0.999)
LR scheduler type: linear
LR scheduler warmup steps: 500
Training Steps: 4000
Mixed Precision Training: Native AMP

We trained both the ASR models for 4000
steps since during experimentation, we found that
there was not significant reduction in WER after
4000 steps. Table 1 below shows the results that
we obtained on the evaluation dataset(in terms
of WER score) after fine-tuning Whisper on the
common voice dataset.

Step Epoch Training Loss WER
1000 4.07 0.0658 46.3542
2000 8.13 0.004 44.7295
3000 12.2 0.0004 43.5046
4000 16.26 0.0002 43.3628

Table 1: Training results for whisper-ft-cv

Table 2 below shows the results that we obtained
on the evaluation dataset(in terms of WER score)
after fine-tuning Whisper on the OpenSLR dataset.

3https://huggingface.co/openai/whisper-small

Step Epoch Training Loss WER
1000 12.66 0.0018 16.6181
2000 25.32 0.0005 14.6303
3000 37.97 0.0002 14.4977
4000 50.63 0.0001 14.33917

Table 2: Training results for whisper-ft-slr

4.1.2 MT

For the Machine Translation of the transcrip-
tions generated by the ASR model, we are us-
ing a fine-tuned NLLB model (600M-distilled)4

trained on the Samanantar (Indic2Indic) dataset in
the Marathi-Hindi direction.The fine-tuned model
is then used to translate transcriptions obtained
through both whisper-ft-cv and whisper-ft-slr. Fol-
lowing were the training arguments that were used
to fine-tune both the NLLB models:
Learning Rate : 2e-5
Batch Size : 16
Weight Decay : 0.01
Epochs : 5
The model was fine-tuned for 5 epochs only since
during experimentation we found out that the train-
ing loss and BLEU scores plateaued after 5 epochs.

4.1.3 Choice of Translation

The sentence embeddings of both the transcrip-
tions and their respective translations are generated
using MuRIL(Khanuja et al., 2021). The cosine-
similarity of these translations with their respective
transcriptions are then compared and the pair with
higher value of cosine similarity is chosen as the
more accurate transcription and translation.

4.2 Bhojpuri - Hindi

For the Bhojpuri-Hindi track(unconstrained condi-
tion), we have utilized cascaded approach consist-
ing of a pre-trained wav2vec model(for ASR) and
a fine-tuned NLLB model(for MT).

4.2.1 ASR

In our submission, we have used vakyansh-
wav2vec2-bhojpuri-bhom-605(Chadha et al., 2022;
Gupta et al., 2021) model for generating the tran-
scriptions in Bhojpuri. It is a pre-trained wav2vec
model available on HuggingFace.

4https://huggingface.co/facebook/nllb-200-distilled-
600M

5https://huggingface.co/Harveenchadha/vakyansh-
wav2vec2-bhojpuri-bhom-60
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4.2.2 MT

We translate the transcriptions generated in the pre-
vious step using NLLB (1.3B)6 model with Bho-
jpuri as the source language and Hindi as the target
language.

5 Results

The results of ASR have been calculated using
WER and CER scores while those of MT are cal-
culated using BLEU(Papineni et al., 2002) and
chrF2(Popović, 2015; Zoph et al., 2016) metrics
respectively.
Word Error Rate (WER) and Character Error Rate
(CER) indicate the amount of text that was mis-
read by the model. WER recognizes three different
types of mistakes: substitutions, deletions, and in-
sertions. It is possible to see mispredicted terms
from word-level mistakes which can illustrate fre-
quent word-level errors made by a model.Its for-
mal definition is percentage of word-level mistakes
in candidate text.Another statistic that measures
correctness of a candidate text with regards to
substitutions, deletions and insertions is Charac-
ter Error Rate. Word-level errors focus on mispro-
nounced words or wrong phonemes while character
level mistakes help point out such mispronuncia-
tions.The number of character level mistake present
in a candidate text is called CER. BLEU score mea-
sures the quality of predicted text, referred to as the
candidate, compared to a set of references. BLEU
score is a precision based measure and it ranges
from 0 to 1. The closer the value is to 1, the better
the prediction.

5.1 Marathi-Hindi

Table 3 below shows the results of our ASR Sys-
tem in which we are using fine-tuned models of
Whisper-small. Here, "contrastive1" refers to the
model fine-tuned on the Common Voice dataset
whereas "contrastive2" refers to the model fine-
tuned on the OpenSLR dataset.We chose "con-
trastive2" as our primary submission for ASR.

Submission WER CER
contrastive1 62.9 17.5
contrastive2 69.3 21.2
primary 69.3 21.2

Table 3: Results of our ASR System for Marathi-Hindi

6https://huggingface.co/facebook/nllb-200-distilled-1.3B

Table 4 shows the results of our Speech Trans-
lation(ST) system (i.e ASR+MT). Here, "con-
trastive1" refers to ASR using "contrastive1" ASR
system and MT using the fine-tuned NLLB model
whereas "contrastive2" refers to ASR using "con-
trastive2" ASR system and MT using the fine-tuned
NLLB model. Our "primary" submission consists
of the translations which have higher cosine simi-
larity to their respective transcriptions (from their
respective ASR models).

Submission BLEU chrF2
contrastive1 25 50.1
contrastive2 19 44.8
primary 21.3 48.1

Table 4: Results for our ST System for Marathi-Hindi

5.2 Bhojpuri - Hindi

Table 5 below shows the results for our primary
ST system for Bhojpuri-Hindi which consists of
a vakyansh-wav2vec model for ASR and NLLB-
1.3B distilled model for MT.

Submission BLEU chrF2
primary 12.9 41.1

Table 5: Results for our ST System for Bhojpuri-Hindi

6 Conclusion and Future Work

In this paper, we have presented our Speech Trans-
lation Systems for the dialectal and low-resource
track of IWSLT 2024 employing a cascaded ap-
proach using fine-tuned models for both ASR
and MT. Our submission trailed by a chrF2 score
of 20 in comparison to the best submission in
Marathi-Hindi task(unconstrained). In Bhojpuri-
Hindi task(unconstrained) our submission trailed
the best submission by a chrF2 score of 8.4 .
Our future work will comprise of using data-
augmentation techniques and fine-tuning multi-
ple pre-trained multilingual models and exploring
more speech translation models for Low-Resource
Indian Languages.
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Abstract

Speech translation has witnessed significant
progress driven by advancements in modeling
techniques and the growing availability of train-
ing data. In this paper, we highlight recent
advances in two ongoing research directions
in ST: scaling the models to 1) many transla-
tion directions (multilingual ST) and 2) beyond
the text output modality (multimodal ST). We
structure this review by examining the sequen-
tial stages of a model’s development lifecycle:
determining training resources, selecting model
architecture, training procedures, evaluation
metrics, and deployment considerations. We
aim to highlight recent developments in each
stage, with a particular focus on model architec-
tures (dedicated speech translation models and
LLM-based general-purpose model) and train-
ing procedures (task-specific vs. task-invariant
approaches). Based on the reviewed advance-
ments, we identify and discuss ongoing chal-
lenges within the field of speech translation.

1 Introduction

Speech translation (ST) is the task of automati-
cally converting speech in a source language into
its equivalent in a target language. Recently, there
has been significant interest in multilingual models
(Di Gangi et al., 2019; Inaguma et al., 2019; Li
et al., 2021; Le et al., 2021; Radford et al., 2023)
that serve a broad range of translation directions, as
well as multimodal models (Inaguma et al., 2023;
Rubenstein et al., 2023; Seamless Communication
et al., 2023b) that not only generate text translations
but can also synthesize speech output.1 Both devel-
opments are crucial steps towards making ST tech-
nologies more inclusive. By expanding language
coverage and offering diverse output modalities,
these advancements make ST models accessible

1Here we restrict our discussion to the two modalities of
speech and text. We acknowledge the relevance of additional
modalities, such as vision, and leave them for open questions.

to a wider range of users, allowing them to inter-
act with the technology in their preferred language
and format. Besides the practical relevance, mul-
tilingual and multimodal translation are instances
of multi-task learning (Caruana, 1997), a central
machine learning challenge.

In this paper, we aim to review recent advance-
ments in multilingual and multimodal ST. We struc-
ture the review by the stages in a model’s devel-
opment lifecycle, as illustrated in Figure 1. These
stages consist of model coverage and architecture
selection, training procedures, evaluation method-
ologies, and deployment considerations. In the
review of current model architectures (§3), besides
discussing dedicated models for translation, we
review emerging models in adapting text-based
large language models (LLMs) for speech process-
ing. Given the inherent multi-task learning nature
of both multilingual and multimodal ST, we put
special emphasis on the learning procedure (§4).
Specifically, we take two perspectives from task-
specific and task-invariant modeling, and discuss
their roles in terms of the trade-off between inter-
ference and transfer.

While prioritizing direct ST, we also review re-
lated multilingual and multimodal techniques in
automatic speech recognition (ASR) and text-to-
text machine translation (MT), as they often are
extendable to ST tasks. We also note that this work
is not an exhaustive survey, but rather aims to high-
light directions of recent developments and provide
context for open challenges.

2 Training Resources

Determining training resources is one of the ini-
tial steps when building a speech translation model.
This section provides a brief overview of the lan-
guage and modality coverage (§2.1) in existing
training resources, followed by discussions on scal-
ing datasets by augmentation or mining (§2.2).
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Figure 1: Overall structure of the paper, following sequential stages of model development lifecycle.

Dataset Directions Modality & Type # Lang. Pairs Total Hours

MuST-C (Di Gangi et al., 2019; Cattoni et al., 2021) en→X S2T 14 0.4k
Europarl-ST (Iranzo-Sánchez et al., 2020) X→X S2T 12 0.5k
CoVoST 2 (Wang et al., 2021b) en→X, X→en S2T 36 3k
mTEDx (Salesky et al., 2021) X→X S2T 13 0.4k
VoxPopuli (Wang et al., 2021a) X→X S2T/S, interpretation 210 17k
CVSS (Jia et al., 2022b) X→en S2T/S, synthesized 21 2k
SpeechMatrix (Duquenne et al., 2023a) X→X S2T/S, mined 136 418k

Table 1: Overview of popuplar speech translation training resources.

2.1 Language and Modality Coverage

Curating datasets for speech translation is labor-
intensive. Popular training resources often rely
on contributions from volunteers on platforms like
TED and Common Voice, or are sourced from gov-
ernmental bodies. Table 1 provides an overview
of commonly used speech translation datasets. A
trend towards broader language coverage is evident,
with datasets like Europarl-ST and mTEDx cover-
ing non-English translation directions. Moreover,
there has also been growing availability of transla-
tion resources with speech output, exemplified by
VoxPopuli, CVSS, and SpeechMatrix.

2.2 Augmenting and Mining Data

Speech translation models suffer from the scarcity
of parallel data. To address this challenge, several
data augmentation approaches have emerged. One
approach is to leverage pretrained MT models to
convert ASR data into synthetic speech translation
pairs (Pino et al., 2020). Text-to-speech (TTS) sys-
tems can also be employed to create augmented
training data from existing text resources (Jia et al.,
2019a, 2022b). Another way to tackle data scarcity
is to mine parallel data in large unpaired data col-
lections. In general, these approaches typically
invovle learning a multilingual or multimodal sen-
tence embedder, where distances within the embed-
ding space can be used to identify potential parallel
data points (Schwenk, 2018). The effectiveness of
this method on ST was demonstrated by Duquenne

et al. (2021), who showed that mined speech-to-text
data can improve the performance of direct speech
translation models. This line work was extended
with the creation of SpeechMatrix (Duquenne et al.,
2023a), a large-scale speech-to-speech translation
corpus built using mined data.

2.3 Outlook

Understanding the Impact of Data Quality and
Style The increasing volume of ST training re-
sources comes with a risk on data quality. While
scaling up training data volume offers obvious ben-
efits, noisy data could hinder model performance.
To the best of our knowledge, there is currently no
established best practice for data filtering in speech
translation. Current research presents conflicting
findings on the impact of data quality. For exam-
ple, Ouyang et al. (2022) observed no improvement
in model performance when removing misaligned
parallel data from the training set, while Gaido
et al. (2022) demonstrated gains by filtering out
such misalignments. Meanwhile it also remains
unclear whether data filtering best practices are
language-specific. Besides data quality, a deeper
understanding of training data style’s impact on ST
performance is also beneficial. In the related field
of MT, Maillard et al. (2023) showed gains by us-
ing small amounts of professionally-translated data.
In ST, Ko et al. (2023) observed that interpretation-
style data facilitates simultaneous translation mod-
els. Inspired by this finding, Sakai et al. (2024) pro-
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Model # Param
S2T

X→en
(21 lang.)

S2T
en→X

(15 lang.)

S2S
X→en

(21 lang.)
Learning

Speech-to-Text

XLS-R (Babu et al., 2022) 2B 22.1 27.8 − self-supervised
+ supervised FT

MAESTRO (Chen et al., 2022b) 0.6B 25.2 − − self-supervised
+ supervised FT

Whisper Large (Radford et al., 2023) 1.6B 29.7 − − (weakly) supervised
ComSL Large (Le et al., 2023) 1.3B 31.5 − − (weakly) supervised
AudioPaLM (Rubenstein et al., 2023) 8B 35.4 − − supervised FT
↪→ + PaLM 2 (Anil et al., 2023) 8B 37.8 − − supervised FT

ZeroSWOT Large (Tsiamas et al., 2024) 1.7B − 31.2 − zero-shot combination
pretrained ASR & MT

Speech-to-Text/Speech
AudioPaLM S2ST (Rubenstein et al., 2023) 8B 36.2 − 32.5 supervised FT

SeamlessM4T Large (Seamless Communication et al., 2023b) 2.3B 34.1 30.6 36.5 self-supervised
+ supervised FT

↪→ v2 (Seamless Communication et al., 2023a) 2.3B 36.6 31.7 39.2 self-supervised
+ supervised FT

Table 2: Performance overview of selected recent models for speech-to-text (S2T; BLEU↑; on CoVoST 2) and
speech-to-speech translation (S2S; ASR-BLEU↑; on CVSS).

pose augmenting existing datasets with synthetic
targets that mimic the style of interpretation data.
Overall, exploring other data styles relevant to spe-
cific speech translation tasks could be promising
for further performance improvements.

Targeted Resources for Low-Resource Lan-
guages The training resources in Table 1 primar-
ily cover high-resource languages. For truly low-
resource languages, readily available internet data
may be scarce or non-existent. In such cases, col-
laboration with local communities becomes essen-
tial for data collection. The AmericasNLP speech
translation shared task (Ebrahimi et al., 2021) is
a successful example of this approach. The initia-
tive focused on gathering speech translation data
for indigenous languages of the Americas, demon-
strating the feasibility of community-driven data
collection for low-resource languages.

3 Model Architecture

In this section, we first review dedicated model
architectures for speech-to-text (S2T; §3.1) and
speech-to-speech (S2S; §3.2) translation, with a
focus on the use of foundation models. After-
wards, we discuss recent developments in adapting
general-purpose LLMs (§3.3) for encoding or gen-
erating speech.

3.1 Dedicated S2T Translation Models
Integrating Foundation Models Foundation
models have become essential resources for train-

ing. Reflecting this trend, since 2022, a selection of
(often massively multilingual) audio and text foun-
dation models are allowed in the constrained data
condition2 in IWSLT (Anastasopoulos et al., 2022).
However, as most current speech foundation mod-
els are either unsupervised/encoder-only (Baevski
et al., 2020; Chung et al., 2021a; Chen et al., 2022a)
or supervised with a limited translation directions
(Radford et al., 2023), further adaptation is typi-
cally needed on specific speech translation tasks.
A promising direction has been to pair pretrained
audio encoders with text decoders, as frequently
used in recent IWSLT system submissions (Gállego
et al., 2021; Pham et al., 2022; Huang et al., 2023).
In this process, additional lightweight adapters of-
ten are injected to bridge the audio and text rep-
resentations (Li et al., 2021; Gállego et al., 2021;
Zhao et al., 2022). For a focused survey of founda-
tion models in S2T translation, we refer the readers
to Gaido et al. (2024).

Representative Models and Trends Table 2
presents a chronological overview of some recent
S2T translation models. Examining benchmark
results on the CoVoST 2 dataset, a substantial per-
formance improvement (+15.7 BLEU) is observed
for X→en directions over the last two years. How-
ever, the picture for en→X directions remains less
clear due to the limited number of data points.
Nonetheless, when also considering the speech-

2as opposed the unconstrained data condition with no re-
strictions on training data and resources
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to-text/speech results, we clearly see the progress
in en→X is far behind X→en (22.1→36.6 BLEU
vs. 27.8→31.7 BLEU). Regarding the learning
paradigm, a trend emerges from developing new
self-supervised representation learning schemes
(XLS-R, MAESTRO) towards directly using pre-
trained models (ComSL, AudioPaLM), in partic-
ular the plug-and-play combination of pretrained
modules (Tsiamas et al., 2024) in zero-shot condi-
tions.

3.2 Dedicated S2S Translation Models

Challenges of Generating Speech Speech gen-
eration presents unique challenges compared to
text generation. First, the inherent longer length of
audio signals poses significant computational de-
mands for conventional autoregressive approaches.
Moreover, capturing long-range dependencies
within these extended sequences becomes more
difficult for the model. Second, speech generation
is often an under-specified problem. Unlike text,
speech can be produced with various voice char-
acteristics for the same content. This ambiguity
creates a larger space of possible outputs that the
model must handle.

Textless Models An advantage of speech-to-
speech translation is the possibility to circum-
vent intermediate written text. Indeed, there has
been growing interest in textless models (Jia et al.,
2019b; Tjandra et al., 2019; Zhang et al., 2021b;
Lee et al., 2022; Jia et al., 2022a), which do not rely
on intermediate text representations and are espe-
cially suitable for S2ST of languages without stan-
dard writing systems. In general, these approaches
first create discrete representations with unsuper-
vised acoustic unit discovery by clustering or auto-
encoding (Tjandra et al., 2019; Zhang et al., 2021b;
Hsu et al., 2021). The learned inventory of acoustic
units could be viewed as learned phonemes. The
input speech are then mapped to the discrete units,
after which a unit-to-speech model is responsible
for creating the output speech. Discretization of
speech is further discussed in §3.4. Another advan-
tage of textless models is the potential of preserving
source voice characteristics. In particular, Seam-
lessExpressive (Seamless Communication et al.,
2023a) is a recent model dedicated to voice char-
acteristic preservation. Expressivity embeddings
are extracted from the source speech and integrated
in the output speech generation. Specifically, the
model disentangles semantic and expressivity com-

ponents from the source speech by learning speech
reconstruction.

Representative Models and Trends In the lower
section of Table 2, we list recent models supporting
both S2T and S2S translation: AudioPaLM S2ST
(Rubenstein et al., 2023) and SeamlessM4T (Seam-
less Communication et al., 2023b,a). AudioPaLM
S2ST, in contrast to its variant lacking speech gen-
eration capabilities, is additionally trained on TTS
and S2S translation data. The inclusion of addi-
tional modalities not only enables speech genera-
tion as an output, but also improves S2T transla-
tion performance (35.4→36.2 BLEU). Similar to
its text generation counterpart, AudioPaLM S2ST
fuses AudioLM (Borsos et al., 2023a) and the text-
based PaLM model (Anil et al., 2023). The model
has a joint vocabulary for both audio and text in-
puts. The audio tokens are created by an upgraded
version of the USM encoder (Zhang et al., 2023b),
which discretizes and downsamples the speech in-
put. Speech tokenization is further discussed in
(§3.1). Unlike AudioPaLM, SeamlessM4T uti-
lizes an encoder-decoder architecture primarily
fine-tuned from NLLB (NLLB Team et al., 2022).
Its encoder additionally can additionally process
speech inputs based on w2v-BERT representations
(Chung et al., 2021b). Both AudioPaLM S2ST and
SeamlessM4T achieve speech generation by option-
ally chaining a speech generation module after the
text generation stage. AudioPaLM S2ST first con-
verts audio tokens to SoundStream tokens (Zeghi-
dour et al., 2022), which are then used by a vocoder
to synthesize audio waveforms. SeamlessM4T,
on the other hand, employs a text-to-unit encoder-
decoder model followed by a vocoder.

3.3 General-Purpose Models

Adapting LLMs to Encode and Generate Speech
Driven by the recent advancements in LLMs, there
has been a surge of interest in adapting them for
speech translation tasks. However, most publicly
available LLMs, such as those in the LLaMA fam-
ily (Touvron et al., 2023a,b), only support the text-
to-text modality. To enable speech translation,
these models require additional adaptation for both
speech encoding and generation. A common ap-
proach for speech encoding involves discretizing
and downsampling the audio input. This process
transforms the continuous audio signal into a se-
quence of discrete tokens that the LLM can readily
ingest. On the output side, typically discrete audio
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Model Speech Tokenization Backbone LLM Generation Module Evaluated on ST

AudioPaLM (Rubenstein et al., 2023) USM encoder (variant) PaLM (8B) SoundStorm ✓
PolyVoice (Dong et al., 2024) HuBERT GPT-2 (1.6B) SoundStream (variant) ✓
SALMONN (Tang et al., 2024) Window-level Q-Former Vicuna (13B) − ✓
NExT-GPT (Wu et al., 2023) ImageBind Vicuna (7B) AudioLDM ✗
CoDi-2 (Tang et al., 2023) ImageBind LLaMA 2 (7B) AudioLDM 2 ✗
AnyGPT (Zhan et al., 2024) SpeechTokenizer LLaMA 2 (7B) SoundStorm (variant) ✗

Table 3: Selected recent works adapting LLMs for speech processing and their components (speech tokenziation
module, backbone LLM, and speech generation module).

tokens are generated similarly to text tokens. Af-
terwards, a synthesizer, for instance SoundStorm
(Borsos et al., 2023b), converts these tokens to
speech waveforms.

Representative Models and Trends In Table 3,
we summarize recent works in LLMs for encod-
ing and generating speech. Regarding the speech
tokenization modules, common choices include Im-
ageBind (Girdhar et al., 2023), SpeechTokenizer
(Zhang et al., 2023a), HuBERT (Hsu et al., 2021),
and the encoder of USM (Zhang et al., 2023b). For
the backbone LLMs, the surveyed models mostly
choose use small LLM variants (<10B parame-
ters). For the audio generation module, popular
choices are diffusion-based AudioLDM (Liu et al.,
2023a), vector-quantization-based SoundStream
(Zeghidour et al., 2022) and SoundStorm (Borsos
et al., 2023b). As many of the reviewed models
in Table 3 are not evaluated on speech translation,
currently it is still difficult conclusively compare
them to more conventional architectures.

3.4 Speech Tokenization

As introduced earlier, speech tokenization offers
benefits in various applications, including textless
translation and integration with text-based LLMs.
Table 4 provides an overview of prominent ap-
proaches for speech tokenization and their under-
lying techniques. A common thread among these
methods is the use of residual vector quantization
(RVQ) (Barnes et al., 1996), which partitions the
latent space into a finite number of subsets. While
HuBERT employs k-means clustering, similar to
RVQ in its objective of latent space partitioning, it
differs in its implementation of offline clustering in
a separate stage. In contrast to the other methods,
ImageBind (Girdhar et al., 2023) directly encodes
audio by transforming the spectrogram by Vision
Transformer (ViT) (Dosovitskiy et al., 2021). It is
worth exploring whether this approach carries suffi-
cient fine-grained information for speech transcrip-

tion or translation. The window-level Q-Former
used in SALMONN (Tang et al., 2024) is also in-
spired by image processing. A sliding window of
fixed size is applied on the speech features, where
each window is processed by a Q-Former (Li et al.,
2023), which creates a fixed number of token em-
beddings. These audio tokens embeddings are later
ingested by the backbone LLM.

Model Technique

HuBERT (Hsu et al., 2021) k-means clustering
SoundStream (Zeghidour et al., 2022) RVQ
SoundStorm (Borsos et al., 2023b) RVQ
SpeechTokenizer (Zhang et al., 2023a) RVQ
ImageBind (Girdhar et al., 2023) spectrogram + ViT

Win.-level Q-Former (Tang et al., 2024) sliding-window
+ Q-Former

Table 4: Common speech tokenization techniques.

3.5 Outlook
More Unified Speech and Text Generation As
reviewed in this section, current speech and text
generation approaches primarily rely on sequential
processing or separate model branches. This raises
the question of whether a more unified approach
could be beneficial. Circumventing sequential pro-
cessing could be particularly beneficial under real-
time constraints.

Comparison between Architecture Paradigms
Given the recency of some reviewed model types,
especially those leveraging LLMs for general-
purpose tasks (§3.3), a clear understanding of their
performance compared to established architectures
is still missing. Comprehensive benchmarking ef-
forts targeting these recently emerged approaches
could bridge this gap.

Identifying Scaling Law Prior works have ex-
amined how increasing model size affects model
performance in MT (Fernandes et al., 2023). As
the reviewed approaches in this work primarily fo-
cus on smaller LLMs, similar investigations for ST,
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particularly considering the foundation model size,
could yield valuable practical insights.

How far will Transformers take us? A broader
open question is whether alternative architectures
can challenge the dominance of Transformers.
State-space models (Gu et al., 2022a; Gu and Dao,
2023) could be a promising candidate, as their
strength lies in capturing long-range dependencies,
a crucial aspect for effective ST due to the inherent
sequential nature of speech.

4 Multilingual and Multimodal Learning

Both multilingual and multimodal speech transla-
tion are instances of multi-task learning, where
each translation direction in one input-output
modality pair corresponds to one task. As also
observed in general multi-task learning (Caruana,
1997), a key goal here is to maximize the transfer
while minimizing the interference between tasks,
while maintaining an efficient trade-off (Arivazha-
gan et al., 2019b). Given a defined model archi-
tecture (§3), different training procedures control
the learned representations. In this section, we will
discuss the relevant approaches in detail, taking
two perspectives from task-specific (§4.1) and task-
invariant modeling (§4.2).

4.1 Task-Specific Modeling

A central question when adding task-specific capac-
ity is determining the optimal allocation between
shared and task-specific components. Early works
use hand-picked sharing strategies of sub-networks,
such as language-specific decoders (Dong et al.,
2015), attention heads (Zhu et al., 2020), and layer
norm/linear transformation (Zhang et al., 2020).
Recently, research interests shifted towards learn-
ing to balance between task-specific and shared
capacity. We summarize representative approaches
in the following categories: 1) mixture-of-experts,
2) adapters, 3) factorization, and 4) pruning, as il-
lustrated in Figure 2. While these approaches may
share similar end goals, the categorization helps to
outline their specific computational approaches.

Mixture-of-Experts (MoEs) Compared to their
dense counterparts, MoE networks (Eigen et al.,
2014; Shazeer et al., 2017; Lepikhin et al., 2021) in-
corporate multiple expert subnets and use a gating
mechanism to selectively activate the expert mod-
ules. Besides increasing model capacity, this ap-
proach also provides a neat framework for balanc-

ing between task-specific and task-agnostic mod-
ules. MoEs can be seen as neural architecture
search (Baker et al., 2017), where the search space
is the combination of the parallel expert modules.

For multilingual applications, a common config-
uration of MoE is to reserve one universal expert
shared by all languages, while keeping the remain-
ing experts language-specific. The importance of
each expert module is learned by a gating mecha-
nism. The final output is a mix between language-
specific and shared ones. The overall amount of
language-specific capacity can be controlled by a
budget (Zhang et al., 2021a). There have been
works applying MoEs in both multilingual ASR
(Gaur et al., 2021; Kwon and Chung, 2023; Hu
et al., 2023; Wang et al., 2023b) and MT (Zhang
et al., 2021a; NLLB Team et al., 2022; Pires et al.,
2023). In direct ST, there are fewer works using
MoE. One work (Berrebbi et al., 2022) uses the
MoE gating mechanism to balance different acous-
tic features to improve ST robustness.

Adapters Like MoEs, adapters (Rebuffi et al.,
2017; Houlsby et al., 2019; Bapna and Firat, 2019)
is another of form conditionally activated network.
They can be seen as a restricted case of MoE with
hard gating and fixed routing3. In this case, how
the adapters are allocated to tasks needs to be de-
cided a priori. A variety of allocation schemes
have been explored, for example by language pairs
(Bapna and Firat, 2019), single languages (Philip
et al., 2020), and language families (Chronopoulou
et al., 2023). In multilingual ST, language-specific
adapters have been shown to improve over mono-
lithic multilingual models and achieve comparable
results to full fine-tuning (Le et al., 2021). Be-
sides adding capacity, a more common use-case of
adapters in speech translation is to bridge speech
and text representations (Li et al., 2021; Escolano
et al., 2021; Zhao et al., 2022), especially when
coupling pretrained ASR and MT models (Gállego
et al., 2021; Tsiamas et al., 2024). Further discus-
sions on this are in §4.2.

Factorization Another perhaps less explored line
of work uses factorization to balance language-
specific and shared parameters. By decompos-
ing originally shared parameters into (low-rank)
factors that are either language-specific or shared,
factorization enables a learned task allocation of

3Fusion between adapters (Pfeiffer et al., 2021) is an ex-
ception.
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Figure 2: Representative approaches for task-specific modeling.

parameters. This approach has seen applications
in multilingual ASR (Pham et al., 2021) and MT
(Xu et al., 2023). Compared to MoEs or adapters,
an advantage of factorized models is their fewer
total parameters, especially under large language
coverage (Pham et al., 2021; Xu et al., 2023).

Pruning Pruning also leads to sparse sub-
networks, similar to with MoEs. The difference
is that pruning starts with a trained model, and then
finetunes the selected sub-network. This therefore
does not increase model capacity like MoEs. For
multilingual models, per-language pruning results
in a partially shared network, fostering a learned
distribution of language-specific and shared capaci-
ties. This approach has demonstrated effectiveness
in multilingual ASR (Lu et al., 2022; Yang et al.,
2023b) and MT (Lin et al., 2021; Koishekenov
et al., 2023; He et al., 2023). The pruned sub-
networks are shown to correspond to language re-
latedness (Lin et al., 2021; He et al., 2023), sug-
gesting the validity of the learned sharing patterns.

4.2 Task-Invariant Modeling

As introduced in §4.1, task-specific modeling often
helps to alleviate interference in supervised condi-
tions. One the other hand, language- or modality-
invariant representations are often beneficial in
zero-shot or low-resource data conditions as well
as retrieval tasks.

Aligning Speech and Text Representations
Many prior works (Liu et al., 2020b; Dinh et al.,
2022; Ye et al., 2022; Wang et al., 2022; Ouyang
et al., 2023; Duquenne et al., 2022, 2023b) seek
to align speech and text representations, such that
semantically similar sentences are represented sim-
ilarly irrespective of their source modality (speech
or text). A semantically-aligned multimodal la-
tent space has at least the following benefits: 1) It

could facilitate the plug-and-play use of pretrained
unimodal models (Duquenne et al., 2023b; Yang
et al., 2023a; Tsiamas et al., 2024). 2) Text repre-
sentations are often more robust than speech due to
more training data, where cross-modal alignment
can help distill from the resource-richer text-based
task (Liu et al., 2020b; Tang et al., 2021). Indeed,
multiple works showed that enforcing cross-modal
universal representations improves low-resource
(Dinh et al., 2022; Ouyang et al., 2023) and zero-
shot ST (Wang et al., 2022; Duquenne et al., 2022;
Tsiamas et al., 2024). A major challenge in the
alignment of speech and text is the length mis-
match, where speech sequences are often factors
longer than text. Therefore some shrinking mecha-
nism is often necessary, e.g., by CTC-based down-
sampling (Liu et al., 2020b; Gaido et al., 2021),
CNN-based length adapters (Gállego et al., 2021),
or learning to aggregate the representations from
both modalities to fixed sizes (Duquenne et al.,
2022, 2023b).

Language-Invariant Modeling Another form of
task-invariant modeling is to enforce similar rep-
resentations for different languages, thereby estab-
lishing a language-agnostic semantic latent space.
In multilingual MT, such approaches (Arivazha-
gan et al., 2019a; Pham et al., 2019; Liu et al.,
2021) are shown effective on zero-shot translation
of new language pairs not included in training. An-
other application where language-invariant model-
ing helps is similarity search, where multilingual
sentence encoders (Artetxe and Schwenk, 2019;
Duquenne et al., 2023b) are used to mine parallel
data (Schwenk et al., 2021; Duquenne et al., 2023a)
for translation training corpora.

4.3 Outlook
Synergy between Languages and Modalities
Multi-task learning inherently faces a tradeoff be-
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tween knowledge sharing and negative interference.
This becomes particularly challenging to investi-
gate in recent LLM-based models capable of han-
dling a wide range of modalities (§3.3). A deeper
understanding of the interactions between tasks
will enable targeted solutions to mitigate interfer-
ence and promote knowledge sharing.

Efficiently Adding Languages and Modalities
While in this paper we primarily focuses on the two
modalities of speech and text, expanding modality
coverage is a natural next step. For new modal-
ities, vision offers significant potential for real-
world applications, including sign language transla-
tion (Müller et al., 2023) and lip reading (Afouras
et al., 2020). Recent foundation models like Audio-
Visual BERT (Shi et al., 2022) demonstrates the
feasibility of multimodal processing that incorpo-
rates vision. An additional interesting direction
is the continual learning of trained ST systems.
The key challenge would be to integrate additional
languages or modalities into the model without
compromising its existing performance.

5 Evaluation

The evaluation of multilingual and multimodal ST
models relies on more resources than their bilingual
and unimodal counterparts. Here we outline rele-
vant developments in evaluation resources (§5.1)
and metrics (§5.2).

5.1 Evaluation Resources

The evaluation of multilingual and multimodal ST
models heavily rely on multiway parallel evalua-
tion data, such as the FLoRes evaluation set (Goyal
et al., 2022; NLLB Team et al., 2022) and its
speech-based extension FLEURS (Conneau et al.,
2022). Meanwhile, the increasing training data
scale of large foundation models introduces signifi-
cant risks of data contamination. A very alarming
example is the inclusion of the FLoRes-200 evalu-
ation data (NLLB Team et al., 2022) in the training
corpus of BLOOMZ (Muennighoff et al., 2023),
leading to highly inflated performance scores on
this specific set (Zhu et al., 2023), and rendering
downstream models based on BLOOMZ untestable
by this benchmark. As any Internet content could
be ingested in LLM training, developing new, un-
published test sets becomes even more essential.
The recent initiative of test suites in WMT (Kocmi
et al., 2023) as well as in IWSLT is a significant
step forward in addressing this challenge.

5.2 Evaluation Metric
Speech-to-Text Evaluation While the transla-
tion community is gradually moving beyond BLEU
(Papineni et al., 2002) to neural metrics better
calibrated to human ratings (Freitag et al., 2022)
such as COMET (Rei et al., 2020), language cov-
erage remains a challenge for very low-resource
languages. For instance, COMET supports 109
languages at the time of writing4, whereas eval-
uation on extremely low-resource languages of-
ten rely on match-based scores like chrF (Popović,
2015). Noteworthy are initiatives like AfriCOMET
(Wang et al., 2023a) to scale neural metrics to
lower-resource languages.

Speech-to-Speech Evaluation For evaluation of
speech-to-speech translation, the emergence of
similar neural metrics like BLASER (Chen et al.,
2023) as replacement of ASR-BLEU is also en-
couraging. For expressive speech, evaluation on
voice preservation primarily has been relying on
basic acoustic features such as the fundamental fre-
quency (Akuzawa et al., 2018) or pitch and energy
(Jeuris and Niehues, 2022), which do not account
for speech naturalness. Recently, Seamless Com-
munication et al. (2023a) propose AutoPCP and a
rhythm evaluation toolkit to measure prosody.

5.3 Outlook
Reliably Measuring Progress As discussed in
§5.1, the advent of LLM also introduces higher
risks of test data leakage. Besides calling for more
rigorous documentation by model developers and
critical evaluation by practitioners applying these
models to downstream tasks, this also presents a
crucial research question: how to effectively create
representative testing scenarios to properly mea-
sure progress. Recent targeted evaluation datasets
(Salesky et al., 2023) and community-driven cre-
ation of test suites (Kocmi et al., 2023) are excellent
examples of such efforts. Only with such robust
testing methodologies can we ensure the generaliz-
ability of observed performance improvements.

6 Deployment

In this section, we review three aspects relevant to
model deployment: compression and distillation
for serving the models (§6.1), continual learning
of new capabilities (§6.2), and inference-time cus-
tomization (§6.3).

4https://github.com/Unbabel/COMET?tab=
readme-ov-file#languages-covered
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6.1 Compression and Distillation

While tight-integrated multi-task models offer the
advantage of a compact and unified structure that
simplifies deployment, the growing trend of incor-
porating large pretrained components can negate
part of this initial benefit. Recent works in pruning
massively multilingual MT models (Mohammad-
shahi et al., 2022; Koishekenov et al., 2023) show
successful model compression while maintaining
translation quality. Another related direction is to
distill larger models into to smaller student models
(NLLB Team et al., 2022).

6.2 Continual Learning

Given a deployed model, one use-case is to add
more languages or modalities to the existing system.
A trade-off here is maintaining performance on
existing tasks and achieving optimal adaptation to
the new task. While continual learning for adding
languages has been explored in multilingual ASR
(Li et al., 2022; Pham et al., 2023) and MT (Gu
et al., 2022b; Sun et al., 2023; Liu et al., 2023b) its
application in direct ST remains less investigated.
Recent advancements in parameter-efficient fine-
tuning approaches, such as LoRA (Hu et al., 2022),
offer an alternative modular approach. By training
only the newly added parameters, inherently, one
can naturally decouple the new knowledge from
previously acquired information.

6.3 Inference-Time Customization

Deployed models sometimes require customization
to meet additional constraints specific to the use
case. An example is real-time applications, such
as simultaneous translation, where speech input
needs to be decoded before it is complete. While
other approaches involve designing separate mod-
els for online scenarios, repurposing offline models
for online use cases (Liu et al., 2020a; Papi et al.,
2022, 2023) has been shown to be a competitive
alternative. This is particularly advantageous on
foundation models (Papi et al., 2024) where retrain-
ing the model for specific use-cases is infeasible.

6.4 Outlook

Retrieval-Augmented Generation For both con-
tinual learning and inference-time customization
as reviewed above, retrieval-augmented generation
could be a promising approach. For instance, a
separate data store could house continual learning
data points, allowing for model updates without

modifying the deployed model itself. Retrieval-
augmented translation has demonstrated success
in the text domain (Zhang et al., 2018; Xu et al.,
2020; Cai et al., 2021; Hoang et al., 2023; Hao
et al., 2023). In the context of ST, Du et al. (2022)
explored kNN-MT (Khandelwal et al., 2021) for
domain adaption using a joint speech and text in-
put model with a text-based data store. However,
it remains unclear how speech-based retrieval can
benefit ST performance. Methods for efficiently
incorporating speech data into the retrieval process
is an interesting direction of future research.

7 Conclusion

In this paper, we presented a selection of recent ad-
vancements in multilingual and multimodal speech
translation. We zoom into individual stages of the
lifecycle of building a system: from determining
model coverage and architecture, training proce-
dures, to evaluation, and eventually deployment.
This work is not an exhaustive survey, but rather a
snapshot of ongoing developments related to mul-
tilingual and multimodal speech translation. We
welcome the community’s feedback on any rele-
vant omitted works in the current version.
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Abstract

This paper analyzes the features of monotonic
translations, which follow the word order of
the source language, in simultaneous interpret-
ing (SI). Word order differences are one of
the biggest challenges in SI, especially for lan-
guage pairs with significant structural differ-
ences like English and Japanese. We analyzed
the characteristics of chunk-wise monotonic
translation (CMT) sentences using the NAIST
English-to-Japanese Chunk-wise Monotonic
Translation Evaluation Dataset and identified
some grammatical structures that make mono-
tonic translation difficult in English-Japanese
SI. We further investigated the features of CMT
sentences by evaluating the output from the
existing speech translation (ST) and simulta-
neous speech translation (simulST) models on
the NAIST English-to-Japanese Chunk-wise
Monotonic Translation Evaluation Dataset as
well as on existing test sets. The results indicate
the possibility that the existing SI-based test set
underestimates the model performance. The re-
sults also suggest that using CMT sentences as
references gives higher scores to simulST mod-
els than ST models, and that using an offline-
based test set to evaluate the simulST models
underestimates the model performance.

1 Introduction

Simultaneous interpreting (SI) is the task of trans-
lating speech from a source language into a target
language in real time. SI is cognitively demand-
ing, and human simultaneous interpreters employ
such strategies as segmentation, summarization,
and generalization (He et al., 2016). Maintaining
word order in a source language is another impor-
tant strategy, especially for language pairs whose
word order differs (e.g., English and Japanese), to
shorten delays and reduce cognitive load. Because
of these features, SI sentences are different from
offline translation sentences, although most auto-
matic SI studies (Oda et al., 2014; Ma et al., 2019;

Liu et al., 2020; Papi et al., 2023) have used offline
translation corpora (e.g., MuST-C; Di Gangi et al.,
2019) for both training and evaluatng models due to
the limited amount of simultaneous interpretation
corpora (SICs).

For English-Japanese language pairs, several
SICs have been constructed (Toyama et al., 2004;
Shimizu et al., 2014; Matsushita et al., 2020; Doi
et al., 2021). Based on the NAIST Simultane-
ous Interpretation Corpus (NAIST-SIC; Doi et al.,
2021), Zhao et al. (2024)1 created an automatically-
aligned parallel SI dataset: NAIST-SIC-Aligned.
Since its sentences are aligned at the sentence level,
they can be used for model training. Actually, Ko
et al. (2023) and Zhao et al. (2024) trained SI mod-
els using SI data from NAIST-SIC-Aligned. Their
model performances were evaluated through auto-
matic evaluation metrics such as BLEU (Papineni
et al., 2002) using a small test set curated based
on SI sentences generated by professional human
simultaneous interpreters.

Although the scores reported in Ko et al. (2023)
and Zhao et al. (2024) were relatively low, the test
set used in both studies might have underestimated
the model performance. Since human simultaneous
interpreters use such strategies as summarization
and generalization, phrases that do not affect the
main idea are not necessarily translated into the tar-
get language. If an SI model generates translations
for phrases that a human interpreter did not, the
output sentence might not be evaluated properly,
even when it is a correct translation.

Fukuda et al. (2024) pointed out the difficulty
for SI models to learn which phrases in source
speech are less important and advocated construct-
ing SI models that only employ a strategy that
maintains the word order in a source language. As
a first step, they created the NAIST English-to-

1The dataset was released in 2023 (see version 3 of the
paper).
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Source (1) The US Secret Service, / (2) two months ago, / (3) froze the Swiss bank account / (4) of Mr. Sam Jain right
here, / (5) and that bank account / (6) had 14.9 million US dollars in it / (7) when it was frozen.

Offline (1)米国のシークレットサービスは / (2) 2ヶ月前に / (4)サム・ジェイン氏の / (3)スイス銀行口座を凍
結しました / (5)その口座には / (6)米ドルで1490万ドルありました
[The US Secret Service / two months ago / Mr. Sam Jain’s / froze the Swiss bank account / that bank account / had
14.9 million US dollars]

SI (1)アメリカのシークレッドサービスが、/ (3)スイスの銀行の口座を凍結しました。 / (4)サムジェイ
ンのものです。 / (5)この銀行口座の中には、 / (6)一千四百九十万ドルが入っていました。
[The US Secret Service / froze the Swiss bank account / it is Sam Jain’s one / in this bank account / had 14.9
million dollars]

CMT (1)アメリカ合衆国シークレットサービスは、 / (2) 2ヶ月前に、 / (3)スイスの銀行口座を凍結しまし
た、 / (4)ここにいるサム・ジェイン氏の口座です、 / (5)そしてその銀行口座には / (6) 490万米ドルが
入っていました、 / (7)凍結された時。
[The US Secret Service / two months ago / froze the Swiss bank account / the account of Mr. Sam Jain right here /
and that bank account / had 14.9 million US dollars in it / when it was frozen]

Table 1: Comparison of target sentences in each translation mode. Examples of offline, SI, and CMT are respectively
from subtitles of TED talks, NAIST-SIC, and NAIST English-to-Japanese Chunk-wise Monotonic Translation
Evaluation Dataset. “/” shows boundaries of chunks. Numbers preceding chunks in source sentence represent
appearance order. Numbers preceding chunks in target sentences correspond to numbers in source sentence.

Japanese Chunk-wise Monotonic Translation Eval-
uation Dataset2. The source sentences in the test
set used in Ko et al. (2023) were automatically seg-
mented into chunks, each of which was translated
in a way that did not include the content of subse-
quent chunks. Unlike in SI sentences by human
interpreters, where not all the information in the
source sentences is translated, chunk-wise mono-
tonic translation (CMT) sentences3 were translated
so that all the information is translated (Table 1)4.
Fukuda et al. (2024) have investigated the quality
of the CMT sentences in their dataset through hu-
man evaluation, although they have not analyzed
its characteristics. Nor have they conducted any
evaluation experiments in which model outputs are
evaluated on their dataset.

In this paper, we qualitatively and quantitatively
analyze CMT sentences in the NAIST English-to-
Japanese Chunk-wise Monotonic Translation Eval-
uation Dataset. In the process of generating CMT
sentences for the dataset, it was allowed to repeat,
defer, and omit phrases in the source sentences
to maintain the translation’s fluency. We assume
the presence of factors (e.g., syntactic structures)
that prevent monotonic translation if phrases were
repeated, deferred, or omitted in the CMT sen-
tences since they were translated without time con-
straints. In addition, we evaluate the output from

2https://dsc-nlp.naist.jp/data/NAIST-SIC/
Aligned-Chunk_Mono-EJ/

3CMT refers to the task of segmenting a source sentence
into chunks and translating it in the order of the chunks. A
CMT sentence is a target sentence generated through CMT.

4Precisely, omissions that maintained the fluency of the
sentence were allowed. See Section 3.1 for the details about
the dataset.

an existing speech translation (ST) model and two
simultaneous speech translation (simulST) models
(See 5.2). Both the ST5 and simulST models are
used to investigate the differences in scores when
evaluating translations with different characteris-
tics. The contributions of this paper are as follows:

• We analyze CMT sentences and show that
they tend to be longer than offline translations
primarily because of repetition.

• We investigate what causes the phrases in
source sentences to be repeated, deferred,
and omitted and show that most cases occur
because of particular grammatical structures.
When a phrase in a chunk is a dependent of a
phrase in the preceding chunk, the head phrase
is typically repeated or deferred.

• We evaluate the output from three different
models on the NAIST English-to-Japanese
Chunk-wise Monotonic Translation Evalua-
tion Dataset: (1) an ST model trained on of-
fline data, (2) a simulST model trained on
offline data, and (3) a simulST model trained
on both offline and SI data. The results sug-
gest that the existing SI-based test set (Ko
et al., 2023; Zhao et al., 2024) underestimates
the model performance. The results also sug-
gest that using CMT sentences as references
gives higher scores to simulST models than
ST models, while using an offline-based test
set for evaluating simulST models underesti-
mates the model performance.

5A ST model generates translations after the utterances are
completed.
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2 Related Work

2.1 Simultaneous Interpretation Corpora

SICs are valuable resources both for developing
automatic SI models and analyzing SI’s character-
istics. For English-Japanese language pairs, several
SICs are publicly available (Toyama et al., 2004;
Shimizu et al., 2014; Matsushita et al., 2020; Doi
et al., 2021), although the amount of such corpora
is very limited compared to offline translation cor-
pora.

Using these corpora, SI sentences have been ana-
lyzed from various perspectives, such as strategies
and interpreting patterns used by interpreters, la-
tency, translation quality, and word order (Tohyama
and Matsubara, 2006; Ono et al., 2008; Cai et al.,
2018, 2020; Doi et al., 2021). SI models have
also been developed using SICs (Ryu et al., 2004;
Shimizu et al., 2013; Ko et al., 2023).

2.2 Word Order in Simultaneous Interpreting

When dealing with language pairs whose sen-
tence structures are different, including English and
Japanese (SVO/head-initial vs. SOV/head-final),
reducing the word order differences between the
source and the target languages is crucial for mini-
mizing delays.

Murata et al. (2010) segmented source sentences
into semantically meaningful units with a maxi-
mum length of 4.3 seconds and translated those
units from an SI viewpoint. He et al. (2015) de-
signed syntactic transformation rules for Japanese-
English simultaneous machine translation. By ap-
plying the rules to target language sentences (i.e.,
English), they generated more monotonic trans-
lations, while preserving the meaning of source
sentences and maintaining the grammaticality of
the target language. In English-Japanese SI, Fu-
tamata et al. (2020) reordered Japanese sentences
to make the word order closer to the original En-
glish sentences. They further applied style trans-
fer to increase the fluency and obtained sentences
close to SI sentences by human interpreters. Han
et al. (2021) proposed an algorithm to reorder and
refine the target sentences so that the target sen-
tences were aligned largely monotonically. They
trained SI models for four language pairs, including
English-Japanese. Nakabayashi and Kato (2021)
segmented sentences into chunks and created bilin-
gual pairs of such chunks with explicit annotations
of context information. The SI model trained on the
data translated the source sentences while referenc-

ing the preceding chunks although naturally con-
necting chunks remained a challenge. Higashiyama
et al. (2023) constructed a large-scale English↔
Japanese SIC with the information of chunk bound-
aries in source and target sentences and phrases
that can be omitted in target sentences. The NAIST
English-to-Japanese Chunk-wise Monotonic Trans-
lation Evaluation Dataset (Fukuda et al., 2024),
which is similar to Higashiyama et al.’s (2023),
is relatively small and intended for the evaluation
purposes.

The word order differences among different
translation modes have also been investigated. Oka-
mura and Yamada (2023) quantitatively compared
the degree to which the word order of the source
sentences was maintained and found that SI sen-
tences retained the order better than consecutive
interpreting and offline translation sentences. Cai
et al. (2020) found syntactic and non-syntactic fac-
tors that affect interpreters’ word order decisions
through the statistical analyses of an SIC. In this
paper, we analyze what makes monotonic transla-
tion difficult. While Cai et al. (2020) analyzed the
actual SI data generated by human simultaneous
interpreters, we use CMT sentences, which were
generated without time constraints, and in which all
the information in the source sentences is translated
into target sentences.

3 Chunk-wise Monotonic Translation

In SI between language pairs with different sen-
tence structures, interpreters segment source sen-
tences into chunks and translate them from chunk
to chunk6 (Okamura and Yamada, 2023). This sec-
tion describes the details of the NAIST English-to-
Japanese Chunk-wise Monotonic Translation Eval-
uation Dataset, which is used in our analyses.

3.1 Data

The NAIST English-to-Japanese Chunk-wise
Monotonic Translation Evaluation Dataset consists
of 511 pairs of source sentences and their corre-
sponding chunk-wise monotonic translation (CMT)
sentences with information of chunk boundaries in
the source and target sentences. Source (i.e., En-
glish) sentences, which were used as the test set
in Ko et al. (2023), were segmented following the
five rules that reflected the interpreter’s strategies7

6Reordering may occur within a chunk.
7See the original paper or the code for chunking: https:

//github.com/ahclab/si_chunker
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Data Sum Per Sent.±SD
# sentence pairs 511 –
# chunks 1,677 3.28±2.12
# source words 8,104 15.86±10.16
# target words 13,981 27.36±18.55

Table 2: Statistics for chunk-wise monotonic translation
data. Standard deviations and number of words in target
sentences were calculated by us. Other values are cited
from Fukuda et al. (2024).

based on the syntactic analysis results from spaCy.
The source sentences come from eight TED talks.

Translators were provided with source sentences
with chunk boundaries and asked to (1) translate
them in the order of the chunks while (2) naturally
connecting the chunks and (3) not including the
content of subsequent chunks. They were allowed
to (1) repeat, (2) defer, and (3) omit phrases in
the source sentences to keep translation fluency,
although they were instructed to minimize their
use of the operations with larger number as much
as possible (e.g., defer should not be used when
repeat can handle the situation) . Data statistics
are shown in Table 2.

4 Data Analysis

Fukuda et al. (2024) have examined the quality
of CMT sentences through human evaluation but
have not analyzed the characteristics of them. We
suppose that factors exist that prevent monotonic
translation if a phrase in the source sentences is
repeated, deferred, or omitted since the CMT
sentences were generated without time constraints.
Therefore we qualitatively and quantitatively ana-
lyze the CMT sentences with these operations and
reveal such factors.

To better understand the characteristics of the
CMT sentences, we also compare them with SI sen-
tences from NAIST-SIC and NAIST-SIC-Aligned
as well as offline translation sentences from the
subtitles of TED talks. Since the SI sentences in
NAIST-SIC were not aligned at the sentence level,
we manually align them. Some source sentences
did not match across the datasets, and we excluded
those ten sentences from the analyses. In addition,
25 sentences were not translated in NAIST-SIC8,
which were also excluded from the analyses. As a
result, 476 sentences were used for our analyses.

8For example, due to time constraints, interpreters might
have been unable to translate a whole sentence. See Doi et al.
(2021).

4.1 Annotations

To analyze the characteristics of the CMT sen-
tences, we annotated tags to the source and CMT
sentences. The list of tags is shown in Table 3.
Prior to the annotations, we tokenized the English
sentences using spaCy9 and the Japanese sentences
using MeCab (Kudo et al., 2004) with unidic. Then,
we concatenated the source and CMT sentences
with a special token [SEP] and annotated them us-
ing an open-source data labeling tool, doccano.10

We identified spans (i.e., words or phrases) that
are repeated, deferred, or omitted and anno-
tated the span tags. In addition, we annotated
ahead, add, and error tags for analyses of prob-
lematic translations. The corresponding span tags
in the source and CMT sentences were associ-
ated using relation tags. Annotation examples are
shown in Figure 1.

The first and second authors collaboratively an-
notated the first 50 examples while discussing their
decisions. Since sufficient agreement was assumed,
the remainder of the data were just annotated by
the first author.

4.2 Analysis Results

4.2.1 Comparison among Different
Translation Modes

We compared the sentence lengths of the four
datasets. Fukuda et al. (2024) also conducted simi-
lar comparisons based on the number of characters.
However, since variations in spelling and differ-
ences in transcription systems (e.g., numbers) were
found, we made comparisons based on the number
of words segmented by MeCab.

Table 4 shows that the CMT sentences were
the longest, followed by offline, NAIST-SIC, and
NAIST-SIC-Aligned. These results matched those
reported in Fukuda et al. (2024). Long translated
sentences can pose some problems. As discussed
in Fukuda et al. (2024), the lenght may increase
the cognitive load on the listeners/readers of the
translations. In addition, longer output may cause
a delay even though CMT aims to reduce it.

4.2.2 Factors that Lengthen CMT Sentences

To reveal what factor lengthened the CMT sen-
tences, we first analyzed them qualitatively. Our
analyses suggest that (1) CMT sentences contain

9https://spacy.io/
10https://github.com/doccano/doccano
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Type Tag Meaning
Span repeat Phrases that are repeated

zero-repeat Target phrases that are repeated; No corresponding source phrases (e.g., zero that-clause)
defer Phrases that are not translated within the current chunk but in a subsequent chunk
omit Source phrases that are not translated in the target sentences
ahead Target phrases translated using the subsequent chunks
add Target phrases that have no corresponding source phrases
error Phrases with translation errors
sep Boundaries of source and target sentences

Relation rel-repeat Connect source and target phrases with repeat tags
repeat_d# Connect target phrases with repeat tags
defer_d# Connect source and target phrases with defer tags
ahead_d# Connect source and target phrases with ahead tags
rel-err Connect source and target phrases with error tags

Table 3: List of tags used for annotations. “d#” (#=1, 2, ...) represents distance between chunks.

And for example , / this would be somebody / who's completely logical.  [SEP]  そして例えば、 / 

これは誰か、 /  完全に論理的な人だということになるでしょう。

DigiNotar is a certificate authority from the Netherlands / or actually , it was .  [SEP]  デジノターは 

オランダの認証局です、 / いや、それは認証局でした。

omit

add

sepdefer repeat

deferrepeatrepeat

defer_d1rel-repeat

repeat_d1

sep

Figure 1: Annotation examples. Repeat tags were assigned even if strings did not exactly match but referred to
same entity or had same meaning.

Dataset Sum Per Sent.±SD
CMT 13,508 28.38±18.66
NAIST-SIC 8,914 18.73±12.08
NAIST-SIC-Aligned 8,072 16.96±11.52
Offline 9,907 20.81±12.62

Table 4: Comparison of number of words in different
translation modes

many formulaic expressions for the end of sen-
tences as they are segmented into small chunks,
and (2) the words that are often omitted in Japanese
(e.g., pronouns) are explicitly translated since trans-
lators were instructed to avoid omitting phrases in
the source language, as in the following examples:

(En) It’s when we warmed it up, / and we
turned on the lights / and looked inside the
box, / we saw that the piece metal / was still
there in one piece.
(CMT) 私たちがそれを暖めるときです、 /電気

をつけて、 /箱の中を見たときです、 /私たちは

その金属片を見たんです、 /それはまだ一つの塊

としてそこにありました。

(offline) 物体を暖め明かりをつけ箱の中を見た
ところ金属片はまだそこに存在していました

(En) He only has use of his eyes.
(CMT) 彼は目だけを使えます。
(offline) 目だけしか動かせません

In addition to the above characteristics, we ob-
served many repetitions in particularly long sen-
tences. To verify this, we further analyzed partic-
ularly long and short sentences, chosen based on
the length ratio of the CMT sentences to the offline
ones. The long and short sentences were defined
as those with a length ratio greater/smaller than
the average ± 0.5 standard deviations (avg.=1.39,
SD=0.43). We subjectively judged whether these
sentences contained many repetitions. We also
identified sentences whose offline translations were
short.

Table 5 shows that long sentences contained
more repetitions than short ones. The offline trans-
lation sentences were short, probably because they
were originally subtitles, for which limited space
was allowed. We also quantitatively checked them

306



Type N Repeat Repeat Short
(subjective) (tag) offline

Long 131 54 (41.22%) 3.35 53
Short 171 22 (12.87%) 0.81 –

Table 5: Comparison between long and short CMT sen-
tences. Number of repeat tags is denoted per sentence.

using the number of assigned repeat tags and
found that the frequency of repetition tags was
higher in long sentences (Table 5).

4.2.3 Omission in SI Sentences
To find techniques for shortening translations, we
analyzed the SI sentences in NAIST-SIC. Based
on the length ratio of SI sentences to the of-
fline ones, we defined SI sentences that might
have reasonable omissions (omission; 0.6 ≤ ra-
tio < 0.9) and SI sentences that probably failed to
fully convey the meaning of the source sentences
(undertranslation; ratio < 0.6), following the
criteria in Higashiyama et al. (2023).

Although we expected to identify some trends
(e.g., part-of-speech) in the phrases that were omit-
ted, we did not do so. In addition, we found a cer-
tain number of unacceptable translations in both
categories (43.12% and 60.00% for omission and
undertranslation, respectively). The results sug-
gest that human simultaneous interpreters judge the
importance of phrases based on context and decide
whether to translate them; some judgements are
correct, and some are not.

4.2.4 Factors that Make Monotonic
Translation Difficult

With the help of tags annotated to the source and
CMT sentences, we analyzed the factors that make
monotonic translation difficult. Table 6 shows
the number of source phrases that were repeated,
deferred, or omitted. The values are based on
the number of rel-repeat, defer_d#, and omit
tags. We counted the relation tags for repeat and
defer because the span tags for those two opera-
tions were assigned to both the source and CMT
sentences. The results show that the translators
used repeat most frequently, followed by defer
and omit, as they were instructed (see Section 3.1).

For these phrases, we explored what makes
monotonic translations difficult. Our analyses re-
vealed that most cases of repeat and defer were
caused by particular grammatical structures. Ta-
ble 7 lists the major structures along with their fre-

Operation N
repeat 301
defer 173
omit 36

Table 6: Comparison of number of operations used in
CMT sentences

quencies in the data and examples. In these struc-
tures, a phrase in a chunk is typically a dependent
of a phrase in the preceding chunk. In the example
of a post-modifier (Table 7), the relative pronoun
clause is a dependent of the noun phrase a device,
which is in a preceding chunk. When phrases with
a dependency relation exist across multiple chunks,
CMT is difficult because Japanese is a strongly
head-final language. The examples in Table 7 show
how human translators address these structures by
repeating or deferring some phrases in subsequent
chunks.

Prepositions, post-modifiers, and dependent
clauses have also been identified as syntactic fac-
tors that affect interpreters’ word order decisions
in Cai et al. (2020). Human interpreters find these
structures challenging for SI and adopt a strategy
to maintain the word order of the source language.

In addition, we observed that inappropriate
segmentation was addressed by repeating and
deferring the phrases. Most inappropriate seg-
mentation was found in phrasal verbs, verbal
gerunds, and to-infinitives.

In the SI data, we also found that human inter-
preters repeat phrases to maintain the word order
of the source language. For example, in the exam-
ple in Table 1, a noun modified by a preposition
phrase is repeated:

(En) ... / froze the Swiss bank account / of Mr.
Sam Jain right here, / ...

(SI) ... /スイスの銀行の口座を凍結しました。 /

サムジェインのものです。 / ...

[... / froze the Swiss bank account / it is Sam
Jain’s one / ...]

In addition, Okamura and Yamada (2023) reported
that the order of the chunks is shuffled about once
on average in an SI sentence. These things suggest
that human interpreters address the word order dif-
ferences that make monotonic translation difficult
by repeating and deferring some phrases.
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Structures # repeat # defer Examples
Noun with a post-modifier 88 12 And now we’ve created a device / that has absolutely no limitations.

さて、私たちはデバイスを作り出しました、 / 全く制限のないものです。
[And we’ve created a device / one that has absolutely no limitations]

Head followed by multiple dependents 35 6 ... / allows for deep squats, / crawls and high agility movements.
... /深いスクワットを可能にし、 /クロールや高い敏捷性の動きを可能にし
ます。 [... / allows for deep squats / allows for crawls and high
agility movements]

Dependent conjunction 26 6 ... / when he’s covered / in four feet of snow.
... / 彼が / 四フィートの雪に覆われてしまっていた時には。 [he / when
was covered in for feet of snow]

Chunk boundary before a clause 15 13 ... / you know that this isn’t / how it normally goes.
/ あなたは分かるはずです、これは / 通常の進行ではないということが。
[you know that this / isn’t how it normally goes]

Chunk boundary before a preposition 10 7 ... / providing totalitarian governments with tools / to do this /
against their own citizens.
... / 全体主義政府にツールを提供しているということです、 / これを行う
ための、 / 自国の市民に対してこれを行うためのツールを。 [providing
totalitarian governments with tools / to do this / tools to do this
against their own citizens]

Table 7: Syntactic factors that prevent monotonic translations. Cases involving multiple structures were classified
separately as compound factors.

5 Evaluation Using CMT sentences

To investigate the impact of using CMT sentences
for evaluating translation quality, we evaluated the
output from existing ST and simulST models us-
ing the NAIST English-to-Japanese Chunk-wise
Monotonic Translation Evaluation Dataset as well
as existing test sets.

5.1 Data
We used the following four datasets as references
for the automatic evaluation metrics:

• n-cmt: CMT sentences from the NAIST
English-to-Japanese Chunk-wise Monotonic
Translation Evaluation Dataset

• si_hum: SI sentences from NAIST-SIC, man-
ually aligned to the source speech

• si_auto: SI sentences from NAIST-SIC-
Aligned, aligned automatically

• offline: offline translation sentences from the
subtitles of TED talks.

Because si_auto was created by applying auto-
matic alignment and filtering techniques to SI sen-
tences in si_hum, it may contain alignment errors.
In addition, SI sentences in si_auto tend to be
shorter than those in si_hum (see Table 4). There-
fore, we used the two SI-based datasets for our
evaluation.

5.2 Speech Translation Models
We used three existing models (i.e., one ST and
two simulST models):

• ST_offline: an ST model trained on offline
data (Fukuda et al., 2023)

• simulST_offline: a simulST model trained on
offline data (Ko et al., 2023)

• simulST_si_offline: a simulST model trained
on both offline and SI data (Ko et al., 2023).

All the models were built by connecting two
pre-trained models, HuBERT-Large (Hsu et al.,
2021) for their speech encoder and the decoder
of mBART50 (Tang et al., 2020) for their text de-
coder. The encoder and decoder were connected by
Inter-connection (Nishikawa and Nakamura, 2023)
and a length adapter (Tsiamas et al., 2022). Both
SimulST models used bilingual prefix pairs ex-
tracted using Bilingual Prefix Alignment (Kano
et al., 2022) for the model training and employed a
decoding policy called local agreement (Liu et al.,
2020). For ST_offline, we used a model with check-
point averaging (Inter-connection + Ckpt Ave.
in Fukuda et al. (2023)). For simulST_offline and
simulST_si_offline, we used the models that satisfy
the task requirement of the simultaneous track in
the IWSLT 2023 Evaluation Campaign11, latency
measured by Average Lagging (Ma et al., 2019)
≤ 2 seconds (Offline FT and Mixed FT + Style
in Ko et al. (2023), respectively).

5.3 Metrics

We evaluated the translation quality of the output
from the ST and simulST models (see Section 5.2)

11https://iwslt.org/2023/simultaneous
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Model BLEU BLEURT COMET
n-cmt si_hum si_auto offline n-cmt si_hum si_auto offline n-cmt si_hum si_auto offline

ST_offline 14.487 8.856 8.637 17.775 0.553 0.447 0.414 0.538 0.838 0.797 0.781∗1 0.833
simulST_offline 15.406† 8.446† 7.773† 17.907 0.556 0.442 0.406 0.531 0.826 0.780 0.763 0.821
simulST_si_offline 15.982† 12.031† 11.020† 13.191† 0.567 0.493∗1 0.460∗1 0.519 0.807∗2 0.774∗3 0.761 0.789∗2

Model BERTScore (Pre.) BERTScore (Rec.) BERTScore (F1)
n-cmt si_hum si_auto offline n-cmt si_hum si_auto offline n-cmt si_hum si_auto offline

ST_offline 0.801 0.735 0.722 0.789 0.769 0.739 0.735 0.788 0.784 0.737 0.728 0.788
simulST_offline 0.799 0.730 0.717 0.783 0.770 0.738 0.734 0.786 0.783 0.734 0.725 0.784
simulST_si_offline 0.817∗1 0.764∗1 0.746∗1 0.759∗2 0.784∗1 0.766∗1 0.760∗1 0.757∗2 0.800∗1 0.764∗1 0.752∗1 0.757∗2

Table 8: Results of quality evaluation metrics across ST and simulST models. †: significantly different from
ST_offline. ∗1: significantly higher than other two. ∗2 significantly lower than other two. ∗3 significantly lower
than ST_offline. Significance threshold was set to p < .05 for all tests.

using BLEU12, BLEURT13 (Sellam et al., 2020),
COMET14 (Rei et al., 2020), and BERTScore15

(Zhang et al., 2020). BERTScore was calculated us-
ing bert-base-multilingual-cased. We used
the four datasets described in Section 5.1 as refer-
ences.

5.4 Evaluation Results
Table 8 shows the results of the quality evalua-
tion metrics across the ST and simulST models.
For the BLEU scores, we conducted paired sig-
nificance tests using paired bootstrap resampling
(Koehn, 2004). We specified ST_offline as the
baseline for the significance tests. For the other
scores, we conducted a one-way ANOVA, followed
by Tukey’s multiple comparisons test.

When the translation quality was evaluated
using BLEU with n-cmt as the reference,
simulST_si_offline achieved the highest score.
On the SI-based test sets (i.e., si_hum and
si_auto), simulST_si_offline also had the
highest score. On the offline-based test set,
in contrast, the models trained on only of-
fline data achieved much higher scores than
simulST_si_offline. The same tendencies were
observed in BLEURT and BERTScore. These re-
sults suggest that the models trained on both SI and
offline data generated more SI-like translations, and
such models perhaps should be evaluated using a
reference closer to SI sentences. In addition, us-
ing an offline-based test set might underestimate
the performance of models trained on both SI and
offline data.

Comparing n-cmt, si_hum, and si_auto, the
12BLEU was calculated using sacreBLEU. (Post, 2018)

https://github.com/mjpost/sacrebleu
13https://github.com/google-research/bleurt
14https://github.com/Unbabel/COMET
15https://github.com/Tiiiger/bert_score

scores were highest for n-cmt, followed by si_hum
and si_auto on all the metrics and models. Be-
cause si_hum is based on SI sentences generated
by human simultaneous interpreters, some con-
tent in the source speech might be omitted or in-
adequately translated (under-translation). SI sen-
tences in si_auto, which were automatically cre-
ated based on human SI sentences, might contain
less source speech content than those in si_hum
due to the alignment and filtering techniques ap-
plied (see Zhao et al., 2024). In fact, BERTScore
precision was higher than recall on n-cmt, in which
there were almost no omissions, while recall was
higher than precision on si_auto and precision
and recall were almost equal on si_hum. These
results indicate the possibility that the existing SI-
based test sets (Ko et al., 2023; Zhao et al., 2024)
underestimate the model performance.

However, the COMET results were different
from those on the other metrics (Table 8). On
all four test sets, ST_offline achieved the high-
est score, followed by simulST_offline and
simulST_si_offline. One possible reason is that
COMET uses source sentences to calculate its
scores.

To examine the impact of the source sentences,
we also calculated a reference-free COMET-QE
using wmt22-cometkiwi-da and got similar re-
sults (0.813, 0.798, and 0.766 for ST_offline,
simulST_offline, and simulST_si_offline, re-
spectively). We further calculated COMET-QE
for n-cmt and offline, regarding them as ora-
cle data, and found that n-cmt had a higher score
than offline (n-cmt: 0.832, offline: 0.812).
Because some translation sentences in offline
are under-translated, these results suggest that the
COMET scores tend to become high when more
content in the source sentences is covered in the
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target sentences. This feature does not fit the nature
of SI, where human interpreters use sophisticated
strategies (see He et al., 2016; Cai et al., 2020, for
example). We need to carefully interpret COMET
scores when we use them for evaluating simulST
models.

6 Conclusion

This paper focused on monotonic translations
in English-Japanese SI. Our analyses revealed
some grammatical structures that make mono-
tonic translations difficult and that human inter-
preters/translators address these challenges by re-
peating or deferring some phrases in source lan-
guage in the subsequent chunks. The grammatical
structures that might cause delays would be useful
information for developing segmentation or decod-
ing policies for simultaneous machine translation
systems. One possible direction would be predict-
ing whether a phrase in a chunk is the head of a
phrase in subsequent chunks.

We also evaluated the output from the existing
ST and simulST models on the NAIST English-
to-Japanese Chunk-wise Monotonic Translation
Evaluation Dataset as well as on existing SI-based
and offline-based test sets. The BLEU, BLEURT,
and BERTScore results supported using CMT sen-
tences for evaluating simulST models trained using
SI data, although the results with COMET were dif-
ferent. Further analysis across various evaluation
metrics is necessary. Analyzing how the source and
target sentences are aligned monotonically on dif-
ferent types of translations (e.g., Han et al., 2021)
would also be useful.

This paper investigated the impact of using CMT
sentences for evaluation purposes. A future study
would involve using monotonic translation sen-
tences for developing simulST models (Sakai et al.,
2024)16. It could potentially address the problem
that simulST models trained using SI sentences
suffered from under-translation (Ko et al., 2023).
However, CMT sentences tend to be long. Inves-
tigating the trade-offs between longer CMT sen-
tences and the potential cognitive load on listen-
ers/readers might provide further insights.
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Leveraging Synthetic Audio Data for
End-to-End Low-Resource Speech Translation

Yasmin Moslem
Bering Lab

Abstract
This paper describes our system submission to
the International Conference on Spoken Lan-
guage Translation (IWSLT 2024) for Irish-to-
English speech translation. We built end-to-end
systems based on Whisper, and employed a
number of data augmentation techniques, such
as speech back-translation and noise augmen-
tation. We investigate the effect of using syn-
thetic audio data and discuss several methods
for enriching signal diversity.

1 Introduction

Resource scarcity and the scattered nature of the
data are crucial challenges for low-resource lan-
guages (Lankford et al., 2021; Haddow et al., 2022;
Lovenia et al., 2024). In this sense, Irish is con-
sidered a low-resource language and significantly
lacking in speech and language tools and resources
(Barry et al., 2022; Lynn, 2022). Researchers have
been employing various data augmentation tech-
niques to improve the quality of low-resource tex-
tual machine translation (MT) systems. Among
these techniques is using synthetic data generated
by back-translation (Sennrich et al., 2016; Edunov
et al., 2018; Dowling et al., 2019; Poncelas et al.,
2019; Haque et al., 2020), or large language mod-
els (Moslem et al., 2022). Similarly, in the area
of speech, Lee et al. (2023) showed that models
trained solely on synthetic audio datasets can gener-
alize their performance to human voice data. Nev-
ertheless, Guo et al. (2023) revealed a consistent
decrease in the diversity of the outputs of language
models trained on synthetic textual data. We ob-
serve that leveraging synthetic audio data generated
by text-to-speech (TTS) models can be beneficial
for training speech translation models, especially
for low-resource languages. However, it can lack
the diversity found in authentic audio signals in
terms of pitch, speed, and background noise.

Speech translation systems can be cascaded sys-
tems or end-to-end systems (Agarwal et al., 2023).

Cascaded systems use two models, one for auto-
matic speech recognition (ASR) and one for tex-
tual machine translation (MT). End-to-end speech
translation systems use one model for the whole
process; hence, it is more challenging. In this work,
we present end-to-end speech translation models.

In addition to describing our system submitted
to IWSLT 2024, this work presents the following
contributions:

• Showcasing “speech back-translation” as an
effective data augmentation technique for
speech translation. In other words, just as
back-translation can improve the output qual-
ity of text-to-text MT, generating source-side
synthetic audio data can considerably enhance
the performance of speech translation systems,
especially for low-resource languages.

• Introducing a collection of datasets for Irish-
to-English speech translation, three of which
comprise 196 hours of synthetic audio.

• Exploring diverse training settings and data
processing techniques such as noise augmen-
tation and voice audio detection (VAD).

• Releasing versions of Whisper models, specif-
ically fine-tuned for Irish-to-English speech
translation.

2 Authentic Data

The organizers of the IWSLT shared task, provided
the IWSLT-2023 dataset, which consists of training,
dev, and test portions. We used both the training
and dev portions for training, and the test portion
for evaluation. We also used the Irish portion of
the FLEURS datasets. Moreover, we employed the
bilingual audio-text data available at the Bitesize
website for teaching Irish.1

1https://huggingface.co/datasets/ymoslem/
BitesizeIrish-GA-EN
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Dataset Audio Translation Train Hours (H:M) Train Segments Test Segments

¤ IWSLT-2023 Authentic Authentic 8:25 8,598 347
¤ FLEURS Authentic Authentic 16:45 3,991 0
¤ Bitesize Authentic Authentic 5:15 6,149 0
¤ SpokenWords Authentic MTed 3:02 10,925 0
� EUbookshop Synthetic Authentic 159:45 67,268 0
Ü Tatoeba Synthetic Authentic 2:39 3,966 0
® Wikimedia Synthetic Authentic 34:23 15,090 0

Authentic (¤) 33:27 29,663 347

Synthetic (� Ü ®) 196:47 86,324 0

Authentic (¤) + Synthetic (Ü ®) 70:29 48,719 347

Authentic (¤) + Synthetic (� Ü ®) 229:14 115,987 347

Table 1: Data Statistics: “Audio” and “Translation” columns refer to whether the data is human-generated or
machine-generated. “Train Hours” and “Train Segments” refer to the size of the training data in terms of duration
and number of utterances, respectively. Finally, “Test Segments” refer to the number of utterances in the test dataset.

3 Synthetic Data

This section explains diverse approaches for cre-
ating synthetic data for speech translation. We
describe each approach, as well as its advantages
and disadvantages.

3.1 Machine Translation
When both audio and transcription are available,
but there is no translation, forward MT can be use-
ful as a data augmentation technique. However,
there is the risk of feeding incorrect target trans-
lations into the training process. Forward MT is
more sensitive to the quality of the system used
to produce the synthetic data. Compared to back-
translation, biases and errors in synthetic data are
intuitively more problematic in forward-translation,
since they directly affect the gold labels (Bogoy-
chev and Sennrich, 2019). Hence, the used MT
system must be of high quality.

We automatically translated the Irish portion of
the Spoken Words dataset into English using the
Google Translation API. For quality considerations,
we decided to use this dataset for training only, but
not for evaluation. The dataset consists of 10,925
utterances. Some words are spoken by multiple
narrators.2

3.2 Synthetic Audio Data
OPUS (Tiedemann, 2012) hosts several bilingual
textual datasets. We extracted portions of the

2https://huggingface.co/datasets/ymoslem/
SpokenWords-GA-EN-MTed

Tatoeba, Wikimedia, and EUbookshop datasets,
comprising 1,983, 7,545 and 33,634 segments, re-
spectively. We extensively filter the datasets based
on the following criteria: removing duplicates, re-
moving segments longer than 30 words,3 language
detection with fastText (Joulin et al., 2017) (both
sides), and Seamless toxicity filtering (Barrault
et al., 2023). Finally, we used Azure Speech service
to generate two sets of audio data, one with a fe-
male voice (OrlaNeural) and the other with a male
voice (ColmNeural). As an outcome of this process,
we introduce three new datasets, Tatoeba-Speech-
Irish,4 Wikimedia-Speech-Irish,5 and EUbookshop-
Speech-Irish,6 which together comprise 196 hours
of synthetic audio. Table 1 illustrates the statistics
of our datasets.

3.3 Audio Signal Processing Augmentation
Synthetic audio data generated by TTS models can
have different characteristics than authentic audio.
In addition to quality considerations, we observe
that among the features that distinguish data gen-
erated by TTS systems from authentic data are:
1) lack of noise, and 2) silence differences.

Lack of noise: TTS systems try to mimic stu-
dio settings, and produce very clean audio signals.

3https://github.com/ymoslem/MT-Preparation
4https://huggingface.co/datasets/ymoslem/

Tatoeba-Speech-Irish
5https://huggingface.co/datasets/ymoslem/

Wikimedia-Speech-Irish
6https://huggingface.co/datasets/ymoslem/

EUbookshop-Speech-Irish
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Figure 1: Comparing authentic (top) and synthetic (bottom) audio signals

However, authentic audio signals can include all
sorts of environmental noise, ranging from white
noise to background voices of people and cars.
Even in studio settings, some breath signals can
occur unless the audio is extensively edited.

Silence variances: All the synthetic audio sig-
nals we generated start at a similar point, with
almost no silence at the beginning of the audio
(probably to facilitate mixing tracks). However,
authentic audio signals can start at any point de-
pending on the recording and processing settings,
or whether a signal is truncated from a longer one.

Figure 1 illustrates an example sentence from the
Common Voice dataset uttered by a human female
(non-studio settings) and its synthetic equivalent
generated by Azure TTS system.7 The Irish sen-
tence represented here is “Go raibh maith agaibh
as ucht na fíorchaoin fáilte a d’fhear sibh romham.”
It can be translated into English as “Thank you all
for that very generous welcome.” The authentic sig-
nal has more noise (both white background noise
and sounds of starting/stopping the recording soft-
ware), while the synthetic signal does not show any
noise occurrence. Moreover, unlike the authentic
signal, the synthetic data starts almost immediately.
Another observation is that this specific authentic
signal has a lower volume than synthetic signals.

7Voice name: “Microsoft Server Speech Text to Speech
Voice (ga-IE, OrlaNeural)”

3.3.1 Voice Activity Detection

One of the most common audio preprocessing tech-
niques is Voice Audio Detection (VAD). The main
idea of VAD is to remove low-amplitude samples
from an audio signal. Low-amplitude samples
might represent science or noise samples of au-
dio signals, which usually occur at the beginning
and end of an audio signal, but can also happen in
the midst of longer audio signals. In its basic form,
this can be achieved by removing any sample be-
low an absolute value of a threshold (e.g. ± 0.001).
However, advanced models like Silero VAD8 can
be used as part of the torchaudio framework, and
include more sophisticated options (e.g. minimum
silence duration) to avoid removing important low-
amplitude samples like breath and natural silent
durations.

During training, data processed with VAD can
either substitute the original data or augment it,
i.e. both processed and unprocessed data can be
used during training. In one of our experiments (cf.
Section 4), we used basic VAD with a threshold of
± 0.001 as a data augmentation technique. When
basic VAD is used (i.e. without taking a minimum
silence duration into account), this can also speed
up the audio signal; in other words, the utterance is
spoken faster. At inference time of all the models,
we used Silero VAD within Faster-Whisper based
on CTranslate2 (Klein et al., 2020).

8https://github.com/snakers4/silero-vad
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3.3.2 Noise Augmentation
Mimicking the effect of white noise can take di-
verse forms, ranging from using real noise to gener-
ating random arrays. To simulate light white noise,
we generated a random array with a distribution
scale 0.002 and added it to all the audio signals in
the dataset.

4 Experiments

Our experiments fine-tune Whisper (Radford et al.,
2022) for the task of Irish-to-English speech transla-
tion. We experiment with a number of data augmen-
tation techniques, such as speech back-translation
(source-side synthetic audio data generation), and
audio data augmentation with noise and VAD.

4.1 Speech Back-Translation

By the term “speech back-translation”, we refer
to generating source-side synthetic audio for data
augmentation of speech translation systems, in the
same manner that back-translation is employed in
text-to-text MT systems. Section 3.2 explains how
we created these synthetic audio datasets. In this
set of experiments, we built 3 systems by fine-
tuning Whisper Medium. We use different types of
datasets as outlined by Table 1.

• Model A: It uses the authentic data only,
namely IWSLT-2023 dataset, FLEURS, Bite-
size, and SpokenWords.

• Model B: It uses the same authentic data used
in Model A as well as two synthetic audio
datasets, namely Tatoeba-Speech-Irish, and
Wikimedia-Speech-Irish.

• Model B++: In addition to the authentic and
two synthetic datasets used in the aforemen-
tioned models, Model B++ uses a third syn-
thetic dataset, namely EUbookshop-Speech-
Irish.

4.2 Noise and VAD Augmentation

• Model C: It uses the same data as Model B,
as well as two versions of the data augmented
with basic VAD, and white noise. In other
words, we fine-tuned Whisper-Medium on all
the authentic data and two synthetic data as
well as two augmented datasets, one with low-
amplitude sample removal, and one with noise
augmentation, as described in Section 3.

4.3 Training Arguments

We tried different learning rates and warm-up val-
ues. Specifically, we experimented with warm-up
ratios 0%, 1%, and 3% out of 3000 steps, which cor-
responds to 0, 30, 90 warm-up steps, respectively.
As Table 5 and Table 4 demonstrate, when fine-
tuning Whisper Small, changing the warm-up ratio
does not seem to lead to a consistent improvement
for the first two sizes of data used in Model A and
Model B. However, increasing the warm-up ratio
to 3% when the size of data is larger as in Model C,
seems to slightly improve the performance. For
the learning rate, we used 1e-4 across all the ex-
periments for the sake of consistency. The batch
size was decided based on the compute capacity of
one A100-SXM4-80GB GPU. Hence, we used a
batch size of 64 examples when fine-tuning Whis-
per Small and a batch size of 16 examples when
fine-tuning Whisper Medium. The max length of
generation was set to 225. As this is an Irish-to-
English translation task, both the tokenizer lan-
guage and model generation language were set to
English. We train the main models with Whisper
Medium for at least two epochs, and save the best
performing checkpoint based on the chrF++ score
on the validation dataset. Section 5 elaborates on
the results of these experiments.

4.4 Training Epochs

As we reported in the previous section, we used
3000 steps for all the experiments with Whisper
Small, as further training did not seem to improve
the output quality when more than one epoch
of data is already reached. However, Whisper
Medium was trained with a smaller batch size due
to computing constrains. We wanted to see the
effect of training for at least two epochs. Hence,
we report different step milestones in Table 6. In
deep learning training in general, it is a common
practice to use early stopping. However, for low-
resource languages, a smaller value for early stop-
ping can result in the model not seeing the whole
data, which can affect the robustness of the model.
This is especially true if we are not sure if the val-
idation dataset is well-representative of the task
that the model will be actually required to tackle in
the real world. While there is no one rule that ap-
plies to all cases, we recommend taking this point
into consideration when training generic models
for low-resource languages.
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Whisper Model Datasets Data Size BLEU ↑ chrF++ ↑ WER ↓ Semantic 1 ↑ Semantic 2 ↑

Medium

A authentic 29,663 32.38 48.95 58.85 62.09 63.28

B A + synthetic (2d) 48,719 36.34 54.08 53.35 68.31 69.93

B++ A + synthetic (3d) 115,987 38.41 57.18 51.10 69.72 71.13
C B + augmented 146,157 34.09 51.40 55.83 64.26 65.56

Table 2: Evaluation Results: Model B++ that uses both authentic data and 3 synthetic audio datasets achieved
the best results across all the systems. The results show that augmenting the training data with synthetic audio
(i.e. Model B and Model B++) outperforms using authentic data only (Model A), while further signal processing
augmentation with white noise and VAD (Model C) did not help. Moreover, increasing the amount of high-quality
synthetic audio data in Model B++ resulted in better quality than Model B that uses a less amount of synthetic data.

5 Evaluation and Results

To evaluate our systems, we calculated BLEU (Pa-
pineni et al., 2002), chrF++ (Popović, 2017), and
TER (Snover et al., 2006), as implemented in the
sacreBLEU library9 (Post, 2018). For semantic
evaluation, we used an embedding-based approach,
calculating and comparing cosine similarity be-
tween the vector embeddings of each reference and
the equivalent translation generated by the model.
We report the average of semantic similarity across
utterances. We used two models with Sentence-
Transformers (Reimers and Gurevych, 2019), “all-
mpnet-base-v2” (Semantic 1) and “all-MiniLM-
L12-v2” (Wang et al., 2020) (Semantic 2). As we
fine-tuned all the models for approximately two
epochs, we report the evaluation of the best per-
forming checkpoint.

For inference, we used Faster-Whisper 10 with
the default VAD arguments. We also compared the
results without VAD, and found that applying VAD
at inference time is better for all the models (cf.
Appendix A). We used 5 for “beam size” and 2 for
“no repeat ngram size”.

As Table 2 shows, after fine-tuning Whisper
Medium on both the authentic and synthetic au-
dio data (Model B), there are consistent improve-
ments across all metrics compared to when we fine-
tuned it on the authentic audio data only (Model
A). Moreover, Model B++ that uses three synthetic
datasets outperforms Model B that uses only two
synthetic datasets. This demonstrates that aug-
mented authentic audio data with high-quality syn-
thetic audio data can enhance end-to-end speech
translation systems, especially for low-resource lan-
guages like Irish.

Model C uses the same training data as Model B

9https://github.com/mjpost/sacrebleu
10https://github.com/SYSTRAN/faster-whisper

as well as two augmented versions, one version
that applies basic VAD, removing low-amplitude
samples (cf. Section 3.3.1) and another version
that injects white background noise into the data
(cf. Section 3.3.2). Although Model C that uses
noise and VAD augmented data still outperforms
Model A that uses authentic training data only, both
Model B and B++ that combines authentic data
with synthetic data outperform Model C.

While the choice of augmentation techniques
were based on manual observation of the character-
istics of the authentic data and the synthetic data,
the achieved improvements encourage further in-
vestigation. In the future, we would like to con-
duct more experiments that employ other data aug-
mentation techniques. Moreover, we would like to
measure the effect of adding synthetic audio data
compared to augmenting the authentic data only.
Finally, as the main purpose of this research is to
understand the best practices of using synthetic
audio data (i.e. data generated by TTS models) to
improve speech translation quality, we will conduct
further study on mimicking authentic data charac-
teristics to enhance the effect of data augmentation
with synthetic audio data.
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A Appendix: Arguments

A.1 Inference VAD

Argument Type Value Argument Type Value

threshold float 0.5 min_silence_duration_ms int 2000

min_speech_duration_ms int 250 window_size_samples int 1024

max_speech_duration_s float float("inf") speech_pad_ms int 400

Table 3: Default VAD values of Faster-Whisper.

A.2 Training Warm-up Ratio

Whisper Model Datasets Data Size Warm-up BLEU chrF++ WER Semantic 1 Semantic 2

Small

A authentic 29,663
0.00 31.49 45.59 59.66 58.23 60.35
0.01 30.97 46.19 59.57 59.69 61.09
0.03 31.43 46.71 61.14 60.48 61.59

B A + synthetic 48,719
0.00 34.09 50.79 55.47 65.64 66.66
0.01 31.92 47.32 58.31 62.56 63.57
0.03 34.15 49.81 56.87 65.09 66.43

C B + augmented 146,157
0.00 30.75 45.87 61.37 60.51 61.98
0.01 32.82 48.31 57.95 63.26 64.72
0.03 35.07 50.23 56.73 63.33 64.80

Table 4: Comparing diverse values of warm-up ratio at training time. Ratios are out of 3000 steps. Hence, 0.01
and 0.03 correspond to 30 steps and 90 steps, respectively. The results here are with VAD at inference time, using
the default VAD arguments of Faster-Whisper. The highest score in each group is displayed in a bold font.

Whisper Model Datasets Data Size Warm-up BLEU ↑ chrF++ ↑ WER ↓ Semantic 1 ↑ Semantic 2 ↑

Small

A authentic 29,663
0.00 29.14 43.34 60.51 56.96 58.14
0.01 30.66 45.41 62.09 58.69 59.79
0.03 30.68 45.36 62.09 57.82 59.29

B A + synthetic 48,719
0.00 32.05 48.32 58.44 62.51 63.72
0.01 31.94 46.81 59.93 61.57 62.36
0.03 31.61 47.74 59.16 62.49 64.09

C B + augmented 146,157
0.00 30.51 44.52 63.48 59.6 60.71
0.01 32.58 47.65 59.39 62.86 63.72
0.03 31.89 48.83 59.84 62.32 63.17

Table 5: Comparing diverse values of warm-up ratio at training time. Ratios are out of 3000 steps. Hence, 0.01
and 0.03 correspond to 30 steps and 90 steps, respectively. The results here are without VAD at inference time.
The highest score in each group is displayed in a bold font.
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A.3 Training Epochs

Whisper Model Datasets Data Size Warm-up Steps Epoch Best Epoch BLEU ↑ chrF++ ↑ WER ↓ Semantic 1 ↑ Semantic 2 ↑

Medium

A authentic 29,663
0.03 2,000 1.08 1.02 29.14 47.03 63.17 60.78 62.11
cont. 4,000 2.16 1.83 32.38 48.95 58.85 62.09 63.28

B A + synthetic (2d) 48,719
0.03 4,000 1.31 1.22 36.02 53.73 53.26 66.86 68.16
cont. 7,000 2.30 2.27 36.34 54.08 53.35 68.31 69.93

B++ A + synthetic (3d) 115,987
0.03 4,000 0.55 0.55 38.41 57.18 51.10 69.72 71.13
cont. 8,000 1.10 0.55 ∼ ∼ ∼ ∼ ∼
cont. 15,000 2.07 0.55 ∼ ∼ ∼ ∼ ∼

C B + augmented 146,157
0.03 4,000 0.44 0.38 33.46 50.72 57.59 63.01 64.56
cont. 10,000 1.09 1.05 34.09 51.4 55.83 64.26 65.56
cont. 19,000 2.08 1.05 ∼ ∼ ∼ ∼ ∼

Table 6: Investigating the effect of training for 1-2 epoch(s). It seems that smaller amounts of training data can
benefit from training for 2+ while larger amounts of data can benefit from training for only 1 epoch or less. The first
row of each section starts the training with warm-up ratio 0.03, then the next 1 or 2 row(s) continues training for
more steps without changing any training arguments. The reported scores are for the best step, based on training
validation with 100-step intervals. That is why some rows are marked with the “∼" sign, as the best step was still
the same as the one reported in the previous row.
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Abstract

This paper outlines our submission for the
IWSLT 2024 Simultaneous Speech-to-Text
(SimulS2T) and Speech-to-Speech (SimulS2S)
Translation competition. We have engaged
in all four language directions and both the
SimulS2T and SimulS2S tracks: English-
German (EN-DE), English-Chinese (EN-ZH),
English-Japanese (EN-JA), and Czech-English
(CS-EN). For the S2T track, we have built upon
our previous year’s system and further honed
the cascade system composed of ASR model
and MT model. Concurrently, we have intro-
duced an end-to-end system specifically for the
CS-EN direction. This end-to-end (E2E) sys-
tem primarily employs the pre-trained seam-
lessM4T model. In relation to the SimulS2S
track, we have integrated a novel TTS model
into our SimulS2T system. The final submis-
sion for the S2T directions of EN-DE, EN-ZH,
and EN-JA has been refined over our champi-
onship system from last year. Building upon
this foundation, the incorporation of the new
TTS into our SimulS2S system has resulted
in the ASR-BLEU surpassing last year’s best
score.

1 Introduction

This paper delineates the HW-TSC’s contributions
to the SimulS2T and SimulS2S Translation task
at IWSLT 2024. Presently, research on SimulS2T
translation from a systems architecture standpoint
can be segregated into two categories: cascade and
end-to-end. Cascade systems traditionally encom-
pass a streaming Automatic Speech Recognition
(ASR) module and a streaming text-to-text machine
translation (MT) module, with an additional option
of integrating correction modules. Despite the com-
plexity of module integration, training each unit
with ample data resources can yield significant re-
sults. On the other hand, an end-to-end approach
for SimulS2T is feasible, where translations are
directly procured from a unified model with speech

input. It’s worth mentioning, however, that bilin-
gual speech translation datasets, indispensable for
end-to-end models, remain scant.

Present efforts in simultaneous SimulS2T fo-
cus on the development of dedicated models cus-
tomised for this task. This approach, nonetheless,
comes with certain limitations, such as the need
for an extra model, often accompanying a more
complex training and inference process, augmented
computational demands, and potential performance
decrement when employed in an offline environ-
ment.

Our methodology for SimulS2T encompasses
the use of a reliable offline ASR model and a robust
offline MT model as the system’s bedrock. We have
adapted the onlinization approach of (Polák et al.,
2022) and introduced an improved technique suit-
able for integration into the cascade system. On the
official development set, our SimulS2T achieved a
comparable level to the offline models under strin-
gent latency constraints without any alterations to
the original models. The disparity between offline
and cascade has been further reduced compared
to our last year’s system. For the new CS-EN lan-
guage pair, we submitted the end-to-end (E2E) sys-
tem. We anticipate that future research will further
enhance the E2E system’s performance. Lastly, for
SimulS2S, our system from the previous year had
a low-performing TTS model. Hence, we updated
the SimulS2S TTS model and integrated it with our
latest SimulS2T system.

Our achievements is as follows:

• We further explored the upper limit of incre-
mental decoding on our last year’s champion
SimulS2T system, and the BLEU value has
been further improved compared to last year.

• We tried to extend our cascade SimulS2T
method to the end-to-end system, and
achieved the same effect with small losses
between the offline and simultaneous system.
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• Our method can be naturally extended to
the SimulS2S system, and after SimulS2T
reduced minor error propagation, SimulS2S
achieved greater improvements.

2 Models

All models used by our system are offline models
and do not use special streaming strategies. The
following is an introduction to each model.

2.1 Offline ASR
In all our cascade system, Our system uses the U2
(Wu et al., 2021) framework as the ASR (Auto-
matic Speech Recognition) module because it is
flexible and supports streaming and non-streaming
ASR. U2’s key features include dynamic chunk
training, CTC decoder, and autoregressive atten-
tion decoder. It’s capable of conditional training
with different chunk sizes and allows for multiple
decoding strategies. We use "attention_rescoring"
for re-scoring CTC generated texts.

2.2 Offline MT
The Machine Translation (MT) module of our sys-
tem is the Transformer (Vaswani et al., 2017), a
very common tool used in machine translation (Wei
et al., 2021; Li et al., 2022). To improve this, we
use multiple training strategies like multilingual
translation (Johnson et al., 2017) for English to
German, Chinese, and Japanese, forward transla-
tion (Wu et al., 2019) for generating synthetic data
(Nguyen et al., 2020), and generation from an ASR
model to reduce the domain gap.

2.3 Offline S2T
For CS-EN direction, We used the offline Seam-
lessM4T (Seamless Communication, 2023) as our
end-to-end SimulS2T model. SeamlessM4T in-
tegrates a deep learning framework with a self-
supervised speech representation learned from 1
million hours of open speech audio data using w2v-
BERT 2.0. The speech to text model employs a
audio encoder and text decoder. Open-sourced for
community development, SeamlessM4T includes
robust safety measures to mitigate harmful content
and is designed to be adaptable for various applica-
tions, from international communication to content
creation.

2.4 Offline TTS
The Text-to-Speech (TTS) module is vital for gener-
ating high-quality speech from translated text. We

use the VITS (Kim et al., 2021) model for this, a
state-of-the-art tool that can produce natural, fluent
speech. The process is efficient, only needing the
generated text to create the raw audio waveform.
This makes the TTS module faster and improves
the user experience.

3 Methods

3.1 Cascaded SimulS2T

For EN-DE, EN-JA, EN-ZH, we followed last
year’s model (Guo et al., 2023). Regarding the
incremental decoding strategy, we added vad seg-
mentation and chunk padding on the ASR side to
achieve smaller delays, and added an ensemble
strategy on the MT side to achieve better MT sta-
bility.

Onlinization Incremental Decoding is the main
way to make an offline model into a real-time one.
Translation tasks might need reordering or more
information, which isn’t clear until the source sen-
tence ends. Offline models work best when they
can process the whole sentence at once, but this
can cause delays in real-time mode. A possible so-
lution is to break the source sentence into smaller
pieces and translate each piece separately. This
lessens the processing time while keeping the trans-
lation quality. By using incremental decoding with
these smaller pieces, we can speed up the transla-
tion process a lot, which is perfect for real-time
situations.

In incremental inference, we break the input
sentence into set-sized chunks and decode each
chunk as it comes in. Once a chunk is chosen, its
predictions are locked in and aren’t changed any-
more to avoid distractions from constantly chang-
ing guesses. The decoding of the next chunk de-
pends on the locked-in predictions. In reality, de-
coding for new chunks can either continue from
a saved decoder state or start after forced decod-
ing with the locked-in tokens. In either situation,
the source-target attention can cover all available
chunks, not just the current one.

Prefix Vad Incremental decoding can pose chal-
lenges with longer sentences. As the sentence
lengthens and the prefix extends, the decoding pro-
cess tends to slow down, relying progressively on
extensive contexts. Consequently, this requires
waiting for more chunks to output translation re-
sults, which in turn affects our decoding delay. To
mitigate this, we propose incorporating vad (Tong
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et al., 2014) detection and trimming excessively
long prefixes once the input reaches a sufficient
length. This strategy helps to minimize the stream-
ing delay and reduce computational overhead for
the model. Simultaneously, to ensure decoding
quality, it’s crucial to maintain adequate context.
Therefore, when detecting vad, we consider the
current vad position’s distance from the sentence’s
start and end. Balancing this length setting with
overall performance is a key aspect of our ap-
proach.

Chunk Padding During the ASR streaming de-
coding process, we observed instability with decod-
ing the final few frames of the audio features. This
instability presumably results from the model’s in-
sufficient edge handling during the convolution pro-
cess. This issue consequently disrupts the beam
search of streaming ASR, leading to inconsistent or
sometimes erroneous outcomes. These errors are
then carried over to the MT model, negatively im-
pacting the streaming translation’s stability. How-
ever, by appending blank padding to the end of
each streaming chunk, we can notably enhance the
decoding stability for the stream’s last few words.

MT Ensemble In cascaded systems, the elimi-
nation of error propagation is often challenging.
The erroneous ASR inputs that the MT system pro-
cesses often lead to more significant errors. More-
over, our MT system has certain constraints due
to its use of various strategies for domain adap-
tation and fine-tuning, resulting in an overfitting
risk. To address these issues, we have incorporated
MT models trained with diverse strategies into this
year’s system. By employing ensemble (Sagi and
Rokach, 2018) methods, we aim to enhance the
model’s fault tolerance while simultaneously miti-
gating the risk of overfitting in the field.

3.2 E2E SimulS2T
For the newly introduced language direction this
year, CS-EN, we utilized the pre-trained seam-
lessM4T as our end-to-end SimulS2T model. We
attempted to fine-tune the seamlessM4T using the
officially provided data. Concurrently, we imple-
mented the aforementioned cascaded SimulS2T de-
coding strategy to seamlessM4T, aiming to attain a
streaming effect.

3.3 Cascaded SimulS2S
In a cascaded speech-to-speech translation system,
the TTS module plays a critical role in rendering

high-quality speech output from translated text. To
this end, we utilize the state-of-the-art VITS (Kim
et al., 2021) model, which is pretrained on mas-
sive amounts of data and incorporates advanced
techniques such as variational inference augmented
with normalizing flows and adversarial training.
This model has been shown to produce speech out-
put that is more natural and fluent compared to
traditional TTS models.

The inference process involves providing the
VITS model with the generated text, after which
the model generates the raw audio waveform. This
process is highly efficient and requires no addi-
tional input from the user. By leveraging the VITS
model, we are able to streamline the TTS module
and deliver high-quality speech output in a fraction
of the time traditionally required by other systems.
This results in a more seamless and intuitive user
experience, enabling our system to be used by a
wider range of individuals and applications.

4 Experiments Setup

4.1 Dataset

We used four datasets to train the ASR (Auto-
matic Speech Recognition) module: LibriSpeech
V12, MuST-C V2, TEDLIUM V3, and CoVoST
V2. Each dataset contains different types of data,
like audio book recordings, TED talks, and open-
domain content. LibriSpeech doesn’t have punctu-
ations in its texts, but MuST-C and CoVoST do.

For training the machine translation (MT) model,
we collected all available parallel corpora that were
similar to the MuST-C domain, then trained a multi-
lingual MT baseline model. We also incrementally
trained the model based on data from each language
direction.

4.2 Model

ASR We used 80-dimensional Mel-Filter bank
features from audio files to create the ASR training
corpus, and Sentencepiece for ASR texts tokeniza-
tion. The ASR model has different configurations
for encoder layers, decoder layers, heads, hidden
dimensions, and FFN. For training, we used a batch
size of up to 40,000 frames per card and trained
the model on 4 GPUs for 50 epochs. To improve
accuracy, we augmented all audio inputs with spec-
tral augmentation and normalized with utterance
cepstral mean and variance normalization. We also
apply prefix vad and chunk padding in the asr de-
coding metioned in Section 3.1.
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System Language Pair BLEU AL AP DAL
IWSLT23 Best EN-DE 33.54 1.88 0.83 2.84
Our System EN-DE 34.24 1.94 0.84 2.94

IWSLT23 Best EN-JA 17.89 1.98 0.83 2.89
Our System EN-JA 17.94 1.93 0.84 2.82

IWSLT23 Best EN-ZH 27.23 1.98 0.83 2.89
Our System EN-ZH 27.63 1.88 0.83 2.82

Our System CS-EN 19.03 1.96 0.91 3.67

Table 1: Final systems results of SimulS2T on tsc-Common v2.0/dev

Model Language Pair ASR_BLEU StartOffset EndOffset ATD
IWSLT23 Best EN-DE 26.7 2.33 5.67 -
Our System EN-DE 27.09 1.86 4.17 3.06

IWSLT23 Best EN-JA 14.53 1.59 2.96 2.76
Our System EN-JA 15.55 2.32 3.15 2.89

IWSLT23 Best EN-ZH 20.19 1.77 2.98 2.93
Our System EN-ZH 22.92 1.76 3.0 2.79

Our System CS-EN 17.12 1.48 4.11 4.09

Table 2: Final systems results of SimulS2S on tsc-Common v2.0/dev

MT We used the Transformer deep model archi-
tecture for our MT model experiments. The con-
figuration of this model includes encoder layers,
decoder layers, heads, hidden dimensions, FFN,
and pre_ln. The model was trained using 8 GPUs,
with a batch size of 2048, a parameter update fre-
quency of 32, and a learning rate of 5e-4. During
inference, we used a beam size of 8 and set the
length penalties to 1.0. We selected 2 MT models
for ensemble mentioned in Section 3.1.

S2T We finetuned seamlessM4T-medium with
the official data, BLEU improved by two points but
did not exceed seamlessM4T-large-v2. Finally, we
submitted the seamlessM4T-large-v2 model as our
E2E model. We used the same decoding strategy
as the cascade, using a beam_size of 5 and setting
no_repeat_ngram_size.

TTS For EN-DE direction, we utilize the open-
source Espnet (Watanabe et al., 2018) for inference.
For EN-JA/ZH and CS-EN, we use the pretrained
models in huggingface. The pretrained models are

VITS (Kim et al., 2021) architecture, which adopts
variational inference augmented with normalizing
flows and an adversarial training process.

5 Results

5.1 SimulS2T

From Table 1, we can see that the our systems work
well on various language pairs. And our systems
even beat the best IWSLT23 systems of ourselves
with methods mentioned in Section 3. EN-DE has
improved the most. Since the gap between EN-DE
offline and streaming is much larger than that of
EN-JA and EN-ZH, we found that there is still a big
gap between the MT results of cascaded streaming
and ASR golden. In subsequent research, we may
focus on this point.

5.2 SimulS2S

From Table 2, we observed that the improvement of
S2S is greater than that of S2T. For EN-DE, most of
the improvement is mainly due to our replacement
of the TTS model, while for EN-JA and EN-ZH,
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thanks to the more stable SimulS2T, we spread to
The TTS error is smaller, so the improvement of
SimulS2S is more obvious than SimulS2T, which
also illustrates the impact of error propagation on
cascade system.

5.3 Ablation Study on Decoding Strategies

Decoding strategies BLEU
Baseline 34.24
IWSLT23 Best 33.54
- Prefix Vad 33.91
- Chunk Padding 34.02
- Ensemble 33.86

Table 3: Ablation Study on Decoding Strategies

We separately studied the impact of today’s
newly introduced decoding strategies on transla-
tion quality: prefix vad, chunk padding, ensemble.
It is evident from Table 3 that these decoding strate-
gies can effectively improve the overall quality of
the system.

6 Conclusion

In summary, this paper presents our efforts for
the IWSLT 2024 Simultaneous Speech-to-Text and
Speech-to-Speech Translation competition. We im-
proved upon our previous system, achieved better
translation accuracy and successfully integrated
a novel Text-to-Speech model. Our system uses
reliable offline models, and we managed to en-
hance the simulated conversation translation sys-
tem’s quality. Our experiments demonstrated that
our system performs well across different language
pairs. Future work will pay more focus on end-to-
end systems.
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Abstract

This system description paper presents the de-
tails of our primary and contrastive approaches
to translating Maltese into English for IWSLT
24. The Maltese language shares a large vocab-
ulary with Arabic and Italian languages, thus
making it an ideal candidate to test the cross-
lingual capabilities of recent state-of-the-art
models. We experiment with two end-to-end
approaches for our submissions: the Whisper
and wav2vec 2.0 models. Our primary system
gets a BLEU score of 35.1 on the combined
data, whereas our contrastive approach gets
18.5. We also provide a manual analysis of our
contrastive approach to identify some pitfalls
that may have caused this difference.

1 Introduction

In this paper, we describe the UoM-DFKI submis-
sion to the Dialectical and Low-Resource track of
the IWSLT 2023 evaluation campaign, focusing
on the unconstrained approach for the Maltese to
English track. Maltese is considered a hybrid lan-
guage, with most vocabulary coming from Arabic,
Italian, and English. While there is a major over-
lap with Arabic, Maltese data uses Latin instead
of Arabic script. Our main focus for this submis-
sion is using publicly available multilingual models
to exploit the multilingual capabilities of models,
given the interesting mixture of vocabulary in the
Maltese language.

For this paper, we focus on end-to-end ap-
proaches for spoken language translation (SLT),
namely with Whisper (Radford et al., 2022) and
wav2vec 2.0 xls-r (Baevski et al., 2020; Babu et al.,
2021). We use the Whisper-based model as our
primary submission and the wav2vec 2.0 model as
the contrastive approach. The Whisper system is
pre-trained on 680,000 hours of speech data using
an encoder-decoder method. A substantial amount
of the training data, nearly one-fifth, is English
audio, and 9,000 hours is Maltese. (Radford et al.,

2022) claim that with 41 hours of Maltese trans-
lation data, the Whisper model is able to achieve
roughly 14 BLEU points. In this paper, we use the
data released for this task to fine-tune the Whisper
model further. There are various Whisper models
with varying parameter sizes. (Williams et al.,
2023b) shows how, with larger parameters, the
Whisper architecture performs better in the ASR
setting for Maltese ASR. For this work, we decided
to use the most recent Whisper model; the largest
model is Whisper-large-v3. Our approach for
wav2vec 2.0-based models also consisted of using
an encoder-decoder approach, namely SpeechEn-
coderDecoder framework (Chan et al., 2015; Wang
et al., 2021), as made available on HuggingFace
(Wolf et al., 2020). We worked with three different
models as our decoder for our contrastive ap-
proaches, namely BERT (Devlin et al., 2019) and
mBART fine-tuned for machine translation from
different languages into English (Tang et al., 2020).

2 Literature Review

The IWSLT Low-resource and Dialectical shared
task increased the number of language pairs they
released data for in 2023. In the 2022 edition of
the workshop, (Anastasopoulos et al., 2022) re-
leased the data for teams to develop systems to
transcribe and translate the low-resource language
pairs of Tamasheq-English and Tunisian Arabic-
French. In the 2023 edition of the task, however,
Agarwal et al. (2023) extended the task to include
the language pairs Irish-English, Maltese-English,
Pashto-French and Quechua-Spanish.

In 2022, three teams submitted models for
Tamasheq-English: ON-TRAC (Zanon Boito et al.,
2022), TalTech and GMU. ON-TRAC also sub-
mitted to the Tunisian Arabic-French pair, like
CMU (Yan et al., 2022) and JHU (Yang et al.,
2022) did. In 2023, GMU submitted models
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for Irish-English, Marathi-Hindi, Pashto-French
and Tamasheq-French (Mbuya and Anastasopou-
los, 2023), Alexa AI submitted models for Marathi-
Hindi and Tamasheq-French (Shanbhogue et al.,
2023), ON-TRAC submitted for Tamasheq-French
and Pashto-French (Laurent et al., 2023), NAVER
submitted for Tamasheq-French and Quechua-
Spanish (Gow-Smith et al., 2023), BUT (Ke-
siraju et al., 2023) and SRI-B (Radhakrishnan
et al., 2023) submitted only for Marathi-Hindi,
QUESPA submited for Quechua-Spanish (E. Or-
tega et al., 2023) and UM-DFKI submitted for
Maltese-English (Williams et al., 2023a).

These teams employed various techniques, rang-
ing from traditional cascade systems to vari-
ous end-to-end architectures. Many teams lever-
aged large pre-trained models, including XLS-R,
mBART, Wav2Vec 2.0 and HuBERT. The Alexa
AI team tried an interesting approach by focus-
ing on data augmentation, ensemble modelling and
post-processing techniques to improve their results.
Transformer models for MT were popular across
the board. The NAVER submissions obtained par-
ticularly good results in their respective language
pairs by using pre-trained ASR and MT models
from the NLLB project (Team et al., 2022), which
include both Tamasheq and Quechua in their train-
ing, showing the importance of language diversity
in multilingual models.

3 Dataset

In this section, we briefly describe the dataset used
to fine-tune our systems. We include a descrip-
tion of the dataset used to fine-tune the mBART50
many-to-one model (Tang et al., 2020) and the
dataset released for this shared task.

mBART50 many-to-one (Tang et al., 2020) uti-
lized and released the ML50 dataset for fine-tuning
the mBART model for translating in 50 languages.
It uses English as a pivot language to collect paral-
lel data for 49 other languages from sources such
as IWSLT, TED, WAT, etc. It is also noted that the
49 languages selected for the dataset are based on
language family, available mono-lingual data and
parallel data. This, in turn, means that the dataset is
not balanced and results in better performance im-
provements for high-resource languages compared
to low-resource languages.

We used the data released for this shared task
to fine-tune our models. Namely, the two training
sets created from the Common Voice and MASRI

Maltese speech corpora. Subsets from these larger
corpora were extracted, 5 hours and 11 minutes
from the verified Common Voice data and 6 hours
and 39 minutes from the MASRI-Headset corpus.
The transcription of each sample was translated.
Fine-tuning Whisper for speech translation requires
audio for input and the transcription of that audio
in sentence form as a target. We pre-processed the
input text so that numbers were written in words
and no punctuation or capitalization was included.

Given how they were acquired, we note the
difference between the subset released from the
MASRI corpus and the CommonVoice dataset.
While the MASRI corpus provides clean and nearly
noise-free audio samples, CommonVoice samples
vary in terms of different noises and the quality of
audio-capturing devices.

4 Experiments

In this section, we briefly describe different experi-
ments we conducted for our submissions, including
those we did not submit for evaluation. First, we
describe our experiments with the wav2vec2-xls-r
(Babu et al., 2021) model, followed by the Whisper-
based (Radford et al., 2022) models. We utilized
HuggingFace (Wolf et al., 2020) libraries for our
experiments.

4.1 SpeechEncoderDecoder models

A SpeechEncoderDecoder model is an encoder-
decoder-based model used for spoken language
translation or transcription, where the encoder is
used to process the speech, and a language model
as a decoder generates the text in the target lan-
guage. In our experiments, we use the wav2vec2-
xls-r model with 2B parameters as our encoder,
with BERT (Devlin et al., 2019), and mBART50
(Tang et al., 2020) as the decoder following the
approach in Wang et al..

4.1.1 BERT based decoder

We utilize the base BERT (Devlin et al., 2019)
model as our baseline model for our SpeechEn-
coderDecoder approach. Namely, we use
bert-large-uncased1 as our language model for
the decoding since the evaluation strategy does not
factor in casing or punctuations. For training and
inference, we add cross attention to our decoder
using the BertConfig class from the transformers

1https://huggingface.co/google-bert/bert-large-uncased

329



Submission Name BLEU ASR WER
KIT.st-unconstrained-Primary 58.9 0.0835
KIT.st-unconstrained-Contrastive1 55.2
KIT.st-unconstrained-Contrastive2 56.2
UM.st-unconstrained-Primary 52.4 0.1431
UM.st-unconstrained-Contrastive1 52.4 0.1431
UM.st-unconstrained-Contrastive2 52.3 0.1431
UM.e2e-unconstrained-Primary 35.1
UM.e2e-unconstrained-Contrastive1 18.5

Table 1: Official results for the IWSLT’24 shared task,
as released by organizers.

library. We did not submit results from this exper-
iment as the models failed to produce any output
during inference.

4.1.2 mBART based decoder
For our mBART-based decoding approach, we uti-
lize the model fine-tuned for translating from 49
languages to English as released by (Tang et al.,
2020). Since Maltese has a large vocabulary that is
shared with Arabic and Italian, we decided to use
this model instead of the vanilla mBART model.
We indicate outputs from this system as the con-
trastive system for our work.

4.2 Whisper model
For our main system, we fine-tuned the
whisper-large-v3 model on the released dataset.
As mentioned in previous sections, we also utilize
several pre-processing steps for our dataset while
fine-tuning.

5 Results & Discussion

In this section, we discuss the results from both
submissions. As per the participation instruction,
the results are reported individually for the Com-
monVoice subset, MASRI subset and the combined
testset.

Table 1 provides the official results for differ-
ent submission to the Maltese->English track for
the IWSLT Low-Resource SLT shared task. Our
whisper based submission performed consistently
better than our SpeechEncoderDecoder model
based on wav2vec2-xls-r (Babu et al., 2021) and
mBART (Tang et al., 2020).

A rudimentary manual analysis of our con-
strained system shows a common theme of repeated
phrases across some bad translations. For exam-
ple, for the file MSRTS_M_03_TS_00016.wav,
our contrastive system produced “our words are
not ‘as it were’, the people’s words are
not ‘as they should be’, our words are

not ‘as they should be’, our words are
not ‘as they should be’", whereas for the file
MSRTS_M_09_TS_00008.wav, it produced “and
he comes running” repeated 8 times. We did not
find any conclusive pattern of this repetition based
on the output text length, as in some instances, we
find that only a sub-phrase is repeated one or more
times towards the end of the output. We experi-
mented with different output token lengths while
debugging this behaviour, but it did not yield any
conclusive reason, as it was present while using
different inference strategies as well. Another ap-
proach to fix this behaviour would be a post-fix
approach where we automatically fix the output
with repeated substring search. In this study, we
did not utilize such an approach and left it for future
work.

We analyzed the performance of our primary sub-
mission method using speech in a code-switched
conversation (Hindi and English) and found Whis-
per auto-translating the Hindi part to English in a
few instances when we put the input language as
"en". The nature of these fixes is not deterministic
in this preliminary experiment, as we saw differ-
ent segments translated in different runs. However,
due to the end-to-end nature of our approaches, we
are uncertain if this is the case with our model as
well. We attribute the improved performance of
the Whisper model to the increased pre-training of
the model on more data than wav2vec2-xls-r. How-
ever, without inspection of the data and the high
domain sensitivity in Maltese, it remains difficult
to quantify the effect.

We also note that our models’ performance on
the testset closely resembles the results we obtained
on the dev set during our training. Our primary
model scored 35.9 on the dev set, whereas it scored
35.1 on the testset; similarly, our contrastive model
scored 18.5 on both dev and test splits.

6 Conclusion & Future work

In our end-to-end translation system experiments,
we report that the Whisper-based model outper-
forms our SpeechEncoderDecoder model. The per-
formance of our contrastive model is much worse
for the MASRI subset than that of the Common-
Voice subset. We report that multi-lingual pre-
training and fine-tuning can provide good-quality
translation output in an end-to-end approach. We
also report that since Whisper is already trained in
a semi-supervised manner, the model output had
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to be re-processed to produce the ideal results for
this work. Overall, the results are much better com-
pared to Williams et al. (2023a) for IWSLT 2023.
However, we note that in the previous edition, the
test dataset drastically differed in quality and do-
main compared to the test set for this year’s shared
task. However, it is not possible to draw a parallel
for this comparison as the test set in the IWSLT’23
edition consisted of a podcast episode, which is
more colloquial in nature. It also suffered from
poor ASR outputs as there were instances of speak-
ers talking over each other. Another hypothesis is
that while much of the training data for the MT part
of the previous submission contains legal domain
data, which has more influence from Italian, the
colloquial speak has more influence from Arabic.

Based on the performance of our SpeechEn-
coderDecoder model, we hypothesize that data
augmentation and combining parallel data from
Arabic and Italian may improve the models’ per-
formance. We aim to extend this study with an
analysis of gain/drop in performance when using a
fine-tuned mBART50 as a translation system from
Arabic and Italian to English, compared to using
the same model as the decoder in this encoder-
decoder setting. We also aim to investigate the
auto-translation capabilities of Whisper-based mod-
els by using them in a pipeline-based approach as
well.

Furthermore, using language-specific adapters
to leverage models trained only on ASR or NMT
data enables SLT in low-resource contexts. Pre-
vious work on this area (Escolano et al., 2021),
(Le et al., 2021), including previous submissions
to IWLST (Gow-Smith et al., 2023) achieved high
BLEU scores and found that this method works
particularly well in low-resource contexts. We also
aim to explore this approach in the future with
related languages such as Italic and Arabic, as it
shows promise for Maltese-English SLT.
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Abstract

This paper introduces HW-TSC’s submission to
the IWSLT 2024 Subtitling track. For the auto-
matic subtitling track, we use an unconstrained
cascaded strategy, with the main steps being:
ASR with word-level timestamps, sentence seg-
mentation based on punctuation restoration, fur-
ther alignment using CTC or using machine
translation with length penalty. For the subtitle
compression track, we employ a subtitle com-
pression strategy that integrates machine trans-
lation models and extensive rewriting models.
We acquire the subtitle text requiring revision
through the CPS index, then utilize a transla-
tion model to obtain the English version of this
text. Following this, we extract the compressed-
length subtitle text through controlled decoding.
If this method fails to compress the text success-
fully, we resort to the Llama2 few-shot model
for further compression.

1 Introduction

In recent years, the demand for subtitles across var-
ious media platforms has surged, driving the need
for efficient and high-quality subtitling solutions.
Two main approaches have emerged for automatic
subtitle generation: cascaded strategies and end-to-
end models.

Cascaded Strategies Traditional cascaded
strategies involve a multi-step pipeline (Bentivogli
et al., 2021), where each component handles a spe-
cific subtask. This typically begins with an Auto-
matic Speech Recognition (ASR) system that tran-
scribes the audio into text. The transcribed text is
then segmented into subtitles, accounting for tim-
ing constraints and reading speeds. Finally, the
segmented subtitles may undergo text compression
to ensure they fit within spatial limitations while
retaining critical information.

End-to-End Strategies In contrast, end-to-end
models (Berard et al., 2016) aim to directly gen-
erate subtitles from audio or audio-visual inputs

using a single unified framework, typically leverag-
ing recent advances in deep learning and sequence-
to-sequence modeling. Such models can jointly
learn and optimize all subtitling tasks, mitigating
error propagation issues.

In this paper, we employ a cascaded strategy.
Due to Whisper (Radford et al., 2023)’s remark-
able achievements across multiple domains, the
cascaded strategy is expected to perform well. At
the same time, it allows us to leverage our existing
text-to-text machine translation capabilities.

In the process of automatic subtitle generation
discussed above, regardless of the method em-
ployed, subtitle compression emerges as a pivotal
element. This is due to the restricted display space
for subtitles, and the necessity of adapting subtitles
to the playback speed of the video, as well as the
reading speed of the audience. Consequently, once
the automatic generation of the subtitle file is final-
ized, it becomes essential to compress content for
overly long subtitles. By retaining the basic infor-
mation and meaning, this compression significantly
enhances the quality of the subtitles.

Traditional text compression strategies encom-
pass Deletion-oriented approach (Moran, 2009)
and Substitution-oriented approach (Yang et al.,
2010). In addition to the aforementioned methods,
training sequence-to-sequence models with parallel
data of both the original and compressed text can
enhance efficiency in text compression while more
effectively preserving semantic integrity (Anger-
bauer et al., 2019).

In this paper, we leverage a model generation
approach to accomplish the task of subtitle com-
pression. Uniquely, in the absence of extensive
parallel data of original and compressed text for
model training, we deviate from traditional model
compression methods. Instead, we employ a ma-
chine translation model to execute the task. This
requires the compression and reformation of text,
and the deployment of large language models to
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manage the compression task on certain texts that
pose challenges for rewriting.

2 Automatic Subtitling

We propose a Whisper-based cascaded automatic
subtitling strategy, with the details as follows:

2.1 Automatic Speech Recognition (ASR)
Whisper is a general-purpose speech recognition
model. It is trained on a large dataset of diverse
audio and is also a multitasking model that can
perform multilingual speech recognition, speech
translation, and language identification. We use the
large-v3 version of Whisper for ASR, and output
word-level timestamps, which will help with re-
segmentation after punctuation restoration.

2.2 Punctuation-Restoration-Based
Segmentation

Bert-restore-punctuation1 model is a punctuation
restoration model for the general English language.
Through punctuation restoration, we can obtain
sentence segmentation information that is more se-
mantically consistent, thereby obtaining better seg-
ments. Aided by the word-level timestamps from
the previous step, we perform sentence segmenta-
tion at the predicted punctuation marks (commas,
periods, exclamation marks, question marks), and
generate corresponding timestamps.

2.3 CTC-Alignment
We use wav2vec2-large-960h-lv602 for forced
alignment, which is pretrained and fine-tuned on
960 hours of Libri-Light and Librispeech on 16kHz
sampled speech audio.

2.4 Machine Translation
Since the timestamps generated by the ASR system
are good enough, when generating subtitles, we
only translate the English into the target language,
keeping the timestamps unchanged.

This track contains two language directions: En-
glish to German and English to Spanish, with the
details as follows:

2.4.1 Data
The training data includes domains such as travel,
subtitles, applications, and technology. The data
size is shown in Table 1.

1https://huggingface.co/felflare/bert-restore-punctuation
2https://huggingface.co/facebook/wav2vec2-large-960h-

lv60

en2de en2es
Baseline Data 5.8M 8.4M
Subtitle Data 1.3M 1.1M

Table 1: Data sizes of MT corpus.

2.4.2 Baseline models
We directly employ the en2de model we trained for
the IWSLT 2024 Offline track and we employ our
online-server en2es model. The training strategies
include the following steps:

Regularized Dropout Regularized Dropout (R-
Drop) (Wu et al., 2021) improves performance over
standard dropout, especially for recurrent neural
networks on tasks with long input sequences. It
ensures more consistent regularization while main-
taining model uncertainty estimates. The consis-
tent masking also improves training efficiency com-
pared to standard dropout. Overall, Regularized
Dropout is an enhanced dropout technique that of-
ten outperforms standard dropout.

Back Translation Augmenting parallel training
data with back-translation (BT) (Sennrich et al.,
2016; Wei et al., 2023) has been shown effective
for improving NMT using target monolingual data.
Numerous works have expanded the understand-
ing of BT and investigated various approaches to
generate synthetic source sentences. Edunov et al.
found that back-translations obtained via sampling
or noised beam outputs tend to be more effective
than those via beam or greedy search in most sce-
narios. For optimal joint use with FT, we employ
sampling back-translation (ST)

Forward Translation Forward translation (FT)
(Abdulmumin, 2021) uses source-side monolingual
data to improve model performance. The general
procedure of FT involves three steps: (1) randomly
sampling a subset from large-scale source mono-
lingual data; (2) using a "teacher" NMT model to
translate the subset into the target language, thereby
constructing synthetic parallel data; and (3) com-
bining the synthetic and authentic parallel data to
train a "student" NMT model.

2.4.3 Domain Adaptation Models
We used domain data to fine-tune the baseline
model to achieve domain adaptation. The domain
data came from three sources: 1. Directly crawled
from the internet. 2. Obtained domain data from
general domain data through curriculum learning.

Curriculum Learning A practical curriculum
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learning (CL) (Zhang et al., 2019) approach for
NMT should address two key issues: ranking train-
ing examples by difficulty, and modifying the sam-
pling procedure based on ranking. For ranking,
we estimate example difficulty using domain fea-
tures (Wang et al., 2020). The domain feature is
calculated as:

q(x, y) =
logP (y|x; θin)− logP (y|x; θout)

|y|
(1)

Where θin is an in-domain NMT model, while
θout is an out-of-domain model. The subtitle do-
main is treated as in-domain.

We fine-tune the model on the validation set to
get the teacher model and select top 40% of the
highest scoring data for fine-tuning.

2.4.4 Settings
In the training, each model undergoes training uti-
lizing 8 NPUs. The encoder-decoder layers is 25-6.
The batch size remains fixed at 6144, the update
frequency is 2, the dropout is 0.1, and the learning
rate is maintained at 5e-4. A total of 4000 warmup
steps are executed, and the model is saved every
2000 steps. Additionally, λ is set to 5 for R-Drop.
During inference, the beam size is set to 5 for both
models.

2.5 Experiment

We conduct our experiments on the IWSLT 2023
development data (including itv, peloton and TED),
and calculate the SubER (Wilken et al., 2022),
shown in Table 2 and Table 3. Here are the systems
we submitted:

Pipeline We used the strategies mentioned in
sections 2.1, 2.2, and 2.4.

Length-Penalty In addition to the pipeline sys-
tem, we incorporated a length penalty when per-
forming machine translation. We set the length nor-
malization parameter to 10 and the word penalty
parameter to 15.

CTC-alignment In addition to the pipeline sys-
tem, we performed CTC-alignment on the tran-
scription results.

3 Subtitle Compression

In the task of subtitle compression, our explicit ob-
jective is to rewrite the original subtitle text, lever-
aging its content to fulfill the parameters of char-
acters per second (CPS (Papi et al., 2023)) and

SubER-en2de itv peloton TED avg
Matesub 73.11 79.72 67.70 73.51
AppTek 71.40 71.90 64.30 69.20
FBK 83.70 79.10 69.40 77.40
Pipeline 74.41 78.92 72.03 75.10

+Length-Penalty 74.32 78.77 65.52 72.86
+CTC-alignment 74.21 79.30 71.24 74.91

Table 2: SubER in en2de

SubER-en2es itv peloton TED avg
Matesub 71.25 74.87 45.94 64.02
AppTek 82.10 79.00 48.80 69.97
FBK 82.20 80.30 52.50 71.67
Pipeline 71.87 79.98 52.49 68.11

+Length-Penalty 69.18 78.31 49.03 65.50
+CTC-alignment 71.41 80.27 51.27 67.62

Table 3: SubER in en2es

BLEURT (Sellam et al., 2020) indicators to the
highest degree possible.

3.1 Strategy

Given the constraints that only the original subtitle
file can be utilized and its timestamp information
remains unalterable, our compression strategy is
confined to sentence-level rewriting tasks. It im-
plies that compression needs to retain the original
semantics, but sentence-level fusion compression
is unfeasible.

In the absence of large volumes of parallel data
comprising original and compressed text, and the
presence of substantial bilingual data, we suggest
a subtitle compression approach that blends ma-
chine translation model rewriting and large model
rewriting. Our subtitle compression framework is
delineated in Figure 1.

We employ the same training data and strategies
used for automatic subtitles to train the bidirec-
tional translation model between English and Ger-
man, and between English and Spanish. For large
language models, we utilize Llama2 to accomplish
the subtitle text rewriting task.

3.2 Experiment

We performed exploratory studies on the IWSLT
2023 development data and computed CPS and
BLEURT, utilizing the compressed subtitle text as
the benchmark reference. The computation details
are presented in Table 4. We have listed below the
systems submitted for consideration:
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Figure 1: The subtitle compression framework

Reformulation using the machine translation
model(system A) Within the inference architecture
of the machine translation model, two parameters
exist that can potentially constrain the length of the
generated text:

1. the length normalization parameter: Divide
translation score by pow(translation length, arg)

2. the word penalty parameter: Subtract (arg *
translation length) from translation score

We also carry out the task of subtitle compres-
sion based on this feature. Using Spanish subtitle
files as an example, we first utilize the CPS index
to identify subtitle texts that do not conform to
the required length specifications and, therefore,
need compression. These texts are then processed
through the Spanish-to-English translation model
to generate golden English. These English ver-
sions are then subjected to re-translation back into
Spanish, but we apply a length penalty during this
translation to yield a compressed subtitle text. In
this study, the length normalization parameter is
set to 10 while the word penalty parameter is set to
15.

Revision based on the Llama2(systems B) The
large-scale model exhibits robust reasoning capabil-
ities, which can also be harnessed to accomplish the
task of rephrasing subtitle text. Although Llama2
may not have been specifically trained for text con-
densation tasks, we adopt a few-shot methodology
during inference. More precisely, a number of sub-

title texts are chosen at random, and the condensed
text is achieved through the aforementioned ap-
proach based on machine translation model rephras-
ing. During each inference, the large-scale model
is initially presented with these instances, and then
permitted to carry out the condensation and rephras-
ing assignment. The specific guidelines are as fol-
lows:

Tienes una gran capacidad de reescritura. Ahora
necesitas reescribir el español en oraciones más
concisas y cortas manteniendo la mayor cantidad
posible de semántica del texto original.

1. Texto original: - ¿Cómo ayudará este im-
puesto a Europa a salir de la crisis económica?
Texto después de reescribir: - ¿Cómo ayudará este
impuesto a Europa a salir de la crisis?

2. Texto original: - Al fin y al cabo es un gesto
político, nada más. Texto después de reescribir: -
Al final es un gesto político, nada más.

3. Texto original: - Creo que la realidad es que,
con sólo 11 países en el mundo, han adoptado este
impuesto de manera efectiva Texto después de ree-
scribir: - Creo que la realidad es que, con sólo
11 países efectivos en el mundo, adoptan este im-
puesto

Revision strategy utilizing machine trans-
lation models and large model amalgama-
tion(systems A and B) Given that the machine
translation model’s output is derived from the
golden English text, it holds a higher BLEURT
score juxtaposed with Spanish, implying lesser se-
mantic loss. Therefore, the initial consideration is
leveraging a machine translation model for rewrit-
ing. However, for texts that pose higher rewriting
complexities, a rewriting approach based on the
Llama2 model is explored. Despite the potential
for some semantic loss, this strategy ensures com-
pliance with the prescribed length requirements for
subtitle text.

System CPS CPS_mean BLEURT
System A 75.3 19.9 0.78
System B 71.8 19 0.71
Systems A and B 81.2 18.6 0.62

Table 4: CPS and BLEURT in Spanish dev set

4 Conclusion

Although our performance in the experiment did
not achieve best results, the comparison between
our own systems can also illustrate some issues:
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1. In automatic subtitling track, the results of
machine translation with length penalty performed
the best, indicating that compared to real subtitles,
machine translation results tend to be longer.

2. In the subtitle compression track, the ma-
chine translation model produces rewritten text
with a low BLEURT loss. However, the mean CPS
value is 19.9, higher than the mean value of 19
from Llama2-based rewrites. This suggests that the
machine translation model prioritizes translation
quality and struggles to compress long sentences
significantly. On the other hand, rewrites from
Llama2 show lower CPS but higher BLEURT loss,
indicating that the larger model possesses stronger
reasoning abilities and can tackle challenging com-
pression tasks effectively with prompts, albeit at the
cost of potentially losing some sentence semantics.
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Abstract

Generating rare words is a challenging task for
natural language processing in general and in
speech translation (ST) specifically. This paper
introduces a test suite prepared for the Offline
ST shared task at IWSLT. In the test suite, corre-
sponding rare words (i.e. named entities) were
annotated on TED-Talks for English and Ger-
man and the English side was made available
to the participants together with some distrac-
tors (irrelevant named entities). Our evaluation
checks the capabilities of ST systems to lever-
age the information in the contextual list of
named entities and improve translation qual-
ity. Systems are ranked based on the recall
and precision of named entities (separately on
person, location, and organization names) in
the translated texts. Our evaluation shows that
using contextual information improves transla-
tion quality as well as the recall and precision
of NEs. The recall of organization names in all
submissions is the lowest of all categories with
a maximum of 87.5% confirming the difficul-
ties of ST systems in dealing with names.

1 Introduction

Generating rare words is a big challenge for several
natural language processing (NLP) tasks such as
machine and speech translation and speech recog-
nition. Rare words are those terms that have a low
frequency in the training data and include, among
others, named entities (NE), i.e. names of persons,
organizations, and locations, acronyms and abbre-
viations, and domain-specific terms. These words
carry a huge amount of the information of a sen-
tence (Li et al., 2013) and their wrong realization
in a text can significantly impact the user’s under-
standing and experience.

In machine translation (MT), there has been a
significant effort in making the translation system
able to translate better the rare words (Sennrich
et al., 2016; Koehn and Knowles, 2017; Niehues
and Cho, 2017). This becomes crucial when trans-

lations serve as a base for upstream tasks like sum-
marization, errors in those named entities can in-
troduce wrong attributions or overall misleading
information. To improve the accuracy of translating
named entities correctly one could either integrate
a knowledge graph (Mota et al., 2022; Xie et al.,
2022) or use NE tags in the source sentence to
make the NMT system aware of the NEs (Ugawa
et al., 2018; Dinu et al., 2019; Zhou et al., 2020).

For automatic speech recognition (ASR) the
problem with rare words and NEs is even harder
since with speech the system has to handle an ad-
ditional modality. Similar to NMT there is a lack
of training data for those entities and in addition to
that, the pronunciation of named entities is often
different compared to other words. Current state-of-
the-art approaches tackle this problem using con-
textual biasing (Sathyendra et al., 2022) where the
ASR system is provided with contextual informa-
tion which can be a list of named entities. The
work is usually distinguished in a shallow-fusion,
where the actual ASR model is untouched and only
modifications are added at inference time (Wang
et al., 2023) and a deep-fusion approach, where a
context mechanism is trained and later used as a
black-box (Munkhdalai et al., 2023; Zhou et al.,
2023; Huber et al., 2021; Sathyendra et al., 2022;
Bruguier et al., 2019).

In speech translation (ST), addressing the modal-
ity problems encountered in ASR and the lack of
alternative translations for NEs in neural machine
translation simultaneously increases the complex-
ity of the problem. There is already existing work
exploring the capability of ST system handling NEs
(Gaido et al., 2021). Similar to their work also this
test suite concentrates on evaluating the accuracy of
translating named entities for person, organization
and location names. Additional to Gaido et al. also
the precision in translating named entities of the
systems is evaluated. Furthermore contextual infor-
mation is given per talk as a list of named entities
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to evaluate if a system can utilize this information
for the translation task.

It has been shown that the main factors for a
cascaded system might be the frequency of words
occurring in the training and foreign words with
different pronunciations (Gaido et al., 2022). They
suggest tackling the first factor by using more data,
synthetic data, or fine-tuning on in-domain data.
The second factor is tackled by using multilin-
gual speech data to increase the variety seen for
phoneme-to-grapheme mappings during training.
Additionally, there has been work incorporating a
list of named entities into a direct ST model to im-
prove the accuracy for NE translation (Gaido et al.,
2023) based on the CLAS approach for contextual
ASR (Pundak et al., 2018).

We proposed a test suite for the Offline ST
shared task at IWSLT to draw attention to the prob-
lem of NE translation in speech translation. The
test suite was used to evaluate the ability of ST sys-
tems to translate NEs in the English-German TED
test set accurately. The test suite provides con-
textual information in the form of a list of source
language NEs that may or may not be present in
the source spoken audio. The aim is to assist the
ST system in improving translation quality. This
paper introduces the test suite and examines the
performance of different submitted ST systems on
our test. Our findings indicate that ST systems en-
counter difficulties when translating NEs, but the
list of NEs can help enhance the performance when
utilized.

2 Test Suite

2.1 Task

This test suite has been developed to check the ca-
pability of a speech-translation system to leverage
source language textual knowledge to improve the
translation of specific aspects (i.e. named entities),
and properly translate named entities.

For this reason, in addition to the classic test
audio for the English into German translation direc-
tion, contextual information is available in textual
form. This information might be used to mitigate
translation errors on these contextual terms.

The context information was given as a list of
entities per English audio file. To emulate real
scenarios, where large lists can be used without any
adaptation to specific audio, some entities that were
not present in that audio were added as distractors.
The goal of each participant and system is to distill

the correct information from the list and use it to
improve translation quality.

2.2 Data

As a test corpus we use 27 English TED talks with
translations into German used as one of the evalua-
tion sets in the Offline task.

A state-of-the-art multilingual fined-tuned
named-entity-recognition (NER) model based on
BERT (Kenton and Toutanova, 2019)1 is used to
annotate NEs in our test corpus for English as well
as for German. The NER tagger outputs differ-
ent name entity classes – in the following, we will
concentrate on the most frequent classes which are
person names, locations, and organization names.

Additionally, in the first post-processing step,
some miss-classified words were manually re-
moved and statistics of tagged words were calcu-
lated to get a consistent tagging of all words. In the
second step, the correspondence for the named en-
tities from English and German is estimated since
we are only interested in named entities which oc-
cur in the reference as well as in the target. As an
heuristic we construct a graph where each named
entity is represented by a node. In the graph, there
is only an edge between two nodes if the charac-
ter edit distance of two named entities of the two
different languages was below a specific threshold.
To finally estimate the correspondence a maximum
bipartite matching (Hopcroft and Karp, 1973) is
calculated between the named entities of German
and English per segment.

Finally, the lists for each segment were merged
per talk resulting in a list of named entities with
corresponding entities in English resp. German.

Exemplary excerpts of a talk can be examined in
table 1.

Table 1: Exemplary corresponding named entity in the
test corpus tagged by a NER model.

English Transcription
a. The Company and Jan Pieterszoon
Coen, its Governor-General
b. In 1971, East Pakistan seceded
German Translation
a. Das Unternehmen und Jan Pieter-
szoon Coen, sein Generalgouverneur
b. 1971 spaltete sich Ostpakistan ab

1The cased version of BERT is used because also the tran-
scripts resp. translations are provided cased.
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The same procedure as described above was ap-
plied to nearly 400,000 sentences from other TED
talks to extract named entities. In the final step
for each English audio in the test set distractors
were sampled from these entities to add at least one
distractor per audio but a maximum reach of 20%
distractors per audio (c.f. table 2). This results in
a final named entity list containing 153 words in
total (including distractors).

Table 2: Excerpt of the final context list containing
named entities. One line corresponds to one whole
audio of the utterance in table 1. The list was artificially
augmented by adding distractors (bold).

a. Banda, Banda Islands, Bandanese,
Coen, David Brin, Europe, Jan Pieter-
szoon Coen, Verenigde Oostindische
Compagnie
b. Alex Kipman, Assam, Bangladesh,
Bengal, Calcutta, Delhi, Dhaka, East
Pakistan, Hindus, India, Jawaharlal
Nehru, Karachi, Kashmir, Lahore, Mo-
handas Gandhi, Muhammad Ali Jinnah,
Pakistan, Punjab, Shree Bose

2.3 Metric
The submitted hypotheses were automatically re-
segmented based on the reference translation.

Since the hypothesis-reference sentence align-
ment might not always be correct in the follow-
ing evaluation the named entity measurements are
calculated per audio. A named entity in the hy-
potheses translations is considered a hit if an exact
case-sensitive match in the reference is found and
a miss otherwise. Those hits and misses per audio
are then used to calculate the recall.

Furthermore the same procedure as described in
section 2.2 was applied to all submitted translations.
By finding a match of the detected named entities
in the reference, the precision of translated named
entities can be calculated which is reported as NE-
Precision.2

The translation quality is computed using the
COMET score (Rei et al., 2020).

3 ST Models

All tested systems are cascaded systems that first
transcribe the audio by an ASR system and trans-

2We want to note that this metric depends on the perfor-
mance of the NER model used for extracting NEs on the
different translation submissions.

late the transcript with an NMT system. That might
be due to the fact that cascaded systems performed
better than end-to-end systems for Offline ST in
the last years’ evaluations (Agarwal et al., 2023;
Anastasopoulos et al., 2022, 2021). There exist
three different data conditions3: Firstly constrained,
where the systems are only allowed to be trained
on a fixed amount of data, secondly constrained
+ LLM where in addition a list of allowed large
language model (LLM) can be used and thirdly un-
constrained to allow training the system and a large
amount of training data.

The only system incorporating the contextual
information is the submission of the Karlsruhe In-
stitute of Technology (KIT). Their cascaded system
uses a LoRA (Hu et al., 2021) fine-tuned LLM to
1) post-edit the ASR transcript incorporating the
N-best list and 2) to post-edit the MT output on
document-level. Only their primary (prm) submis-
sion injects contextual information in the second
step by including the words into their LLM prompt.
The first contrastive submission (ctr1) only applies
the ASR post-edit step and for ctr2 both LLM cor-
rections are used but without injecting the contex-
tual information.

All unconstrained systems use a multilingual
ASR model - namely Whipser-large-v3 (Radford
et al., 2023) - for transcription.

As stated above also the Huawei Translation Ser-
vice Center (HW-TSC) and Carnegie Mellon Uni-
versity (CMU) submitted a cascaded approach.

4 Results

All systems’ results are reported in table 3 grouped
by the aforementioned data condition (c.f. sec-
tion 3). It can be observed that unconstrained sys-
tems are performing better on the general ST met-
ric, COMET, as well as on the named entity recall
and precision. Because the unconstrained systems
are trained on more data, also the number of named
entities might be higher, which directly is related
to predicting named entities correctly (Gaido et al.,
2022). Additionally the multilingual ASR com-
ponent of the unconstrained cascaded ST systems
might be beneficial for the translation of named en-
tities because often names originate from different
languages than the actual source language (English
in our case). This observation is also au-pair with
other investigations (Gaido et al., 2022). Also, we

3For more details visit the webpage of IWSLT-2024 offline
track: https://iwslt.org/2024/offline
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Table 3: Systems evaluated using general MT metric COMET as well as recall (NE-Recall) and precision (NE-
Precision) of named entities per category person (per), location (loc) and organization (org) evaluated in the target
language (German) and number of predicted distractors (DT).

System COMET NE-Recall [%] NE-Precision [%] DT
ALL per loc org ALL per loc org

Data Condition: Unconstrained
NYA (prm) 0.8339 88.68 84.44 97.78 75.00 75.15 76.36 82.05 57.89 -
NYA (ctr1) 0.8329 91.51 84.44 100.00 87.50 74.56 78.18 78.75 58.33 -
NYA (ctr2) 0.8330 91.51 84.44 100.00 87.50 74.55 77.36 78.48 57.14 -
NYA (ctr3) 0.8332 91.51 84.44 100.00 87.50 73.10 78.18 77.78 54.05 -
CMU (prm) 0.8596 83.96 80.00 93.33 68.75 64.61 65.08 72.15 47.50 -
CMU (ctr1) 0.8542 83.02 80.00 91.11 68.75 61.96 65.08 71.43 42.55 -
CMU (ctr2) 0.8358 83.96 80.00 93.33 68.75 63.74 65.57 75.64 42.55 -
HW-TSC (prm) 0.8461 88.68 84.44 95.56 81.25 71.76 75.41 76.71 54.05 -
HW-TSC (ctr) 0.8472 88.68 84.44 95.56 81.25 73.21 76.67 55.56 78.08 -

Data Condition: Constrained
HW-TSC 0.8376 87.74 84.44 93.33 81.25 73.91 76.27 76.06 60.61 -

Data Condition: Constrained + LLM
KIT (prm) 0.8283 87.74 86.67 93.33 75.00 68.75 73.68 78.08 42.42 0
KIT (ctr1) 0.8245 83.96 80.00 93.33 68.75 64.85 60.32 79.45 40.62 -
KIT (ctr2) 0.8260 85.85 84.44 93.33 68.75 66.47 67.80 78.38 40.54 -
HW-TSC 0.8490 89.62 86.67 95.56 81.25 73.78 79.63 74.36 60.61 -

might suspect a data leakage problem since the
Whisper model was released in November 2023
and some TED talks from the test set are publicly
available since 2013.

Furthermore the recall and precision for loca-
tions archives the highest score, followed by per-
sons and then organization names. That might be
related to the main factor of frequency of words
occurring in the training which likely is higher for
location names compared to person and organiza-
tion names.

Looking closer at the unconstrained submissions
one can observe that CMU’s primary submission
is the best-performing submission for COMET, but
NYA’s contrastive submissions achieve a better NE-
Recall as well as NE-Precision.

Comparing HW-TSC’s primary submission on
the constrained data to the condition with LLM, it
achieves the highest precision for named entities in
general and also has a competitive performance for
the recall.

From the results for KIT’s primary (prm) and
second contrastive (ctr2) submission, it can be seen
that the overall recall and precision of NEs as well
as the scores for person and organization names
increased. This indicates that the provided context
information can be useful to not only increase the

general COMET score but also the translation for
NEs.

Additionally, the number of appearing distrac-
tors (DT) in the translations was measured. Only
KIT’s primary submission used the provided con-
text information and is therefore prone to copying a
wrong-named entity from the provided list. Never-
theless, 0 distractors were copied from the provided
context list.

Table 4: Exemplary misses for the person named entity
(Charles Locock) as well as one correct translation of
four German hypotheses translations of unconstrained -
NYA (prm) and CMU (prm) - and constrained systems
with a LLM - HW-TSC and KIT (ctr2).

Reference
Mediziner wie Sir Charles Locock
Hypotheses
NYA (prm) Ärzte wie Sir Charles Lowcock
CMU (prm) Ärzte wie Sir Charles Lockhart
HW-TSC Ärzte wie Sir Charles Lowcock
KIT (ctr2) Ärzte wie Sir Charles Locock

In table 4 an example of a person-named en-
tity that was mistranslated by most of the tested
systems can be examined. In that example, only
KIT’s submissions translated the name Charles Lo-
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cock correctly. Other systems translated the last
name as Lockhart, Lowcock, or Lowcock. All miss-
translations are close to the actual name Locock but
might raise confusion when reading the translation
without having access to the original audio.

Table 5: Two exemplary misses for the organizational
named entity (WARIF) as well as two correct translations
in four German hypotheses translations of unconstrained
- NYA (prm) - and constrained systems - KIT (ctr2), KIT
(prm) and HW-TSC.

Reference
Internationale Stiftung für Frauen in
Gefahr, WARIF, gegründet
Hypotheses
NYA (prm) Women at Risk International

Foundation, WAR
KIT (ctr2) Women at Risk International

Foundation (WRIF) gegrün-
det

KIT (prm) Women at Risk International
Foundation (WARIF) gegrün-
det

HW-TSC Women at Risk International
Foundation, WARIF

Additionally translations of an abbreviation resp.
an organizational named entity, namely WARIF
which is short for Women At Risk International
Foundation, are reported in table 5. The NYA’s pri-
mary resp. KIT’s second contrastive system is miss-
ing the NE and translates it with only WAR resp.
WRIF. Also, it’s worth noting that when injecting
the contextual information the KIT’s primary sys-
tem is translating this organizational NE correctly.
For completes: also the HW-TSC’s primary sub-
mission was translating this NE correctly without
using any contextual information. Especially for
organization terms, it’s important to translate them
correctly. In this example, it can be seen that a hal-
lucinated abbreviation also introduces confusion
and makes it hard to understand the meaning of the
translation.

5 Conclusions

In our test suite, we explored the translation of
named entities for English-German ST. Named
entities are translated correctly with a recall of
approx. 92% and a precision of approx. 75% in
an unconstrained, approx. 88% resp. 74 % in a
constrained data condition without LLMs and ap-

prox. 90% resp. 81% in a constrained data con-
dition with using a LLM. Firstly this indicates
that LLMs comprise contextual knowledge about
named entities which is useful to translate named
entities. But secondly that also suggests that there
is still a gap in translating named entities correctly,
especially looking at the category of organization
names where when additionally using a LLM the
precision and recall was not improved. Further-
more that might indicate that the capabilities of
LLM of improving the quality of named entity
translation is limited due to the fact that some mis-
reconized named entities can not be corrected with-
out the access to audio information in a cascaded
system.

The given contextual information (list of named
entities) improved the overall COMET score as
well as the recall and precision of NE translation.
We are looking forward having more systems using
a context list for ST to see more benefits from using
provided contextual information or LLMs using
audio information for translation directly.
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Abstract

Simultaneous machine translation aims at solv-
ing the task of real-time translation by starting
to translate before consuming the full input,
which poses challenges in terms of balancing
quality and latency of the translation. The wait-
k policy offers a solution by starting to trans-
late after consuming k words, where the choice
of the number k directly affects the latency
and quality. In applications where we seek to
keep the choice over latency and quality at in-
ference, the wait-k policy obliges us to train
more than one model. In this paper, we address
the challenge of building one model that can
fulfil multiple latency levels and we achieve
this by introducing lightweight adapter mod-
ules into the decoder. The adapters are trained
to be specialized for different wait-k values and
compared to other techniques they offer more
flexibility to allow for reaping the benefits of
parameter sharing and minimizing interference.
Additionally, we show that by combining with
an adaptive strategy, we can further improve
the results. Experiments on two language di-
rections show that our method outperforms or
competes with other strong baselines on most
latency values. 1

1 Introduction

Simultaneous machine translation (SiMT) aims at
reducing the latency of translation systems. In sce-
narios with low latency demands, such as confer-
ences or lectures, translating with minimum delay
is crucial. In order to reduce the latency, SiMT
models start translating before consuming the full
input sentence, which improves the latency but
affects the quality of the translation, because of
limited access to enough source context to make
a correct prediction. SiMT techniques design a
strategy to decide when to make a READ (i.e. wait
for more source tokens) or WRITE (i.e. output

1Code is available at: https://github.com/issam9/
Adapters-SiMT

a new token) action. The strategy has to balance
the trade-off between quality and latency by mak-
ing more READ or WRITE actions. Making more
READ actions will lead to improved quality but
will hinder the latency, while the opposite is true for
making more WRITE actions. Fixed policies de-
sign a strategy that is detached from whether there
is sufficient context to make a WRITE action (Ma
et al., 2019; Elbayad et al., 2020; Zhang and Feng,
2021). For instance, the wait-k policy (Ma et al.,
2019) trains the model to make k number of READ
actions before every WRITE action. The value of k
has a direct impact on the quality and latency of the
translation and since it is decided during training,
wait-k models have to be trained with latency in
mind, which means that in order to support multi-
ple latency levels, we need to train multiple models.
The multi-path training (Elbayad et al., 2020) was
introduced to solve this issue by sampling the value
of k randomly during training, which results in a
model that supports multiple latency levels. This
technique was shown to benefit the inference at
lower wait-k values by improving the results, but
it neglects that parameter sharing between all the
wait-k values might introduce interference. Zhang
and Feng (2021) addressed the interference issue by
using Mixture-of-Experts (MoE), where each head
of the multi-head attention is treated as an expert
and is trained on different wait-k values. This has
proven to be a successful technique, but the number
of wait-k experts we can introduce depends on the
number of heads in the Transformer model, which
limits the flexibility in terms of balancing param-
eter sharing and interference between the wait-k
paths. Our method relies on inserting lightweight
adapters (Rebuffi et al., 2017; Houlsby et al., 2019)
for this purpose. The number of the adapters and
their capacity can be easily adjusted depending
on the wait-k values we intend to support and the
complexity of the language direction.

Dynamic strategies have gained increased atten-
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tion in recent years (Gu et al., 2017; Zheng et al.,
2019, 2020; Ma et al., 2020; Zhang and Feng, 2022;
Zhao et al., 2023) due to their effectiveness. Dy-
namic strategies strive to strike a balance between
latency and quality by making as much READ ac-
tions as necessary and as much WRITE actions as
possible. The decision to read or write is made
dynamically based on the context (which can be
the received input and the previous target tokens) at
each decoding step. Although dynamic strategies
achieve state-of-the-art results, they often require
specialized training techniques (Gu et al., 2017;
Ma et al., 2020; Zhang and Feng, 2022) that can
balance between latency and quality when gener-
ating READ/WRITE actions, or even require the
training of multiple models (Zheng et al., 2020;
Ma et al., 2020) to support multiple latency levels.
In order to take advantage of the dynamic wait-k
strategies, we adopt a strategy that composes multi-
ple wait-k models during inference (we refer to this
as Adaptive Wait-k (Zheng et al., 2020)) to work
with wait-k adapters instead. This brings efficiency
and cost benefits as only one model is required to
satisfy multiple latency levels and also improves
performance compared to other strong baselines
including Adaptive Wait-k.

In summary, our main contributions are the fol-
lowing:

• We introduce lightweight adapters as a flexi-
ble solution to balance parameter sharing and
interference in multi-path training.

• We show that by combining adapters with a
simple adaptive strategy (i.e. Adaptive Wait-
k) we can further improve the results.

• We show that our technique outperforms or
competes with other strong baselines on most
latency levels.

2 Related Works

2.1 Adapters for Machine Translation

Adapters (Rebuffi et al., 2017; Houlsby et al., 2019)
are typically small modules that are used in order
to efficiently adapt a pre-trained model to a down-
stream task, where the pre-trained model can be ei-
ther frozen (Houlsby et al., 2019), or trained jointly
with the adapters (Stickland and Murray, 2019).

Adapters have been used for efficient multi-task
fine-tuning (Stickland and Murray, 2019), where
each set of adapters is trained on a specific task.

Pfeiffer et al. (2021) added AdapterFusion on top
of the adapters as a way to compose the representa-
tions of different tasks. Pfeiffer et al. (2022) used
adapters as language-specific parameters in order
to address the curse of multilinguality in multilin-
gual pre-training, where the adapter modules are
introduced during pre-training instead of post-hoc.

For Neural Machine Translation (NMT), Bapna
and Firat (2019) introduced a simple formulation of
adapters to learn language-pair specific parameters,
where they showed that it improves performance
on high resource languages in Multilingual Transla-
tion. Chronopoulou et al. (2023) trained language-
family adapters to address negative interference
while allowing for parameter sharing between sim-
ilar languages, which improved performance on
low resource languages. Zhao and Calapodescu
(2022) fine-tuned adapters on multimodal noise,
then added a fusion layer in order to improve gen-
eralization to other types of noise. Adapters were
also explored for other motivations like Zero-shot
NMT and unsupervised domain adaptation (Philip
et al., 2020; Malik et al., 2023).

2.2 Simultaneous Machine Translation

SiMT systems can be divided into fixed and adap-
tive policies. Fixed policies rely on predefined rules
for READ/WRITE decisions. Ma et al. (2019) pro-
posed the wait-k policy, where the model starts by
reading k tokens then alternates between reading
and writing one token. Elbayad et al. (2020) in-
troduced multi-path training, where one model is
trained to support multiple wait-k values by sam-
pling k randomly during training. Zhang and Feng
(2021) addressed interference in multi-path training
by using Mixture-of-Experts. Zhang et al. (2021)
used Knowledge Distillation from a Full-Sentence
Transformer to embed future information into the
SiMT model. For adaptive policies, Gu et al. (2017)
trained a Reinforcement Learning agent to decide
READ/WRITE actions, where the reward func-
tion is designed to consider both quality and la-
tency. Zheng et al. (2019) generated supervised
READ/WRITE actions then trained a classifica-
tion model to predict the action based on encoder
and decoder representations. Zheng et al. (2020)
introduced a heuristic strategy to compose wait-k
models into an adaptive policy based on their uncer-
tainty. Zhang and Zhang (2020) trained a sentence
segmentation model to predict complete sentences
and feed them through a full-sentence translation
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model. Arivazhagan et al. (2019) introduced MILK,
where they modified the attention mechanism to
learn a Bernoulli variable to decide READ/WRITE
actions. Ma et al. (2020) adapted MILK to the
transformer architecture. Zhang and Feng (2022)
proposed ITST, which quantifies the transported
information from source to target then generates a
token when the quantity is deemed sufficient. Zhao
et al. (2023) trained a supervised policy network
based on automatically generated divergence be-
tween the predicted distribution of partial and full
sentence input.

The majority of the techniques outlined require
training multiple models to accommodate different
latency levels. Our approach focuses on the effi-
cient training of a single model that can support
various latency levels at inference time.

3 Background

3.1 Adapters
Adapters are lightweight modules that can be in-
serted into a model for the purpose of task or do-
main adaptation (Houlsby et al., 2019; Bapna and
Firat, 2019). They offer an efficient solution for
fine-tuning the model and limiting catastrophic for-
getting (Houlsby et al., 2019).

Formally, for a set of N tasks and a model M ,
the adapter parameters A are introduced. We as-
sume that for each task we have a dataset Dn. The
model parameters can be frozen or jointly trained
with the adapters. For a frozen model, the model
M is pre-trained and the objective function for task
n ∈ {1, ..., N} can be defined as:

An ← argmin
An

Ln(Dn;M,An) (1)

The parameters An are randomly initialized for
each task, then they are trained on the dataset Dn

in order to minimize the loss function Ln. This
results in N adapters that can specialize the model
representations to each task n.

In the case of jointly training the model and the
adapters, the model parameters M can be randomly
initialized or frozen. The objective function can be
defined as:

M ′ ← argmin
M,A

(
N∑

n=1

Ln(Dn;M,An)

)
(2)

where M ′ is both the parameters of the model M
and the adapters An for n ∈ {1, ..., N}. The pa-
rameters An are activated during training depend-
ing on the task n.

3.2 Wait-k Policy
The wait-k policy (Ma et al., 2019) trains a model
to start translating after receiving k source tokens.
The model then alternates between writing and
reading a new token. It is a fixed policy, where
the k value has to be chosen during training and
inference. The model reads gk(t) number of source
tokens from the source sentence x = (x1, ..., xm)
when generating the target token yt, where gk(t) is
defined as:

gk(t) = min{|x|, t+ k − 1} (3)

Instead of training the model for a specific wait-k
value, Elbayad et al. (2020) introduced the multi-
path training, which samples k uniformly from
[1, ..., |x|] for each batch during training. This en-
ables the model to support multiple wait-k values
and allows for information sharing between dif-
ferent wait-k paths. While it was shown that the
multi-path training improves the results over the
wait-k policy, it does not offer a solution to balance
between parameter sharing and interference that
we aim at solving by introducing adapters.

4 Method

Our method is composed of two steps: first we train
a single model that can support multiple fixed wait-
k values by using wait-k adapters, then we rely on
the probability that the model assigns to the most
likely token in order to build an adaptive strategy,
where we decide a READ or WRITE action based
on a predefined probability threshold.

4.1 Multi-path Training with Adapters
Multi-path training is highly advantageous as an
efficient alternative to the wait-k policy, where we
need to train multiple models to support more than
one latency at inference, but might introduce in-
terference between wait-k paths due to parameter
sharing. In order to provide the ability to balance
between parameter sharing and interference, we
introduce adapters into each decoder layer and we
activate adapters according to the wait-k paths they
are meant to support. Figure 1 shows an illustra-
tion of this. During training, the wait-k value for
each batch is sampled uniformly from [1, ..., |x|]
following the multi-path training (Elbayad et al.,
2020) and based on that, the model decides which
adapter will be activated. We set the adapter lag-
ging KA as a list of equally spaced positive inte-
gers in increasing order, where each integer speci-
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fies the minimum wait-k value supported by each
adapter. We insert one adapter for each value in
KA. Since the train wait-k is randomly sampled
from [1, . . . , |x|], we train each adapter on values
starting from its minimum wait-k up until the mini-
mum wait-k of the next adapter. For example, we
can set KA = {1, 5, 9, 13} and this will indicate
adding 4 adapters, where each adapter will handle
4 wait-k values (starting from each integer in KA

until the next), except the fourth adapter (kA = 13),
which will handle values starting from 13 up until
the length of the input sequence |x|. We follow
Bapna and Firat (2019) implementation and insert
the residual adapter modules after the feed-forward
layer. Algorithm 1 shows the pseudo-code for com-
puting the decoder hidden states at decoding step t
using Adapters Wait-k, where H0 is considered to
be the input embeddings of the decoder, and gk(t)
is computed based on equation 3.

Algorithm 1 Adapters Wait-k Policy

Input: Encoder output Z, Decoder hidden states
Ht, Adapter lagging KA, Test lagging ktest

Output: Hidden states HL
t

if is_training then
k ← Sample from [1, . . . , |Z|]

else
k ← ktest

end if
for kA in KA do

if k ≥ kA then
Al = Al

kA
for l ∈ [1, . . . , L]

end if
end for
for l← 1 to L do

H l
t = Decoderl(H l−1

t , Z≤gk(t))

H l
t = Al(H l

t) +H l
t

end for
Return HL

t

4.2 Adaptive Adapters

We follow Zheng et al. (2020) to build an adap-
tive strategy by using adapters instead of different
models for each wait-k value, which can be com-
putationally expensive and less efficient. At each
decoding step, we activate one adapter based on the
lagging behind the current generation step, which
is calculated as k = |x| − |y|, where |x| is the
number of input tokens and |y| is the number of
generated tokens. At the beginning of generation,

|x| = 1 and |y| = 0, which means k starts from 1.
Then, we rely on the probability of the most likely
token to decide whether to write or read a new to-
ken. If the probability is less than a threshold ρk,
we read a new token, otherwise, we write. The pos-
sible values of k are between kmin and kmax that
we determine during inference. If k is lower than
kmin, we force the model to read, if it is higher or
equal to kmax, we force the model to write, which
means that the choice of kmin and kmax also im-
pacts the trade-off between latency and quality (as
we analyze in Section 6.1). When the whole input
sequence is consumed (i.e. x|x| = </s>), we set k
to kmax and generate the rest of the target sequence.
Algorithm 2 shows the pseudo-code of this method
using adapters.

Algorithm 2 Uncertainty based Adaptive Policy

Input: Two integers kmin and kmax and a sequence
of thresholds ρk for kmin ≤ k ≤ kmax.

Output: Predicted sequence y
while x|x| ̸= </s> and y|y| ̸= </s> do

k ← |x| − |y|
if k < kmin then

x← x ◦ READ() ▷ READ action
else

ytop, ptop ← Pk(M,Ak, x, y)
if k < kmax and ptop < ρk then

x← x ◦ READ() ▷ READ action
else

y ← y ◦ ytop ▷ WRITE action
end if

end if
end while
while y|y| ̸= </s> do

ytop, ptop ← Pkmax(M,Akmax , x, y)
y ← y ◦ ytop ▷ WRITE action

end while
return y

5 Experiments

In this section, we describe the datasets we used to
evaluate the models and the baselines that we com-
pare against along with the evaluation setup. We
also provide the main results of our experiments.

5.1 Datasets

We evaluate our method on two public datasets: the
En-Vi dataset for Transformer-Small and De-En
for both Transformer-Base and Transformer-Big.
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Figure 1: Transformer Decoder with Adapters Wait-k, we illustrate an example where 8 adapters are inserted with
KA = {1, 3, 5, 7, 9, 11, 13, 15}, the generation step is t = 0, and A3 is activated because k = 3.

IWSLT152 English → Vietnamese (133K
pairs) (Cettolo et al., 2015). We follow the set-
tings of Raffel et al. (2017) and Ma et al. (2020).
We use TED tst2012 (1553 pairs) as the validation
set and TED tst2013 (1268 pairs) as the test set.
We replace tokens with frequency less than 5 with
< unk >. The final vocabulary sizes are 17K and
7.7K for English and Vietnamese respectively.

WMT153 German→ English (4.5M pairs) We
follow the settings of Ma et al. (2019). We use
newstest2013 (3000 pairs) as the validation set and
newstest2015 (2169 pairs) as the test set. We apply
BPE (Sennrich et al., 2016) with 32K merge opera-
tions jointly on the source and target to construct a
shared vocabulary.

5.2 System Settings
We conduct experiments on the following systems:

Full Sentence: (Vaswani et al., 2017) Standard
Transformer model that takes the full sentence as
input before starting to translate.

Wait-k: (Ma et al., 2019) A simple policy that
waits for k source tokens before starting to alternate
between writing a target token and reading a source
token.

Multi-path Wait-k: (Elbayad et al., 2020)
Trains a model to support multiple wait-k policies
by randomly sampling k during training, then the
k value is fixed during inference.

Adaptive Wait-k: (Zheng et al., 2020) It is a
method for composing multiple wait-k models dur-
ing inference in order to build an adaptive strategy.
The model is selected based on the lagging behind
the generation step, and the decision to write or
read is based on the output probabilities.

2nlp.stanford.edu/projects/nmt/
3www.statmt.org/wmt15/

MoE Wait-k: (Zhang and Feng, 2021) Mixture-
of-Experts Wait-k is similar to Multipath Wait-k
but applies experts to learn different wait-k policies
to avoid interference.

MMA: (Ma et al., 2020) Monotonic multi-head
attention (MMA) jointly learns a Bernoulli variable
that is used to decide READ/WRITE action.

Adapters Wait-k: Our method as described in
Section 4.1.

Adaptive Adapters: Our method as described
in Section 4.2.

All implementations are based on the original
Transformer architecture (Vaswani et al., 2017) and
are using the Fairseq library (Ott et al., 2019). We
apply Transformer-Small (4 heads) for En-Vi and
both Transformer-Base (8 heads) and Transformer-
Big (16 heads) for De-En. The encoder is made
unidirectional to avoid encoding the source input
each time a new token is added.

The evaluation is performed using BLEU (Pap-
ineni et al., 2002) for translation quality and Av-
erage Lagging (AL)4 (Ma et al., 2019) for latency.
AL measures by how many tokens the system is
lagging behind an ideal policy (a wait-k policy with
k = 0). Given g(t), AL is computed as:

ALg(x, y) =
1

τg(|x|)

τg(|x|)∑

t=1

g(t)− (t− 1)

|y|/|x| (4)

where x and y are the source and target sentences
respectively, while τg(|x|) = min{t | g(t) = |x|}
is the decoding step where the source sentence
finishes.

We set the adapter lagging to KA =
{1, 3, 5, 7, 9, 11, 13, 15} for our experiments,

4github.com/SimulTrans-demo/STACL
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which means that 8 adapters are inserted into the
model and we specify the adapter bottleneck size as
64. In Table 1, we report the number of parameters
of each method and the number of models required
to achieve the latency levels reported in the results
section. Adapters Wait-k policy introduces 79.94M
parameters into Transformer-Big, but still has the
advantage of using one model to support multiple
latency levels. In Section 6.3, we experiment with
other settings of KA in order to shed light on how
much sharing is best between wait-k values during
the multi-path training.

Model #Parameters #Models
Full Sentence 209.91M 1
Wait-k 209.91M 5
Adaptive Wait-k 209.91M 13
Multipath 209.91M 1
MMA 222.51M 7
MoE Wait-k 209.91M 1
Adapters Wait-k 289.85M 1
Adaptive Adapters 289.85M 1

Table 1: The number of parameters of the models for
Transformer-Big on De-En along with the number of
models required to achieve different latency levels.

The adaptive strategy requires three parameters
to be specified at inference, namely, kmin, kmax,
and the probability threshold ρk. For En-Vi ex-
periments, kmin and kmax are set to 1 and 9 re-
spectively, while for De-En, we lower kmax to
5, which we have found to improve the results
in low latency. We analyze this effect in Sec-
tion 6.1. ρk decreases as a function of the lag-
ging k, since we want the model to be more ag-
gressive when k is low and more conservative
when k is high. We set ρkmin

and ρkmax and com-
pute the threshold as: ρk = ρkmin

− d.(k − 1),
where kmin ≤ k ≤ kmax and d = (ρkmin

−
ρkmax)/(kmax − kmin). In order to vary the la-
tency, we test the following values of ρkmin

and
ρkmax : ρkmin

∈ {0.2, 0.4, 0.6, 0.8, 1.}, ρkmax = 0.,
and ρkmin

= 1., ρkmax ∈ {0.2, 0.4, 0.6, 0.8}.

5.3 Main Results
In Figure 2, we compare our methods to previous
adaptive and fixed strategies on two language di-
rections. We find that our method improves or
competes with other strategies while using a sin-
gle model. MMA, Wait-k, and Adaptive Wait-k
require the training of multiple models in order to
support different latency levels (as seen in Table

1), while our method is more efficient in this re-
gard. Adapters Wait-k is competitive with other
strong fixed strategies like MoE Wait-k and Multi-
path Wait-k and it brings further improvements to
combine it with the adaptive strategy.

Our method does not support higher latency on
De-En because we are using a kmax value of 5 (as
seen in Figures 2b and 2c), which we have found to
improve results for low latency. However, we show
the results for higher kmax and compare them with
Adaptive Wait-k on De-En in Section 6.1.

Using adapters alone is competitive with other
methods, especially on En-Vi (as seen as in Fig-
ure 2a). Compared to Multi-path Wait-k, our
method achieves better results on most latency
levels, which shows the importance of minimiz-
ing interference between different lagging values.
Combining our method with an adaptive strategy
further improves the results, especially in low la-
tency. In comparison to Adaptive Wait-k, where
wait-k policy models are trained and composed dur-
ing inference, we find that our method is better in
all latency levels while being more efficient.

Compared to MoE Wait-k, which also aims at
minimizing interference introduced by multi-path
training (Zhang and Feng, 2021), we find that our
method is better in all latency levels on En-Vi and
De-En with Transformer-Big (as seen in Figures 2a
and 2c), while achieving competitive results when
using Transformer-Base (as seen in Figure 2b). Our
method is more flexible in terms of balancing the
trade-off between parameter sharing and interfer-
ence, as we can choose the number of wait-k values
supported by each adapter and we can also manip-
ulate the capacity of the adapters by adjusting the
bottleneck size. This can bring further improve-
ments but requires more experimentation to find
the appropriate hyperparameters.

6 Analysis

In this section, we look into how the performance
changes in response to varying the value of kmax,
then we provide a wall-clock time comparison
between Adapters Wait-k and Multi-path Wait-k.
Moreover, we experiment with how balancing be-
tween parameter sharing and interference by adjust-
ing the adapter lagging impacts the performance,
and also experiment with varying the bottleneck
size in order to discern the impact of the complexity
of the adapters. At last, we analyze the L2-norm
of the adapter representations to discover which
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a En-Vi, Transformer-Small b De-En, Transformer-Base c De-En, Transformer-Big

Figure 2: Translation quality (BLEU) against latency (AL) of our methods (Adaptive Adapters, Adapters Wait-k)
and previous adaptive (MMA, Adaptive Wait-k) and fixed (Wait-k, MoE Wait-k, Multi-path Wait-k) strategies on
En-Vi and De-En.

adapter layers are involved in the prediction.

6.1 Ablation
We found that lowering the value of kmax for the
adaptive strategy improves the results in low la-
tency, which we believe is the priority in SiMT,
but a lower kmax value also limits the ability of
supporting high latency. In Figure 3, we show that
by increasing the value of kmax we can support
high latency and get better quality translations. We
compare to Adaptive Wait-k and show that we still
achieve better results for all the values of kmax. A
lower kmax forces the model to be more aggres-
sive, which in some cases can improve the results
in lower latency. The fact that forcing the model
to be more aggressive improves the performance
signifies that the adaptive strategy decides to wait
in cases where the model is able to make a correct
prediction, which suggests that the adaptive strat-
egy based on the probability threshold can still be
improved by a better strategy.

Figure 3: Results of increasing the value of kmax on
De-En. Lower kmax values achieve better BLEU score
in low latency, but it is necessary to increase the value
of kmax in order to support high latency.

6.2 Inference Time

Figure 4: Wall-clock time comparison between
Adapters Wait-k and Multi-path Wait-k averaged over 5
runs on En-De.

Although our method has more parameters than the
baseline Multi-path Wait-k due to the additional
adapters, the effect on the inference time is not pro-
portional to the number of adapters because only
one adapter is activated at a time. To illustrate this,
we compare the wall-clock inference time (aver-
aged over 5 runs) of Adapters Wait-k and Multi-
path Wait-k in Figure 4. It seems that adapters
are faster in low k values which could be due to
over generation by the Multi-path model (where the
model generates longer sequences than it should),
while starting from a k value of 7, Multi-path Wait-
k is better and the difference fluctuates between
0.29s and 0.66s.

6.3 Adapter Lagging

The adapter lagging KA specifies the number of
wait-k values that one single adapter will support
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Figure 5: Results of varying the window sizes of the
adapter lagging between 1 and 5 on En-Vi.

and also the number of adapters that we will use.
We vary the adapter lagging window between 1
and 5, while maintaining the range between 1 and
16. The results are shown in Figure 5. The wait-k
values supported by an adapter controls the amount
of sharing and interference between the values.
For example, for KA = {1, 5, 9, 13}, adapter A1

will be trained on k ∈ {1, 2, 3, 4}. We note that
although it has more parameters, a window of 1
achieves the worst results, which signifies that pa-
rameter sharing between wait-k values is crucial.
Adapter lagging with window 4 and 5 are com-
petitive especially in low latency, which indicates
that lower wait-k values benefit more from sharing.
This is consistent with the fact that wait-k models
achieve better results when tested on lower wait-k
values (Zhang and Feng, 2021).

6.4 Adapter Bottleneck

The adapter’s bottleneck size can be used to tune
the representation capacity of the adapters and can
be interesting to tune depending on the language
pair and the adapter lagging. In Figure 6, we ex-
periment with doubling the adapter’s bottleneck
size from 8 to 128, which can be regarded as in-
creasing the representation capacity of the adapter
network. We found that the bottleneck size impacts
the performance but not in a consistent way - as
in larger size results in better performance - but it
seems to interact with other hyperparameters (e.g.
adapter lagging) to improve or hinder the perfor-
mance, especially in high latency, where the gap in
performance is larger.

Figure 6: Results of doubling the bottleneck size of the
adapters on En-Vi.

6.5 Adapter Representation Norm

Figure 7: Confusion matrix of the average norm of the
adapter representations in each layer of the decoder by
the values of ρkmin and ρkmax on En-Vi.

We compute the L2-norm of the adapter represen-
tations in order to discover which adapter layers
are involved in the representations (Liu et al., 2020;
Zhu et al., 2021). We measure the L2-norm during
inference for kmin = 1 and kmax = 9 while vary-
ing the value of ρkmin

and ρkmax , as described in
Section 5.2. As depicted in Figure 7, the norm for
all layers except layer 6 decreases as we increase
ρkmin

or ρkmax , which correlates with making the
adaptive strategy more conservative because the
threshold for making a write action is higher. This
shows that the adapters are more involved in the
prediction when the model is forced to be more ag-
gressive. Only layer 6 is stably invested in adapting
the model representations at all the threshold val-
ues, which seems to indicate that only low thresh-
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old predictions are complex enough to recruit all
the adapter layers. Based on this observation, we
experiment with inserting adapters only in the last
layer (i.e. layer 6). We show in Figure 8 the re-
sults of comparing between inserting adapters in
all layers and inserting the adapters only in the last
layer, where we see a drop in performance only in
lower latency levels. This shows that we can make
the model more efficient by removing lower layer
adapters with a small drop in performance.

Figure 8: Comparison of the results of inserting adapters
in all layers vs. only the last layer on En-Vi. We witness
a drop in performance only in low latency levels.

7 Conclusion

In this paper, we employ adapters to build a SiMT
model that can support multiple latency levels at
inference. We use the multi-path training and show
that by adding wait-k adapters we can flexibly bal-
ance parameter sharing and interference between
the wait-k paths. Furthermore, we adopt a simple
adaptive strategy and show that it further improves
the results. By comparing against strong adap-
tive and fixed strategies, we find that our method
achieves better or competitive results on most la-
tency levels.

8 Limitations

The two datasets we used are common in SiMT re-
search and were selected to compare against other
baselines, but evaluating on only two language di-
rections can be a limiting factor for the generaliza-
tion of our results. Although Vietnamese is from a
different language family, it deploys a similar word
order (i.e. Subject-Verb-Object) to English and
German and we believe that more challenges might
emerge when dealing with language directions with
a different word order. Additionally, we evaluate
latency using common SiMT latency metrics such

as AL, which are sentence-level and do not reflect
the nature of a streaming scenario (Iranzo-Sánchez
et al., 2021). Furthermore, in this work, we only
evaluated on offline data, while evaluating on real
interpretation data might offer more realistic results
(Zhao et al., 2021).
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A Hyperparameters

We list the hyperparameters of our experiments in
Table 2.

B Numeric Results

In Tables 3, 4 and 5, we report the numeric results
of our methods. We report the BLEU score for
quality, while for latency we used Average Lagging
(AL), Consecutive Wait (CW) (Gu et al., 2017), Av-
erage Proportion (AP) (Cho and Esipova, 2016) and
Differentiable Average Lagging (DAL) (Arivazha-
gan et al., 2019). Below we provide the definition
of CW, AP and DAL. g(i) constitutes the number
of tokens read when predicting yi, while |x| and
|y| refer to the number of source and target tokens
respectively.

Consecutive Wait (CW) Computes the average
number of consecutive tokens read between two
predicted tokens.

CW =

∑|y|
i=1(g(i)− g(i− 1))
∑|y|

i=1 Ig(i)−g(i−1)>0

(5)

Average Proportion (AP) Computes the propor-
tion of tokens read to make every prediction.

AP =
1

|x||y|

|y|∑

i=1

g(i) (6)

Differentiable Average Lagging (DAL) Is a dif-
ferentiable version of the Average Lagging metric.

g′(i) =

{
g(i) if i = 1

max
(
g(i), g′(i− 1) + |x|

|y|

)
if i > 1

(7)

DAL =
1

|y|

|y|∑

i=1

g′(i)− i− 1

|x|/|y| (8)
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Hyperparameter IWSLT15 En→Vi WMT15 De→En (Base) WMT15 De→En (Big)

Encoder layers 6 6 6
Encoder attention heads 4 8 16
Encoder embed dim 512 512 1024
Encoder FFN embed dim 1024 2048 4096
Decoder layers 6 6 6
Decoder attention heads 4 8 16
Decoder embed dim 512 512 1024
Decoder FFN embed dim 1024 2048 4096
Dropout 0.3 0.3 0.3
Optimizer Adam Adam Adam
Adam-β (0.9, 0.98) (0.9, 0.98) (0.9, 0.98)
Clip-norm 0. 0. 0.
Learning rate (lr) 5e-4 5e-4 5e-4
LR scheduler inverse sqrt inverse sqrt inverse sqrt
Warm-up updates 4000 4000 4000
Warm-up init LR 1e-7 1e-7 1e-7
Weight decay 1e-4 1e-4 1e-4
Label smoothing 0.1 0.1 0.1
Max tokens 16000 8192×4 4096×4×2

Table 2: System Hyperparameters

IWSLT15 English→Vietnamese Transformer-Small
K CW AP DAL AL BLEU

Adapters Wait-k

1 1.16 0.59 3.32 2.25 25.68
2 1.17 0.64 4.13 3.30 27.13
3 1.22 0.68 4.91 4.21 27.75
5 1.44 0.75 6.63 6.01 28.63
7 1.87 0.81 8.36 7.74 29.15
9 2.56 0.85 10.05 9.45 29.20

(ρkmin
, ρkmax) CW AP DAL AL BLEU

Adaptive Adapters

(0.2, 0.0) 1.37 0.60 3.89 2.52 26.12
(0.4, 0.0) 1.73 0.63 5.04 3.13 27.24
(0.6, 0.0) 2.19 0.67 6.14 3.92 28.09
(0.8, 0.0) 2.66 0.71 6.95 4.80 28.62
(1.0, 0.0) 2.71 0.74 7.58 5.65 29.00
(1.0, 0.2) 3.08 0.76 8.40 6.36 29.08
(1.0, 0.4) 3.33 0.79 9.10 7.20 29.10
(1.0, 0.6) 3.34 0.82 9.55 8.01 29.18
(1.0, 0.8) 3.11 0.84 9.87 8.78 29.19

Table 3: Numerical results for En-Vi with Transformer-Small.
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WMT15 German→English Transformer-Base
K CW AP DAL AL BLEU

Adapters Wait-k

1 1.15 0.52 1.79 0.36 20.72
2 1.19 0.55 2.49 1.00 23.37
3 1.21 0.59 3.32 2.03 25.73
5 1.37 0.66 5.19 3.85 27.71
7 1.69 0.73 7.11 5.86 29.17
9 2.16 0.78 8.98 7.76 30.05
11 2.77 0.82 10.78 9.65 30.45
13 3.52 0.85 12.49 11.46 30.90
15 4.43 0.88 14.10 13.17 31.01

(ρkmin
, ρkmax) CW AP DAL AL BLEU

Adaptive Adapters

(0.2, 0.0) 1.52 0.52 2.61 0.12 21.42
(0.4, 0.0) 1.78 0.53 3.19 0.45 22.83
(0.6, 0.0) 1.95 0.55 3.68 1.03 24.30
(0.8, 0.0) 2.05 0.57 4.04 1.39 25.09
(1.0, 0.0) 1.91 0.59 4.31 1.90 26.00
(1.0, 0.2) 2.02 0.60 4.66 2.23 26.34
(1.0, 0.4) 2.03 0.62 4.90 2.60 26.89
(1.0, 0.6) 1.94 0.63 5.06 3.03 27.41
(1.0, 0.8) 1.74 0.65 5.16 3.41 27.62

Table 4: Numerical results for De-En with Transformer-Base.

WMT15 German→English Transformer-Big
K CW AP DAL AL BLEU

Adapters Wait-k

1 1.18 0.52 1.84 0.31 21.37
2 1.19 0.55 2.55 1.09 24.53
3 1.22 0.59 3.40 2.06 26.70
5 1.38 0.66 5.24 3.88 28.98
7 1.68 0.73 7.15 5.93 30.70
9 2.16 0.78 9.02 7.85 31.50
11 2.77 0.82 10.82 9.73 32.21
13 3.52 0.85 12.52 11.50 32.31
15 4.44 0.88 14.12 13.16 32.44

(ρkmin
, ρkmax) CW AP DAL AL BLEU

Adaptive Adapters

(0.2, 0.0) 1.50 0.52 2.56 0.18 22.30
(0.4, 0.0) 1.78 0.53 3.11 0.44 23.30
(0.6, 0.0) 1.99 0.55 3.60 0.79 24.79
(0.8, 0.0) 2.08 0.57 4.02 1.31 26.18
(1.0, 0.0) 1.94 0.59 4.29 1.82 27.05
(1.0, 0.2) 2.03 0.60 4.66 2.22 27.60
(1.0, 0.4) 2.06 0.62 4.92 2.58 28.05
(1.0, 0.6) 1.99 0.63 5.09 2.94 28.52
(1.0, 0.8) 1.77 0.65 5.20 3.41 28.85

Table 5: Numerical results for De-En with Transformer-Big.

358



Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024), pages 359–364
August 15-16, 2024 c©2024 Association for Computational Linguistics

IWSLT 2024 Indic Track system description paper: Speech-to-Text
Translation from English to multiple Low-Resource Indian Languages

Deepanjali Singh, Ayush Anand, Abhyuday Chaturvedi and Niyati Baliyan*
Department of Computer Engineering

National Institute of Technology Kurukshetra
Haryana, India, 136118

*niyatibaliyan@nitkkr.ac.in

Abstract

Multi-Language Speech-to-Text Translation
(ST) plays a pivotal role in bridging linguis-
tic barriers by converting spoken language into
written text across different languages. This
project aims to develop a robust ST model tai-
lored for low-resource Indian languages, specif-
ically targeting the Indo-Aryan and Dravidian
language families. The dataset used consists
of speeches from conferences and TED Talks,
along with their corresponding transcriptions
in English (source language) and translations
in Hindi, Bengali, and Tamil (target languages).
By tackling the lack of data and disparities in
attention within low-resource languages, the
paper strives to create an efficient ST system
capable of real-world deployment. Addition-
ally, existing resources in related languages are
leveraged and word-level translation resources
are explored to enhance translation accuracy.

1 Introduction

Multi-Language Speech-to-Text Translation (ST)
is indispensable for facilitating communication
across diverse linguistic contexts. While recent ad-
vancements have shown remarkable progress, many
dialects and low-resource languages still lack suffi-
cient parallel data for effective supervised learning.
Creative approaches are essential to overcome this
challenge, such as leveraging resources from re-
lated languages or utilizing word-level translation
resources and raw audio. This work aims to address
these gaps by developing an End-to-End (E2E) or
Cascaded ST model for low-resource Indian lan-
guages, including Hindi, Bengali, and Tamil.

2 Motivation

The scarcity of translators proficient in multiple lan-
guages, especially in low-resource settings, high-
lights the urgent need for ST systems supporting
multiple languages. In regions like India, character-
ized by a multitude of languages, the development

of dedicated models for Indian languages is essen-
tial for effective communication. This task aims
to advance ST technology for a wide range of lan-
guages. Our ultimate goal is to foster inclusively
and accessibility through the creation of robust ST
models. This research work is fueled by a strong
commitment to address significant challenges in
speech translation, with a particular focus on lan-
guages spoken in India. In modern interconnected
society, the capacity to communicate across vari-
ous languages is crucial. However, the shortage of
translators who can handle multiple languages in
resource-constrained areas, presents a major obsta-
cle.

3 Related Work

Prior research in ST has primarily focused on high-
resource languages, leaving many dialects and low-
resource languages underserved. The lack of paral-
lel data poses a significant challenge in training su-
pervised learning models for these languages. How-
ever, recent efforts have demonstrated the effective-
ness of leveraging existing resources from related
languages and employing innovative approaches to
enhance translation accuracy[5]. The 20th Interna-
tional Conference on Spoken Language Translation
(IWSLT) organized shared tasks targeting nine sci-
entific challenges in spoken language translation
(SLT). These tasks covered a wide spectrum. This
encompasses simultaneous and offline translation,
automatic subtitling and dubbing, speech-to-speech
translation, multilingual translation, translation of
dialects and low-resource languages, and formality
control. The conference witnessed substantial in-
terest with a total of 38 submissions from 31 teams,
evenly distributed between academia and industry
[1]. The focal point of the 2023 IWSLT Evaluation
Campaign was offline SLT, which involved trans-
lating audio speech from one language to text in
another language without time constraints. It com-
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prised three sub-tasks for translating English into
German, Japanese, and Chinese. Participants were
given the flexibility to utilize either cascade archi-
tectures, which combine automatic speech recog-
nition (ASR) and machine translation (MT) sys-
tems, or E2E approaches that directly translate in-
put speech [1]. Principal objectives were twofold:
firstly, to gauge the performance disparity between
cascade and end-to-end systems, and secondly, to
evaluate SLT technology’s competence in handling
intricate scenarios like simultaneous overlapping
or concurrent speakers. The introduction of new
test sets, encompassing ACL presentations and
press conferences/interviews, aimed at a compre-
hensive assessment of system efficacy [1]. Train-
ing data conditions spanned from constrained to
unconstrained, offering varying levels of access to
training resources. Development data encompassed
TED talks, ACL presentations, and interviews from
the European Parliament Multimedia Centre. Sys-
tem evaluations were conducted employing BLEU
and COMET metrics, supplemented by human as-
sessment of the top-performing entries [4]. Ten
teams partook in the offline task, collectively sub-
mitting 37 runs. A plethora of techniques were
employed across these submissions, including cas-
cade and direct models, leveraging large language
models, multimodal representations, data augmen-
tation, ensemble methods, and advanced training
strategies. Evaluation criteria emphasized the at-
tainment of high translation quality across diverse
language pairs and challenging scenarios [1].

4 System Overview

4.1 Key Components of the App

4.1.1 Audio Processor and Transcription
Module

• Responsible for cleaning audio file

• Uses ResembleAI for Noise reduction, Restor-
ing distortion, enhancing speech bandwidth

• Uses OpenAI’s Whisper 1 model for transcrip-
tion [3].

4.1.2 Input Module
• Responsible for receiving audio files

• Validates and preprocesses the input data for
further processing.

1https://openai.com/index/whisper/

4.1.3 Translation Module - English to Hindi
• Integrates the Helsinki model for achieving

translation of the transcribed text

• Fine tuning of pretrained translator model to
enhance the result quality [2].

4.1.4 Translation Module - English to Tamil
• Integrates Facebook’s mBART model for

achieving translation of the transcribed text

• Fine tuning of pretrained translator model to
enhance the result quality [2].

4.1.5 Translation Module - English to Bengali
• Integrates Facebook’s mBART model for

achieving translation of the transcribed text

• Fine tuning of pretrained translator model to
enhance the result quality [2].

4.1.6 Output Module
• Performs syntax correction and eliminates any

detectable hallucination by the model

• Delivers the translated text to users in their
desired format, such as text files

4.2 SacreBLEU scores
Table 1 contains self assessment SacreBLEU scores
of different model tested. Models selected are:
Whisper and Helsenki [3] for English-to-Hindi.
Whisper and mBART for English-to-Tamil
Whisper and mBART for English-to-Bengali

4.3 Implementation Pillars
4.3.1 translate.py

• It imports various functions from different
modules to perform tasks like transcribing au-
dio, translating text, breaking lines, saving
files, and post-processing text.

• It sets up the starting time to measure how
long the code takes to execute.

Language Pair Model Used Score
en-hi whisper/helsenki 24.21
en-bn whisper/helsenki 14.18
en-bn whisper/mBART 16.18
en-ta whisper/helsenki 7.1
en-ta whisper/mBART 10.79

Table 1: SacreBLEU Scores
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Figure 1: (a):English-to-Hindi by Helsenki (b):English-to-Tamil/Bengali by mBART

• It transcribes audio files present in the spec-
ified folder in English text, optionally based
on a YAML file that specifies line changes.

• It translates the transcribed English text into
Hindi and saves it.

• It translates the transcribed English text into
Tamil and Bengali using Facebook’s mBART
translation service, then saves them.

• Finally, it prints the time it takes for execution.

4.3.2 transcriber.py
• It imports necessary libraries/modules such

as os, yaml, pydub, logging, and a pipeline
from the transformers library.

• It sets the logging level for the transformers
library to ERROR to suppress unnecessary out-
put, except for any errors.

• It defines a function
transcribe_audio(filePath) that takes
the path of an audio file, uses the OpenAI
Whisper model via the Hugging Face Trans-
formers library to transcribe the audio, and
returns the transcribed text [3].

• It defines another function
transcriber(audios_dir,
yaml_file_path) that takes the direc-
tory containing audio files and the path to
a YAML file as inputs. This function loads
audio segments from the YAML file, iterates
through audio files in the specified directory,
extracts segments based on the information
in the YAML file, transcribes each segment
using the transcribe_audio function, and
returns a list of transcribed texts.

• Enables selective use of YAML-based chunks
to force line changes in the result.

4.3.3 translator.py
• Figure 1(a) shows English-to-Tamil trans-

lation workflow of translator.py mod-
ule, it imports necessary functions from the
transformers library to utilize pretrained
translation models.

• It defines a function called translatorModel,
which takes two arguments: lines, represent-
ing the text to be translated, and target, indi-
cating the target language for translation.

• Inside the function, it loads a pretrained trans-
lation model and tokenizer specific to the tar-
get language using the Helsinki-NLP library.

• It iterates through each line in the input lines.

• For each non-empty line, it tokenizes the text
using the tokenizer, prepares the input for the
model, generates the translation, and decodes
the translated output.

• It appends the translated text to a result array.

• It returns an array of translated text lines.

4.3.4 fbtranslate.py
• Figure 1(b) shows English-to-Tamil and

English-to-Bengali translation workflow of
fbtranslate.py module ,it defines a func-
tion called fbtranslate(lines), which
takes a list of input text lines as its argument.

• Inside the function, it initializes a trans-
lation pipeline using the pipeline func-
tion. This pipeline is configured to use the
model named "facebook/mbart-large-50
-many-to-many-mmt" for translation tasks.
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• It initializes an empty list named result to
store the translated text lines.

• It iterates through each line in the input lines.

• For each non-empty line, it translates the text
from English (source language: "en_XX") to
Tamil (target language: "ta_IN") using the
translation pipeline.

• It extracts the translated text from the output
of the translation pipeline and appends it to
the result list.

• Finally, it returns the list containing the trans-
lated text lines.

4.4 Fine Tuning Logic Overview

4.4.1 Importing Libraries
We import necessary libraries in-
cluding Dataset, DatasetDict,
AutoTokenizer, AutoModelForSeq2SeqLM,
DataCollatorForSeq2Seq,
Seq2SeqTrainingArguments, Seq2SeqTrainer,
and load_metric.

4.4.2 Loading Metric
We load the SacreBLEU metric for evaluating trans-
lation quality.

4.4.3 Model Checkpoint and File Paths
• The pretrained model checkpoint
"Helsinki-NLP/opus-mt-en-hi" is
specified.

• Paths for English (train.en) and Hindi
(train.hi) training data files are defined.

4.4.4 Reading Data
English and Hindi sentences are read from their
respective files.

4.4.5 Creating Dataset
• The English and Hindi sentence pairs are or-

ganized into a dictionary format.

• A Dataset object is created from this dictio-
nary.

4.4.6 Creating DatasetDict
A DatasetDict object is created containing the
train dataset.

4.4.7 Initializing Tokenizer
The tokenizer is instantiated using the specified
model checkpoint.

4.4.8 Defining Preprocessing Function
• A function preprocess_function is defined

to prepare input data for training.

• Inputs and targets are tokenized, and input IDs
and labels are generated.

4.4.9 Mapping Preprocessing Function
The preprocess_function is applied to the train
dataset using the map function.

4.4.10 Model Initialization
The pretrained model for sequence-to-sequence
learning is instantiated.

4.4.11 Defining Training Arguments
• Evaluation strategy, learning rate,

batch size, etc., are defined using
Seq2SeqTrainingArguments.

• A data aggregator is developed for sequence-
to-sequence assignments.

4.4.12 Defining Post-processing Function
A post-processing function for predictions and com-
puting metrics is defined.

4.4.13 Training Configuration
A Seq2SeqTrainer is initialized with the model,
training arguments, datasets, data collator, tok-
enizer, and compute metrics function.

4.4.14 Training Loop
The train method of the trainer object is called to
initiate training.

4.4.15 Saving the Model
After successful execution of above logic, we have
a fine-tuned model saved as a .safetensors file.

5 Workflow

Figure 2 shows basic workflow of the application.
At first, there is Input Processing, where users up-
load audio files or provide input through supported
channels. This serves as the gateway for input
data, ensuring its integrity and validity. The Input
Module undertakes the crucial task of verifying
and preprocessing the audio data, preparing it for
subsequent processing stages by addressing any
inconsistencies.
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Figure 2: Basic flow of SpeechSync System

Next, Transcription and Translation enable trans-
formation of audio content into translated text. The
Transcription Module uses advanced algorithms to
convert audio files into text, maintaining high ac-
curacy and reliability. Meanwhile, the Translation
Module leverages Helsinki model to translate tran-
scribed text into specific languages, ensuring lin-
guistic precision and preserving contextual nuances
to facilitate communication across languages.

Once the transcription and translation processes
are complete, the Output Delivery stage takes over,
presenting the translated text to users through the
Output Module. This enables seamless access and
utilization of the translated content, offering users
the flexibility to download the text or integrate it
directly into their workflows. By providing a user-
friendly interface and facilitating easy dissemina-
tion of translated content, the application empowers
users to overcome language barriers and engage in
effective cross-cultural communication.

5.1 Environment Settings

5.1.1 Prerequisites
• Python 3.11

• ffmpeg (command-line tool)

5.1.2 Installing ffmpeg
• Ubuntu: sudo apt update && sudo apt
install ffmpeg

• MacOS: brew install ffmpeg

• Windows: choco install ffmpeg

5.1.3 App Installation
1. Clone the repository2

git clone git@github.com:
ayushannand/SpeechSync.git

2. Create a virtual environment

python3 -m venv env

3. Activate the virtual environment

source env/bin/activate

5.1.4 Install Rust
curl --proto '=https' --tlsv1.2
-sSf https://sh.rustup.rs | sh

6 Baseline vs. Results

The baseline SacreBLEU scores is provided by IN-
DIC Track. For each language pair we have a dif-
ferent baselines.

6.0.1 English-to-Hindi
For language pair en-hi baseline is 5.23 and we
get a score of 24.

6.0.2 English-to-Bengali
For language pair en-bn baseline is 5.86 and we
get a score of 16.

2https://github.com/ayushannand/SpeechSync
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6.0.3 English-to-Tamil
For language pair en-ta baseline is 1.9 and we get
a score of 10.

7 Limitations

While we acknowledge the significant challenges
ahead, such as the shortage of multilingual individ-
uals and insufficient data for certain languages, we
are determined to find innovative solutions. Our
input module currently supports only one language,
so if the audio file contains multiple languages, the
application ignores languages other than primary
language. Currently, the other limitation is the time
taken by the models to produce output. We may
try out various optimisations and configurations to
achieve faster results. For language pair - English
to Bengali, we are barely crossing the baseline,
so our primary goal is to achieve better score for
Bengali language.

8 Conclusion

In summary, our key contributions lie in rigor-
ous experimentation conducted to identify effec-
tive models for speech translation. We perform
extensive preprocessing of data performed to en-
sure quality and suitability for training. The pro-
posed solution establishes a robust pipeline includ-
ing code development and workflow setup. The
training and experimentation is focused on one lan-
guage for an in-depth analysis. We perform close
monitoring of performance metrics and numerical
evaluations for model assessment.

This paper is committed to advancing ST tech-
nology for low resource languages. Through the
creation of dedicated datasets and the development
of robust models, our aim is to facilitate seamless
communication and accessibility across diverse lin-
guistic communities, ultimately promoting inclu-
sivity and empowerment.
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