@inproceedings{canal-esteve-gutierrez-2024-educational,
title = "Educational Material to Knowledge Graph Conversion: A Methodology to Enhance Digital Education",
author = "Canal-Esteve, Miquel and
Gutierrez, Yoan",
editor = "Biswas, Russa and
Kaffee, Lucie-Aim{\'e}e and
Agarwal, Oshin and
Minervini, Pasquale and
Singh, Sameer and
de Melo, Gerard",
booktitle = "Proceedings of the 1st Workshop on Knowledge Graphs and Large Language Models (KaLLM 2024)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.kallm-1.9",
doi = "10.18653/v1/2024.kallm-1.9",
pages = "85--91",
abstract = "This article argues that digital educational content should be structured as knowledge graphs (KGs). Unlike traditional repositories such as Moodle, a KG offers a more flexible representation of the relationships between concepts, facilitating intuitive navigation and discovery of connections. In addition, it integrates effectively with Large Language Models, enhancing personalized explanations, answers, and recommendations. This article studies different proposals based on semantics and knowledge modelling to determine the most appropriate ways to strengthen intelligent educational technologies.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="canal-esteve-gutierrez-2024-educational">
<titleInfo>
<title>Educational Material to Knowledge Graph Conversion: A Methodology to Enhance Digital Education</title>
</titleInfo>
<name type="personal">
<namePart type="given">Miquel</namePart>
<namePart type="family">Canal-Esteve</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoan</namePart>
<namePart type="family">Gutierrez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Knowledge Graphs and Large Language Models (KaLLM 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Russa</namePart>
<namePart type="family">Biswas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucie-Aimée</namePart>
<namePart type="family">Kaffee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oshin</namePart>
<namePart type="family">Agarwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pasquale</namePart>
<namePart type="family">Minervini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sameer</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gerard</namePart>
<namePart type="family">de Melo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This article argues that digital educational content should be structured as knowledge graphs (KGs). Unlike traditional repositories such as Moodle, a KG offers a more flexible representation of the relationships between concepts, facilitating intuitive navigation and discovery of connections. In addition, it integrates effectively with Large Language Models, enhancing personalized explanations, answers, and recommendations. This article studies different proposals based on semantics and knowledge modelling to determine the most appropriate ways to strengthen intelligent educational technologies.</abstract>
<identifier type="citekey">canal-esteve-gutierrez-2024-educational</identifier>
<identifier type="doi">10.18653/v1/2024.kallm-1.9</identifier>
<location>
<url>https://aclanthology.org/2024.kallm-1.9</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>85</start>
<end>91</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Educational Material to Knowledge Graph Conversion: A Methodology to Enhance Digital Education
%A Canal-Esteve, Miquel
%A Gutierrez, Yoan
%Y Biswas, Russa
%Y Kaffee, Lucie-Aimée
%Y Agarwal, Oshin
%Y Minervini, Pasquale
%Y Singh, Sameer
%Y de Melo, Gerard
%S Proceedings of the 1st Workshop on Knowledge Graphs and Large Language Models (KaLLM 2024)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F canal-esteve-gutierrez-2024-educational
%X This article argues that digital educational content should be structured as knowledge graphs (KGs). Unlike traditional repositories such as Moodle, a KG offers a more flexible representation of the relationships between concepts, facilitating intuitive navigation and discovery of connections. In addition, it integrates effectively with Large Language Models, enhancing personalized explanations, answers, and recommendations. This article studies different proposals based on semantics and knowledge modelling to determine the most appropriate ways to strengthen intelligent educational technologies.
%R 10.18653/v1/2024.kallm-1.9
%U https://aclanthology.org/2024.kallm-1.9
%U https://doi.org/10.18653/v1/2024.kallm-1.9
%P 85-91
Markdown (Informal)
[Educational Material to Knowledge Graph Conversion: A Methodology to Enhance Digital Education](https://aclanthology.org/2024.kallm-1.9) (Canal-Esteve & Gutierrez, KaLLM-WS 2024)
ACL