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Abstract

Document-level relation extraction typically re-
lies on text-based encoders and hand-coded
pooling heuristics to aggregate information
learned by the encoder. In this paper, we lever-
age the intrinsic graph processing capabilities
of the Transformer model and propose replac-
ing hand-coded pooling methods with new to-
kens in the input, which are designed to aggre-
gate information via explicit graph relations in
the computation of attention weights. We intro-
duce a joint text-graph Transformer model and
a graph-assisted declarative pooling (GADePo)
specification of the input, which provides ex-
plicit and high-level instructions for informa-
tion aggregation. GADePo allows the pooling
process to be guided by domain-specific knowl-
edge or desired outcomes but still learned by
the Transformer, leading to more flexible and
customisable pooling strategies. We evaluate
our method across diverse datasets and models
and show that our approach yields promising
results that are consistently better than those
achieved by the hand-coded pooling functions.

1 Introduction

Document-level relation extraction is an important
task in natural language processing, which involves
identifying and categorising meaningful relation-
ships between entities within a document, as ex-
emplified in Figure 1. This task is foundational to
many applications, including knowledge base pop-
ulation and completion (Banko et al., 2007; Ji et al.,
2020), information retrieval and extraction (Man-
ning et al., 2008; Theodoropoulos et al., 2021),
question answering (Chen et al., 2017; Feng et al.,
2022) and sentiment analysis (Pang and Lee, 2008),
to name a few.

Standard methods that approach this challenge
generally employ pretrained text-based encoders
(Devlin et al., 2019; Beltagy et al., 2019; Zhuang
et al., 2021; Cui et al., 2021), which are responsi-
ble for capturing the nuances of information con-

Breakout is an arcade game developed and published by

Atari , Inc. , released on May 13 , 1976 .  It was

conceptualized by Nolan Bushnell and Steve Bristow ,

in�uenced by the 1972 Atari arcade game Pong , and

built by Steve Wozniak aided by Steve Jobs . Breakout

was the basis and inspiration for certain aspects of

the Apple II personal computer . [...]

Breakout

Atari

Subject: Breakout  Object: Atari

Relation: developer ; publisher

May 13 , 1976Atari , Inc.

Nolan Bushnell Steve Bristow

Pong

Steve Wozniak Steve Jobs Breakout

Apple II

Breakout Atari

Figure 1: Document from the Re-DocRED (Tan et al.,
2022b) dataset involving multiple entities and labels.
Subject entity Breakout (red) and object entity Atari
(blue) express relations "developer" and "publisher".
Other entities are indicated as Mention (white).

tained in the entity mentions and their contextual
surroundings. Previous successful methods of-
ten then use hand-coded pooling heuristics to ag-
gregate the information learned by the encoder,
with some aimed at creating entity representations,
while others directly exploiting the pattern of at-
tention weights to capture context aware relations
between entity mentions (Zhou et al., 2021; Xiao
et al., 2022; Tan et al., 2022a; Ma et al., 2023).
These pooling heuristics can be very effective at
leveraging the information in a pretrained encoder.
However, as shown in Conneau et al. (2017); Jia
et al. (2019); Reimers and Gurevych (2019); Choi
et al. (2021), the selection of an appropriate pool-
ing function can be model-dependent, task-specific,
resource-intensive and time-consuming to deter-
mine, thereby limiting flexibility.

In this paper, we address these issues with a new
approach where we leverage the intrinsic graph
processing capabilities of the Transformer model
(Vaswani et al., 2017), leveraging insights from the
work of Mohammadshahi and Henderson (2020);
Henderson (2020); Mohammadshahi and Hender-
son (2021); Henderson et al. (2023). They argue
that attention weights and graph relations are func-
tionally equivalent and show how to incorporate

1

mailto:andrei.coman@idiap.ch
mailto:christos.theodoropoulos@kuleuven.be
mailto:sien.moens@kuleuven.be
mailto:james.henderson@idiap.ch


structural dependencies between input elements
by simply adding relation features to the attention
functions. Transformers easily learn to integrate
these relation features into their pretrained atten-
tion functions, resulting in very successful graph-
conditioned models (Mohammadshahi and Hen-
derson, 2021; Miculicich and Henderson, 2022;
Mohammadshahi and Henderson, 2023). Given
this effective method for integrating explicit graphs
with pretrained attention functions, we propose to
use the attention function itself for aggregation. We
replace the rigid pooling methods with new tokens
which act as aggregation nodes, plus explicit graph
relations which steer the aggregation.

We introduce a joint text-graph Transformer
model and a graph-assisted declarative pooling
(GADePo) method1 that leverages these special
tokens and graph relations, to provide an explicit
high-level declarative specification for the infor-
mation aggregation process. By integrating these
graphs in the attention functions of a pretrained
model, GADePo exploits the pretrained embed-
dings and attention patterns but still has the flex-
ibility of being trained on data. This enables the
pooling to be guided by domain-specific knowl-
edge or desired outcomes but still learned by the
Transformer, opening up a more customisable but
still data-driven relation extraction process.

We evaluate our method across diverse datasets
and models commonly employed in document-
level relation extraction tasks, and show that our
approach yields promising results that are consis-
tently better than those achieved by the hand-coded
pooling functions.

Contributions We propose a new method for
exploiting pretrained Transformer models which
replaces hand-coded aggregation functions with ex-
plicit graph relations and aggregation nodes. We
introduce a novel form of joint text-graph Trans-
former model. We evaluate our approach across
various datasets and models, showing that it yields
promising results that are consistently better than
those achieved by hand-coded pooling functions.

2 Related Work

In recent studies, the scope of relation extraction
has been expanded to include not only individ-
ual sentences but entire documents. This exten-
sion, known as document-level relation extraction,

1https://github.com/idiap/gadepo

presents a more realistic and challenging scenario
as it seeks to extract relations both within sentences
and across multiple sentences (Yao et al., 2019).
Transformer-based (Vaswani et al., 2017) models
have shown great potential in addressing this task.

Wang et al. (2019) and Tang et al. (2020) show
that the BiLSTM-based (Hochreiter and Schmidhu-
ber, 1997) baselines lack the capacity to model
complex interactions between multiple entities.
They propose a more robust approach, which con-
sists of using the pretrained BERT (Devlin et al.,
2019) model and a two-step prediction process, i.e.,
first identifying if a link between two entities exists,
followed by predicting the specific relation type.

GAIN (Zeng et al., 2020) leverages BERT as a
text encoder and GCNs (Kipf and Welling, 2017)
to process two types of graphs, one at mention level
and another at entity level, showing notable perfor-
mance in inter-sentence and inferential scenarios.

Mohammadshahi and Henderson (2020, 2021)
propose the G2GT model and show how to lever-
age the intrinsic graph processing capabilities of
the Transformer model by incorporating structural
dependencies between input elements as features
input to the self-attention weight computations.

SSAN (Xu et al., 2021) leverages this idea and
considers the structure of entities. It employs a
transformation module that creates attentive biases
from this structure to regulate the attention flow
during the encoding phase.

DocuNet (Zhang et al., 2021) reformulates the
task as a semantic segmentation problem. It em-
ploys a U-shaped segmentation module and an en-
coder module to capture global interdependencies
and contextual information of entities, respectively.

PL-Marker (Ye et al., 2022) introduces a method
that takes into account the interplay between spans
via a neighbourhood-oriented and subject-oriented
packing approach, highlighting the importance of
capturing the interrelation among span pairs in re-
lation extraction tasks.

SAIS (Xiao et al., 2022) explicitly models key
information sources such as relevant contexts and
entity types. It improves extraction quality and
interpretability, while also boosting performance
through evidence-based data augmentation and en-
semble inference.

KD-DocRE (Tan et al., 2022a) proposes a semi-
supervised framework with three key components.
Firstly, an axial attention module enhances per-
formance in handling two-hop relations by captur-
ing the interdependence of entity pairs. Secondly,

2

https://github.com/idiap/gadepo


Transformer Encoder (ATLOP)

Text Graph

Joint Text-Graph Transformer Encoder (GADePo)

Classifier

Classifier

Previous Method

Proposed Method

Figure 2: Comparison between the previous method ATLOP (left) and the proposed method GADePo (right),
illustrating the document in Figure 1 containing two entities (red and blue), each with two mentions. In ATLOP, the
mentions’ encoder outputs are aggregated into entity representations he, and the encoder’s attention weights are used
to identify which outputs to aggregate for entity-pair representations c(s,o). In GADePo, the textual input is extended
to include the graph special tokens <ent> for entity representations and <pent> for entity-pair representations, and
explicit directional graph relations specify their associated mentions. A joint text-graph Transformer model is then
used to encode this declarative pooling specification graph and compute the relevant aggregations.

an adaptive focal loss solution addresses the class
imbalance issue. Lastly, the framework employs
knowledge distillation to improve robustness and
overall effectiveness by bridging the gap between
human-annotated and distantly supervised data.

DREEAM (Ma et al., 2023) is a method designed
to enhance document-level relation extraction by
addressing memory efficiency and annotation limi-
tations in evidence retrieval. It employs evidence
as a supervisory signal to guide attention and in-
troduces a self-training strategy to learn evidence
retrieval without requiring evidence annotations.

SAIS (Xiao et al., 2022), KD-DocRE (Tan et al.,
2022a), and DREEAM (Ma et al., 2023) have been
built upon the foundations of ATLOP (Zhou et al.,
2021). ATLOP introduces two innovative tech-
niques, adaptive thresholding, and localised con-
text pooling, to address challenges in multi-label
and multi-entity problems. Adaptive thresholding
employs a learnable entities-dependent threshold,
replacing the global threshold used in previous ap-
proaches for multi-label classification (Peng et al.,
2017; Christopoulou et al., 2019; Nan et al., 2020;
Wang et al., 2020). Localised context pooling lever-
ages the attention patterns of a pretrained language
model to identify and extract relevant context cru-
cial for determining the relation between entities,
using specific hand-coded pooling functions.

3 Background

The foundational work of ATLOP (Zhou et al.,
2021) has been the basis of many State-of-the-Art
(SotA) models (Xiao et al., 2022; Tan et al., 2022a;
Ma et al., 2023). Given the problems with hand-
coded pooling functions, discussed in Section 1,
we aim to provide a new baseline that can serve
as the foundation for future SotA models. For this
reason, we evaluate our proposed models by com-
paring them to this established baseline. Our goal
is to demonstrate that our method not only achieves
results comparable to or better than ATLOP, but
also offers a novel approach which addresses its
limitations. To provide a better understanding of
ATLOP and its components, we present a detailed
breakdown in the left portion of Figure 2, which
we elaborate on in this section.

3.1 Problem Formulation
The document-level relation extraction task in-
volves analysing a document D that contains a
set of entities ED={ei}|ED|

i=1 . The main objec-
tive is to determine the presence or absence of
various relation types between all entity pairs
(es, eo)s,o∈ED,s ̸=o, where the subject and object en-
tities are denoted as es and eo, respectively. A key
aspect to consider is that an entity can appear mul-
tiple times in the document, resulting in a cluster of
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multiple mentionsMe={mi}|Me|
i=1 for each entity

e. The set of relations is defined asR∪ ∅, where ∅
represents the absence of a relation, often referred
to as "no-relation". Given the clusters of mentions
Mes andMeo , the task consists of a multi-label
classification problem where there can be multiple
relations between entities es and eo.

3.2 Previous Method: ATLOP
Text Encoding A special token ∗ is added at
the start and end of every mention. Tokens
TD={ti}|TD|

i=1 are encoded via a Pretrained Lan-
guage Model (PLM) as follows:

H,A = PLM(TD), (1)

where H ∈ R|TD|×d and A ∈ R|TD|×|TD| repre-
sent the token embeddings and the average atten-
tion weights of all attention heads, respectively,
extracted from the last layer of the PLM.

Entity Embedding (EE) For each individual en-
tity e with mentionsMe={mi}|Me|

i=1 , an entity em-
bedding he ∈ Rd is computed as follows:

he = log

|Me|∑

i=1

exp(Hmi), (2)

where Hmi ∈ Rd is the embedding of the special
token ∗ at the starting position of mention mi. The
choice of the logsumexp pooling function is based
on the research conducted by Jia et al. (2019). Their
study offers empirical evidence that supports the
use of this pooling function over others, as it facil-
itates accumulating weak signals from individual
mentions, thanks to its smoother characteristics.

Localised Context Embedding (LCE) ATLOP
introduces the concept of localised context em-
bedding to accommodate the variations in rele-
vant mentions and context for different entity pairs
(es, eo). Since the attention mechanism in the PLM
captures the importance of each token within the
context, it can be used to determine the context
relevant for both entities. The importance of each
token can be computed from the cross-token depen-
dencies matrix A obtained in Equation 1. When
evaluating entity es, the importance of individual
tokens is determined by examining the cross-token
dependencies across all mentions associated with
es, denoted asMes . Initially, ATLOP collects and
averages the attention Ami ∈ R|TD| at the special
token ∗ preceding each mention mi ∈Mes . This

process results in as ∈ R|TD|, which represents the
importance of each token concerning entity es (and
analogously ao for eo). Subsequently, the impor-
tance of each token for a given entity pair (es, eo),
denoted as q(s,o) ∈ R|TD|, is computed using as

and ao as follows:

q(s,o) =
as ◦ ao

a⊤
s ao

, (3)

where ◦ represents the Hadamard product. Con-
sequently, q(s,o) represents a distribution that indi-
cates the importance of each token for both tokens
in (es, eo). Finally, the localised context embed-
ding is computed as follows:

c(s,o) = H⊤q(s,o), (4)

So c(s,o) ∈ Rd corresponds to a weighted average
over all token embeddings that are important for
both es and eo.

Relation Classification and Loss Function The
representations hes , heo and c(s,o) are input to a
relation classifier, and the full model is fine-tuned
to predict the relation labels for (es, eo). The rela-
tion classifier and its loss function are detailed in
Appendix Subsection A.1.

4 Proposed Method: GADePo

We propose to avoid the reliance on the EE (i.e., he)
and LCE (i.e., c(s,o)) heuristic aggregation func-
tions by leveraging Transformers’ attention func-
tions to do aggregation. Given the observation
of Henderson (2020); Mohammadshahi and Hen-
derson (2020, 2021); Henderson et al. (2023) that
attention weights and graph relations are function-
ally equivalent, we introduce the inductive biases
of EE and LCE directly into the model’s input as
graph relations.

Our proposed graph-assisted declarative pooling
(GADePo) method replaces the hand-coded aggre-
gation functions EE and LCE with a declarative
graph specification. By using the intrinsic graph
processing capabilities of the Transformer model,
the specified graph serves as an explicit high-level
directive for the information aggregation process of
the Transformer. By inputting the graph relations
to the Transformer’s self-attention layers, GADePo
enables the aggregation to be steered by domain-
specific knowledge or desired outcomes, while still
allowing it to be learned by the Transformer, open-
ing up the possibility for a more tailored and cus-
tomised yet data-driven relation extraction.
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Our GADePo model is illustrated in the right por-
tion of Figure 2. We address both EE and LCE
with the introduction of two special tokens, <ent>
(i.e., entity) and <pent> (i.e., pair entity), and two
explicit graph relations of types <ent>←→ ∗ and
<pent> ←→ ∗ in both directions, where ∗ repre-
sents the special token at the starting position of a
specific mention. The set of relations is specified
as cij ∈ C which each identify the relation label
from i to j. Each of these relation labels is asso-
ciated with an embedding vector of dimension d,
as are the special token inputs <ent> and <pent>.
These two special tokens are added to the PLM’s
vocabulary of input tokens, while relation label em-
beddings are input to the self-attention functions
for every pair of related tokens. These new em-
beddings represent learnable parameters that are
trained during the PLM fine-tuning on the down-
stream tasks. As reported in Appendix Subsection
A.2, GADePo adds a negligible number of extra
parameters, namely only the special token inputs
and the graph directional relation inputs.

Special Token <ent> To tackle the EE pooling
function, we add to the input tokens TD as many
<ent> special tokens as entities in the document.
This way each entity e has a corresponding en-
tity token <ent> in the input. We connect each
<ent> token with its corresponding cluster of men-
tions Me={mi}|Me|

i=1 , and vice-versa. The two
graph relations we use are thus <ent> −→ ∗ and
∗ −→ <ent>, where ∗ represents the special to-
ken at the starting position of mention mi. Each
<ent> token receives the same <ent> embedding,
with no positional encoding, since each one collec-
tively represents a set of mentions from different
positions in the input graph. These identical inputs
are only disambiguated through the connections to
and from mentions expressed as the <ent> −→ ∗
and ∗ −→ <ent> graph relations. These relations
tell the self-attention mechanism to use the <ent>
token to aggregate information from the associated
mentions, and thus the <ent> tokens have a direct
correspondence to the computed he in Equation 2.

Special Token <pent> ATLOP performs infor-
mation filtering by calculating via Equation 4 a
localised context embedding (LCE) c(s,o) that is
dependent on the cross-token attention matrix A
output by the PLM. The intuition behind it is that
the dependencies between different tokens are en-
coded as attention weights. We propose a straight-

forward adjustment of the input graph used for the
EE pooling to effectively model and capture these
dependencies. To address the LCE pooling func-
tion, we add to the input tokens TD as many <pent>
special tokens as the number of all possible pairs of
entities. Each special token <pent> thus refers to
a pair of entities (es, eo). We connect each <pent>
token with each mention in the two clusters of men-
tionsMes={mi}|Mes |

i=1 andMeo={mi}|Meo |
i=1 and

vice-versa. Since the attention weights used in LCE
are computed from these mention embeddings, we
expect that they are sufficient for the Transformer
to learn to find the relevant contexts. The two
graph relations we use are thus <pent> −→ ∗
and ∗ −→ <pent>. Analogously to the <ent>
tokens, the <pent> tokens all receive the same
<pent> embedding, with no positional embeddings,
and thus are only disambiguated by their different
<pent> −→ ∗ and ∗ −→ <pent> graph relations.
These relations tell the <pent> token to pay atten-
tion to its associated mentions, which in turn allows
it to find the relevant context shared by these men-
tions. Thus, each <pent> token can be seen as
having a direct correspondence to the computed
c(s,o) in Equation 4.

All equations relative to the relation classifica-
tion and the corresponding loss function reported
in Appendix Subsection A.1 remain valid as we
merely substitute the hand-coded computations of
he and c(s,o) with the embeddings of <ent> and
<pent>, respectively.

Text-Graph Encoding We follow Mohammad-
shahi and Henderson (2020, 2021); Henderson et al.
(2023) in leveraging the intrinsic graph processing
capabilities of the Transformer model by incorpo-
rating graph relations as relation embeddings input
to the self-attention function. For every pair of
input tokens ij, the pre-softmax attention weight
eij ∈ R is computed from both the respective to-
ken embeddings xi,xj ∈ Rd, and an embeddings
of the graph relation cij between the i-th and j-th
tokens. However, we change the attention weight
computation to:

eij =
xiWQ diag(LN(cijWC)) (xjWK)⊤√

d
,

(5)
where WQ,WK ∈ Rd×d represent the query and
key matrices, respectively. cij ∈ {0, 1}|C| rep-
resents a 0/1 encoded label of the graph rela-
tion between the i-th and j-th input elements, and
WC ∈ R|C|×d represents the relations’ embedding
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Re-DocRED HacRED
Model Aggregation Ign F1 F1 P R F1

ATLOP⋆ he 75.27 75.92 76.27 76.83 76.55
GADePo (ours) <ent> 75.55 76.38 74.13 79.46 76.70
ATLOP•,⋄ he ; c(s,o) 76.82 77.56 77.89 76.55 77.21

ATLOP⋆ he ; c(s,o) 77.62 78.38 76.36 78.86 77.59
GADePo (ours) <ent> ; <pent> 77.70 78.40 78.27 79.03 78.65

Table 1: Comparative analysis between the previous method ATLOP and the proposed method GADePo on the test
set. ATLOP⋆ indicates our reimplementation of the previous method. For Re-DocRED and HacRED we report in
percentage the results obtained by Tan et al. (2022b) (ATLOP•) and Cheng et al. (2021) (ATLOP⋄), respectively.
The results are reported in terms of F1 scores, Precision (P ), and Recall (R), following the same metrics reported in
prior research specific to each dataset. Ign F1 denotes the F1 score that excludes relational facts shared between the
training and evaluation sets. We also comply with the standard practice where test scores are determined based on
the best checkpoint from five training runs with distinct random seeds.

matrix, so cijWC is the embedding of the rela-
tion between i and j. Finally, LN stands for the
LayerNorm operation and diag returns a diago-
nal matrix.

Compared to the standard attention function,
where eij = xiWQ(xjWK)⊤/

√
d, the relation

embedding determines a weighting of the different
dimensions. This is a novel way to condition on
the relation embedding compared to the original
formulation, which only models query-relation in-
teractions (Mohammadshahi and Henderson, 2020).
This change is motivated by our task requiring
a more flexible formulation which models query-
relation-key interactions via a multiplicative mech-
anism, without requiring a full d× d matrix of bi-
linear parameters. This way, a key will be relevant
to a query only when both agree on the relation.
In preliminary experiments, we explored various
methods for biasing attention and found that the
formulation presented in Equation 5 produced the
best results.

5 Experiments

5.1 Datasets and Models

Re-DocRED (Tan et al., 2022b) is a revisited
version of the DocRED (Yao et al., 2019) dataset.
It is built from English Wikipedia and Wikidata
and contains both distantly-supervised and human-
annotated documents with named entities, corefer-
ence data, and intra- and inter-sentence relations,
supported by evidence. It requires analysing mul-
tiple sentences to identify entities, establish their
relationships, and integrate information from the
entire document. We comply with the model used
by the authors and employ the RoBERTaLARGE

(Zhuang et al., 2021) model in our experiments.

HacRED (Cheng et al., 2021) is a large-scale,
high-quality Chinese document-level relation ex-
traction dataset, with a special focus on practical
hard cases. As the authors did not provide specific
information about the model used in their study,
we conducted our experiments using the Chinese
BERTBASE with whole word masking model (Cui
et al., 2021).

Datasets statistics Re-DocRED and HacRED
exhibit notable distinctions in their statistics, as
summarised in Table 2. Re-DocRED comprises
a larger number of facts, entities per document,
and relations compared to HacRED. This indicates
a potentially richer and more extensive dataset in
terms of factual information and relationship types.
However, HacRED contains more documents and
may present a broader range of scenarios for rela-
tion extraction, including more challenging cases,
as it has been specifically created with a focus on
practical hard cases.

Statistic Re-DocRED HacRED
Facts 120,664 65,225
Relations 96 26
Documents 4,053 9,231
Average Entities 19.4 10.8

Table 2: Re-DocRED and HacRED human-annotated
datasets statistics.

5.2 Results and Discussion
We follow the standard practice from prior research
and report the results of our experiments on the
Re-DocRED and HacRED datasets in Table 1 and
Figure 4. For all datasets and models, we provide
our reimplementation of the ATLOP baseline (indi-
cated as ATLOP⋆), which achieves or surpasses pre-
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Figure 3: Attention weights A from GADePo via Equation 1 for the document in Figure 1. For clarity, only a subset
of <ent> and document tokens are shown on the y-axis (queries) and x-axis (keys), respectively.

viously reported results for ATLOP, and compare
the proposed GADePo model against this model.
We evaluate all datasets using the F1 metric. For
Re-DocRED, Ign F1 (or Ignored F1) is also re-
ported, and refers to the F1 score that excludes
relational facts that are shared between the training
and development/test sets. This is done to avoid
potential biases in the evaluation metrics due to
overlap in content between the sets, which might
not reflect the model’s ability to generalise to truly
unseen data. For HacRED, we adhere to the for-
mat introduced by Cheng et al. (2021) and report
also the Precision (P ) and Recall (R) metrics. We
comply with previous research and report the test
score achieved by the best checkpoint on the de-
velopment set. In Appendix Subsection A.4, we
additionally present the mean and standard devia-
tion on the development set, calculated from five
training runs with distinct random seeds. We also
provide in Appendix Subsection A.4, the same set
of experiments conducted on the original DocRED
dataset. Training details and hyperparameters are
outlined in Appendix Subsection A.3.

Re-DocRED Results We evaluate our proposed
GADePo method against the previous ATLOP
method in two stages, first comparing the use of
<ent> tokens against the use of EE pooling (he),
and then comparing our full model against the full
ATLOP model, including <pent> tokens and LCE
pooling (c(s,o)), respectively.

Table 1 highlights the effectiveness of our pro-
posed method. When comparing he with <ent>,
we observe a noticeable improvement in both Ign
F1 and F1 scores, achieving 75.55% and 76.38%
respectively, compared to 75.27% and 75.92% at-
tained by ATLOP⋆. This demonstrates the practical
utility of employing the special token <ent> for in-
formation aggregation. This is illustrated in the at-
tention weights heatmap in Figure 3. Incorporating
c(s,o) and <pent> into the comparison, GADePo
maintains performance parity with the significantly

enhanced ATLOP⋆, which outperformed ATLOP•

from Tan et al. (2022b). The latter improvement
suggests that a more refined hyperparameter search
can lead to performance gains, as evidenced by
the increase in F1 score from 77.56% to 78.38%.
GADePo achieves an F1 score of 78.40%, affirm-
ing its competitive edge and the effectiveness of
employing <pent> for aggregation.

Model Aggregation Ign F1 F1

ATLOP⋆ he 76.39 76.97
GADePo (ours) <ent> 76.99 77.79
ATLOP⋆ he ; c(s,o) 77.49 78.09
GADePo (ours) <ent> ; <pent> 77.50 78.15

Table 3: Re-DocRED results on the test set following
prior finetuning on the distantly supervised dataset.

Table 3 illustrates the results obtained with prior
finetuning on the distantly supervised dataset,
which contains approximately 100K documents
(Yao et al., 2019). Interestingly, distant supervi-
sion appears to have a slightly negative impact on
the results of both methods when incorporating
c(s,o) or <pent>. However, it proves to be highly
beneficial when utilising solely he or <ent> for
aggregation. This suggests that although distant
supervision might introduce noise into the training
process, it can also provide valuable information
that improves model generalisation, particularly
when leveraging simpler feature representations
like he and <ent>, possibly due to their robustness
in capturing essential information amidst noise.

HacRED Results We observe a similar pattern
to Re-DocRED, with ATLOP⋆ displaying a slight
performance advantage over ATLOP⋄ from Cheng
et al. (2021) (Table 1). On this dataset, GADePo
shows a significantly improved performance, pri-
marily driven by a substantial increase in Recall
(R), indicating that the GADePo model is more
effective at identifying relevant instances. As al-
ready reported for the Re-DocRED dataset, the
performance boost after the inclusion of c(s,o) and
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Figure 4: Performance of ATLOP⋆ (he ; c(s,o)) and GADePo (<ent> ; <pent>) on the development set under
varying data availability conditions on Re-DocRED (4a) and HacRED (4b). The x-axis represents the percentage
and number of documents from the training dataset, while the y-axis displays the F1 score in percentage. Each point
on the graph represents the mean value, while error bars indicate the standard deviation derived from five distinct
training runs with separate random seeds.

<pent> into ATLOP⋆ and GADePo, respectively,
highlight the significant contributions of these fea-
tures. GADePo outperforms ATLOP⋆ with an F1

score of 78.65% compared to 77.59%. This larger
improvement on HacRED suggests that GADePo
is better at handling challenging cases, which is not
surprising given its greater flexibility over the fixed
pooling functions of ATLOP.

Data Ablation To evaluate the models’ sensitiv-
ity to dataset size, the performance evaluation de-
picted in Figure 4 compares ATLOP⋆ (he ; c(s,o))
and GADePo (<ent> ; <pent>) on the develop-
ment set, considering different levels of training
data availability on the Re-DocRED and HacRED
datasets. Accuracies generally converge as the
dataset sizes increase, but on the challenging cases
of HacRED, GADePo maintains a substantial ad-
vantage across the full range. On Re-DocRED,
GADePo catches up with and slightly outperforms
ATLOP⋆ as data size increases. This lower per-
formance on smaller datasets is presumably be-
cause GADePo must learn how to exploit the graph
relations to the special tokens <ent> and <pent>
and pool information through them, whereas for
ATLOP this pooling is hand-coded. On the Re-
DocRED dataset, ATLOP⋆ appears to have rela-
tively consistent variance, while GADePo exhibits
higher variance in the smaller training sets, while
on the HacRED dataset, GADePo is significantly
more stable for smaller datasets.

The data ablation analysis shows that the per-
formance of hand-coded pooling functions can be
dataset-specific, which restricts their adaptability.
In contrast, GADePo consistently outperforms its

hand-coded counterparts on larger datasets, and
matches them on all but some smaller datasets,
presumably due to its flexibility. This pattern sug-
gests that GADePo has a greater potential for op-
timisation, particularly on larger datasets. This
is supported by GADePo’s better performance on
HacRED, which is both larger and designed to be
more challenging than Re-DocRED.

6 Conclusion

In this paper we proposed a novel approach to
document-level relation extraction, challenging the
conventional reliance on hand-coded pooling func-
tions for information aggregation. Our method
leverages the power of Transformer models by
incorporating explicit graph relations as instruc-
tions for information aggregation. By combining
graph processing with text-based encoding, we
introduced the graph-assisted declarative pooling
(GADePo) specification, which allows for more
flexible and customisable specification of pooling
strategies which are still learned from data.

We conducted evaluations using diverse datasets
and models commonly employed in document-
level relation extraction tasks. The results of our ex-
periments demonstrated that our approach achieves
promising performance that is comparable to or bet-
ter than that of hand-coded pooling functions. This
suggests that our method can serve as a viable basis
for other relation extraction methods, providing a
more adaptable and tailored approach. In partic-
ular, recent methods have improved performance
by exploiting information about evidence, which
can naturally be incorporated in our graph-based
approach.
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Limitations

While the proposed GADePo model offers a
promising and innovative approach to relation ex-
traction, there are issues which the current study
does not address. According to the data in Ap-
pendix Table 2, the average number of entities per
document across datasets is approximately 15. This
means that, on average, there will be an additional
15 <ent> tokens and 105 <pent> tokens. Given
that the maximum allowable input length for the
models is 512 tokens, the inclusion of these extra
tokens results in roughly a 3% and 20% increase
in the overall input length for <ent> and <pent>,
respectively. It’s evident that the majority of the
increase in input length is due to the quadratic num-
ber of <pent> special tokens, but we believe that
an appropriate pruning strategy could easily reduce
this number to linear in the number of entities with-
out degrading accuracy. One such pruning strategy
could involve an <ent>-only model with a binary
classifier which is trained to predict pairs of related
entities. This model could then be used to prune
the set of candidate entity pairs for the final relation
classification, with <pent> tokens being instanti-
ated only for these candidate pairs. We have chosen
to leave this approach as a potential avenue for fu-
ture work, opting instead to focus on demonstrating
the promise of the current simpler formulation.
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A Appendix

A.1 ATLOP: Relation Classification and Loss
Function

Relation Classification To predict the relation
between the subject entity es and object entity eo,
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ATLOP first generates context-aware subject and
object representations as follows:

zs = tanh(Ws[hes ; c
(s,o)] + bs) (6)

zo = tanh(Wo[heo ; c
(s,o)] + bo), (7)

where zs, zo ∈ Rd, [·; ·] represents the concatena-
tion of two vectors, and Ws,Wo ∈ Rd×2d together
with bs, bo ∈ Rd are trainable parameters. Then,
the entity pair representation is computed as:

x(s,o) = zs ⊗ zo, (8)

where x(s,o) ∈ Rd2 and⊗ stands for the vectorised
Kronecker product. Finally, relation scores are
computed as:

y(s,o) = Wrx
(s,o) + br, (9)

where y(s,o) ∈ R|R|, with Wr ∈ R|R|×d2 and
br ∈ R|R| representing learnable parameters. The
probability of relation r ∈ R between the subject
and object entities is computed as follows:

P (r|s, o) = σ(y(s,o)), (10)

where σ is the sigmoid function. To reduce the
number of parameters in the classifier, a grouped
function is used, which splits the embedding di-
mensions into k equal-sized groups and applies the
function within the groups as follows:

zs = [z1
s ; . . . ; z

k
s ] (11)

zo = [z1
o ; . . . ; z

k
o ] (12)

x(s,o) = [x(s,o)1 ; . . . ;x(s,o)k ] (13)

y(s,o) =
k∑

i=1

W i
rx

(s,o)i + br, (14)

where zi
s, z

i
o ∈ Rd/k, x(s,o)i ∈ Rd2/k, and W i

r ∈
R|R|×d2/k. This way, the number of parameters
can be reduced from d2 to d2/k.

Loss Function ATLOP introduces the adaptive
thresholding loss concept. This approach involves
training a model to learn a hypothetical threshold
class TH , which dynamically adjusts for each rela-
tion class r ∈ R. During training, for each entity
pair (es, eo), the loss enforces the model to gener-
ate scores above TH for positive relation classes

RP and scores below TH for negative relation
classesRN . The loss is computed as follows:

L =−
∑

s ̸=o

∑

r∈RP

exp(y
(s,o)
r )

∑
r
′∈RP∪{TH} exp(y

(s,o)
r′ )

− exp(y
(s,o)
TH )

∑
r′∈RN∪{TH} exp(y

(s,o)
r′ )

(15)

A.2 GADePo’s Extra Parameters
GADePo introduces few extra parameters to the
PLM. The amount of parameters is reported in Ta-
ble 4.

Parameter Model
RoBERTaLARGE BERTBASE

<ent> 1024 768
<pent> 1024 768
<ent> −→ ∗ 24 × 1024 12 × 768
∗ −→ <ent> 24 × 1024 12 × 768
<pent> −→ ∗ 24 × 1024 12 × 768
∗ −→ <pent> 24 × 1024 12 × 768
Total 100,352 38,400

Table 4: GADePo’s extra parameters count.

The introduction of these parameters results in
only a minimal increase in the overall parameter
count of the models. Specifically, GADePo’s aug-
mentation amounts to a mere 0.036% increase over
the BERTBASE model. In contrast, even a slight in-
crease of just one unit in BERTBASE’s hidden dimen-
sions would result in a 0.139% parameter increase,
which is roughly four times greater than the aug-
mentation introduced by GADePo. Given that such
a small change is incompatible with other architec-
tural constraints, such as the number of heads, it is
implausible that this minimal augmentation would
solely account for the observed performance gains.

This indicates that the performance improve-
ments are largely due to the effective inductive bias
introduced by GADePo, rather than the increase in
parameter count. The same rationale applies to the
results observed with RoBERTaLARGE.

A.3 Training Details
We generally comply with the hyperparameters of
ATLOP and set the output dimension in Equation
6 and Equation 7 to 768. We also set the block size
in Equation 11 and Equation 12 to 64, i.e., k = 12.

In all our experiments we perform early stopping
on the development set based on the Ign F1 + F1
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score for DocRED and Re-DocRED, and F1 score
for HacRED. The five different seeds we use are
{73, 21, 37, 7, 3}.

We use RAdam (Liu et al., 2020) as our opti-
miser. On the RoBERTaLARGE based models we
train for 8 epochs and set the learning rates to
3e−5 and 1e−4 for the PLM parameters and the
new additional parameters, respectively. On the
BERTBASE based models we train for 10 epochs
and set the learning rates to 1e−5 and 1e−4 for the
PLM parameters and the new additional parame-
ters, respectively. We use a cosine learning rate
decay throughout the training process.

In all our experiments the batch size is set to 4
for ATLOP and 2 for GADePo, with gradient accu-
mulation set to 1 and 2, for ATLOP and GADePo,
respectively. We clip the gradients to a max norm
of 1.0. All models are trained with mixed precision.

We run our experiments on two types of
GPUs, namely the NVIDIA V100 32GB for the
RoBERTaLARGE based models and NVIDIA RTX
3090 24GB for the BERTBASE based models, re-
spectively.

We use PyTorch (Paszke et al., 2019), Light-
ning (Falcon and The PyTorch Lightning team,
2019), and Hugging Face’s Transformers (Wolf
et al., 2020) libraries to develop our models.

A.4 Additional Results
Re-DocRED and HacRED Table 5 and Table
6 present additional results for Re-DocRED and
HacRED, respectively. In addition to the results
outlined in Section 5, these tables include the mean
and standard deviation on the development set, cal-
culated from five training runs with distinct random
seeds, as reported in Appendix Subsection A.3.

DocRED results The DocRED (Yao et al., 2019)
dataset consists of 56, 354 facts, 96 relations,
5, 053 documents, and 26.2 average number of en-
tities per document. In line with the approach taken
for Re-DocRED and HacRED, Table 7 and Figure
5 illustrate the results for DocRED.
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Figure 5: Performance of ATLOP⋆ (he ; c(s,o)) and
GADePo (<ent> ; <pent>) on the development set un-
der varying data availability conditions on DocRED.
The x-axis represents the percentage and number of
documents from the training dataset, while the y-axis
displays the F1 score in percentage. Each point on the
graph represents the mean value, while error bars in-
dicate the standard deviation derived from five distinct
training runs with separate random seeds.
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Dev Test
Model Aggregation Ign F1 F1 Ign F1 F1

ATLOP⋆ he 75.46± 0.16 76.16± 0.16 75.27 75.92
GADePo (ours) <ent> 75.46± 0.20 76.31± 0.24 75.55 76.38
ATLOP• he ; c(s,o) 76.79 77.46 76.82 77.56

ATLOP⋆ he ; c(s,o) 77.75± 0.08 78.41± 0.10 77.62 78.38
GADePo (ours) <ent> ; <pent> 77.48± 0.12 78.19± 0.14 77.70 78.40

Table 5: Results in percentage for the development and test sets of Re-DocRED. We report the results obtained by
Tan et al. (2022b) (ATLOP•) on Re-DocRED. ATLOP⋆ indicates our reimplementation of the previous method. We
report the mean and standard deviation of Ign F1 and F1 on the development set, calculated from five training runs
with distinct random seeds. We report the test score achieved by the best checkpoint on the development set. Ign F1

refers to the F1 score that excludes relational facts shared between the training and development/test sets.

Dev Test
Model Aggregation P R F1 P R F1

ATLOP⋆ he 77.37± 0.22 77.40± 0.31 77.39± 0.13 76.27 76.83 76.55
GADePo (ours) <ent> 72.96± 0.96 79.22± 1.20 75.96± 0.99 74.13 79.46 76.70
ATLOP⋄ he ; c(s,o) − − − 77.89 76.55 77.21

ATLOP⋆ he ; c(s,o) 77.18± 0.14 77.98± 0.66 77.58± 0.36 76.36 78.86 77.59
GADePo (ours) <ent> ; <pent> 75.98± 0.94 80.54± 0.72 78.19± 0.19 78.27 79.03 78.65

Table 6: Results in percentage for the development and test sets of HacRED. We report the results obtained by
Cheng et al. (2021) (ATLOP⋄) on HacRED. ATLOP⋆ indicates our reimplementation of the previous method. We
report the mean and standard deviation of Precision (P ), Recall (R) and F1 on the development set, calculated
from five training runs with distinct random seeds. We report the test score achieved by the best checkpoint on the
development set.

Dev Test
Model Aggregation Ign F1 F1 Ign F1 F1

ATLOP⋆ he 59.66± 0.20 61.60± 0.21 59.22 61.37
GADePo (ours) <ent> 59.04± 0.52 61.18± 0.46 59.30 61.63
ATLOP◦ he ; c(s,o) 61.32± 0.14 63.18± 0.19 61.39 63.40

ATLOP⋆ he ; c(s,o) 61.41± 0.26 63.38± 0.28 61.62 63.72
GADePo (ours) <ent> ; <pent> 61.19± 0.55 63.26± 0.48 61.52 63.75

Table 7: Results in percentage for the development and test sets of DocRED. We report the results obtained by Zhou
et al. (2021) (ATLOP◦) on DocRED. ATLOP⋆ indicates our reimplementation of the previous method. We report
the mean and standard deviation of Ign F1 and F1 on the development set, calculated from five training runs with
distinct random seeds. We report the test score achieved by the best checkpoint on the development set. Ign F1

refers to the F1 score that excludes relational facts shared between the training and development/test sets.
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