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Preface by the Organizers

Welcome to the 3rd International Workshop on Knowledge-Augmented Methods for Natural Language
Processing (KnowledgeNLP’24), held in conjunction with ACL 2024. KnowledgeNLP will take place
on August 16th, 2024, allowing for both virtual and in-person attendance in Thailand.

Recent progress in large-scale models like ChatGPT has significantly advanced NLP capabilities. Howe-
ver, these models face limitations in memorizing rare information, are prone to hallucinations, and cannot
access up-to-date information. Additionally, their fixed parameter size prevents them from fully encap-
sulating the continuously evolving world knowledge.

The field of knowledge-augmented NLP spans a wide array of techniques and applications. Acquiring
relevant knowledge is challenging due to its diversity and distribution across numerous sources. Once
acquired, effectively representing and utilizing this knowledge to support model predictions presents
another major challenge. This workshop seeks to bring researchers together to share their insights and
progress in this domain, aiming to highlight the importance of knowledge-augmented NLP.

In response to our call for papers, we received 35 submissions. Each submission was rigorously reviewed
by at least two Program Committee members selected for their expertise. Based on the reviewers’ feed-
back, we accepted 30 papers, including 8 oral presentations and 22 poster presentations. We are honored
to invite six keynote speakers: Prof. Minlie Huang (Tsinghua University), Dr. Scott Yih (Meta AI),
Prof. Yulia Tsvetkov (University of Washington), Prof. Greg Durrett (University of Texas Austin), Prof.
Minjoon Seo (KAIST AI), and Prof. Zhuosheng Zhang (Shanghai Jiaotong University).

We hope you find the workshop papers insightful and inspiring. We express our gratitude to the keynote
speakers for their engaging talks, the authors for their valuable contributions, and the Program Committee
members for their thorough reviews. Special thanks to the emergency reviewers for their expertise and to
the ACL 2024 workshop chairs for their support during the organization process.
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Abstract

Document-level relation extraction typically re-
lies on text-based encoders and hand-coded
pooling heuristics to aggregate information
learned by the encoder. In this paper, we lever-
age the intrinsic graph processing capabilities
of the Transformer model and propose replac-
ing hand-coded pooling methods with new to-
kens in the input, which are designed to aggre-
gate information via explicit graph relations in
the computation of attention weights. We intro-
duce a joint text-graph Transformer model and
a graph-assisted declarative pooling (GADePo)
specification of the input, which provides ex-
plicit and high-level instructions for informa-
tion aggregation. GADePo allows the pooling
process to be guided by domain-specific knowl-
edge or desired outcomes but still learned by
the Transformer, leading to more flexible and
customisable pooling strategies. We evaluate
our method across diverse datasets and models
and show that our approach yields promising
results that are consistently better than those
achieved by the hand-coded pooling functions.

1 Introduction

Document-level relation extraction is an important
task in natural language processing, which involves
identifying and categorising meaningful relation-
ships between entities within a document, as ex-
emplified in Figure 1. This task is foundational to
many applications, including knowledge base pop-
ulation and completion (Banko et al., 2007; Ji et al.,
2020), information retrieval and extraction (Man-
ning et al., 2008; Theodoropoulos et al., 2021),
question answering (Chen et al., 2017; Feng et al.,
2022) and sentiment analysis (Pang and Lee, 2008),
to name a few.

Standard methods that approach this challenge
generally employ pretrained text-based encoders
(Devlin et al., 2019; Beltagy et al., 2019; Zhuang
et al., 2021; Cui et al., 2021), which are responsi-
ble for capturing the nuances of information con-

Breakout is an arcade game developed and published by

Atari , Inc. , released on May 13 , 1976 .  It was

conceptualized by Nolan Bushnell and Steve Bristow ,

in�uenced by the 1972 Atari arcade game Pong , and

built by Steve Wozniak aided by Steve Jobs . Breakout

was the basis and inspiration for certain aspects of

the Apple II personal computer . [...]

Breakout

Atari

Subject: Breakout  Object: Atari

Relation: developer ; publisher

May 13 , 1976Atari , Inc.

Nolan Bushnell Steve Bristow

Pong

Steve Wozniak Steve Jobs Breakout

Apple II

Breakout Atari

Figure 1: Document from the Re-DocRED (Tan et al.,
2022b) dataset involving multiple entities and labels.
Subject entity Breakout (red) and object entity Atari
(blue) express relations "developer" and "publisher".
Other entities are indicated as Mention (white).

tained in the entity mentions and their contextual
surroundings. Previous successful methods of-
ten then use hand-coded pooling heuristics to ag-
gregate the information learned by the encoder,
with some aimed at creating entity representations,
while others directly exploiting the pattern of at-
tention weights to capture context aware relations
between entity mentions (Zhou et al., 2021; Xiao
et al., 2022; Tan et al., 2022a; Ma et al., 2023).
These pooling heuristics can be very effective at
leveraging the information in a pretrained encoder.
However, as shown in Conneau et al. (2017); Jia
et al. (2019); Reimers and Gurevych (2019); Choi
et al. (2021), the selection of an appropriate pool-
ing function can be model-dependent, task-specific,
resource-intensive and time-consuming to deter-
mine, thereby limiting flexibility.

In this paper, we address these issues with a new
approach where we leverage the intrinsic graph
processing capabilities of the Transformer model
(Vaswani et al., 2017), leveraging insights from the
work of Mohammadshahi and Henderson (2020);
Henderson (2020); Mohammadshahi and Hender-
son (2021); Henderson et al. (2023). They argue
that attention weights and graph relations are func-
tionally equivalent and show how to incorporate
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structural dependencies between input elements
by simply adding relation features to the attention
functions. Transformers easily learn to integrate
these relation features into their pretrained atten-
tion functions, resulting in very successful graph-
conditioned models (Mohammadshahi and Hen-
derson, 2021; Miculicich and Henderson, 2022;
Mohammadshahi and Henderson, 2023). Given
this effective method for integrating explicit graphs
with pretrained attention functions, we propose to
use the attention function itself for aggregation. We
replace the rigid pooling methods with new tokens
which act as aggregation nodes, plus explicit graph
relations which steer the aggregation.

We introduce a joint text-graph Transformer
model and a graph-assisted declarative pooling
(GADePo) method1 that leverages these special
tokens and graph relations, to provide an explicit
high-level declarative specification for the infor-
mation aggregation process. By integrating these
graphs in the attention functions of a pretrained
model, GADePo exploits the pretrained embed-
dings and attention patterns but still has the flex-
ibility of being trained on data. This enables the
pooling to be guided by domain-specific knowl-
edge or desired outcomes but still learned by the
Transformer, opening up a more customisable but
still data-driven relation extraction process.

We evaluate our method across diverse datasets
and models commonly employed in document-
level relation extraction tasks, and show that our
approach yields promising results that are consis-
tently better than those achieved by the hand-coded
pooling functions.

Contributions We propose a new method for
exploiting pretrained Transformer models which
replaces hand-coded aggregation functions with ex-
plicit graph relations and aggregation nodes. We
introduce a novel form of joint text-graph Trans-
former model. We evaluate our approach across
various datasets and models, showing that it yields
promising results that are consistently better than
those achieved by hand-coded pooling functions.

2 Related Work

In recent studies, the scope of relation extraction
has been expanded to include not only individ-
ual sentences but entire documents. This exten-
sion, known as document-level relation extraction,

1https://github.com/idiap/gadepo

presents a more realistic and challenging scenario
as it seeks to extract relations both within sentences
and across multiple sentences (Yao et al., 2019).
Transformer-based (Vaswani et al., 2017) models
have shown great potential in addressing this task.

Wang et al. (2019) and Tang et al. (2020) show
that the BiLSTM-based (Hochreiter and Schmidhu-
ber, 1997) baselines lack the capacity to model
complex interactions between multiple entities.
They propose a more robust approach, which con-
sists of using the pretrained BERT (Devlin et al.,
2019) model and a two-step prediction process, i.e.,
first identifying if a link between two entities exists,
followed by predicting the specific relation type.

GAIN (Zeng et al., 2020) leverages BERT as a
text encoder and GCNs (Kipf and Welling, 2017)
to process two types of graphs, one at mention level
and another at entity level, showing notable perfor-
mance in inter-sentence and inferential scenarios.

Mohammadshahi and Henderson (2020, 2021)
propose the G2GT model and show how to lever-
age the intrinsic graph processing capabilities of
the Transformer model by incorporating structural
dependencies between input elements as features
input to the self-attention weight computations.

SSAN (Xu et al., 2021) leverages this idea and
considers the structure of entities. It employs a
transformation module that creates attentive biases
from this structure to regulate the attention flow
during the encoding phase.

DocuNet (Zhang et al., 2021) reformulates the
task as a semantic segmentation problem. It em-
ploys a U-shaped segmentation module and an en-
coder module to capture global interdependencies
and contextual information of entities, respectively.

PL-Marker (Ye et al., 2022) introduces a method
that takes into account the interplay between spans
via a neighbourhood-oriented and subject-oriented
packing approach, highlighting the importance of
capturing the interrelation among span pairs in re-
lation extraction tasks.

SAIS (Xiao et al., 2022) explicitly models key
information sources such as relevant contexts and
entity types. It improves extraction quality and
interpretability, while also boosting performance
through evidence-based data augmentation and en-
semble inference.

KD-DocRE (Tan et al., 2022a) proposes a semi-
supervised framework with three key components.
Firstly, an axial attention module enhances per-
formance in handling two-hop relations by captur-
ing the interdependence of entity pairs. Secondly,

2
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Transformer Encoder (ATLOP)

Text Graph

Joint Text-Graph Transformer Encoder (GADePo)

Classifier

Classifier

Previous Method

Proposed Method

Figure 2: Comparison between the previous method ATLOP (left) and the proposed method GADePo (right),
illustrating the document in Figure 1 containing two entities (red and blue), each with two mentions. In ATLOP, the
mentions’ encoder outputs are aggregated into entity representations he, and the encoder’s attention weights are used
to identify which outputs to aggregate for entity-pair representations c(s,o). In GADePo, the textual input is extended
to include the graph special tokens <ent> for entity representations and <pent> for entity-pair representations, and
explicit directional graph relations specify their associated mentions. A joint text-graph Transformer model is then
used to encode this declarative pooling specification graph and compute the relevant aggregations.

an adaptive focal loss solution addresses the class
imbalance issue. Lastly, the framework employs
knowledge distillation to improve robustness and
overall effectiveness by bridging the gap between
human-annotated and distantly supervised data.

DREEAM (Ma et al., 2023) is a method designed
to enhance document-level relation extraction by
addressing memory efficiency and annotation limi-
tations in evidence retrieval. It employs evidence
as a supervisory signal to guide attention and in-
troduces a self-training strategy to learn evidence
retrieval without requiring evidence annotations.

SAIS (Xiao et al., 2022), KD-DocRE (Tan et al.,
2022a), and DREEAM (Ma et al., 2023) have been
built upon the foundations of ATLOP (Zhou et al.,
2021). ATLOP introduces two innovative tech-
niques, adaptive thresholding, and localised con-
text pooling, to address challenges in multi-label
and multi-entity problems. Adaptive thresholding
employs a learnable entities-dependent threshold,
replacing the global threshold used in previous ap-
proaches for multi-label classification (Peng et al.,
2017; Christopoulou et al., 2019; Nan et al., 2020;
Wang et al., 2020). Localised context pooling lever-
ages the attention patterns of a pretrained language
model to identify and extract relevant context cru-
cial for determining the relation between entities,
using specific hand-coded pooling functions.

3 Background

The foundational work of ATLOP (Zhou et al.,
2021) has been the basis of many State-of-the-Art
(SotA) models (Xiao et al., 2022; Tan et al., 2022a;
Ma et al., 2023). Given the problems with hand-
coded pooling functions, discussed in Section 1,
we aim to provide a new baseline that can serve
as the foundation for future SotA models. For this
reason, we evaluate our proposed models by com-
paring them to this established baseline. Our goal
is to demonstrate that our method not only achieves
results comparable to or better than ATLOP, but
also offers a novel approach which addresses its
limitations. To provide a better understanding of
ATLOP and its components, we present a detailed
breakdown in the left portion of Figure 2, which
we elaborate on in this section.

3.1 Problem Formulation
The document-level relation extraction task in-
volves analysing a document D that contains a
set of entities ED={ei}|ED|

i=1 . The main objec-
tive is to determine the presence or absence of
various relation types between all entity pairs
(es, eo)s,o∈ED,s ̸=o, where the subject and object en-
tities are denoted as es and eo, respectively. A key
aspect to consider is that an entity can appear mul-
tiple times in the document, resulting in a cluster of

3



multiple mentionsMe={mi}|Me|
i=1 for each entity

e. The set of relations is defined asR∪ ∅, where ∅
represents the absence of a relation, often referred
to as "no-relation". Given the clusters of mentions
Mes andMeo , the task consists of a multi-label
classification problem where there can be multiple
relations between entities es and eo.

3.2 Previous Method: ATLOP
Text Encoding A special token ∗ is added at
the start and end of every mention. Tokens
TD={ti}|TD|

i=1 are encoded via a Pretrained Lan-
guage Model (PLM) as follows:

H,A = PLM(TD), (1)

where H ∈ R|TD|×d and A ∈ R|TD|×|TD| repre-
sent the token embeddings and the average atten-
tion weights of all attention heads, respectively,
extracted from the last layer of the PLM.

Entity Embedding (EE) For each individual en-
tity e with mentionsMe={mi}|Me|

i=1 , an entity em-
bedding he ∈ Rd is computed as follows:

he = log

|Me|∑

i=1

exp(Hmi), (2)

where Hmi ∈ Rd is the embedding of the special
token ∗ at the starting position of mention mi. The
choice of the logsumexp pooling function is based
on the research conducted by Jia et al. (2019). Their
study offers empirical evidence that supports the
use of this pooling function over others, as it facil-
itates accumulating weak signals from individual
mentions, thanks to its smoother characteristics.

Localised Context Embedding (LCE) ATLOP
introduces the concept of localised context em-
bedding to accommodate the variations in rele-
vant mentions and context for different entity pairs
(es, eo). Since the attention mechanism in the PLM
captures the importance of each token within the
context, it can be used to determine the context
relevant for both entities. The importance of each
token can be computed from the cross-token depen-
dencies matrix A obtained in Equation 1. When
evaluating entity es, the importance of individual
tokens is determined by examining the cross-token
dependencies across all mentions associated with
es, denoted asMes . Initially, ATLOP collects and
averages the attention Ami ∈ R|TD| at the special
token ∗ preceding each mention mi ∈Mes . This

process results in as ∈ R|TD|, which represents the
importance of each token concerning entity es (and
analogously ao for eo). Subsequently, the impor-
tance of each token for a given entity pair (es, eo),
denoted as q(s,o) ∈ R|TD|, is computed using as

and ao as follows:

q(s,o) =
as ◦ ao

a⊤
s ao

, (3)

where ◦ represents the Hadamard product. Con-
sequently, q(s,o) represents a distribution that indi-
cates the importance of each token for both tokens
in (es, eo). Finally, the localised context embed-
ding is computed as follows:

c(s,o) = H⊤q(s,o), (4)

So c(s,o) ∈ Rd corresponds to a weighted average
over all token embeddings that are important for
both es and eo.

Relation Classification and Loss Function The
representations hes , heo and c(s,o) are input to a
relation classifier, and the full model is fine-tuned
to predict the relation labels for (es, eo). The rela-
tion classifier and its loss function are detailed in
Appendix Subsection A.1.

4 Proposed Method: GADePo

We propose to avoid the reliance on the EE (i.e., he)
and LCE (i.e., c(s,o)) heuristic aggregation func-
tions by leveraging Transformers’ attention func-
tions to do aggregation. Given the observation
of Henderson (2020); Mohammadshahi and Hen-
derson (2020, 2021); Henderson et al. (2023) that
attention weights and graph relations are function-
ally equivalent, we introduce the inductive biases
of EE and LCE directly into the model’s input as
graph relations.

Our proposed graph-assisted declarative pooling
(GADePo) method replaces the hand-coded aggre-
gation functions EE and LCE with a declarative
graph specification. By using the intrinsic graph
processing capabilities of the Transformer model,
the specified graph serves as an explicit high-level
directive for the information aggregation process of
the Transformer. By inputting the graph relations
to the Transformer’s self-attention layers, GADePo
enables the aggregation to be steered by domain-
specific knowledge or desired outcomes, while still
allowing it to be learned by the Transformer, open-
ing up the possibility for a more tailored and cus-
tomised yet data-driven relation extraction.

4



Our GADePo model is illustrated in the right por-
tion of Figure 2. We address both EE and LCE
with the introduction of two special tokens, <ent>
(i.e., entity) and <pent> (i.e., pair entity), and two
explicit graph relations of types <ent>←→ ∗ and
<pent> ←→ ∗ in both directions, where ∗ repre-
sents the special token at the starting position of a
specific mention. The set of relations is specified
as cij ∈ C which each identify the relation label
from i to j. Each of these relation labels is asso-
ciated with an embedding vector of dimension d,
as are the special token inputs <ent> and <pent>.
These two special tokens are added to the PLM’s
vocabulary of input tokens, while relation label em-
beddings are input to the self-attention functions
for every pair of related tokens. These new em-
beddings represent learnable parameters that are
trained during the PLM fine-tuning on the down-
stream tasks. As reported in Appendix Subsection
A.2, GADePo adds a negligible number of extra
parameters, namely only the special token inputs
and the graph directional relation inputs.

Special Token <ent> To tackle the EE pooling
function, we add to the input tokens TD as many
<ent> special tokens as entities in the document.
This way each entity e has a corresponding en-
tity token <ent> in the input. We connect each
<ent> token with its corresponding cluster of men-
tions Me={mi}|Me|

i=1 , and vice-versa. The two
graph relations we use are thus <ent> −→ ∗ and
∗ −→ <ent>, where ∗ represents the special to-
ken at the starting position of mention mi. Each
<ent> token receives the same <ent> embedding,
with no positional encoding, since each one collec-
tively represents a set of mentions from different
positions in the input graph. These identical inputs
are only disambiguated through the connections to
and from mentions expressed as the <ent> −→ ∗
and ∗ −→ <ent> graph relations. These relations
tell the self-attention mechanism to use the <ent>
token to aggregate information from the associated
mentions, and thus the <ent> tokens have a direct
correspondence to the computed he in Equation 2.

Special Token <pent> ATLOP performs infor-
mation filtering by calculating via Equation 4 a
localised context embedding (LCE) c(s,o) that is
dependent on the cross-token attention matrix A
output by the PLM. The intuition behind it is that
the dependencies between different tokens are en-
coded as attention weights. We propose a straight-

forward adjustment of the input graph used for the
EE pooling to effectively model and capture these
dependencies. To address the LCE pooling func-
tion, we add to the input tokens TD as many <pent>
special tokens as the number of all possible pairs of
entities. Each special token <pent> thus refers to
a pair of entities (es, eo). We connect each <pent>
token with each mention in the two clusters of men-
tionsMes={mi}|Mes |

i=1 andMeo={mi}|Meo |
i=1 and

vice-versa. Since the attention weights used in LCE
are computed from these mention embeddings, we
expect that they are sufficient for the Transformer
to learn to find the relevant contexts. The two
graph relations we use are thus <pent> −→ ∗
and ∗ −→ <pent>. Analogously to the <ent>
tokens, the <pent> tokens all receive the same
<pent> embedding, with no positional embeddings,
and thus are only disambiguated by their different
<pent> −→ ∗ and ∗ −→ <pent> graph relations.
These relations tell the <pent> token to pay atten-
tion to its associated mentions, which in turn allows
it to find the relevant context shared by these men-
tions. Thus, each <pent> token can be seen as
having a direct correspondence to the computed
c(s,o) in Equation 4.

All equations relative to the relation classifica-
tion and the corresponding loss function reported
in Appendix Subsection A.1 remain valid as we
merely substitute the hand-coded computations of
he and c(s,o) with the embeddings of <ent> and
<pent>, respectively.

Text-Graph Encoding We follow Mohammad-
shahi and Henderson (2020, 2021); Henderson et al.
(2023) in leveraging the intrinsic graph processing
capabilities of the Transformer model by incorpo-
rating graph relations as relation embeddings input
to the self-attention function. For every pair of
input tokens ij, the pre-softmax attention weight
eij ∈ R is computed from both the respective to-
ken embeddings xi,xj ∈ Rd, and an embeddings
of the graph relation cij between the i-th and j-th
tokens. However, we change the attention weight
computation to:

eij =
xiWQ diag(LN(cijWC)) (xjWK)⊤√

d
,

(5)
where WQ,WK ∈ Rd×d represent the query and
key matrices, respectively. cij ∈ {0, 1}|C| rep-
resents a 0/1 encoded label of the graph rela-
tion between the i-th and j-th input elements, and
WC ∈ R|C|×d represents the relations’ embedding

5



Re-DocRED HacRED
Model Aggregation Ign F1 F1 P R F1

ATLOP⋆ he 75.27 75.92 76.27 76.83 76.55
GADePo (ours) <ent> 75.55 76.38 74.13 79.46 76.70
ATLOP•,⋄ he ; c(s,o) 76.82 77.56 77.89 76.55 77.21

ATLOP⋆ he ; c(s,o) 77.62 78.38 76.36 78.86 77.59
GADePo (ours) <ent> ; <pent> 77.70 78.40 78.27 79.03 78.65

Table 1: Comparative analysis between the previous method ATLOP and the proposed method GADePo on the test
set. ATLOP⋆ indicates our reimplementation of the previous method. For Re-DocRED and HacRED we report in
percentage the results obtained by Tan et al. (2022b) (ATLOP•) and Cheng et al. (2021) (ATLOP⋄), respectively.
The results are reported in terms of F1 scores, Precision (P ), and Recall (R), following the same metrics reported in
prior research specific to each dataset. Ign F1 denotes the F1 score that excludes relational facts shared between the
training and evaluation sets. We also comply with the standard practice where test scores are determined based on
the best checkpoint from five training runs with distinct random seeds.

matrix, so cijWC is the embedding of the rela-
tion between i and j. Finally, LN stands for the
LayerNorm operation and diag returns a diago-
nal matrix.

Compared to the standard attention function,
where eij = xiWQ(xjWK)⊤/

√
d, the relation

embedding determines a weighting of the different
dimensions. This is a novel way to condition on
the relation embedding compared to the original
formulation, which only models query-relation in-
teractions (Mohammadshahi and Henderson, 2020).
This change is motivated by our task requiring
a more flexible formulation which models query-
relation-key interactions via a multiplicative mech-
anism, without requiring a full d× d matrix of bi-
linear parameters. This way, a key will be relevant
to a query only when both agree on the relation.
In preliminary experiments, we explored various
methods for biasing attention and found that the
formulation presented in Equation 5 produced the
best results.

5 Experiments

5.1 Datasets and Models

Re-DocRED (Tan et al., 2022b) is a revisited
version of the DocRED (Yao et al., 2019) dataset.
It is built from English Wikipedia and Wikidata
and contains both distantly-supervised and human-
annotated documents with named entities, corefer-
ence data, and intra- and inter-sentence relations,
supported by evidence. It requires analysing mul-
tiple sentences to identify entities, establish their
relationships, and integrate information from the
entire document. We comply with the model used
by the authors and employ the RoBERTaLARGE

(Zhuang et al., 2021) model in our experiments.

HacRED (Cheng et al., 2021) is a large-scale,
high-quality Chinese document-level relation ex-
traction dataset, with a special focus on practical
hard cases. As the authors did not provide specific
information about the model used in their study,
we conducted our experiments using the Chinese
BERTBASE with whole word masking model (Cui
et al., 2021).

Datasets statistics Re-DocRED and HacRED
exhibit notable distinctions in their statistics, as
summarised in Table 2. Re-DocRED comprises
a larger number of facts, entities per document,
and relations compared to HacRED. This indicates
a potentially richer and more extensive dataset in
terms of factual information and relationship types.
However, HacRED contains more documents and
may present a broader range of scenarios for rela-
tion extraction, including more challenging cases,
as it has been specifically created with a focus on
practical hard cases.

Statistic Re-DocRED HacRED
Facts 120,664 65,225
Relations 96 26
Documents 4,053 9,231
Average Entities 19.4 10.8

Table 2: Re-DocRED and HacRED human-annotated
datasets statistics.

5.2 Results and Discussion
We follow the standard practice from prior research
and report the results of our experiments on the
Re-DocRED and HacRED datasets in Table 1 and
Figure 4. For all datasets and models, we provide
our reimplementation of the ATLOP baseline (indi-
cated as ATLOP⋆), which achieves or surpasses pre-
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Figure 3: Attention weights A from GADePo via Equation 1 for the document in Figure 1. For clarity, only a subset
of <ent> and document tokens are shown on the y-axis (queries) and x-axis (keys), respectively.

viously reported results for ATLOP, and compare
the proposed GADePo model against this model.
We evaluate all datasets using the F1 metric. For
Re-DocRED, Ign F1 (or Ignored F1) is also re-
ported, and refers to the F1 score that excludes
relational facts that are shared between the training
and development/test sets. This is done to avoid
potential biases in the evaluation metrics due to
overlap in content between the sets, which might
not reflect the model’s ability to generalise to truly
unseen data. For HacRED, we adhere to the for-
mat introduced by Cheng et al. (2021) and report
also the Precision (P ) and Recall (R) metrics. We
comply with previous research and report the test
score achieved by the best checkpoint on the de-
velopment set. In Appendix Subsection A.4, we
additionally present the mean and standard devia-
tion on the development set, calculated from five
training runs with distinct random seeds. We also
provide in Appendix Subsection A.4, the same set
of experiments conducted on the original DocRED
dataset. Training details and hyperparameters are
outlined in Appendix Subsection A.3.

Re-DocRED Results We evaluate our proposed
GADePo method against the previous ATLOP
method in two stages, first comparing the use of
<ent> tokens against the use of EE pooling (he),
and then comparing our full model against the full
ATLOP model, including <pent> tokens and LCE
pooling (c(s,o)), respectively.

Table 1 highlights the effectiveness of our pro-
posed method. When comparing he with <ent>,
we observe a noticeable improvement in both Ign
F1 and F1 scores, achieving 75.55% and 76.38%
respectively, compared to 75.27% and 75.92% at-
tained by ATLOP⋆. This demonstrates the practical
utility of employing the special token <ent> for in-
formation aggregation. This is illustrated in the at-
tention weights heatmap in Figure 3. Incorporating
c(s,o) and <pent> into the comparison, GADePo
maintains performance parity with the significantly

enhanced ATLOP⋆, which outperformed ATLOP•

from Tan et al. (2022b). The latter improvement
suggests that a more refined hyperparameter search
can lead to performance gains, as evidenced by
the increase in F1 score from 77.56% to 78.38%.
GADePo achieves an F1 score of 78.40%, affirm-
ing its competitive edge and the effectiveness of
employing <pent> for aggregation.

Model Aggregation Ign F1 F1

ATLOP⋆ he 76.39 76.97
GADePo (ours) <ent> 76.99 77.79
ATLOP⋆ he ; c(s,o) 77.49 78.09
GADePo (ours) <ent> ; <pent> 77.50 78.15

Table 3: Re-DocRED results on the test set following
prior finetuning on the distantly supervised dataset.

Table 3 illustrates the results obtained with prior
finetuning on the distantly supervised dataset,
which contains approximately 100K documents
(Yao et al., 2019). Interestingly, distant supervi-
sion appears to have a slightly negative impact on
the results of both methods when incorporating
c(s,o) or <pent>. However, it proves to be highly
beneficial when utilising solely he or <ent> for
aggregation. This suggests that although distant
supervision might introduce noise into the training
process, it can also provide valuable information
that improves model generalisation, particularly
when leveraging simpler feature representations
like he and <ent>, possibly due to their robustness
in capturing essential information amidst noise.

HacRED Results We observe a similar pattern
to Re-DocRED, with ATLOP⋆ displaying a slight
performance advantage over ATLOP⋄ from Cheng
et al. (2021) (Table 1). On this dataset, GADePo
shows a significantly improved performance, pri-
marily driven by a substantial increase in Recall
(R), indicating that the GADePo model is more
effective at identifying relevant instances. As al-
ready reported for the Re-DocRED dataset, the
performance boost after the inclusion of c(s,o) and
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Figure 4: Performance of ATLOP⋆ (he ; c(s,o)) and GADePo (<ent> ; <pent>) on the development set under
varying data availability conditions on Re-DocRED (4a) and HacRED (4b). The x-axis represents the percentage
and number of documents from the training dataset, while the y-axis displays the F1 score in percentage. Each point
on the graph represents the mean value, while error bars indicate the standard deviation derived from five distinct
training runs with separate random seeds.

<pent> into ATLOP⋆ and GADePo, respectively,
highlight the significant contributions of these fea-
tures. GADePo outperforms ATLOP⋆ with an F1

score of 78.65% compared to 77.59%. This larger
improvement on HacRED suggests that GADePo
is better at handling challenging cases, which is not
surprising given its greater flexibility over the fixed
pooling functions of ATLOP.

Data Ablation To evaluate the models’ sensitiv-
ity to dataset size, the performance evaluation de-
picted in Figure 4 compares ATLOP⋆ (he ; c(s,o))
and GADePo (<ent> ; <pent>) on the develop-
ment set, considering different levels of training
data availability on the Re-DocRED and HacRED
datasets. Accuracies generally converge as the
dataset sizes increase, but on the challenging cases
of HacRED, GADePo maintains a substantial ad-
vantage across the full range. On Re-DocRED,
GADePo catches up with and slightly outperforms
ATLOP⋆ as data size increases. This lower per-
formance on smaller datasets is presumably be-
cause GADePo must learn how to exploit the graph
relations to the special tokens <ent> and <pent>
and pool information through them, whereas for
ATLOP this pooling is hand-coded. On the Re-
DocRED dataset, ATLOP⋆ appears to have rela-
tively consistent variance, while GADePo exhibits
higher variance in the smaller training sets, while
on the HacRED dataset, GADePo is significantly
more stable for smaller datasets.

The data ablation analysis shows that the per-
formance of hand-coded pooling functions can be
dataset-specific, which restricts their adaptability.
In contrast, GADePo consistently outperforms its

hand-coded counterparts on larger datasets, and
matches them on all but some smaller datasets,
presumably due to its flexibility. This pattern sug-
gests that GADePo has a greater potential for op-
timisation, particularly on larger datasets. This
is supported by GADePo’s better performance on
HacRED, which is both larger and designed to be
more challenging than Re-DocRED.

6 Conclusion

In this paper we proposed a novel approach to
document-level relation extraction, challenging the
conventional reliance on hand-coded pooling func-
tions for information aggregation. Our method
leverages the power of Transformer models by
incorporating explicit graph relations as instruc-
tions for information aggregation. By combining
graph processing with text-based encoding, we
introduced the graph-assisted declarative pooling
(GADePo) specification, which allows for more
flexible and customisable specification of pooling
strategies which are still learned from data.

We conducted evaluations using diverse datasets
and models commonly employed in document-
level relation extraction tasks. The results of our ex-
periments demonstrated that our approach achieves
promising performance that is comparable to or bet-
ter than that of hand-coded pooling functions. This
suggests that our method can serve as a viable basis
for other relation extraction methods, providing a
more adaptable and tailored approach. In partic-
ular, recent methods have improved performance
by exploiting information about evidence, which
can naturally be incorporated in our graph-based
approach.
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Limitations

While the proposed GADePo model offers a
promising and innovative approach to relation ex-
traction, there are issues which the current study
does not address. According to the data in Ap-
pendix Table 2, the average number of entities per
document across datasets is approximately 15. This
means that, on average, there will be an additional
15 <ent> tokens and 105 <pent> tokens. Given
that the maximum allowable input length for the
models is 512 tokens, the inclusion of these extra
tokens results in roughly a 3% and 20% increase
in the overall input length for <ent> and <pent>,
respectively. It’s evident that the majority of the
increase in input length is due to the quadratic num-
ber of <pent> special tokens, but we believe that
an appropriate pruning strategy could easily reduce
this number to linear in the number of entities with-
out degrading accuracy. One such pruning strategy
could involve an <ent>-only model with a binary
classifier which is trained to predict pairs of related
entities. This model could then be used to prune
the set of candidate entity pairs for the final relation
classification, with <pent> tokens being instanti-
ated only for these candidate pairs. We have chosen
to leave this approach as a potential avenue for fu-
ture work, opting instead to focus on demonstrating
the promise of the current simpler formulation.
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our work, as it primarily presents an alternative ap-
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able. However, it is important to acknowledge that
these datasets and models may still require further
examination for potential fairness issues and the
knowledge they encapsulate.
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A Appendix

A.1 ATLOP: Relation Classification and Loss
Function

Relation Classification To predict the relation
between the subject entity es and object entity eo,
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ATLOP first generates context-aware subject and
object representations as follows:

zs = tanh(Ws[hes ; c
(s,o)] + bs) (6)

zo = tanh(Wo[heo ; c
(s,o)] + bo), (7)

where zs, zo ∈ Rd, [·; ·] represents the concatena-
tion of two vectors, and Ws,Wo ∈ Rd×2d together
with bs, bo ∈ Rd are trainable parameters. Then,
the entity pair representation is computed as:

x(s,o) = zs ⊗ zo, (8)

where x(s,o) ∈ Rd2 and⊗ stands for the vectorised
Kronecker product. Finally, relation scores are
computed as:

y(s,o) = Wrx
(s,o) + br, (9)

where y(s,o) ∈ R|R|, with Wr ∈ R|R|×d2 and
br ∈ R|R| representing learnable parameters. The
probability of relation r ∈ R between the subject
and object entities is computed as follows:

P (r|s, o) = σ(y(s,o)), (10)

where σ is the sigmoid function. To reduce the
number of parameters in the classifier, a grouped
function is used, which splits the embedding di-
mensions into k equal-sized groups and applies the
function within the groups as follows:

zs = [z1
s ; . . . ; z

k
s ] (11)

zo = [z1
o ; . . . ; z

k
o ] (12)

x(s,o) = [x(s,o)1 ; . . . ;x(s,o)k ] (13)

y(s,o) =
k∑

i=1

W i
rx

(s,o)i + br, (14)

where zi
s, z

i
o ∈ Rd/k, x(s,o)i ∈ Rd2/k, and W i

r ∈
R|R|×d2/k. This way, the number of parameters
can be reduced from d2 to d2/k.

Loss Function ATLOP introduces the adaptive
thresholding loss concept. This approach involves
training a model to learn a hypothetical threshold
class TH , which dynamically adjusts for each rela-
tion class r ∈ R. During training, for each entity
pair (es, eo), the loss enforces the model to gener-
ate scores above TH for positive relation classes

RP and scores below TH for negative relation
classesRN . The loss is computed as follows:

L =−
∑

s ̸=o

∑

r∈RP

exp(y
(s,o)
r )

∑
r
′∈RP∪{TH} exp(y

(s,o)
r′ )

− exp(y
(s,o)
TH )

∑
r′∈RN∪{TH} exp(y

(s,o)
r′ )

(15)

A.2 GADePo’s Extra Parameters
GADePo introduces few extra parameters to the
PLM. The amount of parameters is reported in Ta-
ble 4.

Parameter Model
RoBERTaLARGE BERTBASE

<ent> 1024 768
<pent> 1024 768
<ent> −→ ∗ 24 × 1024 12 × 768
∗ −→ <ent> 24 × 1024 12 × 768
<pent> −→ ∗ 24 × 1024 12 × 768
∗ −→ <pent> 24 × 1024 12 × 768
Total 100,352 38,400

Table 4: GADePo’s extra parameters count.

The introduction of these parameters results in
only a minimal increase in the overall parameter
count of the models. Specifically, GADePo’s aug-
mentation amounts to a mere 0.036% increase over
the BERTBASE model. In contrast, even a slight in-
crease of just one unit in BERTBASE’s hidden dimen-
sions would result in a 0.139% parameter increase,
which is roughly four times greater than the aug-
mentation introduced by GADePo. Given that such
a small change is incompatible with other architec-
tural constraints, such as the number of heads, it is
implausible that this minimal augmentation would
solely account for the observed performance gains.

This indicates that the performance improve-
ments are largely due to the effective inductive bias
introduced by GADePo, rather than the increase in
parameter count. The same rationale applies to the
results observed with RoBERTaLARGE.

A.3 Training Details
We generally comply with the hyperparameters of
ATLOP and set the output dimension in Equation
6 and Equation 7 to 768. We also set the block size
in Equation 11 and Equation 12 to 64, i.e., k = 12.

In all our experiments we perform early stopping
on the development set based on the Ign F1 + F1
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score for DocRED and Re-DocRED, and F1 score
for HacRED. The five different seeds we use are
{73, 21, 37, 7, 3}.

We use RAdam (Liu et al., 2020) as our opti-
miser. On the RoBERTaLARGE based models we
train for 8 epochs and set the learning rates to
3e−5 and 1e−4 for the PLM parameters and the
new additional parameters, respectively. On the
BERTBASE based models we train for 10 epochs
and set the learning rates to 1e−5 and 1e−4 for the
PLM parameters and the new additional parame-
ters, respectively. We use a cosine learning rate
decay throughout the training process.

In all our experiments the batch size is set to 4
for ATLOP and 2 for GADePo, with gradient accu-
mulation set to 1 and 2, for ATLOP and GADePo,
respectively. We clip the gradients to a max norm
of 1.0. All models are trained with mixed precision.

We run our experiments on two types of
GPUs, namely the NVIDIA V100 32GB for the
RoBERTaLARGE based models and NVIDIA RTX
3090 24GB for the BERTBASE based models, re-
spectively.

We use PyTorch (Paszke et al., 2019), Light-
ning (Falcon and The PyTorch Lightning team,
2019), and Hugging Face’s Transformers (Wolf
et al., 2020) libraries to develop our models.

A.4 Additional Results
Re-DocRED and HacRED Table 5 and Table
6 present additional results for Re-DocRED and
HacRED, respectively. In addition to the results
outlined in Section 5, these tables include the mean
and standard deviation on the development set, cal-
culated from five training runs with distinct random
seeds, as reported in Appendix Subsection A.3.

DocRED results The DocRED (Yao et al., 2019)
dataset consists of 56, 354 facts, 96 relations,
5, 053 documents, and 26.2 average number of en-
tities per document. In line with the approach taken
for Re-DocRED and HacRED, Table 7 and Figure
5 illustrate the results for DocRED.

10
[305]

20
[610]

30
[915]

40
[1221]

50
[1526]

60
[1831]

70
[2137]

80
[2442]

90
[2747]

100
[3053]

50

55

60

65

70

75

80

ATLOP ★ GADePo

% of training data [# documents]

F1

Figure 5: Performance of ATLOP⋆ (he ; c(s,o)) and
GADePo (<ent> ; <pent>) on the development set un-
der varying data availability conditions on DocRED.
The x-axis represents the percentage and number of
documents from the training dataset, while the y-axis
displays the F1 score in percentage. Each point on the
graph represents the mean value, while error bars in-
dicate the standard deviation derived from five distinct
training runs with separate random seeds.
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Dev Test
Model Aggregation Ign F1 F1 Ign F1 F1

ATLOP⋆ he 75.46± 0.16 76.16± 0.16 75.27 75.92
GADePo (ours) <ent> 75.46± 0.20 76.31± 0.24 75.55 76.38
ATLOP• he ; c(s,o) 76.79 77.46 76.82 77.56

ATLOP⋆ he ; c(s,o) 77.75± 0.08 78.41± 0.10 77.62 78.38
GADePo (ours) <ent> ; <pent> 77.48± 0.12 78.19± 0.14 77.70 78.40

Table 5: Results in percentage for the development and test sets of Re-DocRED. We report the results obtained by
Tan et al. (2022b) (ATLOP•) on Re-DocRED. ATLOP⋆ indicates our reimplementation of the previous method. We
report the mean and standard deviation of Ign F1 and F1 on the development set, calculated from five training runs
with distinct random seeds. We report the test score achieved by the best checkpoint on the development set. Ign F1

refers to the F1 score that excludes relational facts shared between the training and development/test sets.

Dev Test
Model Aggregation P R F1 P R F1

ATLOP⋆ he 77.37± 0.22 77.40± 0.31 77.39± 0.13 76.27 76.83 76.55
GADePo (ours) <ent> 72.96± 0.96 79.22± 1.20 75.96± 0.99 74.13 79.46 76.70
ATLOP⋄ he ; c(s,o) − − − 77.89 76.55 77.21

ATLOP⋆ he ; c(s,o) 77.18± 0.14 77.98± 0.66 77.58± 0.36 76.36 78.86 77.59
GADePo (ours) <ent> ; <pent> 75.98± 0.94 80.54± 0.72 78.19± 0.19 78.27 79.03 78.65

Table 6: Results in percentage for the development and test sets of HacRED. We report the results obtained by
Cheng et al. (2021) (ATLOP⋄) on HacRED. ATLOP⋆ indicates our reimplementation of the previous method. We
report the mean and standard deviation of Precision (P ), Recall (R) and F1 on the development set, calculated
from five training runs with distinct random seeds. We report the test score achieved by the best checkpoint on the
development set.

Dev Test
Model Aggregation Ign F1 F1 Ign F1 F1

ATLOP⋆ he 59.66± 0.20 61.60± 0.21 59.22 61.37
GADePo (ours) <ent> 59.04± 0.52 61.18± 0.46 59.30 61.63
ATLOP◦ he ; c(s,o) 61.32± 0.14 63.18± 0.19 61.39 63.40

ATLOP⋆ he ; c(s,o) 61.41± 0.26 63.38± 0.28 61.62 63.72
GADePo (ours) <ent> ; <pent> 61.19± 0.55 63.26± 0.48 61.52 63.75

Table 7: Results in percentage for the development and test sets of DocRED. We report the results obtained by Zhou
et al. (2021) (ATLOP◦) on DocRED. ATLOP⋆ indicates our reimplementation of the previous method. We report
the mean and standard deviation of Ign F1 and F1 on the development set, calculated from five training runs with
distinct random seeds. We report the test score achieved by the best checkpoint on the development set. Ign F1

refers to the F1 score that excludes relational facts shared between the training and development/test sets.
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Abstract

Question-answering for domain-specific appli-
cations has recently attracted much interest due
to the latest advancements in large language
models (LLMs). However, accurately assess-
ing the performance of these applications re-
mains a challenge, mainly due to the lack of
suitable benchmarks that effectively simulate
real-world scenarios. To address this challenge,
we introduce two product question-answering
(QA) datasets focused on Adobe Acrobat and
Photoshop products to help evaluate the perfor-
mance of existing models on domain-specific
product QA tasks. Additionally, we propose
a novel knowledge-driven RAG-QA frame-
work to enhance the performance of the mod-
els in the product QA task. Our experiments
demonstrated that inducing domain knowledge
through query reformulation allowed for in-
creased retrieval and generative performance
when compared to standard RAG-QA methods.
This improvement, however, is slight, and thus
illustrates the challenge posed by the datasets
introduced.

1 Introduction

The advancements in large language models
(LLMs) led to exponential growth in domain-
specific applications. Question Answering has
emerged as one of the prominent domain-specific
applications. As the demand for accurate and reli-
able QA systems increases, generic RAG-QA ap-
proaches often struggle to deliver satisfactory re-
sults within the specialized domains. This chal-
lenge has spurred active exploration in this area,
with researchers employing various novel method-
ologies (Nguyen et al., 2024; Setty et al., 2024;
Jiang et al., 2024; Rackauckas, 2024) to improve
QA systems.

Additionally, training and evaluating these sys-
tems rigorously remains crucial. This trend un-
derscores the critical need for domain-specific QA
datasets to facilitate the training and evaluation of

such systems. Notably, while efforts have been di-
rected towards releasing datasets across prominent
and expansive domains such as Medicine (Pal et al.,
2022; Pampari et al., 2018), Finance (Chen et al.,
2021; Zhu et al., 2021), and Legal (Zhong et al.,
2019; Chen et al., 2023a), there remains an appar-
ent scarcity of such datasets in the area of software
products.

To address this gap, our work investigates such
industry-specific QA datasets, namely the Adobe
HelpX datasets, and releases them for others to
benchmark against and further improve their QA
systems. These datasets comprise of user queries
and their corresponding answers pertaining to
Adobe products, specifically Acrobat and Photo-
shop. By providing these benchmark datasets, we
aim to offer valuable resources for assessing the
performance of domain-specific RAG-QA systems.
The datasets will be released after obtaining rele-
vant permissions from Adobe.

Furthermore, we introduce a novel LLM-based
Knowledge-Driven RAG-QA framework designed
to seamlessly accommodate domain knowledge
into RAG-QA systems. This framework leverages
comprehensive knowledge bases for query expan-
sion, thereby enhancing both retrieval and genera-
tion in domain-specific QA tasks.

Through extensive experimentation, we’ve de-
termined that performing accurate retrieval over
these datasets poses a unique challenge. Even in-
troducing this concept of query augmentation using
knowledge directly from the corpora only helped
improve the model so much. This illustrates how
these datasets are challenging ones - as even com-
plex frameworks such as the one we’ve proposed,
could only result in so much improvement.

By contributing these datasets and proposing an
innovative framework, we aim to advance LLM
technology and its application in domain-specific
QA tasks, ultimately improving user experiences
and operational efficiency across various industries.
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2 Related Work

2.1 Domain-specific question answering

Several research efforts have been made to cu-
rate domain-specific question-answering bench-
marks and training datasets, spanning domains
like biomedical (Pal et al., 2022; Pampari et al.,
2018; Li et al., 2021), finance (Chen et al., 2021;
Zhu et al., 2021), and legal (Zhong et al., 2019;
Chen et al., 2023a). In contrast, our work focuses
on product question-answering, which is valuable
in many enterprise settings. Furthermore, unlike
many of these existing datasets that provide a sim-
pler multiple-choice question-answer format, our
work focuses on generative question-answering.

Among the research efforts in product-specific
question-answering, Yang et al. (2023) also pro-
vides a dataset focused on answering user queries
about Microsoft products. However, many of
the question-answer pairs in this dataset require a
yes/no answer, with only a small portion requiring
more complex answers. The PhotoshopQuiA (Dul-
ceanu et al., 2018) dataset is more closely related to
our work in terms of domain, as it is also based on
the Adobe Photoshop product. However, it specif-
ically focuses on why questions. In contrast, our
work centers on how-to queries, necessitating the
model to generate a detailed sequence of steps to
complete an operation. These answers are consid-
erably more challenging to generate because their
usefulness hinges on the accuracy of each individ-
ual step. If even one step in the generated answer
is incorrect, the overall utility of the answer is com-
promised.

2.2 Augmenting LLMs

The Retrieval Augmented Generative (RAG) frame-
work has been extensively worked on for years
and (Gao et al., 2024; Zhao et al., 2024; Li et al.,
2022) present a detailed examination of the pro-
gression of RAG paradigms (Ma et al., 2023; Ilin,
2024; Shao et al., 2023; Yu et al., 2023), and in-
troduce the metrics and benchmarks for assessing
RAG models (Chen et al., 2023b; Lyu et al., 2024).
One suggested future direction involves identifying
methods to fully harness the potential of Large Lan-
guage Models (LLMs) to enhance domain-specific
RAG systems, aligning with our aim of leveraging
LLMs to answer queries related to Adobe products.

Recent efforts aim to enhance LLMs’ contextual
generation in specific domains by incorporating ex-
ternal knowledge (Mialon et al., 2023). Fatehkia

et al. (2024) propose Tree-RAG where they utilize
a tree structure to depict entity hierarchies in orga-
nizational documents and supplement context with
textual descriptions for user queries. However, their
approach is ineffective for documents lacking hier-
archical organization such as ours. Another method
to incorporate industry domain-specific informa-
tion is presented by Yang et al. (2023). It involves
getting a domain-specific language model with
aligned knowledge and then feeding it to an LLM
to generate enriched answers. We propose an alter-
native method to solve domain-specific RAG-QA
through the construction of a comprehensive knowl-
edge base consisting of triples and a multi-stage
query reformulation pipeline. Zhu et al. (2024)
evaluates LLMs for Knowledge Graph (KG) tasks
across diverse datasets, highlighting their suitabil-
ity as inference assistants. Additionally, Jagerman
et al. (2023) explore query expansion by prompting
LLMs through zero-shot, few-shot and Chain-of-
Thought (CoT) learning. Our work takes it a step
further by incorporating knowledge base tuples in
query expansion.

3 Dataset Creation

3.1 Data Pre-processing

The corpus is sourced from the publicly available
Adobe HelpX1 web pages for Acrobat and Photo-
shop products, which explain how to use the func-
tionalities present in these products.

A crawling script is employed to extract the con-
tent from the web pages, segmenting them into
distinct sections based on H2 headings. Each of
these sections typically represents a specific topic
or task within the respective product. The resulting
sections tend to be non-overlapping, facilitating
targeted analysis.

Throughout the process, all clickable and in-
section links within the web pages are transformed
into plain text to maintain consistency, while im-
ages are omitted to ensure that the corpus com-
prises solely textual content.

3.2 Question-Answer Pairs with URLs
Creation

Gold question-answer (QA) pairs are meticulously
crafted for analysis. Product experts, recruited
through Upwork for Adobe Acrobat and Telus In-
ternational, are instructed to write how-to questions

1https://helpx.adobe.com
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Figure 1: The figure represents our proposed framework. 1a depicts the main RAG-QA pipeline consisting of a retriever and a
generator, along with our proposed query reformulation sub-pipeline. 1b gives a detailed view of the various components in our
sub-pipeline. The process starts with the generation of knowledge base triples using the Triples Generator. Next, all matching
triples to the user query are retrieved using the Triple Retriever, classified based on their relevance to the original query using the
Relevance Classifier and finally reformulated using the Query Enhancer.

and answers that provide procedural steps to ac-
complish specific tasks using the software. Further-
more, each QA pair is mapped with its respective
source web page.

The experts manually created question-answer
pairs based on the respective HelpX web pages for
Adobe Acrobat. Conversely, for Adobe Photoshop,
GPT-4 initially generated question-answer pairs
based on the web pages, which are subsequently
reviewed and corrected by product experts to guar-
antee accuracy and relevance to the question and
the answer.

This systematic approach of the question-answer
pair generation ensures the integrity and usability
of the dataset for evaluation and research in the
domain of software products and support.

4 Data Analysis and Statistics

The Adobe Acrobat and the Photoshop datasets
contain questions, answers, and corresponding
source web page URLs. All questions in this
dataset are how-to type asking steps to perform
operations such as changing text font, editing
text in a PDF, and creating certificate-based
signatures. The gold answers to these questions
provide procedural steps to accomplish these
operations and the URLs of the web pages allow
for independent verification of the answer. Table 1
provides insights into various metrics, such as the

count of question-answer pairs, the average length
of questions and answers, and the number of web
pages and sections.
Answering these how-to queries presents sig-

Metric Acrobat Photoshop

No. of QA pairs 131a 96
Avg. length of questions (words) 8.80 12.74
Avg. length of answers (words) 118.71 98.71
Total no. of web pages 146 349
Total no. of sections 1281 2478
Avg. no. of sections per web page 8.78 7.1
Avg. length of the section (words) 135.75 121.09

Table 1: Statistics for the Adobe Acrobat and Photo-
shop datasets.

aThe count includes 22 composite questions. We focus
on non-composite questions in this work (data analysis
and experimentation). Composite Questions are an area
for future exploration.

nificant challenges due to the critical nature of
every step involved. It’s essential to emphasize
that for an answer to the "How to" query to be
entirely accurate, each step must be precise, and
all steps must be in the correct sequence. Even
a minor mistake in the explanation of a step or
its order can invalidate the entire utility of the
answer. Moreover, the average number of steps
per response for a query in the Adobe Acrobat
dataset is 4.71, indicating that most queries
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requires multi-step solutions. Below is an example
highlighting the necessity for accurate and detailed
instructions within every step of the response.

Sample Q&A from the dataset

Q: How to insert Images into a PDF?
A: 1. Open the PDF in Acrobat and go to
the Edit menu.
2. Select Image from the Add Content sub-
menu.
3. In the dialog box, choose the image file
you want to insert.
4. Select the location where you want to
insert the image or use the drag option to
resize it as you insert.
5. A copy of the image file will appear on
the page with the same resolution as the
original file.

Adding to the complexity, a substantial portion
of the Acrobat dataset, over 50%, is comprised of
implicit questions, defined by their brevity and con-
versational tone, lacking clear indications of user
intent, as shown in Table 2. Furthermore, close to
a quarter of the questions of the Acrobat dataset
are ambiguous, lacking clear context and leading
to multiple potential interpretations of the ask. Our
proposed QA framework has been designed consid-
ering these challenges and it effectively interprets
the user ask.

To assess the generalizability of our proposed
QA framework, we curated an additional synthetic
dataset focused around Adobe Photoshop product,
closely resembling Adobe Acrobat in terms of ques-
tion type, question and answer lengths, as shown
in Table 1. Additionally, the average number of
steps per answer for Photoshop dataset is 4.6. How-
ever, since these are synthetically framed queries,
they are well-formed, explicit, and unambiguous.
By contrasting the characteristics of the synthetic
dataset with those of Adobe Acrobat, we aim to
evaluate the adaptability of our approach.

Moreover, both datasets serve as evaluation
benchmarks, representing real-world user queries
(both implicit and ambiguous) in Adobe Acrobat
and controlled questions in the synthetic Adobe
Photoshop dataset. They offer question-answer
pairs for diverse scenarios, making them valuable
resources for research in the software product do-
main.

5 Methodology

As summarized by (Zhao et al., 2024; Li et al.,
2022; Gao et al., 2024; Lewis et al., 2021), in
a standard RAG-QA process, upon receiving an
input query, the retriever identifies and retrieves
pertinent data sources, which are subsequently
utilized by the response generator to enrich the
overall generation process. To enable Adobe
domain-specific QA, we add an initial query
reformulation stage which enhances the user query
using knowledge base triples. Query reformulation
or rewriting (Anand et al., 2023; Ma et al., 2023)
encompasses a set of techniques to transform
a user’s original query into one that’s better
aligned with the user’s intent, thereby enhancing
the retrieval outcomes. Our proposed query
reformulation pipeline consists of multiple steps
as shown in Fig.1. It starts with the generation of
knowledge base triples using the Triples Generator.
Next, all matching triples to the user query are
retrieved using the Triple Retriever, classified
based on their relevance to the original query using
the Relevance Classifier and finally reformulated
using the Query Enhancer. Refer to Appendix E
for the LLM prompts used at various stages.
Given below is a detailed outline of the different
components in our pipeline:

Step 1: Triples generation. The goal is to
represent each document as a collection of triples,
each of which represents the key information
contained within a document. Each triple is of
the form (Source, Action, Target) to mimic what
might be asked through a query i.e. assistance
to act on a target. E.g., one of the generated
triples from a document about editing text and
text boxes is (rotation handle, rotate, text box)
- the source of the action (rotate) is the rotation
handle, which acts on a text box. Similarly, for
each document, the LLM contextualizes input text
using its vast knowledge base, identifying entities,
actions, and relationships, before generating triples
by selecting relevant phrases as sources, actions,
and targets, informed by inferred context and
linguistic patterns. The number of triples for each
document varies (approximately 1 to 35 triples)
based on the document’s content and the model’s
comprehension. Each triple is then encoded
into a numerical vector representation using a
pre-trained sentence encoder model which converts
the textual elements of the triple into dense vec-
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Category Count of questions (%) Question Example

Explicit 48 (42.10%)
I need to increase image in PDF towards right direction,

how to do that in Acrobat?
Implicit 66 (57.89%) resize jpg in Acrobat

Ambiguous 28 (24.56%) Unable to delete PDF content need help.

Table 2: Question Categories with examples in the Acrobat dataset.

tors. These are organized into a high-dimensional
index structure, enabling efficient similarity search.

Step 2: Triples Retrieval. This stage ac-
cepts the user query as input and then searches
the vector store to retrieve all triples related to the
query by calculating the similarity scores between
the query vector and the vectors of stored triples,
utilizing a similarity search algorithm. For every
user query, it over-retrieves numerous triples.

Step 3: Relevance Classification. Through
the previous step, we obtain numerous triples that
have some relevance to the user query. In this
stage, we use the capabilities of an LLM to identify
only those triples that are the most relevant to the
user query. The content of the document along
with the list of the triples retrieved in Step 2 are
passed to the LLM as a prompt with the instruction
that it identifies and return only those triples that
are the most relevant to the user’s query. Only the
triples that are classified as relevant are considered
in the subsequent steps.

Step 4: Query Enhancement. Here the
user query is reformulated to ensure that it has all
the necessary information within it that can help
the retriever fetch the correct associated documents.
This reformulation is a form of query enhancement
where the user query is augmented with words that
are used interchangeably in the Adobe products
domain. This gives more information for the
retriever to use through which it can perform a
more accurate search over its vector store and
return the documents that are more likely to
be relevant. The relevant triples along with the
original user query are passed as the prompt to the
LLM which rephrases the query.

6 Experiments

We conducted a variety of experiments (as shown
in Tables 3 and 4) on the Adobe datasets, where

the main datasets formed the corpus of texts to be
retrieved from, a selected few of which would be
passed in as part of the prompt to the LLM; and
the gold set was used for measuring performance.
They ranged from using different retrievers to incor-
porating multiple components and techniques into
the RAG-QA pipeline to achieve a performance
gain. Throughout the processes we used GPT-3.5
0301 and GPT-4 0314 from Azure OpenAI.

6.1 Baselines

BM25 retriever + LLM: We utilize a BM25
retriever to scan the document corpus and select
the top k (k=3) most relevant documents based
on the user’s query. The relevance of each docu-
ment is calculated by considering the frequency
of query terms within the document and the
document’s length relative to the entire corpus.
These selected documents then serve as contex-
tual input for subsequent response generation tasks.

DPR + LLM: The Dense Passage Retrieval
(DPR) method utilizes embeddings to represent
passages and queries as vectors, which are then
indexed using a similarity search algorithm. When
a query is received, DPR compares the vector
representation of the query with those of passages
in the store, selecting the top k documents with
the highest similarity scores as context for answer
generation.

General purpose LLM (or QR with no
Triples): We add an intermediate step of query
reformulation using an LLM to the second baseline.
The LLM is instructed to improve the original user
query directly without any additional information,
i.e. without the addition of domain knowledge into
the query.

6.2 Evaluation Methods

We use different metrics to evaluate the perfor-
mance of the two main components of the RAG-
QA pipeline. For retrieval, we employ the Hit Rate
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Retriever Query reformulation
method

Retriever
Hit Rate

Answer Similarity Score

ROUGE-L BERTScore G-Eval

Baselines
BM25 None 41.2% 0.301 0.835 0.412
DPR None 73.6% 0.409 0.859 0.574

Ours DPR augmentation with
domain-specific triples 74.7% 0.416 0.860 0.578

Ablation DPR via general purpose LLM
(w/o triple retriever and relevance classifier) 70.2% 0.393 0.855 0.562

DPR w/o triple relevance classifier 65.7% 0.385 0.852 0.557

Oracle DPR w/o triple retriever
(triples obtained from gold documents) 80.7% 0.455 0.870 0.649

Table 3: Performance of baseline methods, our proposed method, and the ablation experiments over Acrobat test set.
In all the above experiments, we use GPT3.5 as the LLM for triple generation and answer generation. The semantic
similarity scores are computed between the gold and the generated answer. Among ablations, in w/o triple relevance
classifier setting, we provide all retrieved triples to the query expansion model; in via general purpose LLM setting,
we only use LLM to reformulate query without including any triples. In the Oracle setting, w/o triple retriever, we
use gold documents to generate triples and provide them to the relevance classifier. This setting gives us an upper
bound on the performance when correct knowledge triples are known. The reported hit rate is the top-3 hit rate.

or the number of times the Gold document was
correctly retrieved as the metric. To measure the
quality of the generated answers, multiple metrics
are explored. As supported by Yang et al. (2023),
ROUGE-L (Lin, 2004) was utilized for measuring
the lexical overlap between the generated answers
and Gold answers, and BERTScore (Zhang et al.,
2020) for calculating the semantic overlap by mea-
suring the distances of embeddings between both
the answers. Additionally, we incorporate G-Eval
with GPT-4 (Liu et al., 2023) as an LLM-based
metric to measure the similarity, leveraging its ca-
pability to provide a highly adaptable and versatile
evaluation with human-like accuracy, enhancing
the comprehensiveness of our evaluation approach.
Apart from these, we also perform human evalua-
tion to ensure correctness since there is a lack of
good metrics for long-form answers (Yang et al.,
2023; Fan et al., 2019).

7 Results

7.1 Performance on the Adobe dataset

Table 3 presents the results for baseline methods,
our proposed method, and the ablations of different
components in our proposed method. We observe
that our proposed method outperforms (Hit Rate:
74.7%; GPTEval: 0.58) the baselines without any
query reformulation when using BM25 (Hit Rate:
41.2%; GPTEval: 0.41) and DPR retrievers (Hit
Rate: 73.6%; GPTEval: 0.57). Among the baseline
retrievers, the DPR-based method performs better

than the BM25 retrieval. Therefore, we present
other results using the DPR retriever.

Our method also performs better than the base-
line using simple LLM prompting (i.e., without
including any domain-specific knowledge) to re-
formulate the query (Hit Rate: 70.2%; GPTEval:
0.56). On qualitative examination of reformulated
queries, we observe that while query reformulation
using a general-purpose LLM can make queries
more grammatical or well-formed, it still cannot
augment the queries with domain-specific knowl-
edge. On the other hand, our method of using
LLM-generated triples can help link entities that
have similar meanings within the domain. For in-
stance, for the query "How to convert word docs
to pdf," our method retrieves triples that aid in re-
formulating the query to "How to convert files to
pdf," thereby assisting in retrieving the correct doc-
ument.

7.2 Ablation Studies

Next, we perform a series of ablations on our frame-
work to evaluate the functions of various compo-
nents in our pipeline.

Ablation on relevance classifier: We directly
provide all the triples retrieved by the triples re-
triever to the query expansion model without filter-
ing out any retrieved triples via the relevance clas-
sifier. This approach performs worse than our pro-
posed model (Table 3), since the retrieved triples
may include numerous noisy ones, which are then
integrated into the query through the query expan-
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Retriever Query reformulation
method

Retriever
Hit Rate

Answer Similarity Score

ROUGE-L BERTScore G-Eval

Baselines
BM25 None 79.17% 0.336 0.822 0.494
DPR None 92.70% 0.470 0.879 0.828

Ours DPR augmentation with
domain-specific triples 92.70% 0.480 0.880 0.776

Ablation DPR via general purpose LLM
(w/o triple retriever and relevance classifier) 83.33% 0.406 0.859 0.692

DPR w/o triple relevance classifier 91.67% 0.447 0.873 0.755

Table 4: Performance of baseline methods, our proposed method, and the ablation experiments over the Photoshop
test set. In all the above experiments, we use GPT3.5 as the LLM for triple generation and answer generation. The
semantic similarity scores are computed between the gold and the generated answer. The reported hit rate is the
top-3 hit rate.

sion model, resulting in a noisy query. Thus, our
results highlight the necessity for the relevance clas-
sifier to provide only highly relevant triples to the
query expansion model.

Ablation on Triple Retriever: In this experi-
ment, we only consider gold documents annotated
for a given query in the Adobe dataset and generate
triples from them. The generated triples are fil-
tered via the relevance classifier and then fed to the
query enhancer. As shown in Table 3, this setting
performs the best due to the use of highly relevant
triples for query reformulation. Our results high-
light the importance of building an efficient triple
retriever to improve overall performance.

7.3 Performance on the Photoshop dataset

Table 4 presents the results over the Photoshop test
set. Once again, we observe that our proposed
method is on par with the baseline, with a slight
decrease in the GEval score. We attribute this to
the fact that the Photoshop test set queries are al-
ready properly formulated; and reformulating these
queries results in a slight deviation, hence the de-
crease in the G-Eval score. This illustrates that
the performance of our proposed method is not
dataset-specific. The pipeline is flexible enough
to incorporate multiple different corpora - having
created the respective knowledge bases.

7.4 Error analysis

While our method is able to link entities that are re-
lated in a particular domain, we also observe some
cases of errors. For instance, the query ‘Create
PDFs of specific size by cutting a large PDF into a
smaller file size.’ was reformulated to ‘How can I
reduce the size of a PDF file?’ as a result of retriev-

Figure 2: GEval score relative to the position the gold
document is passed in as context over Acrobat test set.

ing the following triples :
1. (Reduce File Size command, reduces, size of
PDF), 2. (PDF, reduce, size), 3. (PDF Optimizer,
reduces, size of PDF files). These triples seemed
to focus more on the keyword "size" and seemed
to attribute the word "cutting" to reducing, while
the intention of the original query was more to-
wards splitting a PDF into multiple PDFs. This
reformulation seemed to mis-interpret the original
question, which resulted in incorrect retrieval. We
attribute the source of such error to the noise origi-
nating from the retrieved triples that are irrelevant
to the user query. Our analysis further highlights
the importance of a high-precision triple retriever,
as also suggested by our ablation study, which ex-
cludes the triple retriever and relies solely on triples
from gold documents. Furthermore, another cause
for concern was the similarity score metrics only
slightly increasing when compared to their retrieval
metric counterparts. We realized that hit rate may
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Figure 3: GEval score relative to the position the gold
document is passed in as context over Photoshop test
set.

not offer a holistic understanding of our retrievers
performance. (Ravaut et al., 2024) suggests that
LLM’s are sensitive and exhibit different utilization
of input tokens depending on their position within
the context provided, which we also found to be the
case as shown in Figure 2 3. It illustrates that the
rank, or position, of the retrieved gold document
impacts generation to a large extent, and is thus
more indicative of proper retrieval than just hit rate
alone. Following this, we decided to also consider
NDCG as an evaluation metric, and the results are
shown in Table 5.

Model NDCG

Query Reformulation w/ Triples(Proposed Model) 0.447
Query Reformulation w/o Triples 0.453
No Query Reformulation (DPR Baseline) 0.507

Table 5: NDCG values for different models.

7.5 Performance using GPT-4o
Finally, we test our framework using a state-of-the-
art model, GPT-4o, as well as different embeddings
for the retriever to see how the performance would
translate. In this experiment, we pass in a varying
number of retrieved documents, and observe the
corresponding NDCG and GEval values. Figures
4 and 5 present these results over the Acrobat test
set. While the proposed model still outperforms
the baseline in both of these metrics, vanilla query
reformulation without triples seems to greatly out-
perform the aforementioned. Upon further quali-
tative analysis it was inferred that while GPT3.5
was more lax on introducing information from the
triples into the query; GPT-4o tried to incorporate

all of the information, which resulted in a far nosier
query, thus leading to poorer retrieval.

Figure 4: NDCG scores for our proposed model, the
DPR baseline, and query reformulation without triples
using an LLM (noTrip) over the Acrobat test set.

Figure 5: GEval scores for our proposed model, the
DPR baseline, and query reformulation without triples
using an LLM (noTrip) over the Acrobat test set.

Conversely, we observe the opposite results over
the Photoshop dataset, as shown in Figures 6 and
7, which indicate that the baseline outperforms the
proposed models in this setting. We attribute this
to the fact that the Photoshop test set was synthe-
sized using LLMs, which resulted in accurately for-
mulated queries. In such scenarios, the proposed
model under performs the baseline, as it tries to
reformulate the query and deviates too much from
the original meaning in doing so, thus resulting in
poorer retrieval.

8 Conclusion

In this paper, we introduce two QA datasets fo-
cused on Adobe Acrobat and Photoshop products,
that serve as benchmarks to evaluate an RAG-QA
framework tailored for domain-specific procedural
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long-form QA datasets. We also introduce a novel
and detailed pipeline with components directed to
improve the retrieval and generation metrics in such
QA datasets. It equips LLMs with domain-specific
knowledge through the use of Knowledge Base
triples to bridge the gap between general RAG-QA
methods and industry demands. Through various
experiments we showcase the effectiveness and
limitations of our proposed pipeline in standard
metrics.

9 Limitations

This research presents multiple opportunities for
improvement that can be explored further. To
enhance the versatility and applicability of our
method, it would be advantageous to explore its
effectiveness across a broader range of larger
industry-specific datasets beyond those provided by
Adobe. Additionally, although our RAG-QA frame-
work exhibits advancements over the baselines and
offers valuable insights, the noise introduced by the
LLM during query reformulation makes room for
enhancement in the retrieval process. Moreover, ex-
panding the application of our framework beyond
text-based QA scenarios to include multi-modal
capabilities opens up exciting new possibilities and
broadens its potential impact. Lastly, it’s important
to note that assessing long-form QA remains an on-
going area of research, highlighting the necessity
for a well-defined and automated metric to ensure
accurate evaluation. Addressing these limitations
is crucial for advancing the efficiency and scope of
future research endeavors.
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B Prompt Structures

In this section we have listed the high-level struc-
ture of all the prompts used for the components of
our pipeline.

Triples Generator LLM prompt

System:
You are an assistant for the Adobe Acrobat
application that helps create tuples of the form
(source, action, target) based on the information
given to you.

User:
You are given a section from an adobe help docu-
ment. Extrapolate the most relevant relationships
you can from the context and generate tuples of
the form (source, action, target). Ensure that the
sources, actions, and targets are directly present in
the provided context.\n
You must use only the provided data in variable
’Context’ to identify relationships.\n
You must not use any other information from any
other source or from previous knowledge beyond
the provided ’Context’.\n
Example: If the document contained the phrase "To
edit the image, first click on the triple line menu",
one relevant tuple would be (triple line menu, edit,
image). Here, the source of the action (editing the
image) is the triple line menu. The direct effect of
this action is on the image, hence that is the target.
In a similar manner, create tuples for the provided
context.
Context: <CONTEXT>
Constraints:\n
1. The created tuples must form the same format as
the example provided.\n
2. The source and target in the tuple must only
reference objects or menu items, and no actions\n
3. Ensure that the tuples generated are all related to
the title of the section: <SECTION HEADER>\n
4. Only generate the most relevant tuples for the
provided document with the given section header\n
5. You must make the contents of the tuples short
and concise\n
6. Ensure the words "Adobe", "PDF", and
"Acrobat" are not in the generated tuples.\n

Relevance Classifier LLM prompt

System:
You are an assistant for the Adobe Acrobat
application. You are designed to filter out the
information provided and classify what is most
relevant to the given query.

User:
A user has provided you with the following
query: <USER QUERY>\n
Use the data given in the variable ’Context’ to
classify which of the data elements are most
relevant to the user’s query.\n
Data in the ’Context’ variable is of the form
(source, action, target), where the first value
contains the source of the action that is directed
towards the target.
Example: One data element could be (triple
line menu, edit, image). If the query was asking
about how to edit an image, this element would
be relevant. However, if the query was instead
asking how to edit a video, it would be very
irrelevant, and hence should not be included.
The presence of a query word in the tuple does
not make it relevant, look at the meaning as
well when you are considering relevance. In
a similar manner, filter out the context for the
provided provided document.
Context: <CONTEXT>
Constraints:\n
1. Retrieve the data elements that are most
relevant to the action that the user is trying to
do in the query provided.
2. Ensure that the source and target of the data
elements retrieved are similar to what is present
in the query. \n
4. Give the most relevant data elements in
a numbered list, and only provide the data
elements themselves. No explanation.\n
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Query Enhancer LLM prompt

System:
You are an assistant that is designed to only
enhance user queries.

User:
You are given a query by the user and you must
enhance the query by only using the data provided
in variable ’Tuples’. The ’Tuples’ variable is of the
form (source, action, target).\n
Constraints:\n
1. Rephrase the query using the provided tuples,
but do not change the meaning of the initial
query.\n
2. Only use information from the tuples that are
relevant to the query to reform the query.\n
3. Make the rewritten query one sentence at most.\n
4. Re-write the query in a manner similar to how a
human might search for an answer on a help page.
Keep the query short.\n
5. Only reformulate the given query, without
answering it.\n
6. You must not use any other information from
any other source or from previous knowledge
beyond the provided ’Tuples’.\n
7. Ensure the words "Adobe" and "Acrobat" are
not in the query.\n
8. Only answer with one reformulated query.
Example:\n
Given Query: ’how to remove letters from a text
box’\n
Tuples: (text, delete key, remove),(page thumbnail,
delete key, remove), (text, font item, edit), (text,
font item, remove)\n
Reformulated Query: how to delete text
In a similar manner, reformulate the query below.
Given Query: <USER QUERY>
Tuples: <Tuples>
Reformulated Query:

DPR + General purpose LLM Prompt

System:
You are an assistant for the Adobe application
that is designed to only enhance user queries.
When asked about anything that does not relate
to Adobe, only reply with ’Content not found’

User:
You are asked a question by the user and you
must enhance the query. Do not answer the
query, only change it’s wording.\n
You must not use any other information from
any other source or from previous knowledge
beyond the query provided.\n
Understand what might be the cause of confu-
sion, and rewrite the query by trying to model
what the user could have been asking.\n
Ensure that the reformulated query is bound by
the given constraints.\n
Query to be enhanced: "query" Constraints:\n
1. Make the rewritten query one sentence at
most.\n
2. Make sure that the rewritten query does not
have any excessive adjectives, and is short and
to the point.\n
3. Only reformulate it, without answer it.\n
4. Only answer with the reformulated query.
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C Graphs of Evaluation Metrics across
models using GPT-4o

Figure 6: NDCG scores for our proposed model, the
DPR baseline, and query reformulation without triples
using an LLM (noTrip) over the Photoshop test set.

Figure 7: GEval scores for our proposed model, the
DPR baseline, and query reformulation without triples
using an LLM (noTrip) over the Photoshop test set.

D Examples of proposed method
outperforming DPR + GPT3.5.

We have listed some examples in Table 6 where
the proposed model using query reformulation
outperforms the DPR + GPT3.5 baseline.

E Examples of proposed method under
performing DPR + GPT3.5

We have listed some examples in Table 7 where the
proposed model using query reformulation under
performs the DPR + GPT3.5 baseline.
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Original query Reformulated
Query

Generated Answer with-
out QR

Generated Answer with
QR

Gold Answer

test box resizing
in acrobat

How to resize a
text box or text in
a PDF using the
Edit panel in Ac-
robat?

To resize a box in Acro-
bat, follow these steps: 1.
Open the PDF file in Ac-
robat.2. Choose the ham-
burger Menu (Windows),
or the File menu (macOS)
> Print. 3. Select Size,
and choose one of the fol-
lowing options: - Scales
small pages up and large
pages down to fit the pa-
per. [...] 4. If you don’t
see a Page Scaling op-
tions, click the arrow next
to the Printer menu to ex-
pose more controls in the
Print dialog box.

To resize a text box in Ac-
robat, follow these steps:
1. Select the text box you
want to resize by clicking
on it. 2. Drag one of the
selection handles on the
edge of the box to resize
it. 3. To maintain align-
ment with other list items,
press Shift as you drag.
That’s it! You have suc-
cessfully resized the text
box in Acrobat.

1. Choose ‘Edit‘ from
the mega verb bar. The
PDF switched is to edit
mode and the Edit PDF
panel will be displayed.
2. Click on an edge of
the text box to select it.
4. Drag any of the han-
dles that appear on the
corners or edges of the
text box to resize it.

adding image on a
pdf file

What are the dif-
ferent ways to add
images to a PDF
file?

To add an image to a PDF
file, follow these steps: 1.
Open the PDF file in Ac-
robat. 2. Choose Edit
from the menu and se-
lect the image or object
you want to edit. 3. If
you want to edit multiple
items together in the same
file, select them all. 4.
Under Adjust Objects in
the Edit panel, select Edit
using, and then choose an
editor. 5. Make the de-
sired changes in the edi-
tor. 6. Choose File > Save
in the editor to save the
changes. 7. The object
is automatically updated
and displayed in the PDF
when you bring Acrobat
to the foreground. If you
want to copy and paste an
image [...] file or a clip-
board.

To add an image to a PDF
file, follow these steps:
1. Open the PDF file in
Acrobat. 2. Select Edit
PDFf̈rom the right-hand
pane. 3. Click on Image
in the toolbar. 4. Select
the image file you want to
insert. 5. Choose where
you want to insert the im-
age or drag to resize it as
you insert. 6. Once the
image is added, you can
move or resize it by hov-
ering over the image and
using the move or resize
icons. 7. To adjust the im-
age further, select Image
from the left panel, [...]
select File > Save.

1.Open the PDF in Acro-
bat and go to the ‘Edit‘
mega verb. 2. Select
‘Image‘ from the ‘Add
Content‘. 3. In the di-
alog box that appears,
choose the image file
you want to insert. 4. Se-
lect the location where
you want to insert the
image or use the drag op-
tion to resize it as you
insert. 5. A copy of the
image file will appear on
the page with the same
resolution as the original
file.

Are we allowed to
crop images in a
pdf file?

Can images be
edited and added
to a PDF file?

Yes, you can crop images
in a PDF file using Adobe
Acrobat. Here are the
steps to do so: 1. From
the top tools bar, select
Edit. Alternatively, se-
lect the All tools menu >
Edit a PDF.2. It displays
the Edit toolset in the left
panel. 3. From the Edit
tools menu, select Crop
Pages. 4. Drag a rectan-
gle on the section that you
want to crop. If necessary,
drag the corner handles of
the cropping rectangle un-
til the page is the size you
want.5. Double-click [...]
8. Select OK.

Yes, you can crop images
in a PDF file using Adobe
Acrobat. Here are the
steps to do so: 1. Open
the PDF in Acrobat and
select Edit. 2. Choose the
image you want to crop.
3. Under Adjust Objects
in the Edit panel, select
Crop Image. 4. Drag the
cropping handles to ad-
just the size of the image.
5. Click outside the im-
age to apply the crop. 6.
Save the PDF.

1.Open the PDF in Ac-
robat and go to the Edit
mega verb.2. select
the image you want to
crop.3. In the Adjust
Objects section of the
Edit panel, choose the
Crop image tool.4. A
selection handle will ap-
pear around the image.
Drag the selection han-
dles to adjust the crop-
ping area.5. Once you
have selected the desired
area to crop, click out-
side the selection to ap-
ply the crop.The image
will be cropped to the se-
lected area.

Table 6: Examples of proposed method outperforming DPR + GPT3.5.
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Original query Reformulated
Query

Generated Answer with-
out QR

Generated Answer with
QR

Gold Answer

How can I cre-
ate PDFs from all
non-pdfs stored in
a directory? Is it
possible to do it in
one go.

Is it possible
to convert all
non-PDF files in
a folder to PDFs
with electronic
features using
Adobe Acrobat?

To create PDFs from all
non-PDFs stored in a di-
rectory in one go, follow
these steps:1. In Acro-
bat, select Create from the
global bar.2. The Create
a PDF tool opens. On
the left rail, select Multi-
ple files > Create multiple
PDF files, and then select
Next.3. Choose Add Files
> Add Files or Add Fold-
ers, and then select the
files or folder.4. Select
OK. The Output options
dialog box appears.5. In
the Output Options dialog
box, specify your target
folder and filename pref-
erences, and then select
OK.[...]

To create PDFs from all
non-PDFs stored in a di-
rectory, you can follow
these steps:1. In Acro-
bat, select Create from
the global toolbar.2. The
Create a PDF tool opens.
On the left rail, Single
file is selected by default.
Choose the Select a file
button.3. In the Open di-
alog box, navigate to the
directory where your non-
PDF files are stored.4. Se-
lect all the non-PDF files
you want to convert to
PDF.5. Select Create to
convert the files to PDF.6.
Depending on the type
[...] using this method.

1. You can create mul-
tiple PDFs from multi-
ple native files, includ-
ing files of different sup-
ported formats, in one
operation. [...] 1. In
Acrobat, select Create
from the global bar.2.
The Create a PDF tool
opens. On the left
rail, select Multiple files
> Create multiple PDF
files, and then select
Next.3. Choose Add
Files > Add Files or Add
Folders, and then se-
lect the files or folder.4.
Select OK. The Output
options dialog box ap-
pears.5. Specify your
target folder and file-
name preferences, and
then select OK.

I need to create a
link on a PDF.

How can I add a
link to a PDF doc-
ument?

To create a link on a
PDF, follow these steps:1.
In the source document,
choose Edit > Link > Add
or edit a link.2. Drag a
rectangle to specify a lo-
cation for the link.3. In
the Create Link dialog
box, set the link appear-
ance.4. Select Go to a
page view, and then select
Next.5. In the target doc-
ument, [...] create a link.

To create a link on a
PDF, follow these steps:1.
Choose the Select tool.2.
Position the pointer over
the linked area on the
page until the pointer
changes to the hand with
a pointing finger. A plus
sign (+) or a w appears
within the hand if the link
points to the web. Then
click the link.3. In the
Create Link [...] for a link
to work correctly.

1. Choose Edit > Link >
Add or edit a link. The
pointer becomes a cross-
hair, and any existing
links in the document,
including invisible links,
are temporarily visible.2.
Drag a rectangle where
you want to create a link.
This is the area in which
the link is active.3. In
the Create Link dialog,
choose the options you
want for the link appear-
ance.4. Select one of the
following link actions:-
Go to a page viewSe-
lect Next [...] associated
with the link.

How to remove
password from
the PDF

How to remove
password protec-
tion from a PDF?

To remove password
from a PDF, follow these
steps:1. Open the PDF
in Acrobat.2. Go to All
tools > Protect a PDF
> Remove security.3.
If prompted, type the
permissions password.
If you don’t know the
permissions password,
contact the author of
the PDF.4. Acrobat will
remove the security from
the PDF and you will be
able to access it without a
password.

To remove password
from a PDF, follow these
steps:1. Go to All tools >
Protect a PDF > Protect
with password from the
Protect a PDF toolset in
the left pane.2. Choose
Editing.3. Type and
retype your password.
Your password must be at
least six characters long.
The password strength
is displayed next to your
password [...] using the
password.

You can remove secu-
rity from an open PDF
if you have the permis-
sions to do so. If the
PDF is secured with
a server-based security
policy, only the policy
author or a server admin-
istrator can change it.1.
Open the PDF, then se-
lect All tools > Protect a
PDF > Set security prop-
erties.2. In the Docu-
ment Properties window,
select the Security tab
and then select Change
settings.3. Your options
vary [...] Select OK
again to confirm the ac-
tion.

Table 7: Examples of proposed method under performing DPR + GPT3.5.
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Abstract

Continued improvement of conversational as-
sistants in knowledge-rich domains like E-
Commerce requires large volumes of realis-
tic high-quality conversation data to power
increasingly sophisticated LLM chatbots, di-
alogue managers, response rankers, and rec-
ommenders. The problem is worse for multi-
modal interactions in realistic conversational
product search and recommendation. Here, an
artificial sales agent must interact intelligently
with a customer using both textual and visual
information, and incorporate results from ex-
ternal search systems, such as a product cat-
alog. Yet, it remains an open question how
to best crowd-source large-scale, naturalistic
multi-modal dialogue and action data, required
to train such an artificial agent. We describe
our crowd-sourced task where one worker (the
Buyer) plays the role of the customer, and other
(the Seller) plays the role of the sales agent.
We identify subtle interactions between one
worker’s environment and their partner’s be-
havior mediated by workers’ word choice. We
find that limiting information presented to the
Buyer, both in their backstory and by the Seller,
improves conversation quality. We also show
how conversations are improved through mini-
mal automated Seller “coaching”. While typed
and spoken messages are slightly different, the
differences are not as large as frequently as-
sumed. We plan to release our platform code
and the resulting dialogues to advance research
on conversational search agents.

1 Introduction

In recent years, researchers have investigated new
approaches to build automated agents capable of
naturalistic conversations satisfying complex in-
formation needs. The need for such assistance is
particularly acute in domains like E-Commerce,
where customers may even know what questions to
ask when shopping. Creating an automated agent to
help such customers is challenging, as it must serve

as a natural conversational interface to many spe-
cialized and general data sources, while maintain-
ing context to return valuable responses or make
proactive suggestions. In high-stakes domains like
E-Commerce, experimentation on real customers is
risky, presenting a significant barrier to training and
validating such conversational agents. Most task-
oriented conversation systems, especially for E-
Commerce, have been evaluated on synthetic data
even though such data may not reflect real world
conversations (Gangadharaiah et al., 2018). Thus
there is a clear need for high-quality and realistic
data to be collected to allow training more natural
automated agents. Moreover, it isn’t clear how to
generate natural data that reflects real-world con-
versations in domains like E-Commerce. Although
Large Language Models such as ChatGPT can be
used to generate conversation, these are not real-
istic as shopping conversations are dynamic and
customer goals can change as new information is
presented (Bernard and Balog, 2023).

We explore crowd task designs needed to collect
the right data to train conversational search and rec-
ommender agents, roughly following a theoretical
framework (Radlinski and Craswell, 2017). Such
agents combine aspects of a mixed-initiative chat-
like dialogues with goal oriented systems, creating
a number of unique challenges. Consider Example
1. The Customer seeks help from the Agent with a
specific goal, buying a TV set, but the conversation
is open-ended. Unlike, say, airline reservation sys-
tems, there are few constraints on the utterances.
In addition, Agent and Customer share initiative.
The Agent must choose from several information
sources to help construct a reply. Figure 1 shows a
standard framework to provide such an experience.
A language understanding module extracts informa-
tion from customer utterances, used by the dialog
manager to query sources, including product cata-
logs, QA databases, etc. A ranker selects among
candidates to produce each system response.
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Example Dialog

Customer: I’m looking for a good sized TV for my
living room.
Agent: Nice! How much are you looking to spend?
Customer: 400 dollars
Agent: Do you mostly watch TV shows, or maybe you
want something for gaming?
Customer: I like to watch movies and play video
games
Agent: How big? What about resolution?
Customer: at least 42 inches. what’s resolution?
Agent: number of pixels per inch. Higher is better.
Customer: I don’t care
Agent: Ok, do you care about refresh rate? Or brand?
Customer: I like Sony. It should be at least 120 frames
per second.
Agent: OK, Sony has 3 TVs that match. Do you have
another criteria you care about?
Customer: Not really.
Agent: Here’s some options for you, what do you think
of these? (pastes in links or uses sharing widget)
Customer: Ooh, there’s one I like. I’ll take a look.
[One of the shared options; system evaluates it, workers
may continue if they like it.]

Example 1: An example dialog illustrating a desirable E-
Commerce conversation with an automated agent (when
we refer to an Agent, we mean an automated agent).

To train such an agent, we need a corpus of high-
quality naturalistic, free-form, but goal-oriented
conversations labeled with each action’s intent and
overall conversation success. Recently one such
dataset was released (Moon et al., 2020) with a
large number of conversations related to furniture
and fashion. However, there is no exploration of
the conversations’ naturalness, or of how the multi-
modal environment affects the results. Moreover,
it isn’t clear that such a corpus is ecologically valid
(Vries et al., 2020), i.e., it isn’t clear that the infor-
mation and tools provided to the workers realisti-
cally emulate how customers would interact with
automated or human sales agents. To ensure that,
we aim here to understand how the conversation
participants’ multi-modal environment affects the
conversation, and to add to the available conversa-
tional search and recommendation data.

We review prior work in the next section to put
our contributions in context. Section 3 describes
how we crowd-sourced conversations. Section 4
covers the development of our crowd-sourced anno-
tations and automated measures of the conversation.
We analyze the collected conversation data in Sec-
tion 5, and demonstrate the effectiveness of the col-
lected data to enable a robust conversational search
and recommendation agent. Finally, we discuss
future work and potential extensions in Section 6.

Figure 1: Illustration of a conversational search system
that can act as the Agent in Example 1.

Contributions and Research Questions Multi-
modal, conversational search opens up many ques-
tions. We focus on how the workers’ environment —
the information and tools provided to each worker
— affects their interactions with each other. To that
end, we aim to answer four research questions:

R1 How does one worker’s environment affect
their behavior and language use?

R2 Can one worker’s environment alter the other’s
behavior including language and feature use?

R3 How much do spoken and typed utterances
differ in a conversational search environment?

R4 What Buyer and Seller environments yield the
most realistic conversations?

Our work for the first time explores and analyzes
the most effective conditions for priming work-
ers in large-scale, crowd-sourced conversational
data collection, with multiple interaction modal-
ities, and introduces quantitative evaluation met-
rics for dialogue quality, which, as we demon-
strate, could be used to train a conversational E-
Commerce search and recommendation agent.

2 Related Work

Automated conversational agents have been an ac-
tive area of study, and their use has exploded fol-
lowing the success of voice-based conversational
agents such as Siri, Alexa, and Google Home As-
sistant. A long-term goal for dialogue systems is to
coherently and engagingly converse with humans
on a variety of topics (Guo et al., 2018; Venkatesh
et al., 2018; Khatri et al., 2018). However, such
systems require extensive engineering or extensive
training data collection and annotation, or both. Be-
low, we review prior approaches to collecting and
annotating data for training conversational agents.
We focus mostly on task-oriented agents in com-
plex domains such as search and recommendation,
i.e., information-oriented and transactional tasks
(Radlinski and Craswell, 2017; Zhang et al., 2018).
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2.1 Task Completion Agents

For well-structured tasks like travel reserva-
tions (Bobrow et al., 1977) or movie ticket pur-
chases, rule-based dialogue systems can be effec-
tive, but require significant engineering to design
possible responses and appropriate dialogue flow.
Beginning with early systems such as Eliza, rule-
based dialogue management (DM) systems (Bo-
brow et al., 1977) have been steadily improving in
sophistication and flexibility (Chen et al., 2017).

Recently, end-to-end learning for automated con-
versational agents approaches has grown in popular-
ity, due in part to improvements in neural architec-
tures and the availability of general-purpose train-
ing data, e.g. (Serban et al., 2018). The idea of con-
versation has also been introduced as a way to elicit
user interests for item recommendation (Chris-
takopoulou et al., 2016). For example, Sun and
Zhang (2018) introduced an end-to-end reinforce-
ment learning framework for a personalized con-
versational sales bot, and Li et al. (2018) use a
combination of deep-learning based models for
conversational movie recommendation.

2.2 Knowledge-grounded Agents

Corpus-based chatbots mine human-human con-
versations, often collected via crowd-sourcing or
by scraping online resources. (Serban et al., 2018)
summarizes available corpora up to 2017, including
online human-human chats, Twitter, and in-movie
dialog. However, these resources are not helpful
to train knowledge-, task- or information-oriented
conversational agents to provide or recommend use-
ful information for a specific topic like a purchas-
ing decision. To improve the knowledge retrieval
process, several teams have recently introduced
frameworks to incorporate external knowledge in
response generation as well as actively learn con-
cepts through conversations (Dinan et al., 2018;
Luo et al., 2019; Jia et al., 2017; Ghazvininejad
et al., 2018). Despite these advances, the under-
lying knowledge is essentially encoded, e.g. in a
neural network. This is not feasible for extensible,
large, or frequently updated domains, such as prod-
uct information, or sources lacking a rich search
mechanism. The closest effort to this is a system
outlined in (Gur et al., 2018), which learned to
query a reservations system from extensive logs of
human interactions with the system. Such logs are
naturally not available for privacy reasons. Thus,
to train such agents, a conversation collection tool

must be specifically designed to incorporate dynam-
ically retrieved external knowledge from a search
engine, with the associated queries and actions.

2.3 Previous Conversation Collections
Recently, a number of shared tasks and challenges
have pushed researchers to develop more intelli-
gent chat bots capable of in-depth conversations on
numerous topics, not just small talk. Resulting con-
versations have been evaluated both by crowd work-
ers and live users as part of the Alexa Prize Con-
versational AI challenge (Venkatesh et al., 2018).
Some public datasets have been made available
as a by-product of the challenge. (Dinan et al.,
2018) introduced a valuable resource for crowd-
sourcing conversations in a “Wizard of Oz” in-
terface, used to collect restaurant reservation di-
alogs (CamRest676 dataset) (Wen et al., 2017); the
Frame corpus in a more complex travel booking do-
main (El Asri et al., 2017), and a corpus of in-car
navigation conversations (KVRET corpus) (Eric
et al., 2017). Later, this approach was extended
to conversations on multiple topics (Budzianowski
et al., 2018). (Gopalakrishnan et al., 2019) com-
plemented that work with a large corpus of top-
ical conversations between crowd workers asked
to discuss an assigned topic, but without specific
suggestions or aspects to discuss.

A data set of coached movie discussions be-
tween a “Wizard” and an “Apprentice” was intro-
duced by (Radlinski et al., 2019). Conversations
did not have a specific goal, but unlike previous
efforts the “Wizards” were instructed to follow a
general script and ask prescribed questions about
movie preferences. The resulting data set may be
helpful for recommender systems. In other work,
searchers asked “intermediaries”–other workers–to
find information for them on complex tasks via
voice input and output, with only the “intermediary”
having access to the search engine (Trippas et al.,
2017, 2018). The resulting data set, while valu-
able, was limited to a small number of participants
in the laboratory study. The study’s open-ended
nature makes it hard to scale to sufficiently large
and robust data collection required to train effective
automated search agents.

While there has been substantial recent work in
leveraging Large Language Models (LLMs) such
as ChatGPT and GPT-4 to generate conversations
(Brown et al., 2020; Han et al., 2021; Li et al.,
2023), these approaches have not had much suc-
cess in the E-Commerce domain due to the dy-
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namic range of customer behavior, which is quite
different from info-seeking scenarios where LLMs
excel. This trend is reflected in Bernard and Balog
(2023), where the authors release a collection of 64
high-quality shopping conversations encompassing
various goals. The size of this data also reflects the
challenges in scaling data collection in this domain,
a key factor that we try to address. Most recently,
Joko et al. (2024) used LLMs to provide workers
with guidance on what to say, ostensibly to simplify
collection of these complex conversations, but they
collected less than half the conversations we have.

These previous efforts provide large corpora of
human-human conversations grounded on specific
topics, but are neither sufficient to learn to search
and retrieve, nor to incorporate external, dynami-
cally retrieved information, nor to lead the dialogue
towards a task completion, which is the focus of
our work. Furthermore, the ability to share rich
information items, such as product descriptions or
picture, is critical for an effective search-oriented
conversational system. Prior work left as open
questions how to collect such conversation and ac-
tion data for complex search and recommendation
tasks; how interaction modality variations affect
the richness, and ultimately overall quality, of the
resulting dialogue; and even how to measure dia-
logue quality in such crowd-sourced efforts.

3 Crowdsourced Conversation Task

Our crowd tasks pair “Buyers” with “Sellers” in
a E-Commerce search simulation. Our goal is to
simulate the in-store experience of asking a sales-
person for assistance. Therefore, we wanted to
learn how Seller behavior changes when Buyers
come with varied shopping-related knowledge and
needs. It has been long-held that voice and text
interactions are very different, but this has largely
been tested for simple text search, not conversa-
tion. To answer our research questions, we tested
several product search and display features, and
additionally the impact of a voice interface for the
Buyer. We collected 1,500 conversations, on which
we based on our analysis. We then collected 1503
more conversations under what we found were the
best conditions, described in Table 1, which we
publicly release.1

Below we describe key features of our conversa-
tion task. Further details, including the modified

1https://github.com/marcuscollins/
woa-ecommerce-conversations

ParlAI/Mechanical Turk (Miller et al., 2017) frame-
work, audio transcription, and the catalog used,
may be found in the Appendices.

3.1 Layout and Conversation Flow

Each worker’s interface (Figure 2) displays prod-
ucts at left, and a chat pane right for interacting
with their partner. Both are given instructions be-
fore beginning the chat, but can view them again
at any time. In particular, both workers are made
aware they will be chatting in real time with an-
other person, that the text and other interactions
will be stored for future research use. The Seller
first picks product categories they are familiar with.
To increase variety, we kept track of each worker’s
choices, which they could not repeat within one
week, unless they work through all categories in
that time. The Buyer then chooses the category
from the Seller’s options, and opens the conversa-
tion with a request.

Buyer view In the left pane, the Buyer sees con-
text about why and for what they are shopping
(their “persona”), and three target products which
match their context. The Buyer’s goal is to guide
the Seller to one of those products by asking and an-
swering questions. The info shown varies depend-
ing on the experimental conditions (Section 3.3),
but can include product title, details (price, age
range, etc.), description, and images. The personas
describe a shopping mission, e.g., “My four year
old daughter loves Star Wars”, or “I want really
good headphones for home listening to classical
music, but I don’t have an unlimited budget”. Each
persona is specific to a particular product category.

Seller view Seller have a search box at upper
right, and a limited interface for sorting and scan-
ning search results. They have several options for

Topic Count Mean Turns
books 135 6.5
headphones 303 6.9
Lego 252 6.3
pet food 209 6.6
running shoes 187 6.8
smartwatches 294 6.6
vitamins 123 6.7

Table 1: Statistics of the data we will release. One turn
is an exchange between the two users. These were col-
lected under condition B.IIc, see Section 3.3 for details.
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Figure 2: A screenshot of the worker chat windows:
Buyer view (top), in priming condition B (Section 3.3)
with no product details available, and Seller view (bot-
tom), in a “coached” condition. Search results, search
box, message history, and the Seller checklist are shown.

sharing products, set by the experimental condi-
tions. In all conditions, sellers can describe the
product or provide a product URL to the Buyer. In
some conditions, Sellers are allowed to copy/paste
the URL directly from the product description. An-
other option is to click "Share Now" on the product
and enter a message; product details and message
are then immediately displayed to the Buyer. We
experimented with a “recommendation list” that
allowed the Seller to display several products at
once to the Buyer for comparison. In one setting
Sellers were “coached” with a variety of actions
before, visible in Figure 2, and described below.

Ending the conversation The conversation con-
tinues at least until Buyer and Seller meet a mini-
mum number of turns (usually 5). The Seller can
then make a formal guess (by pressing the “Guess”
button), which the Buyer can confirm or reject. The
Buyer may also end the conversation at any point
after the minimum number of turns. Or, the two
can continue the conversation as long as they wish.

3.2 Product Search and Catalog

We selected seven categories: Lego, smartwatches,
books, vitamins, running shoes, headphones, and
pet food, each with 3-4 personas and 2,207 total

products. We chose these categories to cover di-
verse but still common interests (gifts, technology,
recurring purchases), but we did not do any statisti-
cal analysis showing them to be the most common
amongst real shoppers. The exact products were
chosen by searching Amazon.com using queries
based on each of the personas, taking the top 100
results, and removing duplicates. More details are
in Appendix A.3.

3.3 Experimental Settings
We tested four variables: Buyer priming, Seller
sharing tools, coaching Sellers, and Buyer voice
versus text message entry, each detailed below. To
save cost and maximize benefit, we only tested
voice transcription and seller coaching with some
base conditions. These settings represent different
ideas of what information a customer would have
when shopping, and the tools a salesperson could
use to make effective suggestions. For instance,
salespeople are usually trained, and even scripts
of how to interact with customers, reflected in our
“coaching” condition. Buyers come to the store
with different prior knowledge. Indeed, as we’ll
show, the aspects we condition them to focus on
heavily influence their behavior.

Buyer Priming Priming describes what the
Buyer is shown about their persona and target prod-
ucts. We used three settings:

A. one product image per product, with no other
details or persona.

B. one product image per product and the persona.

C. full product details and persona.

D. a single image, with a pop-up displaying addi-
tional images, and the persona.

Seller sharing settings Sellers are assigned one
of three levels for how they can share products. At
each level Seller has all tools in the lower levels.
So, Sellers in condition II can still share URLs in
message text in addition to sharing a product in a
modal dialog.

I. Only URLs can be shared, and only by includ-
ing them in the message text.

II. All attributes of a single product can be shared
in a modal dialog shown to the Buyer, with an
optional message from the Seller.

III. The Seller can create a list of multiple prod-
ucts to share in a similar modal dialog.
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Seller coaching “Coached” Sellers first choose
an action from a list (Table 3, Figure 2) before
sending a message to the Buyer. This yields dialog
act labels and suggests important actions Sellers
should take. To develop the list we consulted a sep-
arate set of Mechanical Turk workers about retail
sales. We used coaching only with priming B and
sharing II and refer to it as condition B.IIc.

Voice transcription We finally tested voice tran-
scription for condition B.IIc. only. For privacy rea-
sons no audio was stored, only the text transcript.
Workers are asked to test their audio transcription
first, shown how to correct the transcription if it has
errors, and reminded that only text, no audio, will
be stored. See Appendix A.2 for further details.

4 Evaluation

Noting that evaluating conversations remains diffi-
cult and subjective, we use a variety of measures to
understand workers’ behavior in our crowd-sourced
conversations. We quantify conversations with au-
tomated linguistic measures, language modeling,
worker surveys, and manual annotation.

4.1 Automated Measures
We computed a number of common language fea-
tures derived from tri-gram language models and
parsing. We use SpaCy2 for dependency parsing
and POS tagging. From the parse tree, we compute
utterance-level mean and maximum token depths.
We computed perplexity using the NLTK lm mod-
ule.3 We build the language model from all avail-
able conversations, and compute mean perplexity
per word at the conversation level, sometimes lim-
ited to just Buyer or Seller utterances.

4.2 Language Modeling
To show that Buyer priming influences Seller be-
havior we developed a Poisson regression of word
usage in different priming conditions; model details
are in Appendix B.

4.3 Manual Annotation
Separate crowd workers evaluated several aspects
of conversation quality at both chat and message
level. They labeled many chats at once to im-
prove task understanding and consistency of results.
Herein, we focus on annotations of overall chat
quality. Often these are highly subjective, so we

2www.spacy.io
3www.nltk.org/api/nltk.lm.html

Figure 3: Median and 95% confidence bounds for the
product image mouse-over rate per conversation turn,
for each of the four priming conditions.

focused on questions that were either quantitative,
e.g. “Did the Buyer ask questions about the prod-
ucts?” or had unconventional framing, e.g. “Would
you hire this Seller, if you owned the store?”. These
proved to be the questions that most clearly distin-
guish between different experimental conditions.
We built a Plackett-Luce ranking model (Plackett,
1975; Luce, 1959) to learn a quantitative score for
each condition. More details are in Appendix B.

In comparing coached/un-coached Sellers, anno-
tators chose the better Seller from two randomly-
paired conversations in the same product category.
We modeled the ordered pair data with a Logistic
Regression accounting for the presentation order.

5 Results

Below, we answer our research questions. We show
in particular that Buyers’ priming (i.e., their en-
vironment) significantly alters their behavior and
language use (R1), that Buyers’ environment sig-
nificantly alters Sellers’ behavior (R2). Finally, we
find that while there are some differences between
spoken and typed conversational messages, these
differences are not as large as would be expected
from studies of keyword-style spoken and typed
search queries (R3). We address what are the “best”
conditions (R4) throughout this section.

5.1 Buyer priming influences Seller behavior
When Buyers were given the most details (prim-
ing C), Sellers viewed fewer products and scrolled
less over product images (Figure 3). We guessed
that Buyers focused on the first attributes they saw,
and mention only these to Sellers, who naturally
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Budget words Brand and rating words
word coefficient word coefficient

around $ -3.0 stars -2.7
dollars -2.4 adidas -2.3

pay -1.8 apple watch -2.5
pay $ -2.8 audio-technica -3.5

something $ -3.5 pegasus -3.4
us -3.3 plantronics -3.8

usd -4.4 saucony -2.6

Table 2: Interaction coefficients between priming with
details and specific words. The model is log-linked
(Eqn. 1), so a coefficient of -3.0 indicates the word is
used e3 20 times less often when showing fewer details.

focus on what the Buyer says. To understand this,
we investigated Buyers’ word choice in different
priming conditions.

The language model shows that Buyers not
shown product details used budget- and brand-
related words much less than Buyers who are
shown product details. Table 2 lists words sig-
nificantly (p < 0.01) influenced by product detail
priming.

Buyers’ word choice is clearly influenced by
priming. To show that Buyer word choice led to the
Sellers’ behavior, we tested whether Buyer priming
and Seller image mouse-overs are conditionally
independent of each other, given Buyers’ use of
words identified by our language model. χ2-tests
of hover-rate and priming reveal that Buyers’ word
use is what influences Sellers. Specifically, we
constructed the tables P (h, p) and P (h, p|{w}bb)
with (binned) hover rate h, priming p, and words
{w}bb from Table 2. The table conditioned on
{w}bb yields a χ2 p-value of 0.34, while without
conditioning p is essentially zero, indicating that
Buyer use of brand and budget words drives Sellers
to ignore other details and images.

We conclude that providing certain product de-
tails results in more formulaic, less diverse lan-
guage from Buyers, i.e., environment clearly influ-
ences their language use (R1). This leads Sellers
to focus on fewer product aspects and examine
fewer products to find a good fit for the Buyer, so
one worker’s environment clearly alters the other’s
behavior (R2). To generate the most natural and
interesting conversations (R4), the Buyer should
not see details like brand and price.

Figure 4: Plackett-Luce scores for the question "Would
you hire this Seller, if you owned the store?" with 95 %
confidence limits for the four priming conditions.

5.2 Sellers are rated higher if Buyers see
fewer details

Annotators ranked priming condition B (personas
and images but no product details) highest on the
question "Would you hire this Seller, if you owned
the store?" (Figure 4). Buyer priming affects not
just click and hover actions, but overall Seller qual-
ity as well (R2). Our findings demonstrate that
the best conversations come when we show Buyers
only minimal product details.

5.3 Multi-modal sharing may impact the
conversation

So far, we have focused on how the Buyer’s prim-
ing affects both Buyer’s and Seller’s behavior. Do
the Seller’s options they have for sharing results
have similar impact? We made a Plackett-Luce
model of sharing conditions’ impact on annotators
responses to "Would you hire this Seller...?" We
determined scores for conditions I, II, and III to be
0± 0.31, −0.19± 0.32, and −0.61± 0.37 respec-
tively; that is, annotators felt Sellers did a better
job when using only text to share products. How-
ever, we find that Buyers rated conversations as
more natural in condition II, where Sellers were
able to share a single product at a time with com-
plete details. The ratings, on a scale of 1-4, were
2.61± 0.030, 2.67± 0.027, and 2.48± 0.066 for
conditions I, II, and III respectively. For the best
conversations (R4) we should limit Sellers to shar-
ing simple, single results with perhaps one image.
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5.4 Coached Sellers are Preferred

Specifically focusing on how to generate the high-
est quality conversations (R4), we hypothesize that
some kind of coaching should improve Seller qual-
ity and indeed this proves true.

Coached Sellers are rated higher than un-
coached Sellers We randomly sampled 30 con-
versations each from B.II with and without coach-
ing and generated pairs of conversations in the
same category. We then asked annotators to choose
which Seller they preferred of two conversations
from the same category. Annotators preferred
coached Sellers in 60% of cases, p ≈ 0.013.

Coaching Sellers results in better dialog from
both Buyers and Sellers We analyzed both
Buyer and Seller linguistic features to see what
might make for more convincing Sellers. An ex-
ample dialog from this experiment is shown in
Appendix C. Coached Sellers used more long ut-
terances (Mann-Whitney test p ≈ 0), which we
suspect indicate to Buyers that Seller is engaged.
Coached Sellers’ utterances have 12.6% higher per-
plexity in a 2-gram language model built over all
conversations (p ≈ 7.7×10−5). And, coached Sell-
ers use slightly more complex language, measured
by dependency tree depth (1.82±0.049 average to-
ken depth versus 1.71±0.035, p = 0.012.) We
were surprised to find that the conversation part-
ners weakly prefer simpler language. For instance
both Buyers and Sellers rate their partner’s mes-
sage clarity slightly lower as the 2-gram perplex-
ity per word increases. (Spearman’s ρ = −0.24,
p = 0.00003. Moreover, there is no correlation
between annotators’ “hire this Seller” rating and
any of these linguistic features.

We examined detailed aspects of the dependency
parsing and find that coached Sellers use fewer
compound words and clausal compounds (e.g.,
“Let’s see what we can find”) but more compound
descriptions, indicating language that is more de-
scriptive but less complex. We observe that Buyers
language use also appears to be different when Sell-
ers are coached or not. At this point, we have no
firm conclusions what, if any, linguistic features
influence annotators ratings of conversation quality.

While we still don’t have clear evidence explain-
ing why coached Sellers do a better job, we do
conclude that Seller coaching improves conversa-
tions overall, helping to answer R4.

5.5 Spoken and Typed Queries are Different

Experiments by Guy (2016), based on web searches
in the Yahoo mobile app which had an option to
speak the query, are frequently cited. In that study,
voice queries were longer and there are notice-
able differences in the queries used. In particu-
lar, the most distinctive tri-grams in voice reflect
fully formed natural language questions, while text
queries more strongly resemble keyword queries.
Voice queries are much more likely to start with
“wh-” question words.

Do those findings hold true in conversational
systems (R3)? We tested a variant of priming con-
dition B with voice transcription for Buyers only;
Sellers still typed queries. Our findings are quite
different than previous work. Perplexity is not sig-
nificantly different between voice and typed utter-
ances. Buyer voice utterances are on average a
word shorter than typed utterances (10.0 vs. 9.0,
p ≈ 0). Surprisingly, Seller utterances are also
shorter (10.3 vs. 8.7 words, p ≈ 0), even though
Sellers only type their responses; again Sellers
seem to adapt to Buyer language. Finally, unlike
Guy (2016) we find at most small differences in
parts-of-speech usage between Buyers with and
without voice transcription. The largest difference
is that 11.7% of Buyer tokens are pronouns with
voice, versus 11.0% without voice, just a 0.7% ab-
solute difference. We see a much lower fraction of
nouns than in search queries. Search queries were
largely dominated by nouns, while we see roughly
equal fractions of nouns, pronouns, and verbs.

Taken together, we find that while there are sig-
nificant differences in voice and typed utterances in
a task-oriented conversation, they are not as marked
as for individual web search queries. Conversation
in general likely leads to more complete and struc-
tured sentences, and the use of back-references like
anaphora, while people typing web queries will
focus on keywords and not use anaphora.

5.6 Results Summary

We have shown in a number of ways that worker en-
vironment (i.e., Buyer priming, multi-modal shar-
ing, and coaching sellers) impacts worker behav-
ior (R1). For instance, Buyers view fewer images
when presented with other product details, and their
language is altered by what they view; when we
similarly prime Sellers by coaching them on what
questions to ask, they use longer sentences and
more diverse language. And we showed that at least
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Buyer priming does impact Seller behavior (R2),
although it still isn’t clear whether the opposite
is true, that Seller coaching or different forms of
result sharing impact Buyer behavior or language.
We found minimal differences in language use for
Buyers who spoke or typed their messages (R3) in
contrast to general search queries, which are quite
different when spoken or typed. Most importantly,
we found several ways in which to improve overall
conversational quality (R4): limiting Buyer prim-
ing to personas and images, coaching Sellers, and
limiting multi-modal sharing to single results, or
simply sharing links or product titles.

6 Conclusions

We have highlighted several important results that
should advance future efforts to crowd-source con-
versations for effective conversational multi-modal
search. First, spoken and typed messages are not as
different as previously thought. We attribute this to
the conversational nature of the task. This suggests
that transfer learning approaches that take advan-
tage of the more plentiful text-based conversations
are a promising avenue for voice systems as well.

Importantly, conversational partner’s behavior–
both “private” behaviors like mouse-overs as well
as the language used to communicate–affects the
other partner’s behavior as well, and we found we
can influence both behaviors through priming. Our
results show that task design must both direct the
desired behaviors as much as possible (e.g., Seller
coaching) but must avoid providing too much in-
formation. We should look for opportunities to in-
fluence Seller behavior in the Buyer’s environment
as well. We emphasize that the more structure the
Seller has, the better the resulting conversations.

Our findings have implications for voice assis-
tants as well: workers will do what we’ve taught
them to do, and ask questions only about the in-
formation we present to them. Therefore, to en-
able good conversational systems for search and
exploration, strategies to prime customers with a
knowledge of the actions they can take, and the in-
formation they can obtain are critical. For instance,
if a system presents “price” as a key attribute to cus-
tomers, our results show that customers are more
likely to focus on price in their product exploration.
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A Implementation details

A.1 ParlAI and Mechanical Turk frameworks
We modified ParlAI’s (Miller et al., 2017) Mechan-
ical Turk platform for our experiments. We in-
corporate features for logging worker click and
scroll behavior, product search and sorting, and
multi-modal product search result sharing. We also
implemented audio transcription capabilities with
Amazon AWS Transcribe. Finally, the entire sys-
tem is configurable to easily deploy experiments

with different combinations of conditions. We plan
to release our code in the near future.

We required participants to use modern web
browsers on non-mobile devices and originate in
predominantly English-speaking countries: US,
UK, Canada, Australia, and New Zealand. We
required participants to have completed 1000 or
more accepted HITs with > 98% acceptance rate
on Mechanical Turk.

A.2 Voice transcription

Buyers were asked to test their voice transcription
beforehand to ensure it worked correctly, as it did
not work with all browsers. To begin, workers
clicked a green “Start Transcription” button, which
then flashes red and reads “Stop Transcription”. A
red flashing bar indicates that transcription is in
progress. Transcription lags a few seconds, but is
generally real time. Buyers can edit the transcrip-
tion to correct any errors, but we found this was
rare. We stored both raw and edited transcripts for
later analysis.

For privacy reasons, no audio is kept. Sellers
never used voice transcription.

A.3 Catalog

Each category has 3-4 personas (23 total), and each
of those is assigned three target products. The cata-
log is completed with roughly 100 related products
for each persona, some of which overlap (2,207
total). The product search feature is a very simple
keyword search over product title and description;
this is sufficient to locate products in our small
catalog. Search is implemented using the whoosh
Python package.4 Sellers can sort search results by
price and rating as well, to help them adapt to spe-
cific Buyer personas focused on value or quality.

A.4 Seller dialog acts

Table 3 lists all “coaching” actions available to
Sellers in condition B.IIc. As shown in Figure
2 some “follow-up” actions are unavailable until
others are used first.

B Evaluation details

B.1 Poisson word-usage model

We used statsmodels (Seabold and Perktold,
2010) to implement several different models de-
scribing word usage. Based on deviance, we found

4https://whoosh.readthedocs.io
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# text
1 Greet your partner, ask them how they

are, what you can help them with.
2 Ask your partner if they are shopping

for themselves, or someone else.
3 Ask your partner how they (or whoever

they’re shopping for) will use product.
3a Learn more about the intended use, e.g.

what breed of dog, do they have a fa-
vorite trail to run, etc...

3b Share your thoughts or experiences re-
lating to your partner’s intended use of
the product, e.g. a favorite podcast or
musician, a child who likes a particular
toy.

4 Ask your partner if they’ve owned some-
thing similar before.

4a If they’ve owned something similar be-
fore, what did they like or dislike about
what they’ve owned before.

5 Ask your partner if they’re looking for
particular features.

5a (If more than one) which feature is most
important to your partner?

6 Ask your partner how long they want to
keep/own/use the product.

7 Ask your partner about their budget.
8 Ask your partner if they prefer a partic-

ular brand or brands.
9 Make a product recommendation with

an explanation of why you think it is a
good fit, and ask for their feedback.

9a If your partner isn’t completely satisfied
with your recommendation, ask what
wasn’t right, or what could be better.

9b After your partner accepts a recommen-
dation, ask them how was their experi-
ence? Was there something that could
have been better?

10 Thank your partner for their business.

Table 3: Seller message actions. Questions with a letter
following the index number can only be asked as follow-
ups to the corresponding unlettered question.

the best model to be

log y = θw ·w + θt · t+ θwt · (w ⊗ t)+

θpt · (p⊗ t) + θwp · (w ⊗ p), (1)

where w⃗ are n-gram word features (n ≥ 3), p⃗ the
priming conditions, and t⃗ the chosen topic. ⊗ in-
dicates the Cartesian product, and all θ⃗ are (one-d)
parameter vectors. Note that this model explicitly
captures the interactions between the chosen topic
and priming conditions. Statistical feature selec-
tion was performed to reduce the model dimension.
We apply χ2 tests to contingency tables of Buyer
word occurrence and Seller behavior features to
determine significant words.

B.2 Manual annotation details

As with the main crowd task, we took standard
measures to ensure quality results, such as using
“gold” test questions and excluding annotators with
below 80% accuracy, and requiring a minimum
time working on each task. Nonetheless, we found
workers predictably over-rate the quality of conver-
sations on any given aspect, resulting in skewed
distributions and low variance. For example, anno-
tators were probably overly accepting of conversa-
tion quality, as measured by the question “Would
you hire this seller?” (Figure 5

Even filtering out low quality annotators (say,
with the approach of (Ipeirotis et al., 2010)) simple
statistical comparisons failed to reveal significant
results, although they did provide some hints at
differences between the conditions. To overcome
the homogeneity of annotators’ responses, we ag-
gregated each worker’s ratings to make a partial
ranking over the experimental conditions. Workers
who rate all chats the same are dropped, implic-
itly removing low-quality annotations. This partial
ranking was then modeled using the Plackett-Luce
framework mentioned in the main text.

B.3 Seller preference model

In evaluating Sellers in paired conversations, anno-
tators showed a significant bias towards the second
conversation of two presented; this Context Effect
is probably most familiar in multiple-choice sur-
veys, where it is addressed by randomly ordering
the choices, as we have done here5.

5https://methods.sagepub.com/reference/
encyclopedia-of-survey-research-methods/n439.xml
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Figure 5: Distribution of responses to the question
“Would you hire this Seller, if you owned the store?”

C Example dialog

Note. It has been suggested to us that the Buyer
seems to “forget” the age of their child, and sug-
gested this is an attempt to extend the conversation
and meet the minimum number of turns. We sus-
pect instead they failed at first to fully read their
persona, which included the child being three years
old, not six. In any event, we don’t find this mistake
particularly unnatural.

D Case Study: Retrieval-based Product
Search and Recommendation Agent

We evaluated our data by creating a simple auto-
mated conversational search agent from it, as il-
lustrated in Figure 1. Crowd workers tested the
automated agent in a human-in-the-loop setting.

D.1 Conversational Agent Prototype
We collected 1,500 additional conversations in con-
dition B.IIc. Our agent retrieves the most relevant
archived response for the current context, using
whoosh with BM25 ranking (Jones et al., 2000), for
simplicity. It performs product search as needed.
Queries are formed from Buyer utterances, with
smaller weight for older utterances.

Heuristics improve the candidate responses. A
simple bag-of-words logistic regression classifier
identifies the product category; once known, our
agent limits results to responses for just that cat-
egory. We limit some dialog acts, like budget or
brand questions, to be used at most once per con-
versation. (Recall Sellers labeled dialog acts as part
of their task). Finally, we prevent similar responses
from being given more than once.

After a minimum three turns, Product search is
triggered if a candidate response is a product rec-
ommendation or mentions a product, or if no other

Conversation between a LEGO Buyer and
a coached Seller

Buyer hi there, im looking for some legos for my
kids. are these good for 6 year olds?
Seller They sure are! They are great for hand/eye co-
ordination and problem solving skills! Do you know
what kind of set you may be looking for? Do they
have any specific likes or interests that may translate
to a lego set we have for you?
Buyer awesome, they love trucks! anything out there
with trucks?
Seller (searches “lego truck set”, “lego truck set 6”
They do! I’ll send a suggestion in just a moment.
First, do you have a particular budget?
Buyer ok perfect, no particular budget, just don’t
want to break the bank. my child is actually 3, i got
them mixed up with my niece somehow. didnt have
enough coffee!
Seller (searches “lego truck set 3”) How about this?
This has bigger LEGO pieces so it is less complicated.
(shares details for LEGO Duplo Big Construction
Site 10813)
Buyer That is perfect! thanks so much.
Seller Yay! I am so glad. Your child will love this
set! Before you go, was everything to your satisfac-
tion? Is there anything more I can do for you?
Buyer Absolutely everything went great. I’m sure
they’ll love it too. Thank you again!

Example 2: Conversation in condition B.II with coach-
ing. Note that we use Seller and Buyer here, as this
is a real conversation between two crowd workers in
our task, not between an automated Agent and a real
Customer.

42



suitable response is available. When the agent can-
not retrieve a response, it constructs one using the
following strategies, in order: find another response
in the archive which mentions the desired product
and still scores well; construct a response from
product description highlights based on the current
context; or use a default generic response. Despite
the simplicity of the agent, we will show that due
to the high quality of our conversational corpus,
the agent often performs on par with experienced
crowd-workers.

D.2 Results of Human-in-the-Loop Agent Test
The agent’s best 3-5 candidate responses were pre-
sented to human crowd workers acting as Sellers,
who could select one of the candidates, or create
their own response. We can then evaluate con-
versation quality in two ways. We asked annota-
tors to rate the conversations individually, as above.
We also quantify how often Sellers used the agent-
recommended responses in each conversation, i.e.,
whether the agents’ response was accepted by the
human crowd worker.

Figure 6 summarizes our findings. We grouped
conversations by the fraction f of Seller responses
generated by the computer agent. So, if the Seller
used the agent response without editing in three of
five turns, then f = 0.6. A significant fraction of
Sellers appeared to either be unaware of how to use
the agent recommendations or didn’t want to use
them. We separate these conversations into the ‘0’
group. Fig. 6 shows that there is no statistically
significant difference between the different bins in
f . Furthermore, there is no statistical difference
from conditions B.II or B.IIc, whose quartiles are
shown in red and blue, respectively.

The distribution of f is shown at the bottom of
Figure 6. About 10 % of conversations do not use
the agent recommendations at all. Overall, slightly
more than 40 % of responses used in all conver-
sations were from the agent. Given our simple
retrieval-based agent, the results are promising and
demonstrate the value of our corpus. In future work
we aim to improve our agent by exploring more
sophisticated dialogue management, response rank-
ing models, and generalization.

Figure 6: (Top) Violin plot of annotator ratings on the
question “Would you hire this Seller?”, grouped by the
fraction of responses in each conversation generated by
the retrieval agent. (Bottom) Cumulative Distribution
of retrieval-agent response use fraction f .

43



Proceedings of the 3rd Workshop on Knowledge Augmented Methods for NLP, pages 44–58
August 16, 2024 ©2024 Association for Computational Linguistics

Learning to Trust Your Feelings:
Leveraging Self-awareness in LLMs for Hallucination Mitigation

Yuxin Liang*1, Zhuoyang Song2, Hao Wang1, Jiaxing Zhang2

1X2 Robot
2International Digital Economy Academy

liangyuxin42@gmail.com, wanghao@x2robot.com
{songzhuoyang, zhangjiaxing}@idea.edu.cn

Abstract

We evaluate the ability of Large Language Mod-
els (LLMs) to discern and express their inter-
nal knowledge state, a key factor in countering
factual hallucination and ensuring reliable ap-
plication of LLMs. We observe a robust self-
awareness of internal knowledge state in LLMs,
evidenced by over 85% accuracy in knowledge
state probing. However, LLMs often fail to
faithfully express their internal knowledge dur-
ing generation, leading to factual hallucina-
tions. We develop an automated hallucination
annotation tool, DreamCatcher, which merges
knowledge probing and consistency checking
methods to rank factual preference data. Using
knowledge preference as reward, We propose
a Reinforcement Learning from Knowledge
Feedback (RLKF) training framework, leverag-
ing reinforcement learning to enhance the fac-
tuality and honesty of LLMs. Our experiments
across multiple models show that RLKF train-
ing effectively enhances the ability of models to
utilize their internal knowledge state, boosting
performance in a variety of knowledge-based
and honesty-related tasks.

1 Introduction

Large Language Models (LLMs), including no-
table examples such as GPT-3 (Brown et al., 2020),
LLaMA (Touvron et al. (2023a), Touvron et al.
(2023b)), and PaLM (Chowdhery et al., 2023),
have emerged as a transformative tool in diverse
fields due to their robust capabilities in various
tasks. However, despite this significant progress
and success, an inherent challenge continues to per-
sist: their tendency to "hallucinate", i.e., generate
content misaligned with actual facts. This issue
is particularly problematic in critical applications,
such as clinical or legal scenarios, where the reli-
ability and accuracy of generated content is vital.
Therefore, mitigating hallucinations in LLMs is a

*Work done in IDEA

Figure 1: Internal knowledge state categorization of
LLMs, based on the possession of corresponding inter-
nal knowledge and the capacity to express it honestly.

crucial step toward enhancing their practical ap-
plication scope and improving the overall trust in
these emerging technologies.

Hallucinations of LLMs can be categorized into
three types (Zhang et al., 2023b): input conflict,
context conflict, and factual conflict. This paper
focus on the issue of fact-conflicting hallucination,
where LLM produces fluent and seemingly plau-
sible content, but conflicts with real-world facts,
pose risks of misleading users and compromise the
models’ fact-based reasoning.

Commonly used hallucination mitigation meth-
ods, such as retrieval augmentation generation
(RAG), address fact-conflict hallucination of LLM
by bringing in external knowledge, but at the cost
of introducing a retrieval system. In this paper, we
propose to mitigate the factual hallucination prob-
lem from the perspective of enhancing the model’s
utilization of internal knowledge.

Previous works (Azaria and Mitchell (2023),
Agrawal et al. (2023)) have shown that LLMs have
the capability to discern the validity of factual state-
ments, supported further by Kadavath et al. (2022)
suggesting these models’ capacity to assess their
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ability in responding to specific questions. Nev-
ertheless, the universality and extent of models’
self-awareness of their internal knowledge remains
an open question. In light of this, we conducted ex-
ploratory experiments to probe the knowledge state
of various models across different scales, employ-
ing linear probes to ascertain the accuracy of mod-
els’ self-awareness regarding their internal knowl-
edge states. The results revealed that all models
under analysis demonstrated proficient accuracy in
recognizing whether they have the internal knowl-
edge about certain facts.

However, during generation, such accurate judg-
ments do not translate into honest output; instead,
in the absence of specific internal knowledge, mod-
els often manifest a tendency towards hallucina-
tions. Therefore, to mitigate factual hallucina-
tions, it is crucial that models leverage their self-
awareness of internal knowledge states.

We propose a training framework named re-
inforcement learning from knowledge feedback
(RLKF) to improve the factuality and honesty
of LLM with reinforcement learning using fac-
tual preferences as reward. Through the hal-
lucination annotation method DreamCatcher –
a blend of knowledge probing and consistency-
based judgments – we rank the knowledge-based
Question-Answering (QA) data adhering to a pref-
erence hierarchy delineated as: factuality >
uncertainty > hallucination. This factual pref-
erence data is then utilized to train the reward
model which is deployed to optimize the Large
Language Model via Proximal Policy Optimisation
(PPO) algorithm.

The primary contributions of this paper are artic-
ulated as follows:

1. Our comprehensive experiments evaluate the
ability of various models to identify their in-
ternal knowledge. The findings reveal the re-
markable proficiency of Large Language Mod-
els (LLMs) in discerning their internal knowl-
edge state, achieving accuracy over 85% in
most settings, even with limited data.

2. We develop and open source DreamCatcher1,
an automatic hallucination detection tool for
scoring the degree of hallucination in LLM
generations. DreamCatcher integrates knowl-
edge probing methods and consistency judg-
ments, achieving 81% agreement with human

1https://github.com/liangyuxin42/dreamcatcher

annotator.

3. We introduce the Reinforcement Learning
from Knowledge Feedback (RLKF) training
framework to optimize LLM against the fac-
tual preference. The experiment results on
multiple knowledge and reasoning tasks indi-
cate that RLKF not only enhances the honesty
and factuality of LLMs but also improves their
general capabilities.

2 Problem Setup

Hallucination, in the context of Large Language
Models, refers to a set of inconsistencies in model
generation. The central focus of this paper is ex-
ploring the fact-conflict hallucination which is de-
fined as the inconsistency between the generated
content and the established facts. Although the
definition provides a description of the generation
results, the causes underlying this phenomenon are
multifaceted.

In general, LLMs encode factual knowledge into
parameters during training and utilize this internal
knowledge during inference. However, LLMs do
not always honestly express the knowledge in its
parameters, which is one of the major causes of
fact-conflict hallucination.

For a given question that requires factual knowl-
edge, the model output can be classified into one
of four states, depending on the model’s internal
knowledge and its honesty. These states are illus-
trated in Figure 1:

State 1: The model has relevant internal knowl-
edge and expresses it faithfully.

State 2: Despite having the relevant internal
knowledge, the model fails to express it hon-
estly. This discrepancy could be due to various
factors such as the decoding strategy (Lee et al.,
2022; Chuang et al., 2023), hallucination snow-
balling (Zhang et al., 2023a), or misalignment is-
sues (Schulman, 2023).

State 3: The model lacks the necessary internal
knowledge but honestly expresses unawareness.

State 4: The model lacks the necessary internal
knowledge and produces a hallucinated response.

Outputs in State 2 and State 4 are both consid-
ered forms of hallucination, despite the differing
conditions of internal knowledge.

In the upper section of Figure 1, the model’s
outputs are devoid of hallucinations, honestly mir-
roring its internal knowledge. Here, State 1 stands
out as the most desirable state, where the model
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(a) Llama2-chat-13B (b) Qwen-chat-14B (c) Ziya-reader-13B

Figure 2: Accuracy of knowledge state probing across different models with different internal representations. The
light-colored area in the figure shows the range of accuracy for ten repetitions of the experiment, and the solid line
shows the mean accuracy. More results shown in A.2

both possesses and faithfully outputs the relevant
knowledge.

Many efforts have been deployed to transition
model toward state 1.

Retrieval-augmented generation (RAG) attempts
to bypass the lack of internal knowledge by pro-
viding knowledge via context, thereby enabling
the model to transition from State 3/4 to State 1.
On another front, certain strategies, like those of
Li et al. (2023b) and Chuang et al. (2023), seek to
move the model from State 2 to State 1 by interven-
ing the model’s internal representation or the decod-
ing process during inference. While these methods
improve the model’s capacity to express existing
internal knowledge, they disregard scenarios where
the model lacks relevant internal knowledge. Also,
interference at inference time can potentially lead
to unpredictable effects on other types of tasks.

Without the introduction of external knowledge,
the mitigation of the model’s fact-conflict halluci-
nation correspond to an upward movement of the
state in Figure 1. In essence, this symbolizes the
enhancement of the model’s capacity to accurately
express its internal knowledge state. A critical ques-
tion, then, is how to discern the internal knowledge
state of LLMs?

3 Knowledge State Probing

This section delves into the complexities of dis-
cerning a model’s internal knowledge state. It com-
prises two perspectives. The first, an external per-
spective, discuss how to determine if a model pos-
sesses specific knowledge based on the model gen-
erations; The second perspective, an internal view,
questions if it is possible to determine whether a
model possesses specific knowledge by its internal
activation.

For the following pilot experiments, we se-
lect three families of models with different sizes:
Llama2-chat(Touvron et al., 2023b) (13B and 7B);
Qwen-chat(Bai et al., 2023) (14B and 7B); Ziya-
reader(Junqing et al., 2023) (13B).

As for data, We randomly select passages
from Chinese and English Wikipedia and instruct
GPT3.5 to generate a knowledge-related question-
answer pair. The answer generated by GPT3.5
based on the original Wikipedia is considered as
the correct answer. We refer to the QA pairs ob-
tained by this method as wiki-QA in this paper.
Examples of instructions and corresponding output
are shown in Appendix A.1.

3.1 External perspective

Determining whether a model has specific knowl-
edge through its generation is a straightforward
way. But it is challenging to accurately assess the
model’s knowledge state through a singular gener-
ation result, due to the uncertainty of generation
caused by sampling (Lee et al., 2022) and different
generation tendencies (Chuang et al., 2023). Mul-
tiple generation results can more faithfully reflect
the knowledge state of the model.

In the presence of a correct answer, the consis-
tency of the model’s multiple generation with the
correct answer is a reliable method for assessing
knowledge state. The consistency of model gen-
eration with the correct answer can be computed
using methods such as unigram overlap and cosine
similarity of text representation.

However, the correct answer is hard to obtain
in many scenarios, in which case self-consistency
becomes a critical tool for assessing the validity of
the generation. As evidenced by multiple research
(Manakul et al. (2023), Agrawal et al. (2023), Hase
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et al. (2023), Elaraby et al. (2023)), there is a gen-
eral conclusion that higher consistency across mul-
tiple generations is often indicative of validity of
the generation. Intuitively, if the model has the
corresponding knowledge, multiple generation are
likely to contain consistent facts, resulting in higher
consistency. Whereas, the contents of the hallucina-
tions often varies, leading to lower self-consistency.
We evaluate the self-consistency of a certain gener-
ation by the average of the cosine similarity repre-
sentations among other generated answers.

3.2 Internal perspective
Previous work (Azaria and Mitchell (2023), Ka-
davath et al. (2022), Li et al. (2023b)) prove that
LLMs can discern the factual accuracy of certain
statements, even when the false statements are self-
generated. This supports the existence of state 2 in
Figure 1 where the model has the corresponding
knowledge but generates incorrect outputs. But
are LLMs capable of discerning its own state of
knowledge? The question can be rephrased as fol-
lows: for a given knowledge-related question, can
a model discern its capability to output the correct
answer before the actual generation of an answer?
The following linear probing experiments on multi-
ple models implies that the answer is yes.

We sample questions from the wiki-QA data, and
use LLM to generate k = 5 answers for each ques-
tion separately. We use the consistency method
described earlier to pre-label the questions. The
sum of these normalized consistency scores com-
puted to derive the final score.

To categorize the questions, straightforward
thresholds are utilized. The upper threshold is set
at the 65th percentile score, and the lower at the
35th percentile score. Under this setup, responses
with scores exceeding the upper threshold are la-
beled as correct, while those falling below the lower
threshold are labeled as incorrect. If all of the k
generated responses related to a specific question
are deemed correct, the model is presumed to pos-
sess the relevant internal knowledge, and thus the
question is labeled as ’Known’. Conversely, if all k
responses are incorrect, the model is considered to
lack the necessary internal knowledge, and hence
the question is labeled as ’Unknown’.

A single linear layer classifier (probe) is trained
on the internal representation corresponding to the
last token of each question. Its task is to predict the
corresponding Known/Unknown label.

For our experiments, we select three types of

internal representations:
The attention output, which refers to the output

of the dot product attention and before the atten-
tion linear layer in the decoder layer. This setup
aligns with the probe’s positioning within Li et al.
(2023b); The MLP output, i.e., the feed-forward
layer’s output within the decoder layer, occurring
prior to residual linkage; The hidden states, de-
fined as each decoder layer’s output.

The results of the internal knowledge probe ex-
periment are shown in Figure 2, which presents
the accuracy of the trained probes across different
models with different internal representation and at
different layers.

Comparative analysis of the experimental results
across models of varying sizes yields consistent
observations:

1. The linear probes of the internal state accu-
rately predict the knowledge representation of the
model. The probes’ maximum accuracy surpasses
85% in most setups. This suggests that information
about whether the model has the corresponding
knowledge is linearly encoded in the internal repre-
sentation of the model with high accuracy.

2. The accuracy of the probes increases rapidly
in the early to middle layer, indicating that the
model needs some layers of computation before it
can determine its own knowledge states.

3. Hidden state probes exhibit the highest accu-
racy in discerning the knowledge state of the model,
sustaining high accuracy from the middle layer to
the output layer, which opens up the possibility of
utilizing internal knowledge state when generating
responses.

3.3 DreamCatcher
We integrated the above methods of knowledge
state probing and consistency judgments to develop
an automated hallucination annotation tool, Dream-
Catcher.

We start by collect the LLMs’ generation for
each question in the question set, in our case,
the wiki-QA dataset. This process features two
modes: normal generation and uncertainty gen-
eration. Normal generation is when the prompt
contains only the question and model generates k
responses, while uncertainty generation refers to
where the prompt contains a request for the model
to output answers that show uncertainty or lack of
knowledge.

Subsequently, we assess the degree of halluci-
nation of the generated responses using multiple
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scorers using the methods described above. Con-
cretely, we compute the following scores:

ss2g = avgij(cos(rGi , rGj ))

sp = probe(rQ)
so2a = count(tokenoverlap)/count(tokenA)
ss2a = cos(rG, rA)

where Q denotes the question, A the correct
answer, G the generation and r the embedding rep-
resentation of text.
ss2g (Similarity to Generation Score): com-

putes the cosine similarity between the embedding
of certain generation (Gi) and other generated re-
sponses (Gj), using the bge-large model (Xiao
et al., 2023) for text embedding.
sp (Probe Score): rates the questions by utiliz-

ing the probes trained in Section 3.2, which are
intended to discern the model’s knowledge state for
the corresponding questions.
so2a (Overlap with Answer Score): calculates

the ratio of token overlap between the generated
output and the correct answer (A).
ss2a (Similarity to Answer Score): computes

the cosine similarity between the embedding of the
generated response (G) and the correct answer (A),
using the bge-large model for text embedding.

The scores are normalized and summed to pro-
vide an overall factuality score for each genera-
tion. The generations are then classified as "cor-
rect" or "incorrect" based on whether their total
score is above or below the median score, respec-
tively. Questions are categorized as "Known",
"Unknown", or "Mixed" based on whether the re-
sponses are consistently correct, incorrect, or a
combination of correct and incorrect across multi-
ple generations, with "Mixed" being a less frequent
occurrence.

The categories correspond to three ranking hier-
archies as shown in Figure 3: Known (correspond-
ing to state 1 in Fig.1): factual > uncertainty; Mixed
(state 2): factual > uncertainty > hallucination; Un-
known (state 4): uncertainty > hallucination. Here,
"factual" refers to the generation with the highest
factuality score, while "hallucination" denotes the
generation with the lowest score.

We randomly sampled 200 entries, half Chinese
and half English, from the DreamCatcher labeled
data. Then the human annotator annotate the same
data, without access to the labels of DreamCatcher.
The consistency between DreamCatcher and hu-

man annotator is shown in Table 1, with an overall
accuracy of 81%.

Language Accuracy Precision Recall

All 81% 77% 86%
Chinese 77% 79% 76%
English 86% 76% 98%

Table 1: The consistency between DreamCatcher and
human annotator. For precision and recall, we treat
"correct" as a positive label and "incorrect" as negative.

4 Method

From the above knowledge-probing experiments,
we discover that LLMs are capable of evaluating
their own knowledge states in response to spe-
cific knowledge-based questions. This implies that
LLMs demonstrate a self-awareness of their knowl-
edge state, which does not consistently translate
into their generation.

Frequently, when faced with questions outside
of internal knowledge, LLMs tends to generate
hallucinations. Additionally, even with questions
within internal knowledge, LLMs may potentially
generate incorrect responses due to other influences.
One possible explanation could be that LLMs did
not learn to generate with respect to the internal
knowledge state during model training. Instead,
the fine-tuning process often requires the model
to generate seemingly reasonable answers to all
factual questions.

We therefore emphasize on enhancing the
model’s utilization of internal knowledge state so
that the model can choose to rely on internal knowl-
edge to answer or honestly express its lack of rele-
vant knowledge.2

Consequently, we propose the RLKF (Rein-
force Learning from Knowledge Feedback) train-
ing framework. This introduces model knowledge
state assessments into the reinforcement learning
feedback mechanism, enhancing model honesty
and factuality. The RLKF training process shares
similarities with the standard RLHF (Reinforce
Learning from Human Feedback), and can inte-
grate smoothly with the existing RLHF framework,
but reduces data collection costs by substituting

2This intuition could also be used for efficient RAG, en-
abling direct responses when the LLM possesses relevant
internal knowledge, while relying on the retrieval tool in case
of a knowledge gap.
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Figure 3: RLKF training framework

human labeling with automatic knowledge annota-
tion.

The RLKF training framework consists of the
following components, as shown in Figure 3.

Knowledge state annotation: We annotate fac-
tual preference data using the DreamCatcher tool.

Knowledge Feedback Modeling: Having ob-
tained the factual preference data, we train the re-
ward model following (Ouyang et al., 2022). The
language modelling head in reward model is re-
placed with a linear layer to produce a scalar out-
put, corresponding to the reward of the generated
response. In line with (Köpf et al., 2023), an ad-
ditional regularization parameter is introduced to
prevents the predicted values from diverging too
much.

By initiating the PPO Policy training and the
reward model training from the same model, we
can ensure that the reward model can leverage the
same internal knowledge.

PPO Optimizing: Based on our factual reward
model, we optimize the policy, i.e., the initial gen-
erative model, using the PPO algorithm once again
following Ouyang et al., 2022. To improve the
efficiency of model exploration towards honesty,
we use guidance technique in reinforcement learn-
ing. Concretely, we concatenate the first few tokens
of the preferred responses to the input prompts in
a portion of the training data. The added tokens
do not participate in the loss calculation, but can
guide the model to generate desired responses, thus

improving learning efficiency.
The core of the training framework is to establish

the factual preference reward mechanism. The rein-
forcement learning algorithms in the RLKF frame-
work can also be replaced by other optimization
algorithms such as DPO (Rafailov et al., 2023), re-
ject sampling, etc. We choose PPO to be consistent
with the common practice in RLHF training.

5 Experiments

In the following experiments, We chose three dif-
ferent models of varying sizes: llama2-chat (13B
and 7B); Qwen-chat (14B and 7B); and Ziya-reader
(13B), which is consistent with the choice of mod-
els for the knowledge-probing experiments detailed
in Section 3.

Model Known Unknown Mixed

Qwen-chat-14B 82.7% 87.1% 77.8%
Qwen-chat-7B 65.7% 81.6% 61.1%
Llama2-chat-13B 85.4% 85.4% 60.0%
Llama2-chat-7B 78.9% 89.2% 57.6%
Ziya-reader-13B 93.5% 82.4% 64.5%

Table 2: Accuracy of trained reward model for each
knowledge state category.

5.1 Data collection

We used the wiki-QA data collection method same
as in Section 3, obtaining about 7,000 QA pairs
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Models MMLU WinoGrande ARC BBH GSM8K MATH C-Eval CMMLU Avg

Qwen-chat-14B
before 64.2% 53.8% 76.5% 34.5% 47.3% 18.9% 65.0% 64.1% 53.0%
after 64.5% 59.1% 87.2% 37.3% 49.9% 20.3% 64.6% 66.4% 56.2%

Qwen-chat-7B
before 54.2% 49.6% 63.1% 28.8% 50.0% 12.6% 57.8% 58.1% 46.8%
after 55.3% 52.2% 75.4% 28.1% 50.9% 12.5% 57.5% 56.0% 48.5%

Llama2-chat-13B
before 52.3% 51.9% 72.4% 21.7% 35.2% 3.2% 34.6% 34.5% 38.2%
after 52.8% 54.3% 72.1% 23.4% 35.6% 3.1% 34.3% 34.6% 38.8%

Llama2-chat-7B
before 45.9% 51.5% 59.2% 23.3% 25.9% 1.6% 32.1% 31.6% 33.9%
after 46.2% 52.4% 61.1% 24.4% 23.7% 2.0% 34.0% 32.1% 34.5%

Ziya-reader-13B
before 49.5% 50.8% 64.7% 44.7% 29.3% 4.3% 44.7% 46.1% 41.7%
after 50.3% 51.9% 67.9% 42.6% 33.2% 3.8% 42.6% 45.1% 42.2%

Table 3: Evaluation of RLKF-trained models on various knowledge and reasoning related tasks: MMLU (Hendrycks
et al., 2020), WinoGrande (Sakaguchi et al., 2021), ARC (Chollet, 2019), BBH (Suzgun et al., 2022), GSM8K
(Cobbe et al., 2021), MATH (Hendrycks et al., 2021), C-Eval (Huang et al., 2023), CMMLU(Li et al., 2023a). Tasks
are evaluated by the open-source evaluation tool TLEM (SUSTech, 2023), employing a 0-shot setting with greedy
generation.

each for Chinese and English. To add variety to
the questions, we have also modified the prompt to
include multiple choice question types. Since our
approach relies on the internal knowledge of the
models and the boundaries of the internal knowl-
edge are different for each model, we need to per-
form automatic annotation for each model individ-
ually. The generated responses are labeled using
DreamCatcher to obtain factual preference data.
The statistics of the factual preference data are
shown in Table 7.

5.2 RLKF Training

We train the reward model using the factual prefer-
ence data in Table 7. To maintain the generaliza-
tion of the RM, we include same amount of general
purpose data as the wiki-QA data in the training.
Accuracy of the trained RM on factual preference
data test set are shown in Table 2. Interestingly, the
reward model is able to quickly achieve high ac-
curacy for both known/unknown categories during
training, suggesting that reward model may utilize
the internal knowledge state of the initial model to
determine whether the uncertainty response should
be preferred.

Using the trained reward model, the RL process
optimizes policy model using the PPO algorithm,
where policy model is initialized from the same
base model as reward model. The detailed training
settings and hyper-parameters are described in A.4.

We conduct an evaluation of the trained model,
focusing on its factuality and truthfulness. A com-
parative analysis of the models is performed be-
tween pre- and post- RLKF training on various
tasks related to knowledge and reasoning as shown

Models
TruthfulQA

before after

Qwen-chat-14B 43.7% 49.1%
Qwen-chat-7B 49.1% 50.3%

Llama2-chat-13B 21.5% 20.9%
Llama2-chat-7B 27.5% 28.3%
Ziya-reader-13B 34.8% 37.9%

Table 4: Evaluation of RLKF-trained models on Truth-
fulQA, again using TLEM (SUSTech, 2023), employing
a 0-shot setting with greedy generation.

in Table 3. The RLKF-trained models demon-
strate improvements on the majority of the bench-
marks. While RLHF typically results in a reduction
of benchmark performance, termed as ’alignment
tax’ (Askell et al., 2021), RLKF avoids this de-
cline specifically on knowledge-related tasks, and
even lead to improvements. Note that our training
methodology does not employ any benchmark data,
and the overall volume of training data utilized is
small.

Regarding the truthfulness of trained models, we
evaluated their performance using the widely recog-
nized TruthfulQA task. Notably, all models, with
the exception of llama2-chat-13B, show increase
in honesty, as shown in Table 4.

6 Related Work

Hallucination in large language models (LLMs)
has been the focal point of research, spanning its
causes, detection, and mitigation. Our work relates
to all three aspects.

Causes of hallucination: Studies have linked
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LLM hallucination to various causes. McKenna
et al. (2023) ascribes it to memorization of train-
ing data, indicating a direct correlation between
the training data and the resultant hallucination.
Other works such as Schulman (2023) pinpoint
improper model fine-tuning as contributive, and
Perez et al. (2022) argues that RLHF induce model
"sycophancy" which in turn degrades honesty.

Other studies link hallucinations to the genera-
tion process. For example, Lee et al. (2022) sug-
gests that sampling-induced randomness could be
responsible. One perspective provided by Chuang
et al. (2023) proposes that "lower-level" prior layer
information might overshadow factual information
from subsequent layers. Furthermore, some works
relate hallucinations to the overconfidence of LLMs
(Ren et al., 2023).

Hallucination detecting: In terms of detecting
hallucination, the consistency of multiple genera-
tions has been recognized as an effective indicator.
SelfCheckGPT (Manakul et al., 2023) capitalizes
on the consistent nature of internal knowledge-
based generations compared to the variable na-
ture of hallucination, propose several consistency
checks to identify hallucinations. The idea is
echoed by Agrawal et al. (2023), who suggest eval-
uating the generation consistency of generated ref-
erences to spot hallucination. Similarly, Elaraby
et al. (2023) proposes a metric involving the cal-
culation of sentence-level entailment between re-
sponse pairs as a measure of hallucination.

Employing large language models (LLMs) to
recognize their own hallucinations has been sug-
gested in Saunders et al. (2022), suggesting that
discrimination is more accurate than generation for
LLMs (G-D gap). This notion is furthered by Ka-
davath et al. (2022) and Agrawal et al. (2023) by
directly prompting LLMs to assess the validity of
their own output.

Another approach examines the factualness of
statements by analyzing the model’s internal rep-
resentation. Studies Li et al. (2023b) and Burns
et al. (2022) identify a "factualness" direction in
the model’s internal representation, with Li et al.
(2023b) showcasing a high accuracy attention head
through linear probing, and Burns et al. (2022) lo-
cating factualness direction through consistency of
facts. Additionally, Kadavath et al. (2022) trains
the model to predict the probability that it knows.
Base on these works, we shifts focus onto the
model’s self-evaluation of knowledge state.

Hallucination mitigation: The common ap-

proach of hallucination mitigation involves enhanc-
ing the model with additional information. Elaraby
et al. (2023) propose the use of larger models to
provide additional information when hallucinations
is detected.

Some research efforts focus on the optimization
of decoding strategies to address hallucinations.
Chuang et al. (2023) suggests that contrastive de-
coding can augment the factualness of model gen-
eration. Li et al. (2023b) enhances factualness by
adjusting the output of attention heads along the
direction of factualness during inference. Our work
seeks to optimizes the utilization of the model’s
internal knowledge state, in line with the direction
proposed by Schulman (2023) leveraging reinforce-
ment learning to tackle hallucinations.

7 Conclusion

In our research, we thoroughly explore the capa-
bility of large language models (LLMs) to dis-
cern and express their internal knowledge, a key
factor in mitigating factual hallucinations and en-
suring reliable applications. Our research, mani-
fested through a series of knowledge probing ex-
periments, identifies the model’s self-awareness of
its knowledge state. We released the open-source
tool DreamCatcher which scores and annotates the
degree of hallucination in the LLM’s response to
knowledge-oriented question and rank responses
based on their factuality.

We further validated our findings through the
Reinforcement Learning from Knowledge Feed-
back (RLKF) training framework. Utilizing Dream-
Catcher to annotate factual preference data, we
train a reward model and leveraging reinforcement
learning to enhances LLM’s factuality and truth-
fulness. Our results indicate RLKF’s effectiveness
in improving the model’s utilization of its inter-
nal knowledge state, enhancing its performance in
various knowledge and honesty related tasks. We
posit that RLKF is a promising solution to address
LLM’s hallucination issues and, combined with
RLHF, offers significant potential for enhancing
the model’s overall capabilities.

51



8 Limitations

Data limitation: Our Reinforcement Learning from
Knowledge Feedback (RLKF) training relies on
a relatively limited quantity and variety of data
used. The factual question-answer data employed
in our experiments predominantly resulted from
using GPT3.5 to generate question-answer pairs
from Wikipedia passages. Although this approach
guarantees high factual precision and includes an
extensive range of long-tail facts, it restricts diver-
sity in writing style.

Given the time and cost considerations associ-
ated with the use of GPT api, the volume of data
was also somewhat restricted. To enhance RLKF
training, prospective research might contemplate
compiling more intricate factual question-answer
data that reflect real-world conditions.

Integration of Alternative Optimization Tech-
niques: The essence of the RLKF framework lies in
optimizing for factual preferences. After acquiring
factual preference data, we opted for the Proxi-
mal Policy Optimization (PPO) method for opti-
mization, given its demonstrated efficacy within
the existing Reinforcement Learning from Human
Feedback (RLHF) framework.

However, various other potential optimization
methods exist, including reject sampling, DPO,
mixed data supervised fine-tuning, among others.
We anticipate future research will creatively in-
corporate factual preference data into their respec-
tive training frameworks, contributing to a com-
prehensive understanding of the LLM illusion phe-
nomenon.
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A Appendix

A.1 Example of wiki-QA Instruction
A.2 More probing results

(a) Llama2-chat-7B (b) Qwen-chat-7B

Figure 4: Accuracy of knowledge state probing in 7B models. The light-colored area in the figure shows the range
of accuracy for ten repetitions of the experiment, and the solid line shows the mean accuracy.
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Instruction template:
Based on the following Wikipedia article snippet, ask a knowledge-based
question and provide a corresponding answer.
Article snippet:
{Wikipedia passage}
Requirements:
1. there is a unique correct answer to the question, and the answer can be found
in the given article fragment.
2. the question can be answered independently of the article fragment, i.e. the
answer to the question cannot depend on contextual information, e.g. a question
about a character in a literature needs to specify the work to which the character
belongs, and a question such as "What is the article about?" cannot be asked.
3. Provide the question, answer, and category (e.g., literature, physics,
etc.) at the same time, and reply in the following format: {"ques-
tion":question,"answer":answer,"type":category}.
If you are unable to ask a question that meets the above requirements, you can
simply reply "Unable to ask".
Reply:
Wikipedia passage:
House Arrest (1996 film) House Arrest is a 1996 American comedy film directed
by Harry Winer, written by Michael Hitchcock, and starring Jamie Lee Curtis,
Kevin Pollak, Jennifer Tilly, Christopher McDonald, Wallace Shawn, and Ray
Walston with supporting roles done by Kyle Howard, Amy Sakasitz, Mooky
Arizona, Russel Harper, and an up-and-coming Jennifer Love Hewitt. It tells
the story of two children who trap their parents in their basement upon their
plans for a separation as the other children they know get involved by trapping
their respective problem parents as well. The film was released on August 14,
1996 and went on to gross just over $7 million at the box office. The film was
panned by critics. The film was shot at various locations in the U.S. states of
California and Ohio. Monrovia, California was the location for several exterior
house scenes while most interior shots were done at the CBS/Radford lot in
Studio City, California. The story was set in Defiance, Ohio, although another
town, Chagrin Falls, Ohio, actually doubled for it.
GPT3.5 response:
{"question":"Who directed the film House Arrest?","answer":"Harry
Winer","type":"film"}

Table 5: Example of instruction and corresponding GPT3.5 output of English wiki-QA.
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Instruction template:
根据下面的维基百科文章片段，提出一个简短的知识型问题并给出对应
回答，要求这个问题存在唯一正确答案，并且答案可以在给出的文章片
段中找到。
文章片段：
{Wikipedia passage}
问题需要在脱离文章片段的情况下仍能够被回答，例如针对文学作品中
人物提问需要指明所属的作品，以免引起歧义。问题的回答不能依赖于
上下文的信息，不能提出类似“这篇文章的内容是什么？”的问题。
同时给出问题，回答和问题分类（比如文学类或物理类等），按如下格
式回复：{"question":问题,"answer":回答,"type":分类}。如果无法提出满
足上述要求的问题，可以直接回复“无法提问”。
回复：
Wikipedia passage:
M25
M25，也称为IC 4725，是一个由恒星组成，在南天人马座的疏散星
团。Philippe Loys de Chéseaux在1745年对这个星团进行了第一次有记录
的观测，查尔斯·梅西耶1764年将它收录进他的星云天体清单[6]。这个
星团位于模糊的特征附近，因此有一条暗带通过中心附近[3]。
M25距离地球大约2,000光年，年龄约为6,760万岁[2]。这个星团在空
间的维度大约是13光年，估计质量是1,937 M，其中大约24%是星际物
质[4]。星团成员中的人马座U是一颗分类为造父变星的变星[7]，还有两
颗红巨星，且其中一颗是联星系统[8]。
GPT3.5 response:
{"question":"M25是位于哪个星座的疏散星团？","answer":"南天人马
座","type":"天文学"}

Table 6: Example of instruction and corresponding GPT3.5 output of Chinese wiki-QA.

57



A.3 Statistics of factual preference data

Model Total Known Unknown Mixed

Qwen-chat-14B 12799 49% 43% 8%
Qwen-chat-7B 7201 52% 40% 8%
Llama2-chat-13B 6600 48% 44% 8%
Llama2-chat-7B 6680 45% 45% 10%
Ziya-reader-13B 12558 49% 41% 10%

Table 7: Statistics of factual preference data and percent-
age of each knowledge state category used for reward
modeling. The Llama2 models use English-only wiki-
QA data, Qwen-chat-7B uses Chinese-only data, and
Qwen-chat-14B and Ziya-reader-13B use a mixture of
English and Chinese data.

A.4 RLKF Training details
We use the AdamW optimizer, with β1 = 0.9,
β2 = 0.99, eps = 1e − 5 for all models. The
learning rate for reward model training is 5e − 6
with 1% warmup and linear decay scheduler. The
batch size is 16 for 13/14B models and 64 for 7B
models. We train the reward model for 1 epoch.
For PPO training, we use learning rate of 1e − 6
with cosine scheduler. The batch size is 32 for
13/14B models and 64 for 7B models. We set the
KL penalty to 0 for all models.

A.5 More Observation
We observe that, some of the responses to the
unknown questions are indicating uncertainty in
RLHF-trained models, but there is also a signif-
icant percentage of responses that are hallucina-
tions. This indicates an increase in model honesty
achieved through RLHF, but there is still room for
improvement.
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Abstract

This paper aims to augment fans’ ability to cri-
tique and explore information related to celebri-
ties of interest. First, we collect posts from X
(formerly Twitter) that discuss matters related
to specific celebrities. For the collection of ma-
jor impressions from these posts, we employ
ChatGPT as a large language model (LLM) to
analyze and summarize key sentiments. Next,
based on collected impressions, we search for
Web pages and collect the content of the top
30 ranked pages as the source for exploring the
reasons behind those impressions. Once the
Web page content collection is complete, we
collect and aggregate detailed reasons for the
impressions on the celebrities from the content
of each page. For this part, we continue to use
ChatGPT, enhanced by the retrieval augmented
generation (RAG) framework, to ensure the reli-
ability of the collected results compared to rely-
ing solely on the prior knowledge of the LLM.
Evaluation results by comparing a reference
that is manually collected and aggregated rea-
sons with those predicted by ChatGPT revealed
that ChatGPT achieves high accuracy in reason
collection and aggregation. Furthermore, we
compared the performance of ChatGPT with
an existing model of mT5 in reason collection
and confirmed that ChatGPT exhibits superior
performance.

1 Introduction

In recent years, social networking services (SNS)
such as X (formerly Twitter) have become plat-
forms where various opinions are expressed. As
shown in Figure 1, a significant number of posts on
these platforms contain impressions and critiques
of celebrities, often triggered by events such as TV
drama broadcasts, commercials, or news reports.
Among celebrity fans, there are individuals who
have a strong interest in this type of information.
For example, when an event or an incident that is

related to a popular celebrity occurs, people ex-
press their own thoughts regarding those events
and incidents in SNS such as microblog (e.g., X)
posts. Since a number of those posts are distributed
through SNS, this makes it unexpectedly difficult
to correctly identify what people actually intend to
express in their posts. The reasoning behind these
impressions is often implicit and can be influenced
by various factors such as the stance of the writ-
ers of the posts, recently occurring related events,
and the contexts provided by external sources like
news articles and ads. However, such background
information is not always detailed in the posts them-
selves. Therefore, it is necessary to utilize not only
the information within the posts but also external
information to gain comprehensive understanding.

Considering those situations, this paper aims
to augment fans’ ability to critique and explore
information related to celebrities of interest. To
achieve this overall goal, we first collect posts from
X that discuss matters related to specific celebrities
and gather major impressions on those celebrities.

Our ChatGPT-based approach overcomes the
limitations of a previous research (Sugawara and
Utsuro, 2022), allowing for a more flexible and
comprehensive collection of aspects and impres-
sions about celebrities. The details of our ChatGPT-
based method for collecting and aggregating im-
pressions are to be explained in Section 4. This
approach allows us to more effectively identify and
aggregate the major impressions on celebrities’ as-
pects from the vast amount of information available
in X posts, while taking into account the context of
the posts. This enables a more comprehensive and
nuanced understanding of the public’s perceptions
of celebrities, going beyond the limitations of the
previous method. We then use the corresponding
pair of a celebrity’s aspect and an impression as
a keyword for collecting detailed information and
their reasons from Web pages.

After selecting the keyword, we search for Web
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Figure 1: Numerous Posts on Celebrities triggered by Various Celebrities related Events

pages using the keyword as a query and collect the
content of the top 30 ranked pages as the source for
exploring the reasons behind the impressions.

Once the Web page content related to the key-
word is collected, we explore detailed reasons for
the impressions within the content of each page.
For this part, we utilize ChatGPT as a large lan-
guage model (LLM). A crucial aspect of our re-
search is the use of RAG (Lewis et al., 2020) in this
reason collection process, which plays a significant
role in enhancing the reliability of LLM outputs.
The RAG framework allows LLMs to refer to infor-
mation retrieved from external databases, thereby
improving the reliability of the generated content.
In this paper, we aim to enhance the reliability of
the collected results by leveraging the RAG frame-
work to collect reasons for impressions based on
the content of Web pages, compared to relying
solely on the prior knowledge of LLMs. We also
show that ChatGPT outperforms an existing model
of mT5 (Xue et al., 2021) in reason collection.

The reasons for impressions obtained through
this method, however, are highly duplicated and
hence redundant, making it difficult for users to rec-
ognize the critiques and related information about
celebrities at a glance. Therefore, we categorize
and rank the multiple reasons for impressions ob-
tained for each keyword, considering the frequency
of the reasons. This allows users to easily un-
derstand the reasons behind the impressions on
celebrities’ aspects in an aggregated ranked format,
enabling the exploration of critiques and relevant
information on celebrity-related topics. We employ
ChatGPT also for this part.

The followings give the contribution of this pa-
per:

1. We proposed a novel approach using Chat-
GPT, a large language model, to effectively
collect and aggregate impressions on celebri-
ties’ aspects from X posts.

2. In the RAG framework, we showed that Chat-
GPT is highly effective in collecting and
aggregating reasons for the impressions on
celebrities from Web pages.

3. In collecting reasons for impressions on
celebrities, we demonstrated that ChatGPT
outperforms mT5, highlighting the effective-
ness of ChatGPT in extracting relevant infor-
mation from Web pages.

2 Related Work

Previous work on assisting information access re-
garding celebrities includes studies on constructing
large-scale celebrity profile datasets by combin-
ing Twitter and Wikidata (Wiegmann et al., 2019)
and analyzing persuasion strategies in celebrities’
language use on social media to predict their in-
fluence (Chang et al., 2021). Regarding assisting
fans of celebrities, previous work includes studies
on determining the relationship between celebri-
ties and impressions in microblog posts (Nozaki
et al., 2022) and those on mining impressions on
celebrities’ aspects in microblog posts (Sugawara
and Utsuro, 2022). This paper differs from those
previous work in that we search Web pages for
reasons behind impressions on celebrities’ aspects
mined from microblog posts. This paper also dif-
fers from the previous work in that we employ
ChatGPT, a large language model, to extract im-
pressions on celebrities’ aspects from microblog
posts, while the previous studies relied on other
methods such as co-occurrence frequency statistics.

Furthermore, one of the key characteristics of
this paper is the use of RAG (Lewis et al., 2020),
which improves the reliability of LLM-generated
output by allowing reference to external informa-
tion. RAG allows LLMs to refer to information
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Figure 2: Overview of Collecting and Aggregating Impressions on Aspects of Celebrities from X Posts

retrieved from external databases, enhancing the ac-
curacy and trustworthiness of the generated content.
In this paper, we leverage RAG to collect reasons
for impressions based on the content of Web pages,
aiming to significantly improve the reliability of the
collected results compared to traditional methods
that rely solely on the knowledge stored within the
LLMs. Recent studies have explored various RAG
applications and improvements, such as context
tuning for tool retrieval and plan generation (Anan-
tha and Vodianik, 2024) improving open-domain ta-
ble question answering with late interaction models
and joint training (Lin et al., 2023), few-shot multi-
lingual image captioning without requiring super-
vised training (Ramos et al., 2023), and incorporat-
ing additional components for more powerful ques-
tion answering systems (Tan et al., 2023). Other
works have focused on improving zero-shot perfor-
mance on low-resource languages using prompts
from high-resource languages (Nie et al., 2023),
leveraging retrieval for non-knowledge-intensive
tasks with a two-stage framework (Guo et al.,
2023), and incorporating rich answer encoding for
better generation quality in knowledge-intensive
tasks (Huang et al., 2023).

ChatGPT-related research also includes entity
linking (Peeters and Bizer, 2023), and dialogue
analysis (Finch et al., 2023), and text summariza-
tion (Zhang et al., 2023b; Pu and Demberg, 2023;
Zhang et al., 2023a). This paper differs in that we
utilize ChatGPT for both collecting and aggregat-
ing impressions on celebrities’ aspects, as well as
collecting and aggregating the reasons for these
impressions.

3 Aspect, Impression, and Reason

In this study, we define “aspect”, “impression”, and
“reason” as follows:

aspect: a specific attribute, characteristics, or topic
related to a celebrity. This can include phys-
ical features, skills or talents, specific works
or performances, interactions or relationships,
behaviors, or other notable elements of their
public persona.

impression: a subjective opinion, evaluation, or
feeling about a celebrity’s aspect, often
expressed through adjectives, descriptive
phrases, or statements of recognition.

reason: the underlying explanations, justifications,
or evidences that support a particular impres-
sion about a celebrity’s aspect. Reasons are
typically more detailed and context-rich than
impressions, often found in longer-form con-
tent such as Web articles or detailed social
media posts.

4 Collecting Impressions from X Posts
using ChatGPT

This section describes the procedure of collecting
posts containing celebrity names from X, iden-
tifying posts that mention impressions on spe-
cific aspects of celebrities, and aggregating them
into aspect-impression pairs using ChatGPT. An
overview is illustrated in Figure 2.

4.1 Collecting X posts
In this paper, we selected 10 celebrities who are
frequently discussed on X and collected posts using
their names as search queries from September 7,
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celebrity name number of posts
number of

non-repost posts
Ryosuke Yamada 938,882 213,886

Kazunari Ninomiya 851,579 164,130
Fuma Kikuchi 1,131,863 185,823

Shun Oguri 425,188 120,583
Go Ayano 272,232 95,890

Kentaro Sakaguchi 284,622 64,472
Ryoma Takeuchi 83,368 31,670
Kasumi Arimura 370,956 105,084

Tomoya Nakamura 702,807 206,632
Mei Nagano 246,489 58,636

Total 5,307,986 1,246,806

Table 1: Numbers of Collected Posts for Each Celebrity Name

celebrity name aggregated aspect impression

Ryosuke Yamada

beauty outstanding
quality of dance high

interaction with Daiki Shigeoka touching
Karubi harassment funny
kidnapping of Jr. cute

eye contact with camera charming

Kazunari Ninomiya

movie “Ragelee yori Ai wo Komete” masterpiece and moving
acting skills recognized as a good actor

activities during year-end and New Year enjoyment for fans
personality loved and respected by fans

radio program enjoyment for fans

Table 2: Examples of Aspect-Impression Pairs aggregated by ChatGPT

2022 to April 9, 2023. This process is depicted in
the “Collecting X posts” part of Figure 2. The Twit-
ter Search API1 was used for post collection. The
numbers of posts and non-repost posts collected
for each celebrity name are shown in Table 1. In
this paper, we only use non-repost posts.

4.2 Collecting/Aggregating Impressions from
Posts

Next, we perform two main tasks on the X posts
containing a specific celebrity name collected in
the previous section. First, we collect posts that
mention impressions on specific aspects of that
celebrity. Second, we aggregate the collected infor-
mation into aspect-impression pairs. These tasks
are illustrated in the “Collecting and Aggregating
Celebrity’s Impressions” part of Figure 2. As the
framework for these tasks, we utilize ChatGPT2

model, specifically gpt-4-turbo-2024-04-09.
The specific prompts given to ChatGPT are shown
in Figure 5 of Appendix A. Here, we show an ex-
ample of a prompt targeting the celebrity “Ryosuke
Yamada”. The prompts begin by providing posts,

1https://developer.twitter.com/en/docs/tweets/
search/api-reference/get-search-tweets

2https://platform.openai.com/docs/models/

and instruct to first collect posts that mention what
aspects (impression targets) of Ryosuke Yamada
and what kind of impressions are associated with
those aspects. Next, it instructs to aggregate the
collected posts based on the impression targets and
their corresponding impressions. The desired out-
put format is then specified, indicating to output the
pairs of the impression target and the correspond-
ing impression, along with the specific relevant
posts. Due to the limitation of input token num-
bers, 100 posts are provided as an example. The
prompts also instruct not to include the celebrity’s
name “<Ryosuke Yamada>” in the impression tar-
gets, and to be careful not to make the impres-
sion targets and their corresponding impressions
redundant. Finally, before outputting, it instructs
to double-check if there exist any remaining posts
that were not collected nor aggregated.

To evaluate the performance of the proposed
approach, we manually annotate a subset of the
collected posts to create a reference dataset. The
evaluation is conducted for both the collection and
the aggregation tasks by comparing the outputs gen-
erated by ChatGPT with the reference. The results
are summarized in Table 3. For the collecting task,

62

gpt-4-turbo-2024-04-09
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://platform.openai.com/docs/models/


celebrity name total posts

collecting celebrity’s impressions aggregating celebrity’s impressions
recall precision recall precision

[# (ref ∩ collected) [# (ref ∩ collected) [# (ref ∩ aggregated) [# (ref ∩ aggregated)
# ref ] # collected ] # ref ] # aggregated ]

Ryosuke Yamada 100 0.42 (=10/24) 0.91 (=10/11) 0.82 (=9/11) 1.00 (=9/9)
Kazunari Ninomiya 100 0.73 (=8/11) 0.80 (=8/10) 0.38 (=3/8) 0.60 (=3/5)

Fuma Kikuchi 100 0.63 (=5/8) 0.71 (=5/7) 0.60 (=3/5) 0.60 (=3/5)
Shun Oguri 100 0.67 (=2/3) 0.40 (=2/5) 0.67 (=2/3) 0.50 (=2/4)
Go Ayano 100 0.69 (=9/13) 0.69 (=9/13) 0.50 (=3/6) 0.60 (=3/5)

Total/Micro Average 500 0.58 (=34/59) 0.74 (=34/46) 0.61 (=20/33) 0.71 (=20/28)

Table 3: Manual Evaluation Results of Collecting/Aggregating Impressions on Aspects of Celebrities

the evaluation results are shown in the “collecting
celebrity’s impressions” section of Table 3. The
table presents the total number of posts used for
evaluation in the “total posts” column. The “recall”
and “precision” columns display the recall and pre-
cision of ChatGPT’s performance for the collection
task, respectively, where recall is calculated as [#
(ref ∩ collected) / # ref] and precision as [# (ref ∩
collected) / # collected]. Similarly, for the aggrega-
tion task, the evaluation results are presented in the
“aggregating celebrity’s impressions” section of Ta-
ble 3. The evaluation is conducted using the posts
that were identified as containing impressions on
aspects of celebrities by ChatGPT in the collection
task. The “recall” and “precision” columns show
the recall and precision of ChatGPT’s performance
for the aggregating task, respectively, where recall
is calculated as [# (ref ∩ aggregated) / # ref] and
precision as [# (ref ∩ aggregated) / # aggregated].

Table 2 shows examples of the aspect-impression
pairs aggregated by ChatGPT for the celebrities
Ryosuke Yamada and Kazunari Ninomiya. The
table presents the aggregated aspects and their cor-
responding impressions for each celebrity. As can
be seen from the examples in the table, ChatGPT is
capable of capturing and aggregating a wide range
of aspects and impressions for both celebrities. For
Ryosuke Yamada, this includes physical appear-
ance, performance skills, interactions with others,
behavior on variety shows, roles in dramas, and
even eye contact with the camera. For Kazunari
Ninomiya, ChatGPT aggregates aspects such as
his highly reputed movie, acting skills, activities
during year-end and New Year, personality, and
radio program. These examples demonstrate that
our proposed method using ChatGPT can effec-
tively address the limitations of the previous re-
search (Sugawara and Utsuro, 2022), which con-
sidered the aspects of celebrities to be in the form
of “A (celebrity name)’s B (noun)” and used a lan-
guage model to determine whether an sentiment

relation exists between the celebrity’s aspect and
the impression. By leveraging the advanced natural
language understanding capabilities of ChatGPT,
our approach allows for a more flexible and com-
prehensive analysis of celebrity aspects and impres-
sions. Our method can identify and analyze aspects
that may not fit the “A’s B” format, capture im-
pressions expressed in various parts of speech, not
just adjectives, and consider the broader context
of posts, leading to more accurate interpretation of
sentiments. Our approach can better identify and
aggregate the major impressions on celebrities’ as-
pects from the vast amount of information available
in X posts, while taking into account the context of
the posts. This allows for a more comprehensive
and nuanced understanding of the public’s percep-
tions of celebrities, going beyond the limitations of
the previous method.

5 Reason Collection/Aggregation

This section describes the procedure of collecting
and aggregating reasons for impressions from Web
pages using ChatGPT. Section 5.1 discusses the
process of selecting pairs of aspects and their cor-
responding impressions from those collected and
aggregated in Section 4, which will be used as key-
words for searching for Web pages. Section 5.2
describes the method for searching for Web pages
using the selected keywords and collecting the con-
tent of the Web pages. Section 5.3 explains the
procedure for collecting reasons for impressions
from the collected Web page contents and presents
the results of manual evaluation. Section 5.4 dis-
cusses the procedure for aggregating the collected
reasons for impressions and presents the results of
manual evaluation.

5.1 Selecting Aspect-Impression Pairs

In this section, we describe the process of select-
ing pairs of aspects and their corresponding im-
pressions from those collected and aggregated in
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Section 4, which will be used as keywords for
searching for Web pages. As will be explained
in detail in Section 5.2, we use the Google search
engine3 for searching for Web pages in this study.
Among the aspect-impression pairs collected and
aggregated in Section 4, some may not yield suf-
ficient number of Web pages when used directly
as search keywords on the Google search engine.
Examples of such pairs collected for the celebrity
“Ryosuke Yamada” include “interaction with Daiki
Shigeoka - touching” and “kidnapping of Jr. - cute”
as shown in Table 2. Therefore, instead of sim-
ple Google searches, it is necessary to make sig-
nificant efforts in the search process, such as col-
lecting many Web pages related to the celebrity
in advance and performing Semantic search or
Embedding search (Reimers and Gurevych, 2019;
Cer et al., 2018; Karpukhin et al., 2020) within
those pages. This is a challenge that should be
addressed in the future. Considering this, in this
study, we use 10 aspect-impression pairs that are
judged to be directly usable as search keywords on
the Google search engine for the subsequent pro-
cesses. These 10 pairs are listed in the “aggregated
aspect” and “impression” columns of Table 4 of
Appendix B. The aim of the following sections is
to clarify whether it is possible to collect and aggre-
gate reasons for impressions using these selected
aspect-impression pairs as search keywords.

5.2 Web Page Search

First, we search for Web pages using the Google
search engine with the keywords selected in the pre-
vious section. Next, we manually collect the con-
tent of the top 30 Web pages in the search results.
This series of operations are performed for all the
keywords. For example, in the case of “Ryosuke
Yamada’s acting performance - amazing”, we first
search for Web pages using “Ryosuke Yamada’s
acting performance - amazing” as the query and
collect the content of the top 30 Web pages. Those
Web pages are expected to contain reasons for the
impressions expressed in the keywords such as “rea-
sons why Ryosuke Yamada’s acting performance
is amazing”.

5.3 Reason Collection

5.3.1 The Procedure
Next, we use the content of the Web pages collected
in the previous section to collect reasons for im-

3https://www.google.co.jp/

pressions for each Web page. We use the ChatGPT
model gpt-4-0613 as the framework for collect-
ing reasons for impressions. The entire prompt
given to ChatGPT is shown in Figure 6 of Ap-
pendix B4. Here, we show an example of a prompt
targeting the keyword “Ryosuke Yamada’s acting
performance - amazing”. First, we use the prompt
in Figure 6 of Appendix B to instruct ChatGPT to
search for reasons for impressions based on the col-
lected Web pages without using prior knowledge
of ChatGPT itself but referring to the content of
the retrieved Web pages as added as the context.
If the added context information does not contain
reasons for impressions, ChatGPT is instructed to
output only “not included”. By having ChatGPT
search for reasons for impressions based on the
content of Web pages rather than the prior knowl-
edge of ChatGPT itself, we expect to suppress the
output of information that differs from or does not
exist in the Web search results at that moment, a
phenomenon known as hallucination.

5.3.2 Manual Evaluation
Here, we evaluate the reasons for impressions col-
lected by ChatGPT by comparing them with man-
ually collected reference reasons for impressions,
where the evaluation is performed with 10 sets of
keywords.

Based on the content of Web pages obtained
for each keyword in Section 5.2, the first author
manually collected reasons for impressions. For
example, for the keyword “Ryosuke Yamada’s act-
ing performance - amazing”, the first author man-
ually examined each collected Web page and ex-
tracted statements that correspond to reasons why
“Ryosuke Yamada’s acting is said to be amazing”.
These extracted reasons were compiled into a list
for each Web page, serving as our reference data.
We then assess whether ChatGPT can output corre-
sponding reasons, allowing for variations in word-
ing.

Based on the multiset5 of reasons S(d) output
by ChatGPT for a given Web page d and the mul-
tiset of reference reasons R(d) manually prepared

4We confirmed through experimental ablation studies that,
although all the prompts in Figure 6 of Appendix B and Fig-
ure 7 of Appendix B can be replaced with similar sentences,
the performance of ChatGPT is severely damaged if any of
them is removed.

5Note here that it can happen that ChatGPT redundantly
outputs a single reason several times from a single Web page
d. Similarly, it is allowed that reference reasons manually
collected from a single Web page d may include a single
reason several times, resulting in a multiset.
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for the Web page d6, the recall and precision are
defined as follows:

Recall =
∑

d

|R(d) ∩ S(d)|/
∑

d

|R(d)|,

Precision =
∑

d

|R(d) ∩ S(d)|/
∑

d

|S(d)|

The evaluation is performed for each collected
Web page, and the micro-average is used as the eval-
uation result for each keyword. The overall eval-
uation results are measured as the macro-average
of the evaluation results for the total 10 keywords
for evaluation. The overall evaluation results for
reason collection are shown in Figure 3(a). As a re-
sult, in reason collection, high performance around
0.9 are achieved for recall, precision, and F1-score.
As will be presented in Table 4 in section 6.2 and
in Appendix B, half of the retrieved Web pages are
without reasons. Thus, high performance of rea-
son collection by ChatGPT reveals that ChatGPT
is highly tolerant of noisy context such as those
Web page retrieval errors, where ChatGPT does
not collect incorrect reasons even from those noisy
Web pages.

5.4 Reason Aggregation

5.4.1 The Procedure
Next, we aggregate the reasons for impressions col-
lected in the previous section. Here, we use the
ChatGPT model gpt-4-1106-preview. The en-
tire prompt given to ChatGPT is shown in Figure 7
of Appendix B. Again, we show an example of a
prompt targeting the keyword “Ryosuke Yamada’s
acting performance - amazing”. First, the prompt
in Figure 7 of Appendix B indicates that, the series
of instructions are followed by summaries of Web
pages related to the specified keyword. Further-
more, we instruct ChatGPT to perform reason ag-
gregation by categorizing reasons given as the con-
tent mentioned in each Web page summary. Those
instructions represent how ChatGPT aggregates
reasons for impressions. In the example of Figure 7
of Appendix B, we begin by stating that we will
provide ChatGPT with summaries of Web pages
related to the keyword “Ryosuke Yamada’s acting
performance - amazing”. Next, we present exam-
ples of categories and the corresponding sentences
that are regarded as examples of reasons, instruct-
ing ChatGPT to categorize reasons of impressions

6See Appendix C.1 for details on the inter-annotator agree-
ment in reason collection.

following these examples. We also instruct Chat-
GPT to create new categories if the Web page sum-
mary includes categories that do not correspond to
the provided examples.

By providing category examples in advance, we
aim to stabilize ChatGPT’s output. The actual cat-
egory examples and corresponding sentences pro-
vided here are totally unrelated to the specified
keyword “Ryosuke Yamada’s acting performance -
amazing”. The subsequent instructions are further
given with examples to simply guide the output
format to obtain results in a format that is easy
to automatically interpret. Details on the output
format can be found in Appendix D.

5.4.2 Manual Evaluation Procedure

Here, we evaluate the reasons for impressions ag-
gregated using ChatGPT by comparing them with
manually aggregated reference reasons, where the
evaluation is performed with 10 keywords. The
manually aggregated reference reasons were cre-
ated solely by the first author, who grouped similar
reasons from the reference data used in the reason
collection step. This process involved carefully ex-
amining the collected reasons for each keyword and
combining those that expressed similar concepts
or ideas, ensuring a concise yet comprehensive set
of aggregated reasons. At this point, we define the
following seven multisets/sets. Specifically, first,
we define S′ as the multiset of reasons aggregated
by ChatGPT based on the collected reasons, and
R as the set of distinct reference reasons prepared
manually after aggregation7. Next, we define S′

r

as the multiset of elements of S′, where, for each
of their elements, a corresponding reason exists in
R. In contrast, we define S′

¬r as the multiset of the
elements of S′, where, for each of their elements,
no corresponding reason exists in R. Then, we ob-
tain Sr as the set of elements of S′

r by aggregating
multiple reasons corresponding to a single reason
in R into one reason. In contrast, we also obtain
S¬r as the set of elements of S′

¬r by aggregating
multiple reasons into one reason. Finally, we define
S as the union of Sr and S¬r.

Based on these multisets/sets, recall, precision,
and redundancy are defined as follows. Here, re-
dundancy measures how well ChatGPT can avoid
redundancy in the aggregated reasons by compar-
ing the number of redundant reasons before and
after aggregation. The overall evaluation results are
calculated as the macro-average of the evaluation

7See Appendix C.2 for details on the inter-annotator agree-
ment in reason aggregation.
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results for the total 10 keywords.

Recall = |Sr|/|R|, Precision = |Sr|/|S|,

Redundancy = |S′
r|/|Sr|

5.4.3 Manual Evaluation Results
We conducted an experiment to investigate the im-
pact of providing category examples within the
prompts on the manual evaluation results. The
overall evaluation results for reason aggregation are
shown in “w/ examples” of the “Reason Aggrega-
tion” section in Figure 3. As a result, in reason ag-
gregation with examples, recall was 0.77, precision
was 0.88, F1-score was 0.81, and redundancy was
1.40, where, overall, reason aggregation with exam-
ples outperforms that without examples in terms
of recall and F1-score, while it was more redun-
dant than that without examples, simply because it
outputs more reasons than that without examples.
These results suggest that by excluding category
examples, ChatGPT can perform more concise and
accurate categorization of reasons. However, it
also tends to fail in detecting several reasons as
illustrated in the damage in recall. In other words,
providing examples allows ChatGPT to generate
results closer to human annotations, but at the cost
of potentially performing more redundant catego-
rization.

6 Automatic Evaluation of Reason
Detection/Collection

6.1 Task Definition: Reason
Detection/Collection

In this section, we focus on two tasks for automatic
evaluation: reason detection and reason collection.
Given a keyword consisting of a celebrity name,
an aspect and an impression such as “Ryosuke Ya-
mada’s acting performance - amazing” and a re-
trieved Web page in relation to the keyword, the
reason detection task outputs a binary judgment
whether or not there exist one or more reasons in
the retrieved Web page for the question composed
from the keyword as in “Why is Ryosuke Yamada’s
acting performance said to be amazing?”. The out-
put of the reason detection task is “YES” or “not
included”. The evaluation metrics for this task are
recall, precision, and F1-score based on the refer-
ence judgment result.

The reason collection task aims to generate rea-
sons for impressions from retrieved Web pages,

where the inputs to the task are the same as the
reason detection task. In the automatic evaluation,
ROUGE-L is used as an evaluation metric for the
reason collection results by ChatGPT and mT5,
which measures the longest common subsequence
between the generated reasons and the manually
created reference reasons8 . The sentences corre-
sponding to reasons are rarely concentrated in one
location but often span multiple parts within the
text. Therefore, it is more appropriate to apply the
procedure of generating reasons based on context
rather than extracting reason chunks from the con-
text. Here, we apply mT5 (Xue et al., 2021) as a
comparison to ChatGPT for both tasks.

6.2 Evaluation
This section describes the automatic evaluation pro-
cedure for reason detection and reason collection
by ChatGPT and mT5. The dataset for fine-tuning
mT59 was created using the Web pages collected in
section 5.2. Specifically, first, question sentences
for fine-tuning of mT5 are set based on the key-
words used for collecting Web pages. For example,
for a Web page collected in relation to the keyword
“Ryosuke Yamada’s acting performance - amazing”,
the question sentence is set as “Why is Ryosuke
Yamada’s acting performance said to be amazing?”
Next, the context for answering the question is set.
Here, the collected Web pages are first split into
sentences by periods, and then split sentences are
concatenated as a chunk under the restriction of sat-
isfying the input token length upper bound of mT5.
After that, for each chunk, if it contains sentences
that are the reasons for impressions, all the relevant
sentences are manually extracted and combined to
form the reference answer. If no chunk contains a
sentence that is regarded as the reason for impres-
sions, the Web page is judged as unanswerable to
the question and “” (blank) is set as the reference
answer. The statistics of the numbers of Web pages
are shown in Table 4 of Appendix B.

For ChatGPT, as in Figure 6 of Appendix B, it
is instructed to output “not included” if there is no
reason. Thus, if only “not included” is output, it
is treated as no reason is observed. For mT5, if
the output is “” (blank), it is treated as no reason
is observed. Moreover, there could be cases where

8While ROUGE-L relies on exact string matching, fu-
ture work will explore metrics that better capture embedding
based semantic similarity beyond string matching, such as
BERTScore, BARTScore, and SentenceBERT, for a more
comprehensive evaluation.

9https://huggingface.co/google/mt5-base
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(a) Recall, Precision, and F1 Score (b) Redundancy of Reason Ag-
gregation

Figure 3: Manual Evaluation Results of Reason Collection/Aggregation by ChatGPT

(a) reason detection (b) reason collection
Figure 4: Automatic Evaluation Results of Detecting/Collecting Reasons for Impressions

mT5 outputs only symbols such as “.” or “?”, which
are also treated as no reason is observed.

For the training and evaluation of mT5, 5-fold
cross validation was performed based on the dataset
shown in Table 4 of Appendix B, where each line
is counted as the unit of 5-fold cross validation. In
each fold of 5-fold cross validation, the dataset for
8 out of the 10 keywords shown in Table 4 was
used as the training data10, and the dataset for the
remaining 2 keywords was used as the evaluation
data. When generating answers to the evaluation
data, answer generation is first performed on each
chunk. Then, for each Web page, the generated an-
swers are concatenated and then further used as the
context when generating an answer for the whole
Web page span again. Similar to reason collection
by ChatGPT in section 5.3, this procedure allows
for generating an answer for each Web page span11.

ChatGPT outperformed mT5 for all evaluation
results. In the evaluation of reason detection, as
shown in Figure 4(a), ChatGPT outperformed mT5
in all the metrics, with a particularly large differ-
ence in precision. This means that mT5 tends to er-
roneously output reasons, corresponding to over de-

10The number of training epochs is set as five.
11See Appendix C.3 for details on the inter-annotator agree-

ment in reason detection.

tection of reasons. In contrast, ChatGPT achieved
over 90% recall and precision. From the ROUGE-
L evaluation results shown in Figure 4(b), on the
other hand, ChatGPT is able to generate reasons
much closer to the reference compared to mT5.

7 Conclusion

In this paper, we proposed a method to augment
fans of celebrities to critique and explore informa-
tion concerning celebrities. We conducted evalua-
tion on the results obtained by the proposed method
by comparing them with manually collected and
aggregated reasons for impressions. We also evalu-
ated the methods for reason collection with Chat-
GPT and mT5, confirming that ChatGPT shows
higher performance. Beyond mT5, we plan to
compare ChatGPT with larger models that have
a comparable number of parameters, such as Mis-
tral Large12 or LLaMA 3 70B13 , to provide a more
meaningful evaluation of the proposed method.

8 Limitations

While our proposed method demonstrates promis-
ing results, it is important to acknowledge its lim-

12https://mistral.ai/news/mistral-large/
13https://ai.meta.com/blog/meta-llama-3/
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itations. LLMs, including ChatGPT, are prone to
hallucinations and may generate plausible but in-
correct information. While our use of the RAG
framework mitigates this risk, it does not elimi-
nate it entirely. The manual aspects of our data
collection and processing methods may pose chal-
lenges for exact reproducibility, despite our efforts
to provide detailed descriptions.

Our approach relies on aspect-impression pairs
that can be directly used as search keywords. For
pairs that do not yield sufficient Web pages, more
sophisticated information retrieval techniques, such
as semantic or embedding search (Reimers and
Gurevych, 2019; Cer et al., 2018; Karpukhin et al.,
2020), may be necessary in future research.

9 Ethical Statements

The use of AI to analyze and aggregate informa-
tion about celebrities raises several ethical concerns
that we must address. While we use publicly avail-
able information, the aggregation and analysis of
this data may have unintended consequences for
the individuals involved. We emphasize the im-
portance of using this information responsibly and
respectfully. The potential for generating or ampli-
fying false information is a significant concern. We
acknowledge that our method, despite safeguards,
could inadvertently contribute to the spread of mis-
information if not used cautiously. There is also a
risk that our system could reinforce existing biases
or create echo chambers. We encourage users to
seek diverse sources and perspectives beyond what
our system provides.

We stress that the intent of this research is not to
facilitate unwarranted criticism or invasion of pri-
vacy, but to promote more informed and nuanced
understanding of public figures and media represen-
tation. We recognize the broader implications of
developing tools that aggregate and analyze public
sentiment. We call for ongoing dialogue about the
ethical use of such technologies and their impact
on public discourse.

In light of these considerations, we recommend
that users of our system approach the generated
information critically, cross-reference with reliable
sources, and use the tool as a starting point for fur-
ther exploration rather than as a definitive source
of information. As researchers, we commit to con-
tinuing to refine our methods to address these lim-
itations and ethical concerns, and to contribute to
the responsible development of AI technologies in

media analysis.
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A Collecting/Aggregating Impressions
from X Posts

Figure 5 presents the specific prompts given to
ChatGPT for collecting and aggregating impres-
sions on celebrities’ aspects from X posts as de-
scribed in Section 4.2.

B Reason Collection/Aggregation

Table 4 shows the selected aspect-impression pairs
for Web page search and the numbers of Web pages
in the dataset for reason detection and collection
as described in Section 5.1 and Section 6.2, respec-
tively.

Figure 6 shows the prompts given to ChatGPT
for collecting reasons for impressions from Web
pages, as described in Section 5.3.

Figure 7 presents the prompts given to ChatGPT
for aggregating the collected reasons for impres-
sions, as described in Section 5.4.

C Inter-annotator Agreement for Reason
Collection, Aggregation and Detection

C.1 Reason Collection
The multiset R(d) of reference reasons is manually
prepared by the first author following exactly the

same procedure as presented in the previous sec-
tion for ChatGPT. Another annotator ID=SK also
manually prepared R(d) for 6 keywords out of the
overall 10, where, out of all the 5,625 sentences
within the retrieved Web pages, 242 agreed to be
collected as specifying reasons, 5,200 agreed not
to be collected as specifying reasons, while 183 not
agreed (collected by only one of the two annota-
tors), resulting in 97% agreement rate and Cohen’s
kappa coefficient as 0.71, which is sufficiently high
agreement.

C.2 Reason Aggregation
R was prepared by the first author in the overall
evaluation. Here, for 6 keywords out of the overall
10, R was prepared independently by the annotator
ID=SK from one’s own result of collecting reasons
in the previous section, where the agreement rate
between the first author and the annotator ID=SK
was 71%.

C.3 Reason Detection
The reference data for reason detection is directly
constructed from the multiset R(d) of reference
reasons for the Web page d prepared by the first
author. The agreement rate between the first author
and the annotator ID=SK was 98% and Cohen’s
kappa coefficient was 0.95. The reference text for
reason collection is composed by concatenating
reasons manually prepared by the first author for
each Web page.

D ChatGPT Output Format for Reason
Aggregation

Specifically, we instruct ChatGPT to output the esti-
mated category names and the corresponding Web
page IDs in a ranked format. Each category name
represents a reason for an impression accompa-
nied with Web paged IDs, where the corresponding
reason is collected from each of those Web pages.
Those categories each representing a reason are
ranked in descending order of the frequencies of
their observation, expecting users to more easily
understand the reasons for impressions. The output
format is specified to be in a JSON format.
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Figure 5: Prompts for Collecting/Aggregating Impressions from X Posts
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celebrity name aspect impression
# Web pages

w/ reason w/o reason total

Ryosuke Yamada

acting performance amazing 56 56 112

drama
scary 22 22 44

interesting 36 36 72
face good 20 20 40

Fuma Kikuchi
acting performance amazing 33 33 66

swamp deep 8 8 16

Shun Oguri
acting performance

amazing 42 42 84
bad 15 15 30

face good 12 12 24
voice good 13 13 26

total — — 257 257 514

Table 4: Selected Aspect-Impression Pairs and Numbers of Web Pages in the Dataset for Reason Detection/Collection

Figure 6: Prompts for Reason Collection by a Large Language Model (ChatGPT)
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Figure 7: Prompts for Reason Aggregation by a Large Language Model (ChatGPT)
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Abstract

Recent advancements in Large Language Mod-
els (LLMs) have significantly improved their
performance across various Natural Language
Processing (NLP) tasks. However, LLMs still
struggle with generating non-factual responses
due to limitations in their parametric memory.
Retrieval-Augmented Generation (RAG) sys-
tems address this issue by incorporating ex-
ternal knowledge with a retrieval module. De-
spite their successes, however, current RAG
systems face challenges with retrieval failures
and the limited ability of LLMs to filter out
irrelevant information. Therefore, in this work,
we propose DSLR (Document Refinement with
Sentence-Level Re-ranking and Reconstruc-
tion), an unsupervised framework that decom-
poses retrieved documents into sentences, fil-
ters out irrelevant sentences, and reconstructs
them again into coherent passages. We ex-
perimentally validate DSLR on multiple open-
domain QA datasets and the results demon-
strate that DSLR significantly enhances the
RAG performance over conventional fixed-size
passage. Furthermore, our DSLR enhances per-
formance in specific, yet realistic scenarios
without the need for additional training, pro-
viding an effective and efficient solution for
refining retrieved documents in RAG systems.

1 Introduction

Recent advancements in Large Language Models
(LLMs) (Brown et al., 2020; OpenAI, 2023b; Tou-
vron et al., 2023) have significantly expanded their
capabilities across diverse knowledge-intensive
tasks in Natural Language Processing (NLP), such
as Question Answering (QA) (Kwiatkowski et al.,
2019; Joshi et al., 2017; Rajpurkar et al., 2016).
However, despite these capabilities, LLMs still
face challenges such as generating plausible yet
non-factual responses, known as hallucination, due
to their reliance on limited parametric memory

* Corresponding author

(Mallen et al., 2023). Also, it is noted that this
parametric memory is static, as LLMs can learn
knowledge only up to the specific date on which
the training was completed. Therefore, these lim-
itations restrict their adaptability to long-tailed or
ever-evolving domains (Kasai et al., 2023) and to
unseen knowledge outside their training data (Baek
et al., 2023).

Retrieval-Augmented Generation (RAG) (Khan-
delwal et al., 2020; Lewis et al., 2020; Borgeaud
et al., 2022; Shi et al., 2023b) has been introduced
as an effective solution to address such problems.
Specifically, RAG enhances LLMs by integrating
non-parametric memories fetched from external
knowledge bases using a retrieval module, which
helps LLMs’ responses grounded on factual evi-
dence and makes them more up-to-date.

While the efficacy of RAG depends on the per-
formance of the retrieval module, the instability of
LLMs in incorporating the retrieved knowledge is
also a critical challenge to RAG. To be specific,
retrieved documents sometimes contain irrelevant
information (Cho et al., 2023), and LLMs often
struggle to effectively filter out such redundant de-
tails and focus on the most query-relevant knowl-
edge (Shi et al., 2023a; Li et al., 2023; Liu et al.,
2023; Wu et al., 2024), which leads to the failure
of the overall RAG systems. Therefore, it is crucial
to investigate how to effectively refine retrieved
documents before augmenting them with LLMs,
ensuring that the LLMs are not distracted by irrele-
vant information within retrieved documents.

Re-ranking the order of the retrieved document
set (Nogueira et al., 2020; Qin et al., 2023a) or
refining them into new documents (Wang et al.,
2023; Xu et al., 2024) can be considered as solu-
tions. However, they generally require high com-
putational costs for training additional re-ranking
or refining models. Another proposed solution is to
reduce the retrieval granularity from passage-level
to sentence-level which can help eliminate redun-
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Corpus (C)

Retriever

Retrieved
Passages (D)

Decomposed
Sentences (S)

Re-ranked
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LLM
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DSLR (Ours)
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What state is 
Flag Day a 

national 
holiday?

Reconstructed
Passages (S*)

Pennsylvania
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Query (q)

Figure 1: Comparison of the conventional RAG pipeline (top) and our sentence-level re-ranking and reconstruction framework
(bottom) in an RAG system. Initially, both methods retrieve query-relevant documents at the passage level. The conventional
approach directly utilizes these passages, which may contain redundant information leading to QA inaccuracies. By contrast, our
method decomposes passages into sentences, re-ranks them based on relevance, and reconstructs them into coherent passages for
more accurate LLM responses.

dant information within passages (Lee et al., 2021a;
Chen et al., 2023). However, this might also inad-
vertently remove important contextual information,
which is crucial for accurately answering the given
queries (Choi et al., 2021). Therefore, we should
explore a novel method that can effectively and
efficiently filter out irrelevant information while
maintaining the necessary contextual details.

In this work, we introduce an unsupervised
DSLR (Document Refinement with Sentence-
Level Re-ranking and Reconstruction) framework
that consists of three steps: 1) decomposition, 2) re-
ranking, and 3) reconstruction. Specifically, after
retrieving the passage-level document, the DSLR
framework operates by first decomposing the re-
trieved document into sentences for finer granular-
ity and then filtering out the irrelevant sentences
based on their re-ranking scores from the rank-
ing models, including off-the-shelf retrievers and
re-rankers. Finally, the remaining sentences are re-
constructed into a single document to preserve the
original contextual information. Note that DSLR is
an unsupervised refinement framework, which does
not require any additional training for re-ranking or
reconstruction steps. The overall DSLR framework
is illustrated in Figure 1.

We validate our framework across a diverse
range of open-domain QA benchmarks, which in-
clude three general QA datasets and three spe-
cific QA datasets that require domain-specific or
ever-evolving knowledge. Our experimental re-
sults show that DSLR significantly enhances the
overall RAG performance and is comparable to,
or even outperforms, the supervised baseline ap-
proaches. Specifically, when evaluated with spe-
cific QA datasets, DSLR shows high robustness in
realistic settings. Furthermore, a detailed analysis

demonstrates the effectiveness of each proposed
step and how it contributes to the overall perfor-
mance.

Our contributions in this work are threefold:
• We point out that recent RAG systems are

largely vulnerable to redundant knowledge
within fixed-size passage-level retrieved docu-
ments and that the existing refining strategies
generally require additional training steps.

• We propose a DSLR framework that incorpo-
rates sentence-level re-ranking and reconstruc-
tion to effectively remove redundant knowl-
edge that negatively affects the RAG system.

• We show that DSLR is highly effective and
efficient even without additional training steps
in both general and specific scenarios.

2 Related Work

Information Retrieval. Information Retrieval
(IR) is the task of searching for query-relevant doc-
uments from a large corpus (Ponte and Croft, 1998),
which has been widely applied for both search sys-
tems and various NLP tasks such as open-domain
QA (Petroni et al., 2021). IR models can be cate-
gorized into sparse retrievers (Salton and Buckley,
1988; Robertson and Zaragoza, 2009), which use
lexical metrics to calculate relevance scores be-
tween queries and documents, and dense retrievers
(Karpukhin et al., 2020; Izacard et al., 2022), which
embed queries and documents into a dense space
that captures semantic relationships but requires
significant computational resources (Jeong et al.,
2022).

In order to further enhance retrieval performance,
additional strategies have been proposed. Specifi-
cally, the re-ranking strategy improves retrieval per-
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formance by recalculating relevance scores using
an additional re-ranking model (Nogueira and Cho,
2019; Nogueira et al., 2020; Zhuang et al., 2023),
and then reordering the documents based on these
scores. Recently, LLMs have shown remarkable
re-ranking performance by generating relevance
labels without requiring further fine-tuning (Liang
et al., 2022; Qin et al., 2023b).

While the aforementioned work on IR (Wang
et al., 2019; Karpukhin et al., 2020) generally as-
sumes fixed-size, 100-word passages as the doc-
ument length, some work has explored an op-
timal level of retrieval granularity (Seo et al.,
2019; Lee et al., 2021a; Jeong et al., 2023; Chen
et al., 2023). These approaches validate that a fine-
grained level of granularity, containing only the
knowledge needed to answer the query, can en-
hance the overall performance by excluding re-
dundant details in the lengthy retrieved documents.
However, reducing retrieval granularity to the sen-
tence level can disrupt the original context and
result in a loss of the document’s coherence (Choi
et al., 2021). In addition, sentence-level retrieval
generally requires a much larger index size com-
pared to passage-level retrieval (Lee et al., 2021b).
By contrast, we investigate a novel framework for
effectively re-ranking sentences within retrieved
passage-level documents and then reconstructing
the re-ranked sentences to preserve contextual in-
tegrity.

Retrieval-Augmented Generation. RAG has
emerged as a promising solution for addressing
LLMs’ hallucination issues by leveraging exter-
nal knowledge fetched by the retrieval module.
Specifically, RAG incorporates retrieval modules
that reduce the need to update the parameters of
LLMs and help them generate accurate and reliable
responses (Khandelwal et al., 2020; Lewis et al.,
2020; Borgeaud et al., 2022; Shi et al., 2023b). Ad-
ditionally, various real-world applications integrate
RAG as a core component when deploying LLM-
based services (OpenAI, 2023a; Chase, 2022; Qin
et al., 2024). However, they still have limitations
due to the imperfections of the retrieval module
within RAG, where the retrieved documents con-
taining query-irrelevant information can negatively
lead the LLMs to generate inaccurate answers.

To address them, several studies have attempted
to leverage the capabilities of LLMs to en-
hance their resilience against irrelevant knowledge.
These approaches include crafting specialized

Query:
How many episodes in “Grace and Frankie” Season 1?

Sentence Decomposition

[𝘴₁] Grace and Frankie is an American comedy web television 
series created by Marta Kauffman and Howard J. Morris for Netflix.

[𝘴₃] It premiered on Netflix on May 8, 2015, with  all 13 episodes of 
the first season released simultaneously.

[𝘴₂] The series stars Jane Fonda and Lily Tomlin in the title roles of 
Grace and Frankie, two unlikely friends who are brought together …

Sentence Re-ranking

[𝘴’₁] It premiered on Netflix on May 8, 2015, with  all 13 episodes 
of the first season released simultaneously.
[𝘴’₂] Grace and Frankie is an American comedy web television 
series created by Marta Kauffman and Howard J. Morris for Netflix.

[𝘴’₃] The series stars Jane Fonda and Lily Tomlin in the title roles of 
Grace and Frankie, two unlikely friends who are brought together …

Contextual Reconstruction

[𝘴*₁] Grace and Frankie is an American comedy web television 
series created by Marta Kauffman and Howard J. Morris for Netflix.
[𝘴*₂] It premiered on Netflix on May 8, 2015, with  all 13 episodes 
of the first season released simultaneously.

T

Figure 2: Examples of each step in the DSLR framework,
which consists of three steps: 1) Sentence Decomposition 2)
Sentence Re-ranking, and 3) Contextual Reconstruction.

prompts (Press et al., 2023; Cho et al., 2023), train-
ing plug-in knowledge verification models (Baek
et al., 2023), adaptively retrieving the required
knowledge (Jeong et al., 2024; Asai et al., 2024;
Yu et al., 2023b), and augmenting knowledge us-
ing the capabilities of the LLM itself (Yu et al.,
2023a). Among the promising solutions, recent
studies show that further refining the retrieved doc-
uments into fine-grained knowledge can improve
the RAG performance (Xu et al., 2024; Wang et al.,
2024, 2023; Jin et al., 2024). However, such refine-
ment strategies generally require additional fine-
tuning on a specific dataset, which might result
in limited generalizability and high computational
cost. By contrast, our proposed refinement frame-
work removes irrelevant information with unsuper-
vised sentence-level re-ranking and reconstruction
steps by using off-the-shelf ranking models without
requiring additional training costs.

3 Method

In this section, we describe a novel framework
DSLR for enhancing the precision of retrieval re-
sults through sentence-level ranking and recon-
struction, integrated into the RAG system. Note
that DSLR does not require additional training.

3.1 Preliminaries

We first introduce the general RAG system, which
consists of three steps: the retrieval step, the re-
ranking step, and the generation step. Note that all
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steps focus on passage-level documents.

3.1.1 Retrieval Step
The retrieval step searches for a potentially rele-
vant document set D to the given query q from a
retrieval corpus C consisting of millions of doc-
uments. This retrieval step is conventionally per-
formed using a sparse retriever S, such as BM25,
which is widely used for processing large corpora
due to its low latency. The sparse retriever S fetches
the relevant documents having high relevant scores
based on lexical values such as document length
or unique word count. Formally, we define the re-
trieval step as:

D = Retrieve(q, C;S) = {d1, d2, ..., dn}

where dk represents a document having the top-
k score among the retrieval corpus C for a given
query q, and n denotes the size of D, generally
ranging from tens to hundreds.

3.1.2 Re-ranking Step
While the sparse retriever S can efficiently handle
a large corpus, it cannot consider semantic similar-
ities, thereby limiting its retrieval performance for
lexically different but semantically relevant pairs.
To address this, the re-ranking step aims for more
precise retrieval results by reordering the retrieved
document set D using the ranking model R. This
model transforms D into a newly ordered docu-
ment set D′ based on relevance scores with a query
q, capturing semantic meanings that could not be
addressed in the retrieval step with S. Formally, we
define the re-ranking step as:

D′ = Re-rank(q,D;R) = {d′1, . . . , d′m}

where d′k represents the document that has top-k
relevance score among D and m ≪ n, indicat-
ing that the subset D′ contains significantly fewer
documents than the original set D.

3.1.3 Generation Step
After the re-ranking step, the document set D′ is
augmented to the LLM M with the supporting doc-
uments to generate the correct answer a for the
given query q. The generation step can be formal-
ized as:

a = Generate(q,D′;M)

In RAG systems, the three key steps are designed
to retrieve the most query-relevant knowledge for
LLMs, typically at the passage level. However, this

fixed granularity can overlook finer relevance be-
tween queries and individual sentences. Therefore,
in this work, we introduce a fine-grained, sentence-
level ranking strategy in the re-ranking step, aiming
to reduce distractions from irrelevant information
and enhance answer accuracy.

3.2 Document Refinement with
Sentence-Level Re-ranking and
Reconstruction (DSLR)

We propose a novel unsupervised refinement frame-
work, Document Refinement with Sentence-Level
Re-ranking and Reconstruction (DSLR), designed
to assess the fine-grained relevance of individual
sentences within a passage and reconstruct to pre-
serve the original contextual coherence. Figure 2
illustrates examples generated by each step in our
DSLR framework.

3.2.1 Sentence Decomposition and Re-ranking
After the retrieval step (§3.1.1), we conduct
sentence-level re-ranking for the documents within
the retrieved set D. First, each document di ∈ D
is decomposed into a sentence set Si = {sj}lj=1,
where sj represents the j-th sentence in document
di and l is the number of sentences in di. Then,
the passage-level retrieved set D is redefined to
the sentence-level retrieved set S = ∪ni=1Si. For
instance, as illustrated in Figure 2, a passage re-
trieved for a query “How many episodes in "Grace
and Frankie" Season 1?" is decomposed into three
sentences s1, s2, and s3 during the sentence decom-
position step.

To extract sentences containing relevant informa-
tion for a query q, we initially perform re-ranking
to assess relevance scores at the sentence level. Sen-
tences in S with scores below a predefined thresh-
old T are deemed irrelevant and removed, resulting
in a refined set S ′. The sentence-level re-ranking is
formally defined as follows:

S ′ = Re-rank(q,S;R) = {s′1, . . . , s′m}
where each s′k is a sentence from S whose rele-
vance score exceeds T . Figure 2 demonstrates the
reordering of sentences, highlighting the exclusion
of s′3 due to its insufficient relevance score. Note
that this step of the DSLR framework utilizes off-
the-shelf ranking models, which are identical to
those used in passage-level re-ranking.

3.2.2 Contextual Reconstruction
While the sentence decomposition and re-ranking
steps select the top-m relevant sentences for the
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query q, these sentences may lack contextual re-
lationships to one another, as these steps can dis-
rupt the original contextual flow of the passage by
discarding some sentences. Instead of following
a widely used approach of simply concatenating
these sentences in descending order of their rele-
vance scores, we propose to reconstruct them into
the contextually organized set, S∗, to reflect the
order in which they were originally positioned be-
fore being decomposed from passages, ensuring
the original coherence and logical flow:

S∗ = Reconstruction(S ′,S) = {s∗1, . . . , s∗m}

where s∗i is the sentence included in S′ and i de-
notes the relative position of s∗i within S . As shown
in Figure 2, the remaining two sentences are recon-
structed in their original order by switching their
positions to preserve the context before the sen-
tence re-ranking step. Then, LLM M generates the
answer a for a given query q with S∗ formalized
as: a = Generate(q,S∗;M).

4 Experiment Setups

In this section, we describe the experimental setup
for evaluating DSLR across various scenarios. We
provide additional details in Appendix A.

4.1 Models
Retriever. We use BM25 (Robertson and Zaragoza,
2009) as a passage-level retriever, which is a widely
used sparse retriever due to its notable performance
with high efficiency. The retriever fetches the top-
1 passage-level query-relevant document from an
external corpus, which serves as the baseline docu-
ment.
Re-ranker. We operationalize a variety of rank-
ing models as re-rankers, including off-the-shelf
retrievers, fine-tuned re-rankers, and LLMs. 1)
Sparse Retriever: We use BM25 (Robertson and
Zaragoza, 2009) as a sentence-level re-ranker. Note
that BM25 is only applied at the sentence level,
as it is primarily utilized in the retrieval step.
2) Dense Retriever: We utilize two representa-
tive dense retrievers, Contriever (Izacard et al.,
2022) and DPR (Karpukhin et al., 2020), which
are better at capturing the semantic similarity be-
tween documents and queries than sparse retriev-
ers. 3) Supervised Re-ranker1: We employ two

1It is important to note that the terms ‘supervised’ and
‘unsupervised’ in this context refer to the models being trained
on document ranking tasks, and not on document refinement
tasks.

supervised re-ranking models based on T5 (Raffel
et al., 2020), MonoT5 (Nogueira et al., 2020) and
RankT5 (Zhuang et al., 2023). These models are
specifically trained for pointwise document ranking
tasks. 4) Unsupervised Re-ranker1: We explore
Relevance Generation (RG) (Liang et al., 2022), a
pointwise ranking method using the inherent rank-
ing ability of LLMs, validating its effectiveness in
scenarios lacking extensive labeled data. We use
LLama2-13b-chat (Touvron et al., 2023) as a rank-
ing model for RG.
Reader. We use the instruction-tuned, open-source
LLM LLama2-13b-chat as our reader. To generate
the final answer, the document is prepended to the
system prompt.

4.2 Datasets
We evaluate our DSLR across 6 open-domain
QA datasets, including both general and spe-
cific domains. First, we conduct our experiment
using the development set of Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019), TriviaQA
(TQA) (Joshi et al., 2017), and SQuAD (SQD) (Ra-
jpurkar et al., 2016), consisting of queries with
general topics. Additionally, we incorporate spe-
cialized datasets such as RealtimeQA (RQA) (Ka-
sai et al., 2023), SciQ (SQ) (Welbl et al., 2017),
and BioASQ (BASQ) (Tsatsaronis et al., 2015;
Krithara et al., 2023) for evaluating the general-
izability of our proposed method. In detail, RQA
includes questions that are updated periodically to
test our system’s ability to handle ever-evolving
knowledge. In addition, SQ and BASQ are domain-
specific datasets in science and biology, respec-
tively. Specifically, for BASQ, we selectively use
the questions from the BioASQ6 challenge (task b)
that are suitable for yes/no and factoid responses.
We report the effectiveness of our framework with
Accuracy (Acc), which determines whether the
prediction contains golden answers, following Asai
et al. (2024).

4.3 Implementation Details
The threshold T , used to remove irrelevant content,
was determined empirically by sampling 1,000 ran-
dom entries from each of the NQ, TQA, and SQD
training sets and setting T to the relevance score
at the 90th percentile. Detailed values of T for
various models are provided in Table 5. The re-
trieval corpus for NQ, TQA, and SQD is a pre-
processed Wikipedia dump from Dec. 20, 2018
following Karpukhin et al. (2020), and for BASQ
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Type Re-ranker NQ TQA SQD RQA SQ BASQ AVG.
# tok Acc # tok Acc # tok Acc # tok Acc # tok Acc # tok Acc # tok Acc

Baseline

- - 167 25.6 170 58.0 166 28.5 1277 41.1 162 33.9 444 56.7 398 40.6

Ours

Sparse Ret. BM25 48 28.7 81 60.8 41 28.0 689 40.4 52 40.7 202 52.6 186 41.9

Dense Ret. Contriever 68 29.2 60 62.0 61 29.1 418 41.2 69 40.8 308 57.2 164 43.2
DPR 61 33.6 74 62.9 56 27.3 517 40.1 75 40.9 309 55.9 182 43.4

Supervised Re-r. MonoT5 74 31.1 84 62.3 67 30.4 625 42.1 50 41.1 363 57.2 179 43.5
RankT5 83 29.4 69 61.7 60 30.4 475 41.6 49 40.6 337 57.2 179 43.5

Unsupervised Re-r. RG 46 33.7 76 64.1 51 29.5 534 42.5 97 38.9 291 59.5 183 44.7

Table 1: Performance comparison between the Baseline (original top-1 document) and Ours (DSLR-refined top-1 document) on
various open-domain QA datasets. The table shows the average token count (# tok) and accuracy (Acc) for both sparse and dense
retrievers, as well as for supervised and unsupervised re-rankers. Best results are in bold.
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Figure 3: Comparison between the Baseline (original documents) and Ours (DSLR-refined documents using MonoT5) in the
top-N multiple passages scenario on the NQ dataset. (Left) Accuracy (Acc) as top-N increases. (Center) Average token count (#
tok) as top-N increases. (Right) Average end-to-end latency (E2E) as top-N increases, measured in seconds.

and RQA, we use their own retrieval corpora. To be
specific, BASQ used the BEIR (v1.0.0) 2 BioASQ
corpus, specializing in biomedical information re-
trieval. For the RQA dataset, spanning from 2022
to 2023, we use the search documents provided
at the time of dataset creation through the Google
Cloud Search (GCS) API to align the periods of
the queries and answers. When implementing each
component in DSLR, we decompose passage-level
documents into sentences using the Sentencizer
from Spacy3. All predictions in our experiments
are generated via greedy decoding.

5 Experimental Results and Analyses

In this section, we show the overall experimental
results with in-depth analyses of our framework.

Main Results. First of all, Table 1 shows that
our DSLR-refined top-1 document consistently
outperforms the original top-1 document across
all datasets and scenarios, despite reduced token
counts. This confirms our hypothesis that the re-
dundant information within the fix-sized passages
adversely affects the RAG performance and high-
lights the importance of providing only query-

2https://github.com/beir-cellar/beir
3https://spacy.io/

relevant information in RAG with finer-grained
sentences.

Furthermore, DSLR also shows performance
enhancement over specialized datasets, such as
ever-evolving RQA and domain-specific SQ and
BASQ datasets. Specifically, the re-rankers based
on pre-trained models such as T5 and the LLM
demonstrate remarkable performance improvement.
Given that DSLR requires no additional training,
the robust and effective performance suggests its
applicability to diverse real-world scenarios, par-
ticularly where queries frequently change across
different timelines and domains.

DSLR in Multiple Passages. To assess the effec-
tiveness and efficiency of DSLR in multiple pas-
sages, we gradually increased the number of doc-
uments N and compared the performance, token
count, and end-to-end (E2E) latency4 of the origi-
nal top-N documents with those refined by DSLR.

As shown in the left panel of Figure 3, both
sets of documents show consistent performance
improvements as N increases. However, DSLR
consistently outperforms the original documents
across all N levels, with more notable differences

4These experiments were conducted using four V100
GPUs.
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Figure 4: Variation in accuracy and token count (# tok)
with adjustments to threshold T on the SQD dataset, with
dashed lines indicating oracle accuracy and corresponding
token count.

at lower N values. This suggests that DSLR can
significantly enhance performance in RAG, even
as the number of documents increases.

Due to the quadratic increase in memory and
time requirements with the number of tokens in
transformer-based LLMs, reducing the token count
is crucial for improving efficiency (Vaswani et al.,
2017). As depicted in the center and right panels
of Figure 3, DSLR substantially reduces the token
count compared to the original documents, with
the difference becoming more significant as N in-
creases. This reduction in tokens also decreases
E2E latency in all scenarios except top-1. Notably,
at top-10, while the performance difference is mini-
mal (39.6 vs. 39.7), the token count reduction from
1,713 to 577 (nearly 2.97 times) and the correspond-
ing E2E latency reduction from 7.382 seconds to
5.422 seconds (nearly 2 seconds) demonstrate that
DSLR can enhance both performance and efficiency
in RAG. Detailed results are available in Table 14.

Impact of Threshold Adjustment. To examine
the impact of varying T , we adjusted the threshold
in increments of 10, starting from the 10th per-
centile, and measured the resulting performance.
Additionally, to explore the theoretical maximum
performance of our method, we configured an ora-
cle setting where any correct response, regardless
of the threshold setting, was counted as correct.

As shown in Figure 4, increasing the threshold T
generally improves performance by removing irrel-
evant content, thus reducing the number of tokens.
However, our experimental results revealed that
the performance at the 90th percentile threshold
was 29.4, while a lower 80th percentile threshold
yielded better performance at 29.9. This indicates
that an overly stringent threshold can also remove
essential information, suggesting that task-specific
threshold fine-tuning could improve results.
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Figure 5: (Left) Distribution of token counts in DSLR-refined
documents on the NQ dataset. (Right) Comparison of DSLR
with document truncated to an average fixed length (P), doc-
ument processed using sentence-level re-ranking to include
only the most relevant sentences up to the average length (S),
and document using random selection of sentences up to the
average length (R).
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Figure 6: Comparative average performance of sentence-level
and passage-level re-ranking across the dataset with a context
length of 100 words.

Furthermore, in the oracle setting, accuracy sig-
nificantly improved to 34.1, and the token count
was reduced to 77. This shows a marked per-
formance improvement over the best performing
threshold (80th percentile), with a similar reduc-
tion in tokens. This result implies that dynami-
cally adjusting the threshold based on the query
could achieve substantial performance improve-
ments with a comparable number of tokens, sug-
gesting an area for future work. Detailed results are
available in Table 15.

Token Distribution and Refinement Strategies.
The left panel of Figure 5 displays the distribution
of token counts in documents refined by DSLR. Un-
like methods that trim passages to a fixed length,
DSLR reduces token counts based on a relevance
score threshold, resulting in a wide distribution of
token counts, with many instances nearly devoid of
external knowledge. The average token count post-
refinement is 46. We analyzed performance by com-
paring this approach with cases where passages are
consistently cut to 46 tokens: one where passages
are simply truncated at 46 tokens, another using
sentence-level re-ranking to select the most rele-
vant sentences up to 46 tokens, and a third where
sentences are randomly cut to 46 tokens.

As demonstrated in the right panel of Figure 5,
DSLR, which trims content based on relevance, sig-
nificantly outperforms methods that trim to a fixed
length, improving scores from 25.3 to 33.7. This

79



Extr
-N

Q

Extr
-T

QA

Abst
-N

Q

Abst
-T

QA

Con
trie

ve
r

Ran
kT

5 RG
20

25

30

35

40 NQ

Extr
-N

Q

Extr
-T

QA

Abst
-N

Q

Abst
-T

QA

Con
trie

ve
r

Ran
kT

5 RG
50

55

60

65

70 TQA

Extr
-N

Q

Extr
-T

QA

Abst
-N

Q

Abst
-T

QA

Con
trie

ve
r

Ran
kT

5 RG
40

45

50

55

60

65 BASQ

RECOMP Ours In-domain Out-of-domain

Figure 7: Performance comparison of DSLR and RECOMP (Xu et al., 2024) across multiple open-domain QA datasets, featuring
models including Contriever, RankT5, and RG for DSLR, and extractive (Extr.) and abstractive (Abst.) models for RECOMP.
The in-domain (Hatched) results refer to models specifically trained for the dataset.

NQ TQA

DSLR (Ours) 33.7 64.1
- sentence-level re-ranking 30.6 62.0
- reconstruction (descend) 33.6 63.8
- reconstruction (ascend) 33.6 63.9
- reconstruction (random) 33.5 63.8

Baseline 25.6 58.0

Table 2: Ablation studies on the NQ, TQA datasets, comparing
DSLR with RG against the variants that exclude sentence-level
re-ranking and reconstruction. The variants are ordered by
relevance score (descend and ascend) or randomly (random).

suggests that trimming based on relevance score
thresholds, rather than a fixed length, is more ef-
fective. This method accommodates the variability
in the amount of relevant information per query,
indicating that non-essential content should be dy-
namically removed.

Effectiveness of Sentence-Level Re-ranking.
To assess the effectiveness of sentence-level re-
ranking within our framework, we compared it to
conventional passage-level re-ranking using the
same context length in RAG, under an initial
top-100 retrieval setting. Figure 6 demonstrates
that sentence-level re-ranking markedly outper-
forms passage-level re-ranking by enhancing per-
formance through increased information density
at a finer granularity. Additionally, while dense re-
trievers and fine-tuned ranking models demonstrate
improvements as re-rankers, BM25 as a re-ranker
significantly decreases the performance. This high-
lights the limitations of keyword-matching ap-
proaches for assessing low-granularity, sentence-
level relevance, underscoring the necessity for se-
mantic understanding in sentence ranking tasks.
Moreover, off-the-shelf ranking models, originally
designed for passage-level relevance assessment,
are also effective at determining relevance at the

more granular level of individual sentences. Inter-
estingly, even though it is not specifically trained
for ranking tasks, the unsupervised re-ranker using
LLMs shows remarkable performance in sentence-
level re-ranking.

Ablation Studies on the Sentence-Level Re-
ranking and Reconstruction Steps. To see how
each step in DSLR contributes to the overall per-
formance, we conduct the ablation studies, the
results shown in Table 2, for the sentence-level
re-ranking and reconstruction steps. These studies
were uniquely tailored to the variable token counts
reduced by DSLR, rather than using a fixed length.

First, we examine the impact of removing the
sentence-level re-ranking step. In this scenario, af-
ter initially retrieving the top-1 passage, the re-
sults are decomposed into sentences. Subsequently,
these sentences are randomly used as sources for
generating answers. The performance drastically
drops from 33.7 to 30.6 on the NQ, highlighting
the crucial role of sentence-level re-ranking, which
helps effectively filter out query-irrelevant informa-
tion based on relevance scores.

Furthermore, we explore the effectiveness of the
reconstruction step. The performance also drops
from 64.1 to 63.8 on the TQA. This finding is
similar to those from Choi et al. (2021), which
suggests that removing contextual coherence nega-
tively affects the performance. Therefore, in DSLR,
reconstructing the order of sentences to reflect their
original sequence within the retrieved passage is
an essential step. Interestingly, the widely used
approach of prepending external knowledge in de-
scending order of relevance scores is not effective
in our sentence-level refinement framework, show-
ing similar results to a randomly ordered setting.
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Query Original Document DSLR-Refined Document

the element which is the
most abundant in the
human body is (NQ)

[1] Nitrogen
diatomic gas with the formula N. Dinitrogen forms
about 78% of Earth’s atmosphere, making it the most
abundant uncombined element. Nitrogen occurs in
all organisms, primarily in amino acids (and thus
proteins), in the nucleic acids (DNA and RNA) and
in the energy transfer molecule adenosine triphos-
phate. The human body contains about 3% nitrogen
by mass, the fourth most abundant element in the
body after oxygen, carbon, and hydrogen. The nitro-
gen cycle describes movement of the element from
the air, into the biosphere and organic compounds,
then back into the atmosphere. Many industrially
important compounds, such as ammonia, nitric acid,

[1] Nitrogen
diatomic gas with the formula N. Dinitrogen forms
about 78% of Earth’s atmosphere, making it the most
abundant uncombined element. The human body
contains about 3% nitrogen by mass, the fourth most
abundant element in the body after oxygen, carbon,
and hydrogen.

Predict Nitrogen (X) Oxygen (O)

Table 3: Case study with the top-1 document, where we represent query-irrelevant sentences in red and query-relevant sentences
in blue.

Comparative Analysis of Document Refining
methods: Evaluating RECOMP and DSLR.
We further compare our DSLR to the concurrent su-
pervised refinement method, RECOMP (Xu et al.,
2024), which requires additional training steps for
refining the retrieved documents. To be specific,
RECOMP is designed to refine the retrieved pas-
sages by either abstractively or extractively summa-
rizing them with additional models. Note that due
to significant differences between supervised and
unsupervised schemes, directly comparing DSLR
with RECOMP on an apples-to-apples basis is dif-
ficult. However, to ensure as fair a comparison as
possible, we evaluate both refining methods under
the same conditions by adopting a two-sentence ex-
traction context length, following the extractive set-
ting used for RECOMP. Additionally, RECOMP’s
extractive compressor, which requires Contriever
to be fine-tuned on specific datasets, shares sim-
ilarities with our DSLR implementation that also
uses Contriever, though ours is not additionally
fine-tuned.

Figure 7 shows the results of the comparison be-
tween DSLR and RECOMP in both in-domain and
out-of-domain settings. While RECOMP shows ro-
bust performance on the in-domain datasets where
it is particularly trained, its performance drops dras-
tically for the out-of-domain settings, notably for
BASQ from 54 to 47.9. This indicates the chal-
lenges of dataset-specific tuning for the supervised
refinement methods. On the other hand, our DSLR
with RankT5 and RG shows robust performance
even without additional training steps for refine-
ment.

Case Study. We conduct a case study of the
DSLR framework in Table 3. Specifically, a conven-

tional fixed-size passage may contain distractors,
such as unrelated knowledge and irrelevant con-
ceptual details about Nitrogen (highlighted in red).
Note that, although the retrieved passage-level doc-
ument includes ‘Oxygen’, which is the correct an-
swer to the given query, the LLM used as the reader
fails to generate the accurate answer by being dis-
tracted by irrelevant information. On the other hand,
DSLR effectively filters out such query-irrelevant
sentences. Furthermore, DSLR also helps focus on
the information closely related to the query (high-
lighted in blue), thus correctly generating the an-
swer.

6 Conclusion

In this work, we present DSLR, a novel unsu-
pervised document refinement framework that en-
hances the performance of RAG systems. The
DSLR framework aids RAG systems to generate
more accurate answers by decomposing passages
into sentences, re-ranking them based on each
relevance score, and then reconstructing them to
preserve the continuity and coherence of the con-
text. Our comprehensive experiments on multiple
QA datasets show that DSLR consistently outper-
forms the conventional approaches of using fixed-
size passage in RAG, especially in ever-evolving
and domain-specific contexts. Our ablation stud-
ies highlight the importance of sentence-level re-
ranking and contextual reconstruction for improve-
ment on RAG. We believe that DSLR suggests
a promising research direction for refining docu-
ment retrieval without additional training, together
with potential applications across a wide range
of knowledge-intensive NLP tasks by integrating
more diverse retrieval or ranking models.
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Limitation

While our DSLR shows significant improvements in
RAG performance, it is important to recognize that
there is still room for further improvement. First,
although we aim to preserve the original contextual
integrity with the reconstruction step, there is a risk
of unintentionally removing important sentences
that might contain query-relevant information. We
believe that developing more advanced re-ranking
models to more accurately capture relevance scores
could address this, which we leave as valuable fu-
ture work. Second, since DSLR aims to refine the
set of retrieved documents, there might be a bot-
tleneck stemming from the initial retrieval step;
the overall performance can be negatively affected
by incorrectly retrieved documents. Therefore, fu-
ture work may focus on developing a more precise
retrieval module. Since the DSLR framework is
composed of off-the-shelf modules, we believe that
its overall performance will improve concurrently
with the development of these modules.

Ethics Statement
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it to real-world scenarios. While it is not within
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essential.
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A Additional Experimental Setups

A.1 Datasets

Dataset Number of Queries

NQ 8,758
TQA 8,837
SQD 8,886
RQA 3137
SQ 1,000
BASQ 1,235

Table 4: Detailed number of queries for each dataset
used in the experiment.

Table 4 shows the number of queries of the
datasets utilized in our experiments. Following
(Karpukhin et al., 2020), we used the development
sets of the NQ, TQA, and SQD datasets. The SQ
dev-set was also employed. For RQA, we selected
answerable queries from documents available on
GCS spanning from 2022 to 2023. In BASQ, we se-
lectively employed questions from BioASQ6 chal-
lenge (task b) that permitted either factoid or yes/no
responses to ensure accuracy.

A.2 Models

To construct the retrieval system for our RAG
model, we employed BM25 with Pyserini5, using
pre-indexed corpora provided by the framework.
To improve answer generation across datasets, we
include document titles to provide context to the
LLM, following Asai et al. (2024). Additionally,
recognizing that sentences alone may offer insuffi-
cient context, we also included document titles in
the reranking process to further ensure contextual
richness.

To select models for our re-ranking experiments,
we considered a range of realistic scenarios and
selected representative models from three key cate-
gories: dense retrieval, supervised re-ranking, and
unsupervised re-ranking. Specifically, for dense
retrieval, we chose DPR and Contriever. In the
category of supervised re-ranking, we used the
established pointwise ranking models MonoT5
and RankT5. For unsupervised re-ranking, we em-
ployed RG, a widely used pointwise re-ranking
method. Additionally, acknowledging the signifi-
cance of latency in practical settings, we favored
pointwise methods to efficiently manage the com-
putational overhead associated with processing and
decomposing passages into sentences.

5https://github.com/castorini/pyserini

Model T

BM25 7.6389
Contriever 0.9341
DPR 71.4338
MonoT5 0.098
RankT5 -3.597
RG 0.9998

Table 5: Threshold T values used for each model in the
main experiments.

A.2.1 Model Weights

All model weights were sourced from Hugging
Face, and the models were used without any addi-
tional training. Below, we list the specific Hugging
Face model names corresponding to the weights
employed in our experiments:
DPR:

- facebook/dpr-question_encoder-multiset-base

- facebook/dpr-ctx_encoder-multiset-base

Contriever:
- facebook/contriever

MonoT5:
- castorini/monot5-base-msmarco

RankT5:
- Soyoung97/RankT5-base

RECOMP:
- fangyuan/nq_abstractive_compressor

- fangyuan/nq_extractive_compressor

- fangyuan/tqa_abstractive_compressor

- fangyuan/tqa_extractive_compressor

- fangyuan/hotpotqa_abstractive_compressor

- fangyuan/hotpotqa_extractive_compressor

LLama2-13b-chat:
- meta-llama/Llama-2-13b-chat-hf

A.2.2 Threshold T for Each Model

As shown in the Figure 8, the distribution of rele-
vance scores varies significantly across models. Ex-
perimentally, we sampled 1,000 entries each from
the training sets of the NQ, TQA, and SQD datasets
to set the 90th percentile threshold T . Sentences
scoring below this threshold were removed. Al-
though it is possible to sample from the training set
in each experiment to establish new thresholds, our
experiments conducted in Section 5 across various
thresholds consistently yielded better performance
than using the top-1 documents directly. Therefore,
the thresholds established in this experiment could
be used as the standard. The specific values are
listed in the accompanying Table 5.
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Figure 8: Distribution of relevance scores for 1,000 randomly sampled documents from the NQ, TQA, and SQD
datasets for each model.

A.3 Prompt Templates

For a fair comparison, we fixed the prompt tem-
plates. In this section, we introduce these fixed
templates.

A.3.1 QA Prompt Template

We use a QA template for open-domain queries
from the publicly available llama-index6. Below is
the QA prompt template used in our experiments:

QA Prompt Template for LLMs

[INST] We have provided context informa-
tion below.
———————
{context_str}
———————
Given this information, please answer the
question: {query_str} [/INST]

A.3.2 RG Ranking Prompt Template

We use an RG Ranking Prompt Template follow-
ing (Liang et al., 2022). Below is the RG Ranking
prompt template used in our experiments:

6https://www.llamaindex.ai/

Ranking Prompt Template for LLMs

[INST] Passage:
———————
{title_str}
{document_str}
———————
Query: {query_str}
Does the passage answer the query? Answer
‘Yes’ or ‘No’ [/INST]

B Additional Experimental Results

B.1 Main Result on Top-5 documents

In Table 6, we compared the performance of DSLR-
refined documents for the top-5 settings with orig-
inal documents in RAG. While DSLR remained
effective, the margin of performance improvement
was less significant than the top-1 setting, suggest-
ing that increasing the volume of documents can
modestly enhance performance. However, DSLR
managed to maintain similar or better performance
while significantly reducing token count, thus im-
proving efficiency. In this setting, models like
MonoT5, RankT5, and RG, based on pre-trained
models, outperformed traditional models such as
BM25, Contriever, and DPR, likely due to the su-
perior capability of sentence-level re-ranking.
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Type Re-ranker NQ TQA SQD RQA SQ BASQ AVG.
# tok Acc # tok Acc # tok Acc # tok Acc # tok Acc # tok Acc # tok Acc

Baseline

- - 855 34.9 862 64.7 843 35.9 2323 42.5 825 40.9 2131 62.9 1307 47.0

Ours

Sparse Ret. BM25 204 29.9 371 62.1 172 31.6 1590 42.6 231 39.6 868 58.7 573 44.1

Dense Ret. Contriever 303 32.6 251 63.8 243 34.5 1163 44.1 301 41.7 1433 62.4 616 46.6
DPR 262 37.9 305 65.6 225 32.8 1095 42.5 334 42.3 1390 60.5 602 46.8

Supervised Re-r. MonoT5 325 36.1 353 65.0 273 36.7 1194 44.9 200 40 1640 62.3 664 47.5
RankT5 368 35.8 285 64.9 369 36.9 976 44.1 202 40.6 1458 63.0 610 47.6

Unsupervised Re-r. RG 198 37.4 320 66.8 205 35.3 1099 43.9 453 40.8 1253 63.4 588 47.9

Table 6: Performance comparison between the Baseline (original top-5 document) and Ours (DSLR-refined top-5 document) on
various open-domain QA datasets. The table shows the average token count (# tok) and accuracy (Acc) for both sparse and dense
retrievers, as well as for supervised and unsupervised re-rankers. Best results are in bold.

B.2 Detailed Results for the Comparative
Analysis of Document Refining Methods:
Evaluating RECOMP and DSLR

Table 7 provides a detailed comparison between the
RECOMP and DSLR frameworks. RECOMP fo-
cuses on minimizing token usage in RAG without
sacrificing performance, utilizing a fine-tuned Con-
triever for extractive compression and a T5-large
for abstractive compression. By contrast, DSLR en-
hances RAG performance by eliminating redundant
content. Although their different objectives pose a
challenge for direct comparison, both aim to extract
essential information effectively. To ensure a fair
comparison, we aligned the context length to two
sentences and refined the top-5 documents, mir-
roring RECOMP’s methodology. Our experiments
utilized the LLama2-13b-chat model as the reader
to maintain consistency. This analysis underscores
the importance of zero-shot refinement approaches
in advancing document refinement for RAG.

B.3 DSLR with Proprietary Models

We evaluated the performance of DSLR in propri-
etary LLMs with larger parameter sizes and undis-
closed data and training processes, specifically test-
ing on GPT-3.5-turbo7 and Claude-3-haiku8 using
the same settings for the top-1 document. As shown
in Table 8, consistent with previous findings, DSLR
significantly enhanced performance by simply elim-
inating irrelevant content at the sentence level from
the original document. Additionally, since these
models calculate API costs on a per-token basis, the
substantial reduction in token count9 is expected to

7gpt-3.5-turbo-1106
8claude-3-haiku-20240307
9Due to the unavailability of the tokenizers for gpt-3.5-

turbo and claude-3-haiku, token counts were necessarily per-
formed using the LlamaTokenizer.

significantly decrease API costs.

B.4 Sentence-Level Re-ranking Results

In DSLR, the sentence-level re-ranking step is cru-
cial for enhancing performance. We evaluated this
approach against conventional passage-level re-
ranking within the RAG framework, maintaining
identical context lengths (L). Initial retrievals were
configured for top-{20, 100}, followed by analyses
at L = {100, 500}. These settings were chosen be-
cause 100 and 500 words represent typical lengths
for segments in top-1 and top-5 passage-level re-
rankings, respectively. Notably, when counting
words, only the content is considered, excluding
titles.

B.4.1 Comparative Performance of
Sentence-Level vs. Passage-Level
Re-Ranking

The results presented in Table 9 demonstrate that
sentence-level re-ranking consistently outperforms
passage-level re-ranking across all settings, except
when using BM25.

B.4.2 Effectiveness of Sentence-Level
Re-Ranking in Varying Conditions

Table 10 shows the sentence-level and passage-
level re-ranking over various context lengths L.
Table 11 shows performance in top-{5, 10, 20, 50,
100} settings adjusted for L = 100 and L = 500.
Our experiments on the NQ dataset indicate that
sentence-level re-ranking is effective across diverse
conditions, omitting the less effective BM25 re-
ranking.
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Method Model NQ TQA SQD RQA SQ BASQ AVG.

DSLR

BM25 22.2 53 27.5 36.5 33.7 54 37.8
DPR 35 62 28.8 32.9 38.1 55.6 42.1

Contriever 24.3 56.8 28.5 34.9 37.4 54 39.3
MonoT5 34.1 62.2 38.9 28.2 38.6 47.9 38.0
RankT5 34.4 62.5 38.9 42.7 38.4 63.2 46.7

RG 37.5 64.9 35.5 41.4 41.4 63.4 47.4

RECOMP

Extr.-NQ 29.7 57.8 26 28.2 38.6 47.9 38.0
Extr.-TQA 27.5 59.9 27.6 32.1 36.7 49.4 38.9
Extr.-HQA 27.2 57.7 30.3 33.3 35.7 50.9 39.2

(Xu et al., 2024) Abst.-NQ 31 59.2 34.1 38.5 36.1 56 42.5
Abst.-TQA 35.3 64 29.2 37.3 45.1 46.8 43.0
Abst.-HQA 30.9 58.3 33.7 37.6 39.9 41.8 40.4

Table 7: Performance comparison of DSLR and RECOMP methods across multiple open-domain QA datasets. The
table presents the accuracy of each method, including BM25, DPR, Contriever, MonoT5, RankT5, and RG models
for DSLR, as well as extractive (Extr.) and abstractive (Abst.) models for RECOMP. The best performance is in
bold.

# tok gpt-3.5-turbo claude-3-haiku

Baseline 170 22.7 24.3
Ours 44 36.9 33.8

Table 8: Performance comparison of the baseline (original
top-1 document) and Ours (DSLR-refined top-1 document
using RG) on the NQ dataset within proprietary models. The
comparison includes average token count (# tok) and accuracy.

B.4.3 Effectiveness of Sentence-Level
Re-Ranking on the Gold Answer Hit
Rate

We present detailed results for the Gold Answer
Hit Rate in Table 12. The rate is binary, assigned 1
if the re-ranked context contains the gold answer,
and 0 otherwise, averaged over all dataset entries
for each L.

B.4.4 Ablation Studies on Various Models
Table 13 explores the significance of each step un-
der various models in the initial top-100 retrieval
and L=500 setting. The absence of the sentence-
level re-ranking (SR) highlights its necessity in
filtering irrelevant information, while excluding the
reconstruction (RC) step demonstrates its crucial
role in enhancing answer generation accuracy.
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Type Re-ranker Granularity NQ TQA SQD RQA* SQ BASQ AVG.
L=100 L=500 L=100 L=500 L=100 L=500 L=100 L=500 L=100 L=500 L=100 L=500 L=100 L=500

w/o Re-ranking

- - - 25.5 34.9 58 64.6 28.5 35.9 37 40.1 33.9 40.9 56.8 59.5 40.0 46.0

w/ Re-ranking

Top-20

Sparse Ret. BM25 Sentence 26.3 37.5 56.7 65.6 31.5 37.1 39.3 43.1 35.6 43.4 58.5 64.2 41.3 48.5

Dense Ret.

Contriever Passage 26.5 37.7 57.5 66.1 26.2 37.2 33.6 38 35.4 43.7 53.9 57.9 38.9 46.8
Sentence 28.5 37.2 60.9 67 32.9 38.4 38.3 42.7 39 44 60.7 63.4 43.4 48.8

DPR Passage 36.5 42.1 62.3 67.3 25.3 35.4 31.5 36 38.9 44.6 52.5 56.5 41.2 47.0
Sentence 38.5 42.5 64.3 68.2 33.1 36 35.8 40.4 41.4 45.6 59 62.7 45.4 49.2

Supervised Rer.

MonoT5 Passage 33.6 40.7 62.1 67.6 37.1 40 37.8 41.5 37.4 44.7 58.7 62.3 44.5 49.5
Sentence 37.4 42.3 64.9 68.2 39.5 39.5 42.1 44.6 41.4 44 64.2 65.1 48.3 50.6

RankT5 Passage 35.4 41.4 63.3 67.7 39.2 40 37.9 40.8 37.8 44.5 59.2 63.0 45.5 49.6
Sentence 36.9 42.1 64 67.9 39.9 39.5 42.8 43.9 40.2 45.7 65.6 66.5 48.2 50.9

Unsupervised Rer. RG Passage 35.9 41.9 65.7 68.8 34 39.3 27 30.1 40.2 45 60.9 63.5 44.0 48.1
Sentence 39.2 42.9 67.1 68.8 37.2 39.8 41.5 44.6 42.1 47.3 64.7 66.9 48.6 51.7

Top-100

Sparse Ret. BM25 Sentence 22.1 33.5 50.1 62.0 26.5 33.6 39.3 43.1 32.2 41.2 51.5 60.4 37.0 45.6

Dense Ret.

Contriever Passage 26.0 37.2 56.4 66.0 23.7 35.3 33.6 38.0 36.3 44.6 51.0 56 37.8 46.2
Sentence 28.0 37.6 59.4 67.5 32.5 39.0 38.3 42.7 40.5 45.4 58.7 63.5 42.9 49.3

DPR Passage 39.2 46.5 61.8 68.8 22.8 33.4 31.5 36 38.5 44.5 48.0 53.6 40.3 47.1
Sentence 41.9 46.7 65.3 69.8 31.8 38.0 35.8 40.4 40.7 48.1 57.0 62.1 45.4 50.9

Supervised Re-r.

MonoT5 Passage 35.4 43.9 62.8 69.1 38.3 42.3 37.8 41.5 39.3 46.8 58.4 63.2 45.3 51.1
Sentence 40.5 46.3 65.8 70.3 41.9 41.8 42.1 44.6 42.2 48.6 64.0 68.0 49.4 53.3

RankT5 Passage 38.0 44.7 64.5 70.0 41.5 43.5 37.9 40.8 39.0 46.5 59.8 64.2 46.8 51.6
Sentence 39.7 46.0 65.5 69.9 42.4 41.8 42.8 43.9 39.0 48.5 65.6 68.5 49.2 53.1

Unsupervised Re-r. RG Passage 37.6 44.9 66.3 71.0 33.5 40.8 27.0 30.1 40.2 46.9 60.8 63.4 44.2 49.5
Sentence 41.7 47.4 68.5 71.7 37.5 41.5 41.5 44.6 43.8 49.4 65.4 68.8 49.7 53.9

* RQA uses a specific GCS document from the dataset instead of the top-100, allowing for a variable number of top-N retrieved documents.

Table 9: Comparative performance of sentence-level and passage-level re-ranking methods across multiple open-
domain QA datasets. Results are presented for two context lengths (L=100 and L=500), using sparse and dense
retrievers, and both supervised and unsupervised re-rankers, for the top-20, 100 retrieved documents. The best
performances are in bold.

Re-ranker Granularity L=100 L=200 L=300 L=400 L=500

Contriever Passage 26 29.9 33 35.4 37.2
Sentence 28 32.8 35.3 36.4 37.6

DPR Passage 39.2 42.5 44 45.8 46.5
Sentence 41.9 44.5 45.8 46.4 46.7

MonoT5 Passage 35.4 39 41.6 43 43.9
Sentence 40.5 43.9 45.6 46.1 46.3

RankT5 Passage 38 41 42.6 43.9 44.7
Sentence 39.7 43.3 44.9 46.2 46

RG Passage 37.6 41 42.7 44 44.9
Sentence 41.7 44.7 46.2 47.3 47.4

AVG. Passage 35.2 38.7 40.8 42.4 43.4
Sentence 38.4 41.8 43.6 44.5 44.8

Table 10: Performance comparison across different context lengths (L = 100, 200, 300, 400, and 500) on the NQ
dataset, evaluated using top-100 retrieved documents.
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Re-ranker Granularity Top-5 Top-10 Top-20 Top-50 Top-100

L=100 L=500 L=100 L=500 L=100 L=500 L=100 L=500 L=100 L=500

Contriever Passage 26.7 35.3 26.7 37.0 26.5 37.7 26.4 37.1 26.0 37.2
Sentence 28.0 34.8 27.9 36.3 28.5 37.2 28.1 37.7 28.0 37.6

DPR Passage 32.8 35.9 34.5 39.5 36.5 42.1 38.5 45.0 39.2 46.5
Sentence 33.0 34.9 36.3 39.0 38.5 42.5 40.9 45.6 41.9 46.7

MonoT5 Passage 31.3 35.0 32.6 38.5 33.6 40.7 34.6 43.3 35.4 43.9
Sentence 32.9 34.8 35.3 38.9 37.4 42.3 39.7 44.7 40.5 46.3

RankT5 Passage 32.1 35.5 33.8 38.4 35.4 41.4 37.0 43.8 38.0 44.7
Sentence 32.5 34.9 34.9 38.7 36.9 42.1 38.8 44.8 39.7 46.0

RG Passage 33.0 35.3 34.8 39.6 33.6 41.9 34.7 44.2 35.2 44.9
Sentence 33.9 34.8 36.7 39.6 36.1 42.9 37.7 45.8 38.4 47.4

AVG. Passage 31.2 35.4 32.5 38.6 33.6 40.8 34.7 42.7 35.2 43.4
Sentence 32.1 34.8 34.2 38.5 36.1 41.4 37.7 43.7 38.4 44.8

Table 11: Performance comparison of various re-rankers at different granularity levels and context lengths (L=100
and L=500), evaluated on NQ dataset across top-{5, 10, 20, 50, 100} retrieved documents.

Type Re-ranker Granularity NQ TQA SQD RQA* SQ BASQ AVG.
L=100 L=500 L=100 L=500 L=100 L=500 L=100 L=500 L=100 L=500 L=100 L=500 L=100 L=500

Top-20

Dense Ret.

Contriever Passage 24.1 49.5 44.8 70.5 29.3 53.7 30.3 42.8 30.1 58.9 21 32.2 29.9 51.3
Sentence 25.9 47.4 50.1 71.7 39.8 56.3 34.8 48.6 37.6 61.4 19.6 32.1 34.6 52.9

DPR Passage 41.9 57.7 59.1 73.4 29.5 52.3 29.2 42.1 37.3 59.3 20.6 30.5 36.2 52.6
Sentence 46.6 59.0 64.3 74.6 42.4 58.2 32.8 49.5 44.6 61.8 24.2 34.2 42.5 56.2

Supervised Rer.

MonoT5 Passage 37.7 57.1 59 74.1 45.7 60.1 36.1 47.2 38.7 60.4 25.9 36.0 40.5 55.8
Sentence 46.2 58.3 65.6 74.4 54.2 61.5 43.9 52.6 46.5 63.1 29.7 39.2 47.7 58.2

RankT5 Passage 40.7 57.9 61 74.1 48.3 60.7 34.8 45.6 39.9 61.9 26.6 35.9 41.9 56
Sentence 44.8 57.9 64.5 73.8 54.2 61.7 43.4 52.3 44.9 63 30.5 39.4 47 58

Unsupervised Rer. RG Passage 38.1 57.7 59.9 74.7 40.3 58.9 21.1 30.9 40.5 61.6 25.8 35.1 37.6 53.2
Sentence 47.1 59.3 66.1 75.5 50.8 61.6 38.6 51.4 48.8 65.8 29.4 38.9 46.8 58.7

Top-100

Dense Ret.

Contriever Passage 23 48.9 42 70.2 25.8 51.8 30.3 42.8 29.5 59.7 19.8 30.6 28.4 50.7
Sentence 24.7 46.4 48.2 70.8 39.1 57.7 34.8 48.6 38.6 63.9 18.7 31.6 34 53.2

DPR Passage 46.5 64.9 59.3 75.3 26.9 49.2 29.2 42.1 35.2 61.6 20.1 29.5 36.2 53.8
Sentence 52.4 66.6 65.9 77.2 41.4 59.5 32.8 49.5 45.1 67.8 24.3 33.4 43.6 59

Supervised Re-r.

MonoT5 Passage 40.2 63 60.1 76.8 48 65.8 36.1 47.2 41.5 65.2 25.7 36.8 41.9 63.6
Sentence 51.1 66.2 67.8 77.9 60.1 69.6 43.9 52.6 49.4 68.2 29.4 39.9 50.3 62.4

RankT5 Passage 44.1 64.2 62.9 77.1 51.6 67.3 34.8 45.6 41.8 65.5 27.4 36.8 43.8 59.4
Sentence 49.8 65 66.8 76.9 60 69.4 43.4 52.3 49 67 31 40.5 50 61.8

Unsupervised Re-r. RG Passage 40 63.1 60.6 77.7 40.1 61.4 21.1 30.9 40.9 66.7 26.5 35.1 38.2 55.8
Sentence 51.2 66.6 67.7 79 52.8 67.6 38.6 51.4 54 71.4 29.6 39.8 49 62.6

* RQA uses a specific GCS document from the dataset instead of the top-20, allowing for a variable number of top-N retrieved documents.

Table 12: Golden Answer Hit rate of sentence-level and passage-level re-ranking methods across multiple open-
domain QA datasets. Results are presented for two context lengths (L=100 and L=500), using dense retrievers, and
both supervised and unsupervised re-rankers, for the top-{20, 100} retrieved documents.
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Model NQ TQA SQD AVG.

Sentence-Level Re-ranking

Contriever 37.6 67.5 39.1 48.1
DPR 46.7 69.9 38.1 51.6

MonoT5 46.4 70.4 41.9 52.9
RankT5 46.1 70.0 41.9 52.7

RG 47.4 71.7 41.5 53.5

w/o SR 24.1 51.0 14.4 29.8

w/o RC (descend)

Contriever 36.8 66.7 38.1 47.2
DPR 46.9 69.3 37.6 51.3

MonoT5 45.9 68.9 41.6 52.1
RankT5 46.0 69.3 41.3 52.5

RG 46.3 71.0 39.6 52.3

w/o RC (random)

Contriever 37.4 66.8 37.7 47.3
DPR 46.5 69.0 37.2 50.9

MonoT5 46.0 70.0 40.6 52.2
RankT5 45.6 69.1 40.3 51.7

RG 46.3 71.2 39.7 52.4

Table 13: Ablation studies on the NQ, TQA, and SQD datasets comparing the Sentence-Level Re-ranking performance with its
variants. This includes the baseline RG model and variants without sentence-level re-ranking (w/o SR) and without reconstruction
(w/o RC), evaluated in conditions with scores ordered by relevance (descend) and shuffled randomly (random).

N 1 3 5 7 10

Baseline

Acc 25.6 31.7 34.9 37.0 39.6
# tok 169 512 855 1198 1713
E2E 3.368 4.436 5.239 6.030 7.382

Ours

Acc 31.1 34.0 36.1 37.6 39.7
# tok 74 207 325 431 577
E2E 3.792 4.081 4.232 4.559 5.422

Table 14: Performance comparison at various N -values for Baseline vs. Ours, using Accuracy (Acc), Token count
(# tok), and End-to-End latency (E2E) on the NQ dataset.

(%) 10 20 30 40 50 60 70 80 90 Oracle

T 2.7969e-05 0.00043 0.0076 0.0826 0.65841 0.9196 0.9857 0.9981 0.9998 -
Acc 28.6 28.7 29.0 29.2 29.4 29.7 29.8 29.9 29.5 34.1
# tok 164 159 150 141 123 109 94 75 51 77

Table 15: Variation in accuracy and token count (# tok) with adjustments to relevance score percentiles, including
the set threshold values T and oracle settings on the NQ dataset.
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Abstract

Retrieval-Augmented Language Models
(RALMs) have significantly improved perfor-
mance in open-domain question answering
(QA) by leveraging external knowledge. How-
ever, RALMs still struggle with unanswerable
queries, where the retrieved contexts do not
contain the correct answer, and with conflicting
information, where different sources provide
contradictory answers due to imperfect
retrieval. This study introduces an in-context
learning-based approach to enhance the reason-
ing capabilities of RALMs, making them more
robust in imperfect retrieval scenarios. Our
method incorporates Machine Reading Com-
prehension (MRC) demonstrations, referred
to as cases, to boost the model’s capabilities
to identify unanswerabilities and conflicts
among the retrieved contexts. Experiments
on two open-domain QA datasets show that
our approach increases accuracy in identifying
unanswerable and conflicting scenarios without
requiring additional fine-tuning. This work
demonstrates that in-context learning can
effectively enhance the robustness of RALMs
in open-domain QA tasks.

1 Introduction

Retrieval Augmented Language Models (RALMs)
have demonstrated remarkable performance in the
field of open-domain question answering (QA). By
leveraging external knowledge to generate answers,
RALMs enhance accuracy and enable language
models to respond to queries beyond their training
data. (Lewis et al., 2020; Guu et al., 2020; Izacard
and Grave, 2021; Izacard et al., 2022) Typically,
RALMs operate in two stages: the retrieval step,
which involves fetching relevant contexts from ex-
ternal knowledge sources, and the generation step,
where answers are generated based on the retrieved
contexts. Recent research has shown that using
frozen Large Language Models (LLMs) without
additional fine-tuning during the generation step

Figure 1: Examples of unanswerable and conflict sce-
nario that may arise during retrieval-augmenation. A
robust RALM should be able to identify such scenarios
well.

can also be effective. (Ram et al., 2023; Shi et al.,
2023)

However, a critical issue in open-domain QA is
the reliance of RALMs on the quality of external
knowledge. Figure 1 illustrates common imperfect
retrieval scenarios in RALMs. In unanswerable
scenario where the retrieved contexts do not con-
tain the correct answer, RALMs cannot provide
an accurate response. Additionally, when contexts
are retrieved from various sources, such as search
engines, conflicting information may arise. In such
scenario, RALMs may struggle to determine the
correct information, leading to reliance on their
parametric knowledge or potential hallucination.
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Figure 2: An overview of our approach. Conventional RALM generates answers by providing the LLM with context
retrieved from a knowledge source. In contrast, our method simultaneously inputs cases that enhance the LLM’s
reasoning capability, allowing it to generate answers. This leads to more robust reasoning compared to conventional
RALM.

To address these challenges, we propose the
in-context learning (Brown et al., 2020) based
approach to enhance the reasoning capabilities
of LLMs, thereby increasing robustness in such
imperfect retrieval scenarios. Unlike previous
approaches that depend on extensive fine-tuning
(Chen et al., 2022; Asai et al., 2023; Yoran et al.,
2023; Yu et al., 2023; Neeman et al., 2023), our
method leverages the in-context learning capabil-
ity of LLMs, demonstrating that providing simple
examples to LLMs can improve robustness in open-
domain QA without additional training. Figure 2
provides an overview of our approach. Unlike con-
ventional RALM, our method retrieves demonstra-
tions (referred to as cases) that assist in answering a
given query. By concatenating these retrieved cases
to the LLM’s input during retrieval-augmentation,
we enhance the LLM’s reasoning abilities through
in-context learning. This enables the RALMs to
perform more robust reasoning.

Our experiments show that providing LLMs with
Machine Reading Comprehension (MRC) demon-
strations enhances accuracy and the ability to detect
unanswerability. Additionally, presenting LLMs
with simple examples that simulate conflicts among
retrieved contexts improves their ability to identify
such conflicts.

Our contributions and key findings are summa-
rized as follows:

• We demonstrated that providing RALMs with
MRC demonstrations improves their reason-
ing capabilities in open-domain QA, where

answers should be generated from multiple
documents.

• Using retrieval to select similar demonstra-
tions is more effective than randomly select-
ing those from the entire pool.

• Providing QA cases alone enhances reason-
ing and improves robustness in scenarios with
frequently encountered issues in open-domain
QA, such as unanswerable queries.

• For conflict scenario that LLMs do not fre-
quently encounter during training, directly
providing analogous demonstrations improves
reasoning abilities.

2 Related Works

2.1 In-context learning and RALMs

Large Language Models (LLMs) have demon-
strated the ability to learn from a few examples
in their immediate context, a capability known as
in-context learning (ICL). This capability, widely
recognized as an emerging trait in many advanced
models, focuses on gaining knowledge through
inference (Brown et al., 2020; Wei et al., 2022).
In open-domain QA, recent works highlighted
that appending relevant documents to LLMs’ in-
puts without additional training significantly en-
hanced performance, providing an efficient method
for RALMs (Ram et al., 2023). Similarly, (Shi
et al., 2023) applied retrieval-augmented methods
to black-box language models, enhancing their
question-answering capabilities without altering
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their internal structure. Another study introduces
Fusion-in-Context, which examined how various
prompting strategies influence few-shot learning
performance (Huang et al., 2023). Following these
approaches, we enhance the RALMs’ robustness
using in-context learning methods.

2.2 Robustness of RALMs on unanswerability

Various studies have aimed to increase the robust-
ness of RALMs in unanswerable scenarios. (Yu
et al., 2023) introduced the Chain-Of-Note, which
trains LLMs to generate answers after assessing
the relevance of retrieved documents through se-
quential reading notes. (Yoran et al., 2023) trained
RALMs to handle unanswerability using an auto-
matically generated dataset. Self-RAG (Asai et al.,
2023) generated special tokens to indicate the rel-
evance of retrieved documents or the need for fur-
ther retrieval. CRAG (Yan et al., 2024) used a
lightweight retrieval evaluator to assess unanswer-
ability. While these approaches have improved ro-
bustness, leveraging LLMs’ in-context learning ca-
pabilities in these scenarios is still underexplored.

2.3 Robustness of RALMs on conflicts

Knowledge conflicts can arise from clashes be-
tween parametric and contextual knowledge (Long-
pre et al., 2021) or among various contextual knowl-
edges (Chen et al., 2022). Previous studies have
focused on training models to prioritize contextual
knowledge, disentangle knowledge types (Neeman
et al., 2023) or measure decision-making patterns
(Ying et al., 2023). Several studies have also aimed
to mitigate conflicts by calibrating models to an-
swer only when there’s no conflict (Chen et al.,
2022), searching for diverse passages by augment-
ing queries (Weller et al., 2022), or filtering out
conflicting passages (Hong et al.). However, these
approaches often overlook the LLMs’ in-context
learning capabilities. Unlike previous works, we
focus on leveraging the model’s in-context learn-
ing to make it conflict-awarable for more reliable
outputs without additional training.

3 Method

Our objective is to enhance the reasoning capa-
bilities of LLMs in open-domain QA scenarios,
particularly in detecting unanswerable scenarios
where no answer exists within the retrieved con-
texts, and conflict scenarios where contradictions
exist among retrieved contexts.

Our approach follows the In-context RALM
method (Ram et al., 2023), which concatenates
retrieved contexts as inputs to a frozen LLM for
retrieval-augmentation. To further enhance the
LLM’s reasoning capability, we will add demon-
strations to the RALMs by simply concatenating
demonstrations to the existing RALM input. Typi-
cally, in-context learning provides examples of the
same task (Dong et al., 2022), but our demonstra-
tions are based on Machine Reading Comprehen-
sion (MRC) datasets, which have a single shorter
context, rather than generating answers from mul-
tiple documents as in ODQA. We refer to these
demonstrations as cases.

3.1 Crafting cases
We create a case pool using the SQuAD (Rajpurkar
et al., 2016), which is a well-known MRC dataset
consisting of question, context, and answer pairs.
From this dataset, we create two types of cases:

QA case To improve reasoning capability and
unanswerability detection in open-domain QA, we
use MRC examples as QA cases. Given that open-
domain QA resembles an MRC task involving mul-
tiple documents, we use SQuAD examples with-
out additional perturbation, excluding those with
lengthy contexts 1.

Conflict case We follow the method by (Xie
et al., 2023) to create conflict cases. While Xie
et al. (2023) created counter memories contradict-
ing the LLM’s parametric knowledge, we create
conflicting contexts contradicting the retrieved con-
texts. The process is as follows:

1. Answer Sentence Creation: Similar to Xie
et al. (2023), we generate base sentences for
entity substitution using the question and an-
swers from open-domain QA datasets, form-
ing declarative answer sentences. We utilize
an LLM for this step.

2. Entity Substitution and Filtering: We sub-
stitute the answer entity in the answer sen-
tence with another entity of the same type,
creating a conflict sentence. Then, using an
LLM, we generate a conflict passage support-
ing the conflict sentence. Any conflict passage
containing the answer string is excluded.

3. Concatenation: By concatenating the conflict
passage with the original context, we simulate
a scenario with multiple contradicting docu-
ments, creating a conflict case.

1We filtered out contexts containing more than 150 words.
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We use the Llama3-70B-Instruct (Touvron et al.,
2023) for generating cases. For entity substitution,
we use SpaCy NER model for entity recognition.2

Details on prompts and settings used for the LLM
are provided in Appendix A.

3.2 Case retrieval

At inference time, we put the crafted cases into the
LLM. Similar to (Thai et al., 2023), we employ
a case-based reasoning method for case selection.
We mask entities in the test set questions (referred
to as queries) and case set questions, compute sen-
tence embeddings3 for the masked questions, and
calculate cosine similarity between these embed-
dings. The top-k similar cases are used as demon-
strations during inference, enabling effective in-
context learning by providing the LLM with cases
similar to the current query. To prevent leakage due
to cases, any case where the answer matched the
query answer is excluded from the case candidates.

4 Experimental Setup

4.1 Dataset

We used the Natural Questions (NQ) (Lee et al.,
2019) and Web Questions (WebQ) (Berant et al.,
2013) datasets, commonly employed in open-
domain QA tasks. Both datasets’ test sets were
used for our experiments. We retrieved the top five
documents for each query from Wikipedia4 based
on their cosine similarity. For dense retriever, we
use ColBERTv2 (Santhanam et al., 2022) to re-
trieve most similar contexts for each query. De-
tailed statistics for each dataset are provided below.

To simulate unanswerable and conflict scenarios,
we perturbed the existing open-domain QA datasets
to create unanswerable and conflict test sets.

Unanswerable Set To determine if a query is an-
swerable based on retrieved contexts, we use both
string match and an NLI model5. If the retrieved
context does not contain the answer string and the
context-query pair is not entailed, we consider the
context unanswerable. If all top-k retrieved con-

2We used the en_core_web_trf model. The entities for
substitutions were created by extracting entities from all texts
in the Wikitext-103-raw-v1.

3For sentence embedding, we used all-MiniLM-L6-v2
model from Sentence Transformers library (Reimers and
Gurevych, 2019)

4We used the preprocessed data from (Karpukhin et al.,
2020)

5We used MoritzLaurer/mDeBERTa-v3-base-xnli-
multilingual-nli-2mil7 from Hugging Face transformers
library

texts are unanswerable, the query is labeled as an
unanswerable example and the original answer is
replaced with unanswerable.

Conflict Set We utilized the method described in
the 3.1 to create a conflict passage for each query,
which is then randomly inserted among the top five
retrieved contexts to generate conflict examples.
To differentiate between the cases and the test set,
we employed the GPT-3.5-turbo-0125 model for
generating conflict passages. To occur a conflict,
the original top five retrieved contexts must contain
the correct answer, hence we inserted the conflict
passages only into answerable examples. To de-
termine answerability, similar to the unanswerable
set, we considered a context as answerable if it in-
cluded the answer string and the question-context
pair was entailment. If at least one answerable con-
text existed among the top-k retrieved contexts, the
example was considered answerable. After insert-
ing a single conflict passage into the answerable
example, the original answer is replaced with the
label conflict, similar to the process used for the
unanswerable set.

These perturbations allow us to evaluate the ef-
fectiveness of our method in improving the LLM’s
ability to handle unanswerable and conflicting sce-
narios in open-domain QA.

4.2 Prompting
We designed instructions to evaluate how well
RALMs can identify unanswerability and conflicts
in the unanswerable and conflict sets, respectively.
These instructions are designed to extend standard
retrieval-augmented QA by adding the capability
to identify unanswerable and conflicting contexts.
Prompts for each type are as follows:

Unanswerable Prompt This instruction adds
the task of identifying unanswerability. The LLM
must provide an answer for answerable examples
and respond with unanswerable if the context does
not contain the answer.

Conflict Prompt This instruction adds the task
of identifying conflicts among contexts. The LLM
have to respond with conflict if there is contradic-
tion among the retrieved contexts and provide an
answer if there is no contradiction.

Please refer to the Appendix A for the details of
the prompt.

4.3 Metric
Following (Mallen et al., 2023), we used accuracy
as our metric. Unlike exact match, accuracy con-
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NQ WebQ

Model Prompt Acc Acc
(ans)

Acc
(unans) Acc Acc

(ans)
Acc

(unans)
Llama3 zeroshot 52.97 58.83 35.61 35.00 39.54 22.30

1Q 54.12 60.01 36.65 36.33 41.72 21.28
3Q 56.84 62.67 39.54 39.80 45.59 23.65
5Q 57.15 62.67 40.79 43.99 49.70 28.04

Qwen1.5 zeroshot 58.19 67.34 31.06 48.80 58.52 21.62
1Q 59.34 65.95 39.75 48.80 58.16 22.64
3Q 60.96 67.34 42.03 50.85 59.01 28.04
5Q 60.23 67.90 37.47 50.31 60.10 22.97

ChatGPT zeroshot 42.48 41.45 45.55 27.96 26.72 31.42
1Q 47.03 41.52 63.35 33.75 26.96 52.70
3Q 48.80 42.57 67.29 34.28 26.12 57.09
5Q 47.96 43.06 62.53 34.55 28.42 51.69

Table 1: Experimental results on unanswerable set. In the prompt column, "XQ" denotes that X QA cases have been
added. Acc represents the accuracy on all examples, Acc (ans) indicates the accuracy on answerable examples, and
Acc (unans) shows the accuracy on unanswerable examples. The best performance is highlighted in bold.

siders a response correct if it contains the answer
string. To prevent distortion due to long responses,
we limited the response length to 10 tokens during
generation.

4.4 LLM

For effective in-context learning, we used models
with large parameter sizes. Specifically, we used
the Llama3-70B-Instruct model (Touvron et al.,
2023), the Qwen-1.5-chat-72B model (Bai et al.,
2023) and the GPT-3.5-turbo-0125 model (abbre-
viated as ChatGPT) using OpenAI’s API. To reduce
generation randomness, we used greedy decoding
and fixed the random seed. For faster inference, we
used vLLM (Kwon et al., 2023).

5 Experiments

In these experiments, we aim to investigate how ef-
fectively our constructed cases can help LLMs iden-
tify unanswerability and conflicts in open-domain
QA scenarios.

5.1 Experiments on Unanswerable Set

Table 1 presents the results of our experiments on
identifying unanswerable questions based on dif-
ferent types of prompts. The number preceding
the case name indicates the number of added cases.
Our goal is not only to have LLMs correctly iden-
tify unanswerable examples but also to ensure them
to provide accurate answers for answerable exam-
ples. Therefore, we calculated the accuracy for
both unanswerable and answerable examples, as
well as the overall accuracy. These results indicate

that adding QA cases consistently enhance the rea-
soning capabilities of LLMs across all models and
datasets. Specifically, the accuracy for unanswer-
able examples significantly increased compared
to the zero-shot performance. For instance, Chat-
GPT showed an improvement of up to 21.74 in
the NQ dataset and 25.67 in the Web Questions
dataset. This improvement indicates that providing
QA cases enhances the LLMs’ ability to reason in
situations where no correct answer exists. However,
the impact of adding QA cases varied among mod-
els. For example, Llama3’s performance continued
to improve with more QA cases, while Qwen1.5
achieved the best performance with three QA cases.
These findings imply that simple examples can sig-
nificantly boost the reasoning abilities of LLMs
through in-context learning.

5.2 Experiments on Conflict Set

Unlike the unanswerable experiments, we include
both QA and conflict cases in our conflict set experi-
ments, while keeping the total number of cases con-
stant for fair comparison. Table 2 shows the results
of our experiments on identifying conflicts. When
using both QA and conflict cases, we first added
the QA cases, followed by the conflict cases in the
prompt. To evaluate the LLMs’ ability to identify
conflicts while maintaining accuracy on answerable
examples, we conducted two forward passes. In
the first pass, we inferred the answerable examples
without adding conflict passages (non-conflict ex-
amples, abbreviated as NC). In the second pass, we
add conflict passages to the same examples (con-
flict examples, abbreviated as C) and then inferred.
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NQ WebQ

Model Prompt Acc
(NC)

Acc
(C)

Acc
(Avg)

Acc
(NC)

Acc
(C)

Acc
(Avg)

Llama3 zeroshot 58.54 10.67 34.61 38.55 8.75 23.65
1Q 64.61 16.18 40.39 42.27 14.53 28.40
3Q 70.79 15.28 43.03 42.83 8.01 25.42
2Q+1C 71.24 25.73 48.48 50.65 28.12 39.39
5Q 72.81 24.38 48.60 50.65 13.04 31.84
3Q+2C 71.01 35.17 53.09 51.77 35.38 43.58

Qwen1.5 zeroshot 76.29 8.76 42.53 59.59 13.04 36.31
1Q 71.35 12.70 42.02 58.10 21.79 39.94
3Q 73.26 19.78 46.52 59.96 22.91 41.43
2Q+1C 73.03 25.28 49.16 57.54 32.77 45.16
5Q 74.04 16.63 45.34 58.66 24.95 41.81
3Q+2C 73.60 24.16 48.88 57.73 27.93 42.83

ChatGPT zeroshot 55.51 28.65 42.08 34.82 38.36 36.59
1Q 52.81 28.76 40.79 34.64 40.60 37.62
3Q 58.20 29.21 43.71 37.80 42.46 40.13
2Q+1C 57.08 29.89 43.48 37.62 40.41 39.01
5Q 58.65 23.71 41.18 41.71 38.18 39.94
3Q+2C 56.85 31.57 44.21 38.18 40.78 39.48

Table 2: Experimental results on conflict set. In the prompt column, + indicates that two case were used together.
Acc (NC) denotes the accuracy on non-conflict examples, Acc (C) represents the accuracy on conflict examples, and
Acc (Avg) is the average accuracy of the two. The best performance for each total case count is highlighted in bold,
and the overall best performance is underlined.

We calculated the accuracy for both passes to assess
the models’ performance in identifying conflicts
and answering correctly. The results show that
adding QA cases alone improves accuracy on con-
flict examples compared to zero-shot performance.
Moreover, adding appropriate conflict cases pro-
vides even more benefits. Model performance var-
ied; for example, Qwen showed the highest accu-
racy for non-conflict examples in the zero-shot set-
ting but had lower accuracy for conflict examples,
with the best overall performance achieved using a
combination of 2Q+1C. Conversely, Llama3 per-
formed best with the 3Q+2C combination, except
for the 5Q setting. ChatGPT’s conflict accuracy
improved with added conflict cases, but its accu-
racy for non-conflict examples decreased compared
to adding only QA cases. Additionally, ChatGPT
showed less improvement in conflict example accu-
racy compared to other models when conflict cases
were added. These results are discussed in more
detail in 5.3.2.

Overall, the experiments indicate that identify-
ing conflicts requires more complex reasoning than
identifying unanswerable, and the effect of adding
QA cases alone is limited. However, providing
simplified examples that mimic more complex sce-
narios can enhance reasoning capabilities. This

suggests that simple examples can significantly im-
prove the robustness of LLMs without additional
fine-tuning. Also, it shows that such direct exam-
ples, like conflicts which are difficult for LLMs to
encounter during training, can be more effective in
improving reasoning abilities.

Model Method Size Acc Acc
(ans)

Acc
(unans)

ChatGPT

Ours 1 47.03 41.52 63.35
Random 1 44.10 36.92 65.42
Ours 3 48.80 42.57 67.29
Random 3 44.94 36.50 69.98
Ours 5 47.96 43.06 62.53
Random 5 43.74 37.82 61.28

Llama3

Ours 1 54.12 60.01 36.65
Random 1 53.13 58.76 36.44
Ours 3 56.84 62.67 39.54
Random 3 54.23 59.32 39.13
Ours 5 59.13 64.20 44.10
Random 5 57.93 62.25 45.13

Table 3: Experimental results on the unanswerable set
of NQ. Method refers to the case retrieval approach,
and size denotes the number of added cases. Acc repre-
sents the accuracy on all examples, Acc (ans) indicates
the accuracy on answerable examples, and Acc (unans)
represents the accuracy on unanswerable examples.
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Model Prompt NQ WebQ
ChatGPT zeroshot 17.08 25.33

QA 20.79 30.17
Llama3 zeroshot 2.25 1.68

QA 1.35 1.49
Qwen1.5 zeroshot 3.93 7.26

QA 8.43 12.85

Table 4: Experimental results on the False Conflict De-
tection Rate (FCDR). The numbers in the table represent
the FCDR. The QA prompt refers to the concatenation
of three QA cases.

5.3 Further Analysis
5.3.1 Case Selection
To verify the effectiveness of our case retrieval
method described in 3.2, we compared the results
of selecting cases using our method versus ran-
domly selecting cases from the entire pool. Table
3 shows the results for the NQ unanswerable set.
Our method demonstrates higher overall accuracy
compared to randomly selecting cases. Specifically,
for answerable examples, our method achieves up
to 6 higher accuracy. This indicates that our case
retrieval approach may be an effective strategy for
in-context learning.

5.3.2 Impact of Conflict Cases on ChatGPT
We conducted additional experiments to understand
why adding conflict cases to ChatGPT is less ef-
fective. We calculated the False Conflict Detec-
tion Rate (FCDR), which is the rate at which non-
conflict examples are incorrectly predicted as "con-
flict," for each model. We compared the results
of zeroshot and with three additional QA cases.
The results are shown in Table 4. ChatGPT ex-
hibits a significantly higher FCDR compared to
Llama3 and Qwen1.5, with 17.08 on NQ and 25.33
on WebQ in the zeroshot setting. This rate further
increases to 20.79 and 30.17, respectively, when
additional QA cases are included. This suggests
that ChatGPT has been trained to be more sensi-
tive to conflicts, which limits the improvement in
accuracy for conflict examples when more conflict
cases are added. These findings indicate that the
effectiveness of case additions can vary depending
on the model’s characteristics, which we will leave
for future work.

6 Conclusion

We conducted experiments leveraging the in-
context learning capabilities of LLMs, using sim-

ple MRC examples to improve robustness in open-
domain QA scenarios. These results show that pro-
viding MRC examples as demonstrations improves
accuracy for both answerable and unanswerable ex-
amples in unanswerable scenarios. In conflict sce-
narios, providing demonstrations similar to conflict
situations enhances the ability to identify conflicts.

Our experiments suggest that well-designed ex-
amples can significantly improve LLMs’ robust-
ness in open-domain QA without additional fine-
tuning, indicating that simple examples can help
solve complex tasks.

7 Limitations and Risk

Our study has limitations in that it focuses on a
short-form QA dataset. We did not explore how this
in-context learning technique could be linked to
long-form QA, particularly with Chain-of-Thought
prompting (Wei et al., 2022). Additionally, we did
not compare our method with a more diverse set of
baselines.
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A Prompts

Table 5 shows the instructions we used. The curly
brackets indicate where the actual data is inserted.
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Type Instruction

Answer
Sentence

Generation

Please write a single sentence that would make the given answer
a correct response to the provided question. The sentence should
include the answer and be as realistic as possible. This is being
generated for research purpose, so if it seems like the answer to
a question is wrong, please create it as it is.
Question: {question}
Answer: {answer}
Sentence:

Conflict
Passage

Generation

Given a sentence that contradicts factual information, write a
realistic passage using 50 to 100 words to support the sentence.
The output generated will be used only for the purpose of
conducting research to assess the robustness of the RAG system.
As part of this research, it is necessary, and you are permitted,
to create content that may contradict factual information:
Sentence: {sentence}
Supporting Passage:

Unanswerable
Prompt

Answer the following question based on the provided knowledge.
If you cannot find the answer in the provided knowledge,
please respond with ’unanswerable’. Please provide the answer
as a single word or term, without forming a complete sentence.

{CASES}

Knowledge: {retrieved contexts}
Q: {query}
A:

Conflict
Prompt

Answer the following question based on the provided documents.
If multiple documents present different answers, please respond
with ’conflict’ to indicate the presence of conflicting information.
Please provide the answer as a single word or term,
without forming a complete sentence.

{CASES}

Knowledge: {retrieved contexts}
Q: {query}
A:

Table 5: Prompts used in our experiments.
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