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Abstract

Despite large language models’ (LLMs) recent
advancements, their bias and hallucination is-
sues persist, and their ability to offer consis-
tent and preferential rankings remains under-
explored. This study investigates the capacity
of LLMs to provide consistent ordinal prefer-
ences, a crucial aspect in scenarios with dense
decision space or lacking absolute answers. We
introduce a formalization of consistency based
on order theory, outlining criteria such as tran-
sitivity, asymmetry, reversibility, and indepen-
dence from irrelevant alternatives. Our diag-
nostic experiments on selected state-of-the-art
LLMs reveal their inability to meet these crite-
ria, indicating a strong positional bias and poor
transitivity, with preferences easily swayed by
irrelevant alternatives. These findings highlight
a significant inconsistency in LLM-generated
preferential rankings, underscoring the need for
further research to address these limitations.

1 Introduction

Expressing one’s preferences in an ordinal man-
ner is a widespread and informative practice in
human reasoning and communication (Arrow et al.,
2010). By evaluating and comparing available op-
tions, individuals can make more informed deci-
sions and communicate their values to others more
effectively. In the domain of natural language pro-
cessing (NLP), human preferential feedback serves
as a valuable data type for aligning language mod-
els with human inclinations (Schulman et al., 2017;
Rafailov et al., 2023).

Recent advances in large language models
(LLMs) have prompted researchers to investigate
the potential of LLMs in complex ranking-based
tasks - such as recommendation (Li et al., 2023;
Ren et al., 2024), web search (Sun et al., 2023), and
text relevance comparison (Qin et al., 2023) - tra-
ditionally handled by task-specific models. More-
over, given that human annotation and evaluation

Now, provide a preferential ranking on 
following 4 objects:        ,       ,       , and        .

User

Please provide a preferential ranking on 
following 3 objects:        ,       , and       .

LLM

Sure! My ranking is [                                ].> >

Okay! Then I think [                                      ].> >>

Figure 1: An example of violating Independence from
Irrelevant Alternatives (IIA) criterion. Initially, given
3 choices, the model preferred Circle over Square over
Triangle. However, after introducing a new choice Star,
the relative preferential positions among the initial 3
choices inconsistently changed.

are resource-intensive, there is an increasing in-
terest in augmenting or even substituting human
preferential data with LLM-generated judgments to
annotate, evaluate, or supplement as corpus (Wang
et al., 2021; Zhao et al., 2022; Lee et al., 2023).

On the other hand, it is well-recognized that
LLMs often exhibit severe bias and hallucination
(Rawte et al., 2023; Zhang et al., 2023b). Specifi-
cally, prior research has identified undesirable be-
havioral patterns in LLMs when presented with
multiple options (i.e., choices). For example, in
Multiple-Choice Question Answering (MCQA), a
task commonly used to benchmark LLM perfor-
mance (Hendrycks et al., 2021a,b; Robinson et al.,
2023), LLMs have shown a particular bias towards
the position (Pezeshkpour and Hruschka, 2023) and
the labeling of choices (Zheng et al., 2023).

Unlike MCQA, which requires single-selections,
preferential ranking necessitates the ordinal prefer-
ences of all options, which is invaluable in scenar-
ios lacking a definitive answer. Despite extensive
research, the current literature on LLM bias has
not fully addressed their behavior in preferential
ranking tasks. To address this gap, our study en-
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deavors to investigate a critical yet under-explored
question: To what extent can LLMs consistently
and coherently provide ordinal ‘preferences’?

This study makes an effort to measure the con-
sistency (or more likely inconsistency) of LLMs in
preferential ranking. Firstly, by incorporating order
theory (Grätzer, 2002), we formalize the question
and define five self-evident criteria that must be
satisfied to achieve ‘consistency’ (§ 2.1). Through
comprehensive diagnostic experiments on various
state-of-the-art LLMs, we examine their adherence
to preferential ranking criteria, namely transitivity,
asymmetry, reversibility, and independence from
irrelevant alternatives (IIA, as exemplified in Fig-
ure 1). We demonstrate that even the most ad-
vanced LLMs are incapable of providing consistent
or coherent preferential rankings.

Specifically, we observe that: (1) The tested
models generally fail to meet the asymmetry con-
dition in preferential ranking (e.g., different an-
swers for ‘compare A and B’ and ‘compare B and
A’), indicating a strong positional bias (§ 3.2). (2)
The preferences provided by the tested models ex-
hibit poor transitivity; that is, concatenating bi-
nary preferences of choice pairs does not reliably
yield an ordinal chain, and in fact, these prefer-
ences are often contested or even cyclic (§ 3.2). (3)
The preferences of LLMs are significantly influ-
enced by the addition or removal of irrelevant
alternatives (§ 3.3). (4) When requested to pro-
vide rankings in different ordinal sequences (e.g.,
preferential descending and ascending), LLMs fail
to produce logically equivalent outcomes (§ 3.4).

In summary, our contributions are threefold:

• We first formalize the measurement of consis-
tency in LLM preferential ranking through the
lens of order theory.

• We devise specific measurement metrics that
align with the defined consistency conditions.
A preliminary experiment not only corrobo-
rates some shared biases with the MCQA task
but also highlights the unique challenges of
preferential ranking.

• Through comprehensive experiments on a col-
lection of state-of-the-art (SOTA) LLMs, we
uncover a severe and widespread inconsis-
tency in LLM preferential ranking. Our find-
ings sound a serious alarm in related research
and call for immediate mitigation efforts.

2 Experiment Setup and Preliminaries

2.1 Definition
Concretely, let A = {a, b, ..., n} be a finite set
of n distinct alternatives, we define a preferential
ranking as a strict partial ordering ≻ of A (Grätzer,
2002; Rosen, 2007). Such ordering satisfies that,
for all a, b, c ∈ A:

• Irreflexivity: not a > a.

• Asymmetry: if a > b then not b > a.

• Transitivity: if a > b and b > c then a > c.

Besides above intrinsic conditions, In multi-
round preferential ranking scenarios, we also ex-
amine following criteria

• Independent from Irrelevant Alternative
(IIA): if a > [...] > b in an ordering ≻original,
given additional alternatives c, d, ..., then a >
[...] > b in the new ordering ≻new.

• Reversibility: if a > [...] > b then b < [...] <
a. This criterion can be regarded as a full
ranking generalization of binary Asymmetry.

Note that there is also a non-strict partial order-
ing variation that allows a = b (i.e., preferential
ties). For simplicity, all experiments are conducted
under strict partial ordering scenario.

2.2 Datasets
Following prior research that benchmarks the rea-
soning capabilities of LLMs (Park et al., 2022;
Liu et al., 2023; Zhang et al., 2023a; Google,
2023; Jiang et al., 2023), we choose the MMLU
(Hendrycks et al., 2021a) as our principal testbed.
This benchmark encompasses a total of 14,079
MCQA test cases across 57 varied subject areas.
Given that our study’s main focus is on prefer-
ence ranking rather than choice generation, the
MMLU is particularly well-suited to our research
interests, as the benchmark is uniformly formatted
with multiple-choice options, and the options (i.e.,
choices) are predefined.

It should be noted that preferential ranking is a
more challenging task than MCQA because it ne-
cessitates additional ordinal information. To create
a balanced test set, we curate a collection by select-
ing the first 20 cases from each subject, resulting
in a total of 1,140 cases. In line with the original
MMLU framework (Hendrycks et al., 2021a), we
employ a 5-shot example prompting strategy that
leverages the dataset’s fixed development set.
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2.3 Evaluated Models

To investigate the potential inconsistencies in LLM
preferential ranking, we have compiled a selec-
tion of open-source models, including Llama-3-
70B (AI@Meta, 2024) and Qwen-1.5-72/110B
(Qwen, 2024). Our selection criteria prioritized
models with relatively large parameters (exceed-
ing 70B), as smaller models are generally outper-
formed by their larger counterparts in text-based
task performance. For proprietary models, we
have included gpt-3.5 (Brown et al., 2020) and
gpt-4o (OpenAI, 2023), which are among the most
widely utilized closed-source models in recent
times. Specifically, we adopt the snapshot models
gpt-3.5-turbo-0125 and gpt-4o-2024-05-13.
Sources of tested open-source models are sum-
marized in Table 6. Detailed specifications and
sources for the selected models are provided in
Appendix A. To ensure reproducibility, we have
set the temperature for all experiments to zero (the
temperature setting ranges from 0 to 2 for OpenAI
models, and from 0 to 1 for others).

2.4 Preliminary Examinations

Prior to initiating the principal experiments, it
is beneficial to ascertain whether the label to-
kens of choices affect LLMs’s preferences and
whether LLMs exhibit differential performance
across single-select and preference ranking tasks.
To this end, we conduct two preliminary examina-
tions.

Alternative Label Bias Following (Zheng et al.,
2023), in comparison with the original Alphabetic
label tokens ([A, B, C, D]) of MMLU, we add
Arabic: [(1), (2), (3), (4)], and Roman: [I, II, III,
IV] token sets. The parentheses in Arabic token
to reduce ambiguity for numerical questions. Few-
shot examples are modified in accordance with the
altered labels.

As shown in Table 1, the first-preference accu-
racies vary slightly for tested models. We also
evaluate similarity of rankings based on minimal
editing distance, and the normalized (between 0
and 1) similarities are near 0.9, suggesting a minor
influence of label tokens in preferential ranking.

Question Format Sensitivity Given that the first-
preference in a ranking context is logically congru-
ent with a single-select choice, we juxtapose the
accuracies of MCQA across these varying question
formats.

Alternative
Labels

Alphabetic Arabic Roman

Acc.@1 Acc.@1 Sim. Acc.@1 Sim.

llama-3-70b 72.1 72.9 86.6 72.2 87.3
qwen-1.5-72b 72.2 73.2 89.2 70.5 89.5
qwen-1.5-110b 71.7 71.9 90.7 71.1 89.8
gpt-3.5-turbo 62.1 62.7 89.1 61.1 88.0
gpt-4o 83.7 83.1 92.5 84.6 92.5

Table 1: The accuracies and similarity scores of first-
preferences among different label token sets. Sim. de-
notes the similarity score.

Question
Format

Single
Select

Ordinal
Ranking

Cardinal
Ranking

HitRate@N - @1 @2 @3 @1 @2 @3

llama-3-70b 77.3 72.1( -5.2) 85.6 93.1 73.9( -3.4) 87.4 94.2
qwen1.5-72b 78.0 72.2( -5.8) 85.5 91.6 70.4( -7.6) 83.7 91.4
qwen1.5-110b 76.5 71.7( -4.8) 85.9 93.2 71.8( -4.7) 86.0 93.2
gpt-3.5-trubo 67.3 62.1( -5.2) 81.0 91.6 61.1( -6.2) 80.7 91.4
gpt-4o 78.1 83.7( +5.6) 92.2 96.9 82.7( +4.6) 92.4 96.8

Table 2: Full results of Question Format Sensitivity test.
@N denotes that the accuracies are calculated based on
the first N elements of the preferential ranking lists.

Ordinal Ranking necessitates that outputs be se-
quenced lists, whereas Cardinal Ranking obliges
models to assign a numerical score to each poten-
tial answer. As evidenced in Table 2, all models,
with the exception of gpt-4o, demonstrate reduced
accuracies relative to the single-select format. This
leads us to infer that LLMs are indeed sensitive to
the format of questions, thereby underscoring the
importance of probing into LLMs’ performance in
preference-based ranking.

3 Main Experiments and Key
Observations

3.1 Irreflexivity

We elect to forgo further scrutiny of this criterion,
as a pilot test that we performed indicates that
carefully crafted prompt instructions effectively
preclude the recurrence of options within model-
generated rankings, with infrequent transgressions
observed (less than 1% across all evaluated mod-
els).

3.2 Asymmetry and Transitivity

Symmetry checking in LLM reasoning is funda-
mentally a test for positional bias. Given that prior
research has identified positional bias in single-
selection tasks (Pezeshkpour and Hruschka, 2023;
Zheng et al., 2023), it is imperative to ascertain
whether LLMs exhibit a similar propensity to mod-
ify their preference rankings when options are se-
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quenced differently in questions.
Consider A as a list of n options: [a1, a2, a3, a4].

By soliciting the LLM to perform binary compar-
isons n× (n− 1) times, we can construct an n×n
binary comparison matrix M . As depicted in Fig-
ure 2, we assign mij = 1 if the model shows a
preference for ai when presented with the ordered
pair [ai, aj ] (noting that [aj , ai] constitutes a dis-
tinct ordered pair), and mij = −1 if the model opts
for aj when faced with the same ordered pair.

[A > B, A < C, A > D, B > C, B < D, C > D]

Upper Triangle

A B C D

A 0 1 0 1

B 0 0 1 0

C 0 0 0 1

D 0 0 0 0

> Relation Matrix < Relation Matrix
A B C D

A 0 0 1 0

B 0 0 0 1

C 0 0 0 0

D 0 0 0 0

[B < A, C > A, C < B, D < A, D < B, D > C]

Lower Triangle

A B C D

A 0 0 0 0

B 0 0 0 0

C 1 0 0 0

D 0 0 1 0

> Relation Matrix < Relation Matrix
A B C D

A 0 0 0 0

B 1 0 0 0

C 0 1 0 0

D 1 1 0 0

A B C D

A > 0 +1 -1 +1

B > -1 0 +1 -1

C > +1 -1 0 +1

D > -1 -1 +1 0

Binary Comparison Matrix

Figure 2: A 4-option binary comparison matrix (left)
and a breakdown of its upper and lower triangles (right).
Each triangular matrices can be transformed into a rela-
tion matrix for each relation.

Next, we calculate an asymmetry score by com-
paring the agreement between mij and mji:

2
∑n

i,j=0,i>j sij

n(n− 1)
, sij =

{
0 if mij ≡ mji

1 if mij ̸≡ mji

(1)

The average asymmetry scores, as delineated in
Table 3, reveal a low degree of overall asymmetry
among all models, indicative of significant posi-
tional biases in the preferential ranking task. No-
tably, gpt-4o, recognized as the SOTA proprietary
LLM to date (Li et al., 2024), registers the lowest
asymmetry score. Fundamentally, the positions of
options in binary comparisons markedly affects the
preferences of LLMs, culminating in a decrease in
duly asymmetry. This finding also concurs prior
observations that LLMs show a position bias in
MCQA task (Robinson et al., 2023).

Upon identifying inconsistencies in asymmetry,
we recognize that the upper and lower triangles of
a binary comparison matrix do not perfectly corre-
spond. Consequently, it is imperative to calculate
transitivity separately for each triangular matrix.

Considering options as nodes and relations (‘<’
and ‘>’) as directions within a graph, we reconcep-
tualize the problem as one of directed reachability.

Asym
-metry

Transitivity

Model Upper Tri. Lower Tri. Avg.

random 49.9 59.4 59.4 59.4
llama-3-70b 76.6 94.5 94.7 94.6
qwen-1.5-72b 73.4 96.5 96.1 96.3
qwen-1.5-110b 82.8 97.3 96.4 96.9
gpt-3.5-turbo 73.0 94.1 94.6 94.4
gpt-4o 67.1 89.2 88.9 89.1

Table 3: Asymmetry and transitivity scores comparisons.
Upper Tri. and Lower Tri. denotes the upper triangle
and lower triangle results, respectively.

Removed
Choice Index Gold Gold

+ 1
Gold
+ 2

Gold
+ 3

Random
Non-Gold

llama-3-70b 49.7 65.3 64.9 67.1 66.3
qwen-1.5-72b 55.5 75.3 75.6 74.1 75.2
qwen-1.5-110b 57.9 76.7 76.3 76.3 74.6
gpt-3.5-turbo 62.5 71.5 71.4 70.6 69.7
gpt-4o 65.9 80.4 79.7 80.5 81.3

Table 4: Similarity scores are calculated comparing with
full-option rankings. +N denotes the N-th option after
the indices of gold answers.

For each relation, a relation matrix R can be de-
rived from the triangular matrices, as depicted in
Figure 2. Subsequently, we can compute the transi-
tive closure matrix (Purdom Jr, 1970; Karp, 1990):

Mt = [rij ]n×n = R0 ∨R1 ∨ ... ∨Rn−1 (2)

where ∨ is logical and operation. If rij = 1 in
Mt, then the relation has successfully transitioned;
otherwise, it is deemed non-transitive.

As evidenced in Table 3, all models exhibit mod-
erate transitivity, with the random baseline estab-
lished at 59.4. Furthermore, there are subtle dif-
ferences between the upper and lower triangles in
all models. This observation is consistent with the
positional biases identified in the asymmetry exper-
iment. In contrast, the impact of relation symbols
on transitivity is considerably less pronounced.

3.3 Independent from Irrelevant Alternative
IIA criterion assesses whether the introduction of
an additional option affects the relative order of
the original preference ranking. This condition
is tested by calculating a normalized similarity
score, Sim = 1−MED/2n, where MED repre-
sents the minimum edit distance between (1) prefer-
ence rankings with three options and (2) preference
rankings with four options, excluding the omitted
choice from the three option rankings.

As suggested by Table 4, the removal of gold an-
swers significantly alters the LLMs’ preferences for
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the remaining options. Conversely, the elimination
of non-gold options results in less pronounced, yet
still noticeable, impacts on the preference rankings.

3.4 Reversibility
In all preceding experiments, the models were in-
structed to provide preferences in a descending or-
der, placing the most favored option first. Maintain-
ing all other conditions constant, we now instruct
the models to rank in an ascending order, position-
ing the least favored option at the forefront.

Table 5 encapsulates the first-N option match
rates and the overall ranking similarities between
the original rankings and the reversed sequences
under the alternative output order. All models ex-
hibit suboptimal performance on full match length
(with <45% match rate), while gpt-4o outperforms
other models by significant margins.

Match Length 1 2 3 (also 4) Sim.

llama-3-70b 73.4 47.8 34.1 80.9
qwen-1.5-72b 70.1 42.0 30.3 79.9
qwen-1.5-110b 70.7 45.7 31.5 80.3
gpt-3.5-turbo 61.4 37.4 28.3 78.4
gpt-4o 85.4 61.3 44.6 84.8

Table 5: Since repetitive entries are forbidden (see § 2.1),
results for match length of 3 and 4 are the same for 4-
option sequences. Sim. denotes similarity scores.

4 Conclusion and Future Work

To conclude, we have formalized the consis-
tency measurements in preferential ranking tasks
by designing corresponding criteria and metrics.
Through diagnostic experiments, we have evalu-
ated some of the most advanced LLMs, uncovering
severe inconsistencies and positional biases that
are prevalent across all models, among other ob-
servations. Our study raises general awareness of
discrepancies in LLMs and signals a call for future
research efforts. Specifically, we highlight two ar-
eas of interest: the development of a non-MCQA
benchmark for consistency measurement and the
creation of mitigation methods to enhance the con-
sistency of LLMs in ranking-based tasks.

Limitations

While the experiments on MMLU yield notable
and insightful observations, we acknowledge that
MCQA is not fully aligned with preferential rank-
ing. Most QA benchmarks have predetermined
‘correct’ answers; however, preferential ranking

can also be relevant in scenarios where there is no
absolute right or wrong. Therefore, an additional
avenue for future work could involve constructing
a benchmark that measures preference represen-
tativeness rather than one based on true-or-false
judgments.
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are shown in Table 6.
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gpt-4o https://platform.openai.com/
llama-3-70b https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
qwen1.5-72b https://huggingface.co/Qwen/Qwen1.5-72B-Chat
qwen1.5-110b https://huggingface.co/Qwen/Qwen1.5-110B-Chat

Table 6: Sources of the evaluated models.
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