@inproceedings{balepur-rudinger-2024-large,
title = "Is Your Large Language Model Knowledgeable or a Choices-Only Cheater?",
author = "Balepur, Nishant and
Rudinger, Rachel",
editor = "Li, Sha and
Li, Manling and
Zhang, Michael JQ and
Choi, Eunsol and
Geva, Mor and
Hase, Peter and
Ji, Heng",
booktitle = "Proceedings of the 1st Workshop on Towards Knowledgeable Language Models (KnowLLM 2024)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.knowllm-1.2",
doi = "10.18653/v1/2024.knowllm-1.2",
pages = "15--26",
abstract = "Recent work shows that large language models (LLMs) can answer multiple-choice questions using only the choices, but does this mean that MCQA leaderboard rankings of LLMs are largely influenced by abilities in choices-only settings? To answer this, we use a contrast set that probes if LLMs over-rely on choices-only shortcuts in MCQA. While previous works build contrast sets via expensive human annotations or model-generated data which can be biased, we employ graph mining to extract contrast sets from existing MCQA datasets. We use our method on UnifiedQA, a group of six commonsense reasoning datasets with high choices-only accuracy, to build an 820-question contrast set. After validating our contrast set, we test 12 LLMs, finding that these models do not exhibit reliance on choice-only shortcuts when given both the question and choices. Thus, despite the susceptibility of MCQA to high choices-only accuracy, we argue that LLMs are not obtaining high ranks on MCQA leaderboards solely due to their ability to exploit choices-only shortcuts.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="balepur-rudinger-2024-large">
<titleInfo>
<title>Is Your Large Language Model Knowledgeable or a Choices-Only Cheater?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nishant</namePart>
<namePart type="family">Balepur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachel</namePart>
<namePart type="family">Rudinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Towards Knowledgeable Language Models (KnowLLM 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sha</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manling</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="given">JQ</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eunsol</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mor</namePart>
<namePart type="family">Geva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Hase</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent work shows that large language models (LLMs) can answer multiple-choice questions using only the choices, but does this mean that MCQA leaderboard rankings of LLMs are largely influenced by abilities in choices-only settings? To answer this, we use a contrast set that probes if LLMs over-rely on choices-only shortcuts in MCQA. While previous works build contrast sets via expensive human annotations or model-generated data which can be biased, we employ graph mining to extract contrast sets from existing MCQA datasets. We use our method on UnifiedQA, a group of six commonsense reasoning datasets with high choices-only accuracy, to build an 820-question contrast set. After validating our contrast set, we test 12 LLMs, finding that these models do not exhibit reliance on choice-only shortcuts when given both the question and choices. Thus, despite the susceptibility of MCQA to high choices-only accuracy, we argue that LLMs are not obtaining high ranks on MCQA leaderboards solely due to their ability to exploit choices-only shortcuts.</abstract>
<identifier type="citekey">balepur-rudinger-2024-large</identifier>
<identifier type="doi">10.18653/v1/2024.knowllm-1.2</identifier>
<location>
<url>https://aclanthology.org/2024.knowllm-1.2</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>15</start>
<end>26</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Is Your Large Language Model Knowledgeable or a Choices-Only Cheater?
%A Balepur, Nishant
%A Rudinger, Rachel
%Y Li, Sha
%Y Li, Manling
%Y Zhang, Michael JQ
%Y Choi, Eunsol
%Y Geva, Mor
%Y Hase, Peter
%Y Ji, Heng
%S Proceedings of the 1st Workshop on Towards Knowledgeable Language Models (KnowLLM 2024)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F balepur-rudinger-2024-large
%X Recent work shows that large language models (LLMs) can answer multiple-choice questions using only the choices, but does this mean that MCQA leaderboard rankings of LLMs are largely influenced by abilities in choices-only settings? To answer this, we use a contrast set that probes if LLMs over-rely on choices-only shortcuts in MCQA. While previous works build contrast sets via expensive human annotations or model-generated data which can be biased, we employ graph mining to extract contrast sets from existing MCQA datasets. We use our method on UnifiedQA, a group of six commonsense reasoning datasets with high choices-only accuracy, to build an 820-question contrast set. After validating our contrast set, we test 12 LLMs, finding that these models do not exhibit reliance on choice-only shortcuts when given both the question and choices. Thus, despite the susceptibility of MCQA to high choices-only accuracy, we argue that LLMs are not obtaining high ranks on MCQA leaderboards solely due to their ability to exploit choices-only shortcuts.
%R 10.18653/v1/2024.knowllm-1.2
%U https://aclanthology.org/2024.knowllm-1.2
%U https://doi.org/10.18653/v1/2024.knowllm-1.2
%P 15-26
Markdown (Informal)
[Is Your Large Language Model Knowledgeable or a Choices-Only Cheater?](https://aclanthology.org/2024.knowllm-1.2) (Balepur & Rudinger, KnowLLM-WS 2024)
ACL