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Abstract
Domain adaptation in Question-Answering
(QA) is of importance when deploying models
in new target domains where specific terminol-
ogy and information needs exist. Adaptation
commonly relies on a supervised fine-tuning
using datasets composed of contexts, questions,
and answers from the new domain. However,
the annotation of such datasets is known to de-
mand significant time and resources. In this
work, a semi-automatic approach is investi-
gated, where – instead of a fully manual ac-
quisition – only answer spans (or questions,
respectively) are selectively labeled, and a gen-
erative model provides a corresponding ques-
tion (or answer). The efficacy of the proposed
approach is compared against LLM-based auto-
generative methods. Through experiments on
diverse domain-specific QA datasets, both from
the research community and industry practice,
the superiority of the semi-automatic approach
in obtaining higher QA performance is demon-
strated.

1 Introduction

Question answering (QA) is one of natural lan-
guage processing’s most prominent tasks, targeted
at identifying answers to questions from a given
text corpus. At its core sits a reading comprehen-
sion (short, reader) model, which derives the an-
swer given the question and a candidate context (or
passage). Readers either extract the answer as a
subspan of the candidate context, or generate new
answers altogether. While the latter approach has
recently gained popularity as retrieval-augmented
generation (RAG) in the context of large language
models (LLMs), extractive approaches offer bene-
fits in terms of interpretability, speed, and – most
importantly – in the fact that their answers are al-
ways grounded in source material.

In this work, we focus on extractive readers, and
specifically on the issue of domain adaptation. This
is of relevance when QA systems are deployed

in new target domains and have to cope with spe-
cific terminology, but also with specific information
needs of their users, as depending on the domain,
different aspects of a text may be of relevance.

A common approach towards domain adapta-
tion would be a supervised fine-tuning of readers,
given target-domain triples of questions, candidate
context and answers. This, however, would re-
quire extensive annotation effort, which raises the
questions how to collect training triples more effi-
ciently. To do so, several approaches have recently
proposed generative (L)LMs as an option to synthe-
size questions and answers from contexts. In this
paper, we investigate a semi-automatic approach,
where a human annotator only labels interesting
(answer) spans (or questions), instead of both. We
argue that it might still be difficult for an LLM to
identify question-worthy answer spans or generate
questions if only given a context. In contrast, given
a context and an answer, formulating a correspond-
ing question is relatively easy and could, hence,
be automated. This would lead to a domain adap-
tation procedure in which users label potentially
relevant answers (or questions) in contexts, and a
language model generates a corresponding ques-
tions (or answer), completing triples on which the
reader is fine-tuned. In this paper, we compare the
above semi-automatic approach to a fully-synthetic
one, where both questions and answers are gen-
erated. Our findings (on three common research
benchmarks and a closed-domain dataset from an
industry partner) are:

• Manually labeling a limited amount of an-
swers leads to strong performance improve-
ments, compared both to labeling questions
and to fully automated data generation.

• To achieve this improvement, even medium-
sized LMs as question generators suffice,
which suggests that localizing interesting an-
swers is key to a successful reader adaptation.



• Given a small number of semi-automatic QA
pairs, we examine how bootstrapping the auto-
generative models impacts their performance.

2 Related Work

The domain adaptation of readers was examined us-
ing various approaches. While Hazen et al. (2019)
have shown that transfer learning, i.e., fine-tuning
the reader on a common large-scale QA dataset,
can lead to good performance of the reader on a
new domain. But they also report that further su-
pervised fine-tuning using QA pairs of the target
domain further improves performance. Therefore,
further work focused on obtaining good QA pairs
for training while using the same reader architec-
ture (Devlin et al., 2018) for evaluation. Due to
the costs of manual annotation of QA pairs, other
works have explored ways to automatically obtain
QA pairs of the target domain without human an-
notators. One differentiates between answer-first
and question-first approaches. The answer-first ap-
proach starts by selecting candidate answer spans
from the context directly and then uses the context
and candidate answers to generate questions. The
answer span selection can be done either in an ex-
tractive way using an answer span detector (Alberti
et al., 2019; Puri et al., 2020; Bartolo et al., 2021;
Luo et al., 2021), or in a generative way, where
an (encoder-)decoder language model generates an-
swer tokens from the context (Shakeri et al., 2020;
Bartolo et al., 2021). In the question-first approach,
possible questions for a given context are gener-
ated, which are then used to generate the answers
(Shakeri et al., 2020).

3 Approach

Extractive QA is targeted at localizing an answer to
a given question in a context. For example, given
the context "Dune is a science fiction epos pro-
duced by Denis Villeneuve, [...]", the answer to the
question "Who is the producer of Dune?" would be
the last two words, "Denis Villeneuve." Following
the reader architecture proposed by Devlin et al.
(2018), given a context c and question q, both are
tokenized into token sequences, concatenated, and
processed by a transformer encoder to obtain con-
textualized embeddings. Finally, these embeddings
are fed through a head model, which returns two
probabilities indicating every token’s likelihood to
be the start or end token of the answer. The answer
is then estimated to be the span between the most

probable start and end token.
Following Hazen et al. (2019), the training of

domain-specific readers happens in two phases: (1)
a base reader model is obtained by fine-tuning a
pretrained LM on a large-scale QA corpus such as
SQuAD (Rajpurkar et al., 2016) (Engl.) or Ger-
manQuAD (Möller et al., 2021) (German), and (2)
performance on the target domain is improved by
further fine-tuning the base model on some domain-
specific QA pairs.

3.1 Domain Adaptation Data
While a manual annotation of domain-specific QA
pairs yields high-quality data, it is also quite ex-
pensive. We, therefore, investigate other labeling
approaches that require only partial or no manual
annotation.

Generating questions and answers This setup
tries to overcome the need for manual labeling al-
together by estimating both question q̂ and answer
â from each given context c, using a model η:

q̂, â = η(c)

Note that η is a generative model, and that – to
form training data for an extractive model – the
generated answer has to be matched within the
context. If the answer does not exist in the context,
â is undefined and no training triple is generated.
We compare two different generators:

QAGen2S: The model proposed by Shakeri et al.
(2020) is an encoder-decoder model that gener-
ates questions and answers in two steps. First, the
model generates a candidate question for a given
context. The generated question is then included in
the second step to generate a corresponding answer.

LLaMA-QAGen: Following the above ap-
proach of applying larger-scale LLMs, LLaMA
2 is used to generate both question and answer. Be-
cause we observed that many generated answers
could not be located in the context, we fine-tuned
the non-instruction model for question- and answer
generation.

Generating Questions Only (GQO) Given a con-
text c, a human annotator labels an interesting (an-
swer) span a, but does not continue to formulate
a question (which drastically reduces the costs of
labeling). Instead, an answer-aware Question Gen-
eration (AA-QG) model ϕ is used to estimate a
corresponding question q̂, given context and an-
swer:



q̂ = ϕ(c, a)

We test two different question generators ϕ:
QGen: Chan and Fan (2019) propose a

transformer-based encoder-decoder model, which
is pointed at the answer span by inserting spe-
cial tokens into the context. In the above exam-
ple, the model input would become "Dune is a
science fiction epos produced by <hl>Denis Vil-
leneuve<hl>." We start from a pretrained LM and
fine-tune the model specifically for question gener-
ation.

LLaMA-QGen: Inspired by the recent suc-
cess of instruction-tuned large-scale LMs as task-
agnostic problem solvers (Zhao et al., 2023), we
use the instruction-tuned variant of LLaMA 2 (Tou-
vron et al., 2023) as an answer-aware question gen-
erator. The prompt template is shared in A.3.

Generating Answers Only (GAO) In this setup,
questions are assumed to be manually created, and
an answer detection model ψ localizes the answer:

â = ψ(c, q).

We test this setup with the QAGen2S encoder-
decoder model, feeding manually acquired ques-
tions and generating only the answer.

Any fine-tuning of the aforementioned models
was conducted on a generalist QA dataset.

3.2 Data Gathering and Bootstrapping
Given the above models, the following labeling pro-
cedures for gathering a domain adaptation dataset
are examined:

• Generation-Only (GO): No manual annota-
tion is carried out, but QA pairs for domain
adaptation are fully generated by applying the
generator η on all available domain contexts.

• Semi-Automatic (SA): A fixed number n of
answer spans only or questions only are an-
notated by human experts, which limits the
annotation effort. The corresponding answer
span / question is generated by ψ / ϕ.

• Bootstrapping (BS): The QA dataset ob-
tained by SA is used to further fine-tune a gen-
erative model η, obtaining a domain-specific
generator η′. By applying η′ to all domain
contexts, a larger-scale domain adaptation set
is bootstrapped.

4 Experiments

We examine the effectiveness of different datasets
obtained through the scenarios and models de-
scribed in the previous section. For evaluation,
we use four different domain-specific datasets:
BioASQ (Tsatsaronis et al., 2015), containing QAs
from the biomedical domain; CovidQA (Möller
et al., 2020), containing QAs about Covid-19 from
biomedical articles; TextbookQA (Kembhavi et al.,
2017), which contains QAs from Life-, Earth-, and
Physical Science textbooks; and a manually anno-
tated German QA dataset, referred to as BankQA,
from handbooks from an industry partner in the
German banking domain. For BioASQ and Text-
bookQA, we use the datasets from the MRQA 2019
Shared Task (Fisch et al., 2019), which unifies the
pre-processing of the datasets. We randomly sam-
ple 80 percent of contexts as a training corpus and
remove all QA pairs for the domain adaptation task.
The QA pairs of the remaining contexts are used as
a test set. More details about the datasets is given
in A.1.

4.1 Setup

For the evaluation of a dataset, a new reader is
fine-tuned on the dataset’s QA samples. The re-
sulting model is then applied to the test set, and
F1 (word-level) and exact match (EM) scores are
reported. We use electa-base (Clark et al., 2020) as
the encoder of our reader and fine-tune a model
on SQuAD / GermanQuAD as our base model
for all our runs. Details about hyperparameters
and fine-tuning for the reader and all other mod-
els can be found in A.2. At the core of our QA-
Gen2S model, we use bart-base and fine-tune the
model for QA generation on the training split of
the SQuAD (GermanQuAD) dataset, following the
hyperparameters reported in the original paper. The
checkpoints with the lowest Cross-Entropy loss on
the dev set are used as our final models. Finally,
for LLaMA-QAGen, we fine-tune the base-version
of LLaMA 7B for QA generation using QLoRA
(Dettmers et al., 2023), following the same proce-
dure described by QAGen2S.

4.2 Manual Labeling of Questions versus
Answers

In this experiment, we compare how effective label-
ing only questions / answers would be for domain
adaptation. To obtain the GQO datasets, we simu-
late the manual labeling of answer spans by using



BankQA BioASQ CovidQA TextbookQA
F1 EM F1 EM F1 EM F1 EM

No domain adaptation * 49.22 21.52 60.30 46.15 56.20 32.70 41.95 30.50
Manually annotated QAs 63.99 ±1.02 39.55 ±0.74 89.84 ±1.11 86.82 ±1.81 66.33 ±0.81 43.02 ±1.30 57.41 ±1.44 50.06 ±1.25

Generating Questions/Answers Only (GQO / GAO)

Ann. Answers + ϕ (T5) 59.81 ±1.13 33.99 ±2.58 79.57 ±1.34 75.92 ±1.38 67.28 ±0.93 43.90 ±1.13 41.78 ±3.33 36.35 ±3.17
Ann. Answers + ϕ (LLaMA2) 53.06 ±2.27 30.13 ±2.60 84.83 ±3.02 82.47 ±3.18 51.00 ±2.89 28.93 ±2.81 27.56 ±3.04 22.26 ±2.25
Ann. Questions + ψ (QAGen2S) 38.62 ±0.85 12.83 ±1.33 62.68 ±2.59 46.35 ±2.76 11.61 ±1.40 2.01 ±0.53 33.43 ±3.79 24.97 ±3.07

Semi-Automatic (SA) (n annotated answers + ϕ T5)

n = 10 51.11 ±1.71 24.39 ±1.84 59.04 ±2.03 46.56 ±1.94 58.54 ±3.39 29.69 ±4.74 38.97 ±5.76 31.07 ±5.05
n = 25 54.10 ±2.58 27.89 ±2.58 59.33 ±3.45 47.22 ±3.11 62.04 ±1.54 34.72 ±1.21 42.65 ±2.26 34.40 ±2.02
n = 50 54.12 ±1.19 29.06 ±1.24 58.89 ±1.52 46.02 ±1.45 63.31 ±2.07 35.97 ±2.29 43.37 ±1.61 34.21 ±2.32
n = 100 57.28 ±2.11 33.09 ±2.48 61.88 ±4.53 50.84 ±2.96 63.48 ±2.49 37.11 ±2.22 41.86 ±2.95 33.71 ±2.71

Generation Only (GO) (η)

QAGen2S (BART-base) 47.38 ±0.66 19.01 ±1.33 51.43 ±3.48 35.18 ±3.85 18.12 ±1.85 7.42 ±1.86 38.49 ±1.42 27.36 ±1.86
QAGen (LLaMA2) 51.44 ±1.58 22.42 ±3.86 61.96 ±3.21 48.76 ±3.24 59.83 ±0.56 34.21 ±1.92 44.31 ±2.68 37.23 ±2.86

Bootstrap (BS) η with n = 100

QAGen2S (Bootstrapped) 48.91 ±1.23 21.79 ±1.64 55.40 ±2.06 45.48 ±1.75 21.36 ±10.09 8.05 ±5.61 38.72 ±2.54 32.33 ±2.01
QAGen (Bootstrapped) 49.52 ±1.53 21.44 ±1.96 60.11 ±2.32 52.31 ±2.03 34.81 ±4.23 22.52 ±1.63 39.52 ±3.81 33.77 ±3.99

Table 1: F1 and EM scores of a reader on the test splits when the reader is fine-tuned on the obtained datasets. The
best scores for each domain dataset are indicated by bold cells, the best scores where no fully-labeled domain
dataset is used are indicated by underlined cells. For experiment, the mean and standard deviation of 5 runs are
reported. (*): The base reader was not further fine-tuned on a domain dataset.

the annotated ones from the original training sets,
and generate corresponding questions with ϕ. For
every annotated answer span from the training set,
at most one question is generated. The procedure is
analogous for GAO with ψ. The results reported in
Table 1 show significant improvements compared
to the baseline for the GQO approach using the
T5-based ϕ. For CovidQA, even better scores can
be achieved than when using the original training
set. Only for the TextbookQA dataset almost no
change in F1 is reported. This might be due to the
format of the manually labeled questions, which
vastly differs from the questions in the dataset used
to train ϕ. A comparison of TextbookQA questions,
as well as QA examples obtained by the different
models can be found in B.2.
Due to the strong performance of the GQO
approach, we further investigate how the num-
ber of manually annotated answer spans impacts
the performance. We randomly sample n =
10, 25, 50, 100 answer spans and use ϕ (T5) to ob-
tain related questions. To prevent overfitting of the
reader, the model is fine-tuned for 5 epochs (instead
of 20). The results in Table 1 suggest that, while
a performance increase for BankQA and CovidQA
with only 10 annotated answer spans can be ob-
served, having more annotated answer spans also
lead to better results. For BioASQ, the performance
even slightly decreases for n = 10, 25, 50, but 100
answer spans account for less than 10 percent of

the manually labeled answer spans in the training
set.

4.3 Evaluation of Generation-Only and
Generator Bootstrapping

Here, we use η to generate QA pairs from all con-
texts (see A.3 for details). The results in Table
1 shows that the QA pairs generated by QAGen
slightly increase the reader’s performance, do no
catch up with the semi-automatic approach. On the
other hand, the QA pairs generated by QAGen2S
decrease the reader’s performance on all domains.
Differences to Shakeri et al. (2020) are given in C.

Finally, we examine if η can improved by be-
ing bootstrapped on the new domain. For this,
we further fine-tune η for two epochs on 100 QA
pairs obtained with ϕ (T5). Compared to the non-
bootstrapped variant, bootstrapping show improve-
ments for QAGen2S, but lowers the performance of
QAGen. Even with bootstrapping, GO lags behind
the SA approach.

5 Conclusion

We have investigated semi-automatic methods for
acquiring domain-specific QA datasets, and have
shown that utilizing annotated answer spans along-
side an answer-aware question generator surpasses
other methods in performance, whereas bootstrap-
ping domain-specific LLM generators with a lim-
ited number of annotated samples remains an open



challenge. Our results suggest future research
should prioritize identifying potential answer spans
for further advancements in QA dataset acquisition.

Ethical Considerations

The proposed methods aim to support the annota-
tion process of QA datasets, and our results indicate
that human annotations continue to be indispens-
able to achieve the best possible quality.

For the BankQA dataset, we can assure that ap-
propriate working conditions were guaranteed for
all persons involved in the annotation of the sam-
ples.

Limitations

We are unable to share the confidential data from
the BankQA dataset, which prevents others from
replicating our results or conducting further re-
search with this dataset. It is important to empha-
size that all our experiments were conducted to the
best of our knowledge and belief.

It is important to note that this work focuses
explicitly on extractive QA, where answers are lo-
cated in a known context. While this eliminates the
risk of falsely generated answers in a productive
QA system, it does not guarantee the correctness
of the generated questions and answers. This could
lead to falsely predicted answers, highlighting the
need to question an answer and consider the sur-
rounding context in real-world applications, as is
standard in any QA system.

Furthermore, the diverse nature of language,
data, and domains may yield varied results. Addi-
tionally, obtaining basic requirements like a large-
scale QA dataset for fine-tuning base models is not
readily available in every language. This limitation
also applies to LLMs such as LLaMA2, which was
fine-tuned on documents from a limited number of
languages.

Moreover, utilizing LLMs to generate synthetic
data incurs significant computational expenses.
Due to these costs and time constraints, we could
not utilize larger LMs that might offer even better
performance.
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A Appendix

A.1 Dataset stats

We share details about the QA datasets obtained
by the different approaches in Table 2. Table 3
contains stats about the test splits for each domain
dataset.

A.2 Fine-tuning and Hyperparameters

In the following, we explain the fine-tuning and hy-
perparameters used for each model in more detail.

A.2.1 Reader
We used the already fine-tuned and publicly
available models deepset/electra-base-squad2 and
deepset/gelectra-base-germanquad from Hugging-
face (Wolf et al., 2020) as our base models. Dur-
ing fine-tuning on the domain datasets, we use the
AdamW optimizer with a learning rate of 5× 10−5,
a weight decay of 0.01, and a learning rate warm-
up of 10 percent. A batch size of 16 is used. We
performed experiments with and without gradient
clipping and report the best results. We fine-tune
the reader for 20 epochs and keep the checkpoint
after the last epoch. Due to the small number of
annotated QA pairs in each dataset, we decided
against further sampling a validation split from the
training data and perform no early-stopping. Dur-
ing fine-tuning and inference, a maximum sequence
length of 384 and a stride of 128 is used.

A.2.2 Answer-Aware Question Generator (T5)
For the T5-based AA-QG, we use the already pre-
trained and publicly available models valhalla/t5-
base-qg-hl and dehio/german-qg-t5-quad from
Huggingface. These models were not further fine-
tuned in our experiments.

A.2.3 QAGen2S
We fine-tune a BART encoder-decoder model as
described by Shakeri et al. (2020). Due to hard-
ware limitations, we use base variant of BART
(facebook/bart-base for English / Shahm/bart-
german for German) as our base models. The base
model is fine-tuned on SQuAD / GermanQuAD for
5 epochs with a batch size of 8. A gradient accu-
mulation size of 3 is used. The AdamW optimizer
with a learning rate of 3× 10−5 with a warm-up
of 10 percent is used. The model epoch with the
lowest Cross Entropy loss on the dev / test split is
used as final model.

A.2.4 QAGen
We used the 7B variant of LLaMA 2 as our base
model and fine-tuned it for question and answer
generation on SQuAD for English / GermanQuAD
for German for 5 epochs. For memory-efficient
fine-tuning, we used QLoRA (Dettmers et al.,
2023), with an alpha of 16 and 10 percent dropout.
A batch size of 8 and a gradient accumulation step

https://arxiv.org/abs/1910.03771
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https://arxiv.org/abs/1910.03771


Dataset # Contexts # QAs Avg. Context Length Avg. Question Length Avg. Answer Length

BankQA

Original 310 776 438.66 43.25 106.04
Ann. Answers + ϕ (T5) 310 751 438.66 63.07 104.79
Ann. Answers + ϕ (LLaMA2) 310 776 438.66 73.65 106.04
Ann. Questions + ψ (QAGen2S) 310 645 438.66 43.51 34.73
QAGen2S (BART-base) 310 788 438.66 58.66 51.63
QAGen (LLaMA2) 308 1303 440.93 63.63 74.89

BioASQ

Original 1192 1205 1436.94 64.28 13.99
Ann. Answers + ϕ (T5) 1192 4070 1436.94 66.43 9.05
Ann. Answers + ϕ (LLaMA2) 1192 1275 1436.94 95.41 13.99
Ann. Questions + ψ (QAGen2S) 1192 1096 1436.94 64.42 16.20
QAGen2S (BART-base) 1192 2993 1436.94 58.26 22.04
QAGen (LLaMA2) 1192 5811 1436.94 57.59 25.94

CovidQA

Original 117 614 4356.21 55.57 70.83
Ann. Answers + ϕ (T5) 117 611 4356.21 60.04 70.99
Ann. Answers + ϕ (LLaMA2) 108 614 4351.13 97.3 70.83
Ann. Questions + ψ (QAGen2S) 117 72 4356.21 54.07 92.64
QAGen2S (BART-base) 117 11 4356.21 60.00 64.27
QAGen (LLaMA2) 117 571 4356.18 57.95 27.51

TextbookQA

Original 311 1185 2919.46 57.09 12.79
Ann. Answers + ϕ (T5) 311 3893 2919.46 58.08 9.95
Ann. Answers + ϕ (LLaMA2) 311 1185 2919.46 64.65 12.79
Ann. Questions + ψ (QAGen2S) 311 859 2919.46 57.58 30.08
QAGen2S (BART-base) 311 512 2919.46 52.96 23.92
QAGen (LLaMA2) 311 1483 2919.46 54.23 21.42

Table 2: Details about the datasets obtained from different labeling approaches. The lengths refer to the average
number of characters.

size of 2 is used. We used AdamW as an optimizer
with a learning rate of 2 × 10−4 and a warm-up
of 10 percent. The following format was used for
fine-tuning and inference:

Context: {context}
Question: {question}
Answer: {answer}

For German data, we translated the format into
German.

A.3 Decoding

For the decoding, i.e., the generation of questions
and answers, the following parameters were used
for all models:

• Question Generation: We follow the gen-
eration parameters reported by Shakeri et al.
(2020), namely, Top K+Nucleus sampling. We
set k = 20 and the token probability mass to
p = 0.95. For the QAGen2S model, we sam-
ple up to 10 unique questions for each context

and keep the ones with the highest LM scores
during answer generation (LM Filtering, also
proposed by Shakeri et al. (2020)). For QA-
Gen, up to 5 unique questions are generated
for each context. No filtering is applied.

• Answer Generation: We use greedy decod-
ing to generate one answer span for every
(context, question)-pair. If the generated an-
swer span is not included in the context, the
(context, question)-pair is discarded.

Following known prompting guidelines (pro),
we came up with the following template for prompt-
ing LLaMA2 for answer generation:

Generate a question for the given
context and answer, so that the
question can be answered by the
given answer. Only output the question.
Context: {context}
Answer: {answer}
Question:



Dataset # Contexts # QAs Avg. Context Length Avg. Question Length Avg. Answer Lenght

BankQA 78 223 400.42 44.64 98.39
BioASQ 298 319 1450.12 63.59 12.9
CovidQA 30 159 4389.73 55.75 66.84
TextbookQA 78 318 2997.72 52.19 12.29

Table 3: Details about the test splits. The lengths refer to the average number of characters.

We translated the prompt for German data.

B Questions and Answers

B.1 Examples
For comparison, examples of questions and an-
swers obtained by the different approaches are
given for BioASQ in Table 4, and TextbookQA in
Tables 5 and 6. Due to the high context length of
samples in CovidQA, no examples are given for the
dataset.

B.2 TextbookQA Questions
The format of the annotated questions in the Text-
bookQA dataset differ from those in the SQuAD
dataset on which the QA generators are fine-tuned
on. In the following, we give some examples of
questions:

TextbookQA:

• this much of the municipal groundwater sup-
plies in the united states are polluted.

• crude oil is a mixture of many different

• which of these substances has the highest
freezing point?

• in hyperopia, the eyeball is

• when an earthquake happens, we say that its
__________ was located 100 miles northwest
of san francisco.

SQuAD1.1:

• To whom did the Virgin Mary allegedly appear
in 1858 in Lourdes France?

• "The Closer I get to You" was recorded with
which artist?

• In therapy, what does the antibacterial inter-
act with?

• At what age did Chopin leave Poland?

• What does SDK stand for?

The questions presented in SQuAD (and the
other datasets GermanQuAD, BioASQ, CovidQA
and BankQA) are mostly well structured, i.e., end
with a question mark and contain w-words, while
the questions in TextbookQA are more diversely
structured and do not always follow the syntax of a
question.

C QAGen2S Setup Differences

We identified two main differences between our
setup and the setup used by Shakeri et al. (2020),
which might explain the differences in perfor-
mance:

1. The number of contexts the QAs were gen-
erated on: Due to limited compute- and time
resources, we did not craw additional domain
contexts to generate QA pairs on. Thus, the
number of samples generated by Shakeri et al.
(2020) is a multiple of ours.

2. Smaller generator: Due to limited compute-
and time resources, we used the smaller bart-
base variant, compared to bart-large.



Passage: A mutation in the alpha-synuclein gene has recently been linked to some cases of fa-
milial Parkinson’s disease (PD). We characterized the expression of this presynaptic protein in
themidbrain, striatum, and temporal cortex of control, PD, and dementia with Lewy bodies (DLB)
brain. Control brain showed punctate pericellular immunostaining. PD brain demonstrated alpha-
synucleinimmunoreactivity in nigral Lewy bodies, pale bodies and abnormal neurites. Rare neuronal
soma in PD brain were immunoreactive for alpha-synuclein. DLB cases demonstrated these findings
as well asalpha-synuclein immunoreactivity in cortical Lewy bodies and CA2-3 neurites. These
results suggest that, even in sporadic cases, there is an early and direct role for alpha-synuclein in the
pathogenesis of PD and the neuropathologically related disorder DLB.

Original:
Q: Against which protein is the antibody used for immonostaining
of Lewy bodies raised?

A: alpha-Synuclein

Annotated Answer + ϕ (T5):
Q: What protein is associated with the pathogenesis of Parkinson’s
disease?

A: alpha-Synuclein

Annotated Answer + ϕ (LLaMA):
Q: What is the relationship between alpha-synuclein and Parkinson’s
disease (PD)?

A: alpha-Synuclein

Annotated Question + ψ (QA2S):
Q: Against which protein is the antibody used for immonostaining
of Lewy bodies raised?

A: punctate pericellular im-
munostaining

QAGen2S (BART):
Q1: What gene has been linked to some cases of familial Parkinson’s
disease?

A1: alpha-synuclein gene

Q2: What gene has recently been linked to some cases of familial
Parkinson’s disease?

A2: alpha-synuclein gene

Q3: What does DLB stand for? A3: Lewy bodies

QAGen (LLaMA):
Q1: Punctate pericellular immunostaining was shown in what part
of the brain?

A1: Control

Q2: What gene is associated with familial Parkinson’s? A2: alpha-synuclein
Q3: In familial PD, alpha-synuclein is linked to which gene? A3: alpha-synuclein
Q4: What does PD stand for? A4: Parkinson’s disease
Q5: What gene has recently been linked to some cases of familial
Parkinson’s disease?

A5: alpha-synuclein

Table 4: Example QA pairs for a context of the BioASQ dataset.



Passage: The Paleozoic is the furthest back era of the Phanerozoic and it lasted the longest. But the
Paleozoic was relatively recent, beginning only 570 million years ago. [...] The Paleozoic begins
and ends with a supercontinent. At the beginning of the Paleozoic, the supercontinent Rodinia began
to split up. At the end, Pangaea came together. A mountain-building event is called an orogeny.
Orogenies take place over tens or hundreds of millions of years. [...] Geologists find evidence for
the orogenies that took place while Pangaea was forming in many locations. For example, Laurentia
collided with the Taconic Island Arc during the Taconic Orogeny. The remnants of this mountain
range make up the Taconic Mountains in New York. The Taconic Orogeny is an example of a collision
between a continent and a volcanic island arc. Laurentia experienced other orogenies as it merged
with the northern continents. The southern continents came together to form Gondwana. When
Laurentia and Gondwana collided to create Pangaea, the Appalachians rose. Geologists think they
may once have been higher than the Himalayas are now. Pangaea was the last supercontinent on Earth.
Evidence for the existence of Pangaea was what Alfred Wegener used to create his continental drift
hypothesis, which was described in the chapter Plate Tectonics. As the continents move and the land
masses change shape, the shape of the oceans changes too. During the time of Pangaea, about 250
million years ago, most of Earths water was collected in a huge ocean called Panthalassa.

Original:
Q1: this mountain range grew much higher when gondwana and
laurentia collided to create pangaea.

A1: the appalachians

Q2: the remnants of the taconic mountain range are found in
_______________.

A2: new york

Annotated Answer + ϕ (T5):
Q1: When Laurentia and Gondwana collided, what mountain range
rose?

A1: the appalachians

Q2: Where do the Taconic Mountains lie? A2: new york

Annotated Answer + ϕ (LLaMA):
Q1: What mountain range in North America is believed to have
formed during the collision between Laurentia and the Taconic
Island Arc during the Taconic Orogeny?

A1: the appalachians

Q2: What was the name of the mountain range that formed during
the orogeny that occurred when Laurentia collided with the Taconic
Island Arc?

A2: new york

Annotated Question + ψ (QA2S):
Q1: this mountain range grew much higher when gondwana and
laurentia collided to create pangaea.

A1: the Appalachians rose

Q2: the remnants of the taconic mountain range are found in
_______________.

A2: Taconic Mountains in New
York

QAGen2S (BART):
Q1: Pangaea was the last supercontinent on Earth A1: Pangaea came together
Q2: Pangaea was the last supercontinent on Earth. A2: Pangaea came together

QAGen (LLaMA):
Q1: How many years ago did most of Earth’s water collect in a huge
ocean called Panthalassa?

A1: 250 million years ago

Q2: The Paleozoic is the furthest back era of what? A2: Phanerozoic
Q3: What are the Paleozoic and Phanerozoic eras? A3: era of the Phanerozoic
Q4: When was the Paleozoic? A4: 570 million years ago
Q5: How long did the Paleozoic last? 570 million years

Table 5: Example QA pairs for a context of the TextbookQA dataset. We observed that the ϕ (LLaMA) sometimes
fails to formulate questions that are answered by the provided span.



Passage: Most fossils are preserved by one of five processes outlined below (Figure 1.1): Most
uncommon is the preservation of soft-tissue original material. Insects have been preserved perfectly
in amber, which is ancient tree sap. [...] Scientists collect DNA from these remains and compare
the DNA sequences to those of modern counterparts. The most common method of fossilization is
permineralization. After a bone, wood fragment, or shell is buried in sediment, mineral-rich water
moves through the sediment. This water deposits minerals into empty spaces and Five types of fossils:
(a) insect preserved in amber, (b) petrified wood (permineralization), (c) cast and mold of a clam shell,
(d) pyritized ammonite, and (e) compression fossil of a fern. produces a fossil. Fossil dinosaur bones,
petrified wood, and many marine fossils were formed by permineralization. When the original bone
or shell dissolves and leaves behind an empty space in the shape of the material, the depression is
called a mold. The space is later filled with other sediments to form a matching cast within the mold
that is the shape of the original organism or part. Many mollusks (clams, snails, octopi, and squid) are
found as molds and casts because their shells dissolve easily. The original shell or bone dissolves and
is replaced by a different mineral. For example, calcite shells may be replaced by dolomite, quartz, or
pyrite. If a fossil that has been replace by quartz is surrounded by a calcite matrix, mildly acidic water
may dissolve the calcite and leave behind an exquisitely preserved quartz fossil. Some fossils form
when their remains are compressed by high pressure, leaving behind a dark imprint. Compression is
most common for fossils of leaves and ferns, but can occur with other organisms. [...]

Original:
Q1: when insects are fossilized, it is usually in A1: amber
Q2: when water deposits minerals into empty spaces to produce a
fossil, it is called

A2: permineralization.

Q3: the most common way that fossil leaves are made is by A3: compression

Annotated Answer + ϕ (T5):
Q1: What is the oldest tree sap that was used as a foundation to
contain fossils?

A1: amber

Q2: What is the process by which dinosaur bones are made? A2: permineralization.
Q3: What process is most common for fossils of leaves and ferns? A3: compression

Annotated Answer + ϕ (LLaMA):
Q1: Which of the following processes is the most common method
of fossilization?

A1: amber

Q2: Which process of fossilization most commonly results in the
formation of fossil dinosaur bones?

A2: permineralization.

Q3: What is the most common method of fossilization? A3: compression

Annotated Question + ψ (QA2S):
Q1: when insects are fossilized, it is usually in A1: amber
Q2: when water deposits minerals into empty spaces to produce a
fossil, it is called

A2: mold

Q3: the most common way that fossil leaves are made is by A3: compression

QAGen2S (BART):
Q: What is the most common
method of fossilization?

A: permineralization

QAGen (LLaMA):
Q1: What are most fossil preserved by? A1: mineral-rich water
Q2: When a clam’s shell is replaced, what is its shape? A2: mold
Q3: How are most fossils preserved? A3: permineralization
Q4: What is the original bone or shell replaced with? A4: different mineral

Table 6: Second example of QA pairs obtained for a context of the TextbookQA dataset.
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