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Abstract
This paper investigates the effectiveness of au-
tomatic span retrieval methods for translating
SQuAD to German through a comparative anal-
ysis across two scenarios. First, we assume no
gold-standard target data and find that TAR, a
method using an alignment model, results in
the highest QA scores. Secondly, we switch to
a scenario with a small target data and assess
the impact of retrieval methods on fine-tuned
models. Our results indicate that while fine-
tuning generally enhances model performance,
its effectiveness is dependent on the alignment
of training and testing datasets.

1 Introduction

Extractive question answering (QA) is an NLP task
in which a model receives a question and a context
and needs to identify a context span that best an-
swers this question. Figure 1 shows an example
from a well-known extractive QA dataset SQuAD
(the Stanford Question Answering Dataset, Ra-
jpurkar et al. (2016, 2018)): For a given question,
“What happened in 1971 and 1972?” the model
should find the span of “two more launch failures”
within the given context text.

To achieve high-performance in QA, one re-
quires a robust training dataset with gold-standard
annotations. However, such resources exist only
for a few languages (Rogers et al., 2023). There-
fore, to perform QA in a new language or domain,
one must choose from: (1) manually curating a
new dataset (d’Hoffschmidt et al., 2020; Heinrich
et al., 2022; Efimov et al., 2020; Lim et al., 2019;
Kazemi et al., 2022), (2) automatically translating
a well-established dataset such as SQuAD into the
target language (Mozannar et al., 2019; Kazi and
Khoja, 2021; Vemula et al., 2022), or (3) using a
hybrid approach and combining translation with a
small manually annotated data (Möller et al., 2021).
Given the varying costs associated with each op-
tion, it is crucial that researchers not only share

zwei weitere Fehlstarts

Meanwhile, the USSR continued briefly trying to perfect their N1 rocket, finally canceling it
in 1976, after two more launch failures in 1971 and 1972.
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Figure 1: Context-based QA is the task of extracting
answer span based on the question and context. The top
depicts challenges in converting an English QA pair to
German. The bottom shows different approaches for
retrieving the answer span from the translated context.

their datasets but also insights learned during their
creation, thereby aiding future similar initiatives.

For German, such valuable observations were
provided by Möller et al. (2021). The authors not
only introduced a new, manually annotated dataset,
a state-of-the-art QA model, but also shared lessons
learned during its creation, such as successful
strategies for hybrid QA approaches and their gen-
eralization capabilities in out-of-dataset scenarios.
However, the authors skipped a crucial aspect – the
selection of the method for answer span retrieval.
Translating SQuAD to a new language introduces
challenges, such as answers that do not match the
translated context. Figure 1 illustrates such a com-
mon issue. After translating the gold-standard En-
glish question and context pair to German, the trans-
lated answer "zwei weitere Fehlstarts" does not ap-
pear in the translated context anymore, making the
datapoint unusable in the QA system. To deal with
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Figure 2: Experimental setup.

such issues, it is necessary to use additional answer
retrieval methods (see the bottom of Figure 1 and
the details of the methods in Section 2.2). How-
ever, there is a notable research gap regarding the
comparative effectiveness of these heuristics and
their influence on the German QA systems.

In this work, we aim to facilitate future ap-
proaches to QA dataset creation. Based on
the premise that robust and high-quality training
datasets lead to higher QA scores, we seek to an-
swer two methodological research questions:

RQ1 Which answer span retrieval method yields
the best-performing German SQuAD translation?

RQ2 Do span retrieval methods influence hybrid,
fine-tuned models?

To address these questions, we replicate the ex-
perimental setup from Möller et al. (2021) using
various answer retrieval methods (§2). We find that
the effectiveness of these methods significantly de-
pends on the type of existing data. In scenarios
where only translated SQuAD is available, retriev-
ing answers with an alignment model yields the
best QA results (§3). However, for the hybrid QA
models that additionally use small target data, the
impact of span retrieval methods is dependent on
the application and origin of the evaluation data
(§4). While our analyses focus only on German,
the results presented here can serve as guidelines
for the future creation of SQuAD-based datasets in
other languages.

2 Experimental Setup

Figure 2 illustrates the experimental setup from
Möller et al. (2021) expanded by various answer
retrieval methods (marked in red box). Below, we
provide details of all the setup steps, beginning
with an overview of the data used.

2.1 Data

Our experimental setup includes four different QA
datasets (one English and three German). Based

on the survey by Rogers et al. (2023), these are all
SQuAD-like datasets that exist for German.

SQuAD 1.1 (Rajpurkar et al., 2016) is our source
English QA dataset. It contains 107.785 QA pairs
for 536 paragraphs taken from Wikipedia articles.
For simplicity reasons, we use version 1.1 and not
SQuAD 2.0 (Rajpurkar et al., 2018), which ad-
ditionally includes over 50k unanswerable ques-
tions.1 Moreover, we employ only the training part,
with 87k QA pairs.

GermanQUAD is the German recreation of
SQuAD from Möller et al. (2021). We use it for
fine-tuning hybrid QA models and evaluation (see
Figure 2). It comprises 13,722 manually created
QA pairs. The original dataset comes only with
training and test parts, so we leave out 20% of the
training data as a development set.

XQuAD and MLQA (German parts) are used
only for evaluation. XQuAD contains 1190 QA
pairs from SQuAD translated by professionals
to ten languages (Artetxe et al., 2020). MLQA
(5027 pairs) was created from scratch following the
SQuAD methodology (Lewis et al., 2020). Möller
et al. (2021) call these two datasets out-of-domain
for GermanQuAD. However, the main difference
between them and GermanQuAD lies in the de-
tails of their creation, and not domains – all three
resources are based on Wikipedia articles and the
SQuAD framework. Therefore, we use the term
cross-dataset to refer to the experiments where
models are trained on GermanQuAD and applied
to XQuAD and MLQA.

2.2 Translation and span retrieval
The first step in Figure 2 consists of translating
SQuAD to German. Originally, Möller et al. (2021)
used data translated with Facebook’s commercial
model (Lewis et al., 2020). We replace it with
an open-source model called FAIRSEQ (Ott et al.,
2019). Moreover, we differ the answer span re-
trieval method to one of the three approaches iden-
tified in the literature:

RAW simply filters out cases where the translated
answer does not appear exactly once in the context.

TAR (Translate Align Retrieve) was introduced by
Carrino et al. (2020) to translate SQuAD to Span-
ish. The method addresses the complex cases that

1Unanswerable questions have an empty answer span and
are, therefore, exempt from the issue at hand.



GermanQUAD MLQA XQuAD

Dataset Size F1 EM F1 EM F1 EM

RAW 42.3k 65.3 51.2 63.1 47.7 76.5 60.8
TAR 83.3k 73.2 55.5 66.9 50.9 77.9 62.5
QUOTE 76.5k 73.4 51.3 66.8 47.6 77.7 56.1

Table 1: Performance of the QA systems trained only on the automatically translated SQuAD. The size of the
datasets is measured in the number of individual QA pairs. The highest numbers in each column are in bold.

the RAW approach typically discards. It uses an
alignment model to extract answer spans by map-
ping tokens between the source and target contexts
(cf., Figure 1). We re-implement TAR with XML-
Align (Chi et al., 2021), a better-performing aligner
than the originally used efmaral (Östling and Tiede-
mann, 2016).2

QUOTE was first used by Lee et al. (2018) for
translating SQuAD to Korean. The heuristic takes
advantage of translation models frequently over-
looking certain symbols, like quotation marks, and
directly copying them to the outputs. It involves
surrounding the answer span with such symbols
before translation to then easily identify the corre-
sponding span in the translated context. We tested
three different symbols – ", ’, and () – and found
that FAIRSEQ preserves quotation marks the best.

2.3 QA Training and fine-tuning
As the next step from Figure 2, we implement two
QA models following Möller et al.’s (2021) best-
performing systems. They are based on GELEC-
TRA large (Chan et al., 2020) and have two ver-
sions: SQuADtranslate, trained only on the trans-
lated data, and the hybrid model, fine-tuned on Ger-
manQuAD (see hyperparameters in Appendix A).

2.4 Evaluation
We use two evaluation metrics: averaged F1 and ex-
act match (EM) scores. F1 measures the similarity
between the predicted and gold-standard answers,
where the score is above zero as long as there is
some word overlap between the two. EM, on the
other hand, is a binary measure, giving 1 only if
the predicted answer is equal to the gold-standard
answer and 0 otherwise.

3 QA with No Target Data

We begin by addressing RQ1 and evaluating which
answer retrieval method gives the best QA results.

2All the developed code is publicly available at https:
//github.com/JensKaiser96/HowToTranslateSQuAD.

GermanQUAD

F1 ∆F1 EM ∆EM

RAW 65.3 – 51.2 –
TARREDUCED 70.1 -3.1 52.0 -3.5
QUOTEREDUCED 72.7 -0.7 51.3 0.0

Table 2: Performance of the QA systems trained
on 42.3k randomly selected, automatically translated
SQuAD instances. ∆s report losses from the data reduc-
tion (cf. Table 1).

3.1 Results

Table 1 shows the results for the three QA models
using different answer retrieval methods. Firstly,
we observe the influence of retrieval approaches on
the training data size. With RAW, which excludes
all data points where the translated answer does
not appear exactly once in the translated context,
roughly half of the training data is lost (training part
of SQuAD has 87k pairs). In contrast, TAR allows
for keeping almost 100% of the dataset. Finally,
QUOTE preserves approximately 90% of the data,
filtering out for example pairs where the translation
did not keep the quotation marks.

Next, we move to the accuracy of the QA sys-
tems.3 While the evaluation datasets clearly vary
in difficulty, with MLQA being the most challeng-
ing, the relative performance of the models remains
consistent across them. Interestingly, the two met-
rics – F1 and EM – prioritize different methods.
Under F1, which allows for partial matches, RAW
significantly underperforms compared to the other
two methods, which achieve very similar results.
In contrast, under the EM metric, TAR emerges
as the clear leader, outperforming QUOTE by as
much as 6.4 EM points on XQuAD.

3Differences to the results reported by Möller et al. (2021)
most likely stem from the translation method and hyperpa-
rameters. However, since our goal is to observe differences
between the models, we do not aim at SOTA performance.

https://github.com/JensKaiser96/HowToTranslateSQuAD
https://github.com/JensKaiser96/HowToTranslateSQuAD


Figure 3: Percentages of answer lengths in the datasets.
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Figure 4: Percentages of question types in the datasets.

3.2 Analysis

So far, TAR resulted in the best QA system. How-
ever, it is unclear if its advantage stems solely from
the larger dataset or the quality of the generated
QA pairs. To analyze the influence of the dataset
size on the model performance, we randomly sub-
sample the TAR and QUOTE datasets to match the
size of RAW (42.3k) and train two new reduced
QA systems (see Table 2). As expected, the per-
formance of both models decreases compared to
Table 1 (reported in ∆ columns). However, even
with equivalent training sizes, they still exceed the
performance of RAW. With dataset size ruled out
as the only contributing factor, we analyze what
other differences we can find.

Answer lengths The first factor that potentially
varies within the datasets is the answer length.
RAW, which keeps only QA pairs where the trans-
lated answer directly appears in the context, might
be affected by the answer’s length and perform bet-
ter for typically short answers, such as numbers,
dates, and names. Similarly, TAR might encounter
more issues when setting the answer span at ex-
treme context points following token mapping.4

To evaluate this hypothesis, Figure 3 presents the
distribution of answer length across all datasets.5

For RAW, there is approximately 10% more single-
token answers compared to TAR and QUOTE. Ad-
ditionally, only about 6% of RAW’s answers extend
beyond five tokens, and none exceed 21. In con-
trast, TAR and QUOTE exhibit more similar distri-
butions. TAR has fewer answers than QUOTE up
to five tokens, but the situation reverses afterwards.

4Consider the example Emma1 bought2 ice3 at the new
store in town translated to German Emma1 hat2 Eis3 bei dem
neuen Laden in der Stadt gekauft2 and with the retrieved span
including all tokens in between the aligned words.

5Answers in-between are counted towards higher buckets.

Question types The observed variations in an-
swer lengths may indirectly influence the distribu-
tion of question types. Typically, questions, such
as who (wer) or when (wann) are associated with
shorter answers, while what (was) or why (warum)
require more elaborate responses. To test if this is
the case in our datasets, we categorize questions
based on their initial words and present results in
Figure 4. We find that distributions for TAR and
QUOTE are very similar. However, RAW exhibits
a notably different pattern with fewer questions
requiring complex answers, such as what (was)
and why (warum) and more necessitating shorter
responses, such as who (wer) and when (wann)

4 QA with Small Target Data

So far, we have assumed no gold-standard data in
the target language. Now, we switch to RQ2 and
analyze the influence of span retrieval methods on
the hybrid models. We prepare four versions of the
GELECTRA-GermanQuAD model from Figure 2:
ONLY_FT, which uses only GermanQuAD, and
RAWFT, TARFT, and QUOTEFT, models that are
first trained on translated SQuAD and then fine-
tuned. Table 3 presents the results of all the models
and their respective gains/losses from fine-tuning
(i.e., differences to Table 1). For comparison, we
also report NO_FT numbers – the highest results
achieved by models that did not use fine-tuning
(i.e., best results from Table 1). As all results span
two distinct scenarios, we discuss each separately.

In-dataset evaluation When models are fine-
tuned and evaluated with data from the same source
– GermanQuAD – already ONLY_FT outperforms
NO_FT, i.e., models with no additional training
signals (see Table 3a). Further boosts can be ob-
served from fine-tuning, which strongly reduces
performance differences between FT approaches.



GermanQUAD

F1 ∆F1 EM ∆EM

NO_FT 73.4 – 55.5 –
ONLY_FT 77.5 – 63.0 –

RAWFT 84.1 +18.8 70.5 +19.3
TARFT 82.2 +9.0 66.7 +11.2
QUOTEFT 83.0 +9.6 68.4 +17.1

(a) In-dataset results

MLQA XQuAD

F1 ∆F1 EM ∆EM F1 ∆F1 EM ∆EM

66.9 – 50.9 – 77.9 – 62.5 –
50.4 – 28.2 – 64.9 – 38.4 –

60.2 -2.9 37.1 -10.6 71.4 -5.1 46.3 -14.5
60.4 -6.5 35.2 -15.7 69.9 -8.0 42.3 -20.2
62.2 -4.6 37.7 -9.9 71.3 -6.4 44.8 -11.3

(b) Cross-dataset results

Table 3: Performance of the fine-tuned QA systems; ∆s reports gains/losses from fine-tuning (cf. Table 1).

Interestingly, their magnitude varies considerably
among the models, ranging from 9 F1 points for
TARFT to 18.8 points for RAWFT. Surprisingly,
RAWFT, which previously was the weakest method,
achieves the best results.

Cross-dataset evaluation Similarly to Möller
et al. (2021), we find that fine-tuning in the cross-
dataset setting degrades performance of the QA
models (see Table 3b). ONLY_FT and all hybrid
systems, irrespective of the answer span retrieval
method, achieve significantly lower scores com-
pared to the models trained only on the translated
SQuAD. Interestingly, bigger drops in performance
are observed for EM than for F1, suggesting that
tuning leads to overfitting to the specific dataset
characteristics.

5 Conclusion

In this paper, we explored best approaches to au-
tomatically translating SQuAD to German, high-
lighting the crucial role of the span retrieval meth-
ods in this process. We performed a compara-
tive study of the three most-commonly used in
the literature methods in two settings – with and
without fine-tuning. Addressing RQ1, we found
that when no fine-tuning is possible, TAR is the
best practical choice, yielding more training data
and higher (EM) or comparable (F1) results than
QUOTE. RAW performs the worst – its strict fil-
tering not only reduces the dataset size by half, but
also skews question-answer distributions toward
shorter queries about who, when, and how.

Responding to RQ2, the effectiveness of span
retrieval methods varies when small target data
is available. If this data comes from the same
dataset as the evaluation set, automatically trans-
lated SQuAD is ideally used as a preliminary step
before fine-tuning. In such cases, the differences
between span retrieval methods are minor. How-
ever, if training data comes from a different ori-

gin, fine-tuning can lead to large drops in per-
formance. In such cases, a well-translated, high-
quality SQuAD dataset emerges as a more reliable
source, again underscoring the importance of a
carefully chosen method for the answer span re-
trieval.

6 Limitations

This work provides methodological insights into
the creation of SQuAD-based datasets in German.
Therefore, our experiments are limited to a sin-
gle language. However, we believe that presented
results, particularly the importance of careful se-
lection of the answer span retrieval method, can
be beneficial for researchers aiming to create new
datasets also in other languages.

Secondly, we evaluate QA models using only
three manually-curated datasets and fine-tune with
just one. While a broader selection of datasets
would enhance the generalizability of our results,
to the best of our knowledge, we have used all the
data that is currently available in German.

Finally, to ensure a fair comparison between ap-
proaches, the only variables we altered in the ex-
perimental setup were the span retrieval methods
and the datasets used for training and fine-tuning.
We did not experiment with other language models
or QA systems. This decision was based on the
findings of Möller et al. (2021), who evaluated var-
ious approaches and determined that models based
on GELECTRA performed the best.
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epochs. After each epoch, the model is evaluated
using the development set, and the checkpoint with
the lowest loss is saved.

For fine-tuning, we follow the recommendations
from Möller et al. (2021): learning rate of 3e-5 and
two epochs.
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