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Abstract

To be able to search for patterns in annotated
text corpora is crucial for many different re-
search disciplines. However, searching for com-
plex patterns in large corpora can take long time
– sometimes several minutes or even hours.

We investigate how inverted indexes can be
used for efficient searching in large annotated
corpora, and in particular binary indexes. We
show how corpus queries are translated into
lookups in unary and binary inverted indexes,
and give efficient strategies for combining the
results using efficient set operations. In ad-
dition we discuss how to make use of binary
indexes for more complex query types.

1 Introduction

Annotated text corpora are used for research in
humanities and social sciences to answer ques-
tions such as: How has the use of a certain word
or phrase changed over time? What grammatical
constructions are the most difficult for non-native
speakers? How does politicians’ rhetoric around
migration vary by political party and audience?

To answer such questions, specialised corpus
search tools are used. As corpora can be extremely
large (for example, the News on the Web corpus1

consists of 18.9 billion tokens), and queries can
be complex (mentioning linear order, syntactic de-
pendencies, logical connectives and more), it is
difficult to execute the queries efficiently. Unfor-
tunately, existing search tools are either restricted
and cannot express all the kinds of constraints we
want, or they are inefficient on large corpora, with
queries taking minutes or even hours to complete.

This paper presents new techniques for answer-
ing corpus queries more efficiently. We build on the
standard technique of an inverted index, which can
be used to find all corpus positions where a given
token occurs. We introduce a new type of index that

1NOW, https://www.english-corpora.org/now/

we call a binary index, which is an inverted index
over pairs of tokens.2 This new type of index can
sometimes reduce query times by several orders of
magnitude. We present a new corpus search algo-
rithm that can answer queries more efficiently by
combining lookups from multiple indexes. Finally,
we show how to extend our algorithm to handle
more types of corpus queries, by reducing com-
plex queries into simpler ones. Our prototype tool
performs well and is available as open source.3

2 Background

In this section we describe how corpus engines
work and what kind of problems they face.

2.1 Corpus query languages
There are two main approaches for how to formu-
late search queries in text corpora – linear vs. struc-
tured query languages. Linear queries are easier to
make efficient (so better suited for large corpora),
while structured queries are more powerful (but on
the other hand slower to execute).

In a linear query model you can formulate
queries about annotated tokens, and their relation-
ship with neighbouring tokens. The model usually
supports referring to immediate neighbours and to
neighbours some tokens away. However, it is more
difficult to formulate queries about long-distance
dependencies or syntactic structure. Variants in-
clude the IMS Corpus Query Language (Evert and
Hardie, 2011) and the Poliqarp Query Language
(Bingel and Diewald, 2015).

With a structured query model you can search
for long-distance dependencies or syntactic struc-
ture such as nested phrases, anaphoric references
or discontinuous multi-word entities. The model
can be tree-based (e.g., Ghodke and Bird, 2012;

2Another possible term is bigram index, but we choose not
to use this because a bigram usually refers to adjacent tokens,
but our binary indexes can span arbitrary distances.

3https://github.com/heatherleaf/korpsearch

https://www.english-corpora.org/now/
https://github.com/heatherleaf/korpsearch


0 1 2 3 4 5 6 7

The large houses of the middle class were
DT JJ NN IN DT JJ NN VB

8 9 10 11 12 13 14 15

divided into tenements to house the swarming population
VB IN NN IN VB DT JJ NN

Figure 1: An example sentence from the British National Corpus, annotated with parts of speech.

2(a). [pos=NN] [word=TO] [word=HOUSE, pos=VB]

2(b). [pos=NN] [word=TO] [word=HOUSE, pos ̸=VB]

2(c). [word=THE] [pos=JJ] [pos=NN]

2(d). [word=THE] ([pos=JJ] | [pos=NN]) [pos=NN]

2(e). ([pos=JJ] | [pos=IN]) [word=H[AEIOUY]*SE .*]

Figure 2: Example corpus queries.

Robie et al., 2017) or graph-based (e.g., Krause
and Zeldes, 2016; Luotolahti et al., 2017; Kleiweg
and van Noord, 2020), and is often tailor-made for
a certain type of structured annotation, such as UD
treebanks (de Marneffe et al., 2021).

In this paper we focus on linear query languages,
and leave long-distance dependencies and syntactic
structure as future work.

2.2 Corpus search engines

Corpus search engines can be divided into two main
approaches: the inverted index approach, or the
database approach.

Engines such as Corpus Workbench (Evert and
Hardie, 2011) and Corpuscle (Meurer, 2020) build
one or more inverted indexes from the corpus,
which then are used to optimise search. They anal-
yse a given query to find out which index to use,
and uses the index to find a set of potential can-
didates. The set is then filtered by testing each
candidate if it matches the query or not. Engines
can be more or less intelligent when they decide
which index to use – Corpus Workbench always
uses the index corresponding to the first token in
the query, while, e.g., Corpuscle tries to find an
optimal cut in a finite automaton to decide which
index to start from.

The second approach is to translate the corpus
into a relational database. E.g., Davies (2005)
transforms consecutive tokens in a corpus into a
database of n-grams, AlpinoGraph (Kleiweg and
van Noord, 2020) compiles treebanks into graphs
stored in an SQL database, Krill (Diewald and Mar-

garetha, 2016) uses the Apache Lucene information
retrieval engine as a backbone, while LiRI (Schaber
et al., 2023) converts the corpus and its annotations
into tables designed to make use of the full-text
search capabilities of PostgreSQL (2024, ch. 12).

In this paper we use the first approach and build
the indexes ourselves. However, note that the sec-
ond approach indirectly also uses indexes because
they are automatically created by the underlying
database engine.

2.3 Inverted indexes

Our implementation of inverted indexes are related
to suffix arrays (Manber and Myers, 1993), which
are efficient indexes for efficient full-text search in
almost-constant time. Suffix arrays and its descen-
dant algorithms are used in information retrieval,
and the main difference to our approach is that in-
formation retrieval research focuses on pure text
searches – i.e., finding substrings or patterns in
plain text. As a contrast we have to be able to han-
dle annotations on different levels, and not just text
as a stream of characters.

2.4 Drawbacks of existing approaches

As far as we know, existing approaches do not
combine multiple search indexes. When given a
complex query, they usually use one of the indexes
to get a collection of potential search results, and
then filter the results one by one, by testing if they
match the query.

In addition, no existing corpus engine uses bi-
nary search indexes, and as we show in section 5
they can drastically improve some queries.

3 Definitions and semantics

3.1 Annotated corpora

For the purposes of this paper, an annotated corpus
is a collection of texts. Each text consists of sen-
tences which in turn consist of tokens. Each token
is annotated with a number of attributes, such as



word (surface form), lemma, pos (part of speech),
etc., where each attribute has one single value.

This definition of corpus is restricted – cur-
rently we cannot handle multi-token annotations,
set-valued attributes, structural attributes, or empty
tokens, to name just a few possibilities.

Formally, a corpus C is a sequence of tokens
C[0] C[1] . . . C[n–2] C[n–1], where each token is
an attribute-value mapping. We write C[i].pos for
the value of attribute pos at position i.

Figure 1 shows an example sentence taken from
the British National Corpus (BNC), annotated with
just word form (word) and part of speech (pos).

Note that we assume for now that the corpus is
not divided into larger structures, such as phrases,
sentences, paragraphs or texts. This will be dis-
cussed later in section 6.

3.2 Queries

In the next few sections, we use a restricted version
of CQL (the Corpus Query Language, see section
2.2.3 in Evert and Hardie, 2011). Sections 7–8 then
show how to lift some of the restrictions.

A query is of the form [literal*]+, where a lit-
eral is either attr=value or attr ̸=value. The ex-
ample query in figure 2(a) searches for sentences
which contain a noun, followed by the word “to”,
followed by the word “house” tagged as a verb,
whereas query 2(b) requires that the word “house”
is not a verb. Query 2(c) is very generic and
matches all words “the” followed by an adjective
and a noun.

The remaining two queries use features not
present in the restricted query language. Query
2(d) uses disjunction, so that the middle word may
be an adjective or a noun, and query 2(e) uses a reg-
ular expression. In section 7, we extend the search
algorithm to handle both these kinds of queries.

3.3 Query semantics

The token [word=HOUSE, pos=VB] in query 2(a)
occurs 2 tokens after the first query token; we say
that it has relative position 2. Using relative posi-
tions, we can write query 2(a) more formally as

[pos@0=NN] ∧ [word@1=TO]
∧ [word@2=HOUSE] ∧ [pos@2=VB]

where [word@2=HOUSE] means that the word at
relative position 2 is “house”. Now we can define
the semantics of a literal l at relative position k
as the set of all positions p such that l is true at
position p+k:

[attr@k=val] ≡ { p | C[p+k].attr = val }

We call this set a query set and we write it
{attr@k=val}. The semantics of a combined query
is then the intersection of the query sets for each of
the literals in the query:

{pos@0=NN} ∩ {word@1=TO}
∩ {word@2=HOUSE} ∩ {pos@2=VB}

If a literal is negated {attr@k ̸=val}, we instead take
the set difference with the corresponding positive
literal. The semantics of query 2(b) then becomes:

{pos@0=NN} ∩ {word@1=TO}
∩ {word@2=HOUSE} \ {pos@2=VB}

4 Efficient inverted indexes

In this section we describe how we build search
indexes from a corpus to facilitate efficient search.
As mentioned in section 2.2, the idea of using in-
verted indexes is not new, in fact large-scale corpus
search engines compile the corpus into some kind
of search indexes. What we present at first is a
fairly standard inverted index. But afterward we
move to what is new: how to make use of more
than one search index when executing a complex
query, and binary indexes.

Each annotation attribute (pos, word, etc.) is pre-
compiled into an inverted index of corpus positions.
This index is inspired by suffix arrays (Manber and
Myers, 1993), in that we do not have to store the
values in the index – it is just a large array of corpus
positions. The array is sorted alphabetically on the
attribute value at the given position. When there are
many tokens with the same attribute value, these
positions are in increasing order.

For example, assume that the example sentence
in figure 1 is our whole corpus. Then the index
for the pos attribute will be the following array of
positions:

[0, 4, 13︸ ︷︷ ︸
DT

, 3, 9, 11︸ ︷︷ ︸
IN

, 1, 5, 14︸ ︷︷ ︸
JJ

, 2, 6, 10, 15︸ ︷︷ ︸
NN

, 7, 8, 12︸ ︷︷ ︸
VB

]

This array is sorted alphabetically on the pos values:
[0, 4, 13] are the determiners (DT), [3, 9, 11] are the
prepositions (IN), etc. Furthermore, each group of
positions for the same value is in increasing order.

So a search index is simply a large array of in-
tegers, which can be stored as a memory-mapped
binary file of fixed-size integers for fast access.

4.1 Searching an inverted index
To search for a value in an index we can do two
very efficient binary searches – one that finds the



first matching value and another that finds the last
match. If we search for NN (a noun) in the example
index, these searches return 6 and 9, which are the
start and end indices for the sublist [2, 6, 10, 15],
which contain all the corpus positions for NN.

Now, to execute the query {pos@k=NN}, we
search for NN in the index, and then subtract k
from all matching positions. But for efficiency we
instead just record the start and end indices (6 and
9) and the relative position k, using which we can
easily recover all matching positions.

So the result of an index lookup can be stored as
a tuple (i, j, k) where i and j denote the relevant
span in the search index, and k is the relative posi-
tion. In particular, we do not need to load the result
set into memory.

Note that we cannot use this simple approach
if we have a negative literal [attr ̸=val], because
inverted indexes do not store complement sets. In-
stead we have to calculate the set difference, which
is described in the next section.

4.2 Computing the result of a query

To execute a complex query, we look up each literal
to get its query set, as described in the last section.
Then we translate the query into a set theory ex-
presssion as described in section 3.3, and then just
evaluate the expression, using set intersection, dif-
ference and union to find the final result.

4.3 Computing query sets

As described in section 4.1 the initial query sets are
just pointers into the inverted indexes. But when
performing the set operations we have to build the
resulting sets.

The query sets are stored as sorted arrays, and
there are simple and efficient algorithms for com-
puting the intersection, difference and union. The
results are also sorted arrays themselves, so we can
continue using these algorithms to compute the fi-
nal result. Depending on the relative sizes of the
sets we use one of the following two algorithms:

Merge The default is to use a merging strategy: It-
erate through both sets in parallel, adding elements
to the result set. If the sizes of the two sets are n
and m, this algorithm has complexity O(n+m).

Filter If one set is much larger than the other, we
can use a filtering strategy: Iterate through each
element of the smaller set, and test if it is also in
the larger set using binary search. The complexity
of this algorithm is O(n logm), where n is the size

of the smaller set. Note that this strategy cannot be
used for computing the union.

4.4 Deciding the order of the set operations
If we have more than two query sets, we have to
decide in which order to perform the set operations.
It is not always the case that starting from the left-
most token is the best in all circumstances – the
order can have a huge difference.

A heuristic that works well for intersection and
difference is to start from the smallest sets and
leave the largest until later. This is because the
result set will never be larger than the original sets,
and then we avoid doing duplicate work.

Set union is different, because the result set will
be increasing. This case is discussed in section 7.1.

4.5 Example
We tested this algorithm on the 112 million to-
ken British National Corpus (BNC).4 The resulting
query sets for query 2(a) are as follows:

{pos@0=NN} → 26 M results
{word@1=TO} → 2.6 M results
{word@2=HOUSE} → 33 k results
{pos@2=VB} → 18 M results

We start by intersecting the smallest query sets,
{word@2=HOUSE} and {word@1=TO}, which gives
421 results. Then we intersect with {pos@2=VB}
and finally with {pos@0=NN}, in the end finding
158 search results.

Intersection uses the filtering strategy from sec-
tion 4.3, which only needs to iterate through the
smallest index. In the first step it iterates through
{lemma@2=HOUSE}, and in the second step it only
iterates through the 421 intermediate results. Recall
also that the initial query sets are not loaded into
memory, but are stored as a tuple as described in
section 4.1. Due to these optimisations, the query
runs quickly, in about 0.3s on an ordinary laptop.

To calculate query 2(b) we use the same ini-
tial query sets. But instead of intersecting with
{pos@2=VB} we take the set difference, and in the
end we find that there are 38 search results.

4.6 When are unary indexes not enough?
However, there are still cases where using the sim-
ple search indexes are inefficient. Consider the very
general query 2(c), which is rewritten to this:

{word@0=THE} ∩ {pos@1=JJ} ∩ {pos@2=NN}

Each of these literals results in a huge set:
4BNC, http://www.natcorp.ox.ac.uk/

http://www.natcorp.ox.ac.uk/


{word@0=THE} → 5 M results
{pos@1=JJ} → 18 M results
{pos@2=NN} → 26 M results

So the intersections become slower (about 20 times
slower than the previous example, taking about 6s).
The first intersection gives 1.5 M results, and the
second one results in 1.1 M final results.

To solve this we now introduce binary indexes.

5 Binary query indexes

Formally, a unary query index [a] can be seen as a
function from values to query sets:

[a] ≡ λv → {a@0=v}

Similarly a binary query index can be viewed as a
function from pairs of values to query sets:

[a] [b] ≡ λv, w → {a@0=v} ∩ {b@1=w}
[a] [] [b] ≡ λv, w → {a@0=v} ∩ {b@2=w}

(similar for [a] [] [] [b], etc.)
For example, an index [word] [] [pos] can answer
queries such as [word=THE] [] [pos=NN]. These
binary indexes can be compiled and searched in a
similar way to the unary indexes.

5.1 Searching using binary indexes
Now we can decompose a complex query into
a composition of binary indexes. E.g., if we
have computed binary indexes for adjacent tokens
([a][b]) and for tokens with a gap ([a][][b]), a query
with three adjacent tokens, [t1][t2][t3], is equiva-
lent to any of the following binary index searches:

[t1] [t2] ∩ [t2] [t3]@1

[t1] [t2] ∩ [t1] [] [t3]
[t1] [] [t3] ∩ [t2] [t3]@1

Exactly which of these is the most efficient depends
on the sizes of the resulting query sets. In this case,
we calculate all three query sets and then take the
intersection of the two smallest.

5.2 Results using binary indexes
Using the same example as in section 4.6, we
search in the following binary indexes, instead of
the unary indexes we tried before:

[word=THE] [pos=JJ] → 1.4 M results
[word=THE] [] [pos=NN] → 1.7 M results
[pos=JJ] [pos=NN] → 6.7 M results

Now we can intersect the two smaller sets:

[word=THE] [pos=JJ]
∩ [word=THE] [] [pos=NN]

This intersection gives 1.1 M results, and we do
not have to use the other indexes: by set theory,

the intersection above describes the same set as the
query, so we have the correct result already.

The total query time is reduced from 6s to 0.4s.
(On the same query, Corpus Workbench takes 10s.)

5.3 Search heuristics for binary indexes

Finally we are ready to describe the heuristics we
use to decide in which order we perform intersec-
tions and set difference:

1. Infer which binary indexes are relevant;

2. Perform all relevant binary index lookups;

3. If some token is not covered by a binary index,
look it up in the unary index;

4. Perform intersections starting from the small-
est set, until the whole query is covered;

5. If the query contains negative literals, look up
the value in the unary index, and calculate the
set difference instead of the intersection.

5.4 How many binary indexes are needed?

Each binary index is as large as a unary index,
and there are many possible binary indexes. If we
have n different attributes (and therefore n unary
indexes), then there are n2 possible binary indexes
per relative distance. So there are n2 [a][b] indexes,
and n2 [a][][b] indexes, etc. This is potentially very
many indexes that take up a lot of space.

But we do not have to build all these indexes.
Note that any query with k adjacent tokens can be
simplified into a conjunction of k − 1 lookups in
[a][b] indexes, as shown in section 5.1. Therefore
it should be enough to only build n2 bigram in-
dexes. However, as seen in 5.1, it is often useful to
also build the n2 [a][][b] indexes, because then we
get several different ways of searching to find the
most optimal intersection order. But it is usually
not worth the trouble to build indexes with longer
relative distances, such as [a][][][][b].5

Also note that if a binary index is missing, we
can simply fall back to searching in two unary in-
dexes instead, as in section 4. This means that
we can focus on building binary indexes only for
the kinds of queries where they have the greatest
impact.

5The one exception is if the query itself has a longer gap,
such as [t1][][][][t2], then we have to resort to searching in
unary indexes instead.



5.5 Reducing the size of binary indexes

Still, each binary index is as large as a unary index,
and storing up to 2n2 binary indexes can use up
quite a lot of space. So can we reduce their size in
any way?

If a query uses a literal that is uncommon in
the corpus (e.g., [word=TURTLE] only occurs 166
times in BNC), there is no need to use binary in-
dexes for that query, since the unary index will
already return a small query set. Therefore, an opti-
misation is to only add a new index instance (v, w)
to the index [a][b], if the corresponding unary in-
stances v and w are common enough in [a] and [b]
respectively. When we execute a query, we then
need to check which literals are uncommon, and
exclude the use of binary indexes for those literals.

For example, in the BNC each full (unary and
binary) index uses around 400 MB. If we only
include pairs where both words occur at least
20,000 times each, the binary indexes are reduced
to around half their size.

6 Sentences and hierarchical structures

The corpus is encoded as a sequence of tokens,
and a sentence starts directly after the previous one
ends. So how can we ensure that we don’t match
sentence borders? E.g., we don’t want query 2(c)
to match a sentence that ends in “the first” where
the next sentence starts with an arbitrary noun.

To solve this we encode the start of a sentence
as an attribute of its own. So we build an index
[s] which has a special value (say •) only for the
tokens that start a sentence. Our example query is
then translated to:

[word@0=THE] ∧ [s@1 ̸=•] ∧ [pos@1=JJ]

∧ [s@2 ̸=•] ∧ [pos@2=NN]

6.1 Sentence borders and binary indexes

To handle sentence borders and binary indexes we
can incorporate the literals [s@1 ̸=•] in our binary
indexes. So their meaning is actually:

[a] [b] ≡ λv, w → {a@0=v} ∩ {b@1=w}
∩ {s@1 ̸=•}

[a] [] [b] ≡ λv, w → {a@0=v} ∩ {b@2=w}
∩ {s@1 ̸=•} ∩ {s@2 ̸=•}

That is, the indexes exclude matches which cross a
sentence border. Though this perhaps looks compli-
cated, it can be generated automatically, and keeps
query execution simple. Our example query 2(c)

can still be translated to searches in the following
three binary indexes:

[word][pos], [word][][pos], and [pos][pos]

And just as in section 5.2, we only have to intersect
the two smallest query sets because the final query
set is subsumed by the intersection.

7 Extending the query language

Here we show how we handle more expressive
queries than the very simple ones described earlier.

7.1 Disjunctive queries
CQL supports disjunction in queries. For exam-
ple, query 2(d) is of the form A(B|C)D, where A
searches for the word “the”, B an adjective, C a
noun, and D a noun.

If we use only unary indexes each literal corre-
sponds to a index lookup, so query 2(d) results in
calculating the set A ∩ (B ∪ C) ∩D. In order to
make use of the binary indexes, we expand out the
disjunction into two strands:

ABD = [word=THE] [pos=JJ] [pos=NN]

ACD = [word=THE] [pos=NN] [pos=NN]

We then compute a result set for each strand, using
the algorithm from section 5, and finally take the
union of the result sets, ABD ∪ACD . The query
returns 1.6 million results and executes in 1s.

Note that when executing the example above,
the subquery AD = [word=THE] [] [pos=NN] will
be used twice. As an optimisation, we cache the
results of any duplicated subqueries, to avoid exe-
cuting them repeatedly.

7.1.1 When to apply disjunction
To expand out disjunctions into strands is not al-
ways the most optimal strategy. In particular if the
query contains several disjunctions we will get an
exponential number of strands.

An alternative strategy is to not expand out the
disjunction, but rather implement it as set union
directly. This means that B and C will be looked
up using unary indexes, but we can use the binary
index [word][][pos] to look up AD. Then we can
return AD ∩ (B ∪ C). The problem with this ap-
proach is that we would not be able to use the
binary indexes [word][pos] or [pos][pos].

However, there are even more possibilities. We
can also half-expand the disjunction A(B|C)D in
two different ways, either into (AB|AC)D, or into
A(BD|CD). For the first case we can then search



the binary index [word][pos] once for AB and an-
other time for AC, and the unary index [pos] for
D, and then calculate (AB ∪ AC) ∩D. And cor-
respondingly for the second case.

So which strategy is the best? It depends
on the sizes of the different sets, and we don’t
know these sizes until we actually calculate them.
But a possible heuristic would be to assume
that unions are always exclusive, meaning that
|B ∪ C| = |B| + |C|. Using this assump-
tion and the sizes of all the possible seed sets
(A,B,C,D,AB,AC,BD,CD,AD) we can cal-
culate which strategy would be the most optimal.

7.1.2 Limitations
The strategy to expand the disjunctions to the top
level works for all kinds of disjunctions, but the
other strategies may not always work. The seman-
tics described in section 3.3 does not handle all
kinds of disjunctions. For query 2(d), we can sim-
ply interpret the disjunction as set union:

{word@0=THE} ∩ {pos@2=NN}
∩ ({pos@1=JJ} ∪ {pos@1=NN})

The reason why this works is that the disjuncts
have the same length, i.e., that they span the same
number of tokens. But when the disjuncts have
different lengths, such as in the query

([pos=PRON] | [pos=DET] [pos=NN]) . . .

we cannot know the exact relative position of the
token following the disjunction – it will either be 1
(if we matched [pos=PRON]) or 2 (if we matched
[pos=DET] [pos=NN]).

In practice, this means that if the disjuncts are
of different lengths, and there is a token after the
disjunction, then we must expand the disjunction.

For example, suppose that the C subquery of
A(B|C)D spans two tokens (e.g., the 2-token
query [pos=ADV][pos=JJ]). Then the query AB
will span 2 tokens but AC will span 3 tokens. This
means that the final subquery D will have relative
position 2 or 3 depending on which disjunct we se-
lect. Therefore we cannot calculate A∩(B∪C)∩D
or (AB ∪ AC) ∩D, but are forced to expand the
disjunction into two strands ABD and ACD.

Section 8 discusses this case, together with repe-
tition and other regular expression constructs.

7.2 Prefix and suffix queries
Finding all values starting with a given prefix, such
as [word=CAT .*], is possible using the normal in-
verted indexes. Since the index is sorted alphabeti-

cally, all words matching a given prefix will appear
together in the index. Using binary search we can
find the start and end positions of all values that
match the prefix, but the results will not be one
single sorted set. Instead we will get a sequence of
sorted groups, one for each matching value, some-
thing like [12, 43, 57, 11, 52, 77, 22, 23]. We then
have to sort this query set, but this is often quite
efficient since the set is already partially sorted.

Unfortunately prefix queries do not play
well with binary indexes. Consider the query
[THE][CAT .*][RUNS]. We can use a binary index to
answer [THE][CAT .*], since all matching bigrams
will appear contiguously in the index (the cat, the
catcher, . . . ). However, we can not do this for
[CAT .*][RUNS], since the matching bigrams may
not be contiguous (cat runs, catcher has, catcher
runs). Our solution is to ignore binary indexes for
token pairs where the first token uses a prefix query.

We implement suffix queries by automatically
adding a new annotation to the corpus for each
feature, consisting of that feature backwards. For
example, a token with [word=HORSE] is annotated
with [drow=ESROH] (drow is word backwards). We
transform a suffix query such as [word= .* RSE]
into the corresponding prefix query [drow=ESR .*].

7.3 Regular expressions over values

Consider a query containing a regular expression:

. . . [word= .* CAT .+ (ED|ING)] . . .

To execute it, we can exploit the fact that, while
the BNC has ≈100 million tokens, it has only ≈1
million distinct tokens (the vocabulary) – generally
the vocabulary of a corpus is much smaller than the
corpus as a whole. In our system, the vocabulary is
stored alongside the corpus in a plain text file.6

First we search the vocabulary file for the regular
expression .* CAT .+ (ED|ING). The search returns
a list of matching words: catching, scattered, etc.
The regular expression literal is then transformed
into a disjunction which is handled as seen earlier:

[word=CATCHING] | [word=SCATTERED] | . . .

This works well except when the regular expression
matches very many words, because our system does
not handle the resulting huge disjunction well.

6Note that this is not the most space-efficient way of stor-
ing a vocabulary – in a production system we would probably
use a trie instead (Crochemore and Lecroq, 2020).



8 Future work

Currently our system can only handle a limited
number of queries, and there are many more kinds
of queries that we want to be able to handle.

8.1 General disjunctions and optional tokens

In section 7.1.2 we already discussed how to han-
dle disjunctions where the disjuncts are of dif-
ferent lengths – and this includes when a to-
ken is optional. A simple solution is to ex-
pand the disjunctions, but sometimes this might
lead to an exponential number of strands. For
example, the query (A|B)(C|D)(E|F ) contains
three disjunctions, but if we expand them we get
ACE|ACF |ADE| · · · |BDF which consists of
23 = 8 strands.

One possible solution could be to let the query
sets be sets of ranges instead of just positions,
where a range is a pair (i, j) of the start and end
position of a phrase. Then a query set can contain
arbitrary-length phrases. The downside to this so-
lution is that the query sets will become twice as
large as before.

8.2 Repeated tokens

Queries with repetitions such as AB+C, and holes
such as A []* C, can perhaps be partially solved
using sets of ranges just as for disjunctions.

If we want to make use of binary indexes we
can expand a repetition AB+C into ABB∗C,
which makes it possible to use the binary index AB.
Alternatively we can expand in the other direction,
into AB∗BC, which makes it possible to use the
binary index BC. Which one is the best depends
on the sizes of the sets AB,C compared to A,BC,
among other things.

Note that we cannot calculate the final query set
by taking the intersection of intermediate query
sets, because then we would have to keep expand-
ing the repetition indefinitely. Instead we should
stop expanding the repetition when we have an
intermediate query set of a reasonable size. This in-
termediate set is guaranteed to contain all matches,
but it might contain false positives too. So in the
end we have to do a final filtering pass to get only
the exact matches, as described in section 8.5.

Holes are a special kind of repetition where we
don’t know anything about the repeated token, such
as in A []* C. For holes it is not useful to expand
the repetition, because we still won’t be able to
make use of any binary index. One possibility is

instead to build a tailor-made binary index:

[a] []* [b] ≡ λv, w → {a@0=v} ∩ {b@k=w | k > 0}

“Indexes with holes” can also be used to solve “nor-
mal” repetitions: To solve the query AB+C we
can use the “hole” index [a][]*[b]. And if we ex-
pand the query to ABB∗C or to AB∗BC, we
can also use the binary indexes [a][b] or [b][c].

8.3 Regular expressions over tokens

Combinations of sequencing, disjunction, option-
ality and repetition can be handled using the tech-
niques described above. However, we will quickly
get an explosion in the number of ways we can
expand queries and decide on the best indexes.

Therefore, to handle general regular expressions
over tokens we need to be able to reason about the
different expansions and rewrites to come up with
an optimal query plan. This is a non-trivial task
and something we will look into in the future.

8.4 Regular expressions over values

In section 7.3 we described one way to han-
dle regular expressions over values, such as
[word= .* CAT .+ (ED|ING)], by searching in the
vocabulary and expanding the expression to a long
disjunction. However, when there are many possi-
ble words matching the regular expression this is
not feasible. In those cases we can use an idea from
Zobel et al. (1993), where we build an inverted in-
dex over character n-grams.

To search for all tokens that match the regular
expression above we can search for the ngrams
CAT, ED, and ING in this n-gram index, getting the
sets ACAT, BED, and CING. Now we can compute
the new query set ACAT ∩ (BED ∪ CING). Note that
this result is a query set that might contain false
positives, so we will have to filter the final set to
get the exact query matches.

8.5 Filtering

The simplest and most general approach is to use
filtering. First we translate the query into a less
precise query that we can handle, then we filter
the results by checking them against the full query.
This is how all current corpus engines do, and some-
times this is actually the best approach.

All the techniques we have described in sec-
tions 4–7 are the most useful if there is no single
search index that returns a reasonable-sized query
set. E.g., in the example queries 2(a–b), one of the
tokens matches only 33,000 results which is a fairly



small set – so it might be the easiest to just filter
that set instead of calculating intersections. How-
ever, for queries 2(c–d) there are no single small
sets so it is much better to use the binary indexes
and calculate the intersection. In general our query
planner should be able to stop when the query set
is small enough, and then resort to filtering instead
of continuing with set operations.

8.6 Metadata and multi-layer annotations

The current prototype does not support searching
in metadata (such as author, year, language vari-
ety, or similar), or multi-layer annotations. This
is of course something that must be solved for the
system to be useful in practice.

8.7 More efficient set representations

The prototype uses a very simple representation
of sets as a sorted array of integers (see section 4).
This seems to work well in most cases, but the sets
can become quite large. There are several dedicated
set data structures that are both compressed and
allow for more efficient set operations, such as
different kinds of compressed bitmaps (Culpepper
and Moffat, 2011; Lemire et al., 2018).

9 Conclusion

We have shown that inverted indexes and efficient
set operations can improve searching in large an-
notated corpora, and in particular binary indexes
can improve efficiency by an order of magnitude
compared to the traditional unary indexes. By trans-
lating queries to set operations, we can use multiple
indexes in one query and avoid the need to filter
the results afterwards.

We have implemented a prototype which shows
promising results, but there is certainly room for
improvement. Firstly, the key operations of set
intersection, different and union, and building the
indexes, can be optimised. Secondly, the query lan-
guage can be extended to more expressive queries,
as discussed in section 8.

It is not always clear how to translate expressive
queries to expressions in set theory (see section
7.1.2). An important next step is to find or design a
mathematical formalism that queries can be trans-
lated into, which is just as amenable to reasoning as
set theory is, but supports more expressive queries.
We hope that by doing so, we can scale our ap-
proach to handle far more complex queries even
over huge corpora.

Limitations

The work described in this paper is work in
progress. Our results are promising, but we have
not extended our approach to more advanced query
languages and therefore we cannot be certain how
scalable our approach is. Furthermore, we have
not done any extensive evaluation and empirical
comparison with existing corpus query engines,
apart from measuring the runtimes for some exam-
ple queries, and a limited comparison with Corpus
Workbench.

Ethical Considerations

We have not collected any data or made any human
experiments when developing the algorithms in this
paper, so there are no direct ethical consequences
with respect to GDPR or similar. One important
consequence of algorithm optimisation is reduced
energy consumption, so in the best case this can
be a small step in reducing the carbon footprint of
digital humanities research.
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