
Tabular JSON: A Proposal for a Pragmatic Linguistic Data Format

Adam Roussel
Department of Linguistics
Ruhr University Bochum

roussel@linguistics.rub.de

Abstract

Existing linguistic data formats tend to be very
general and powerful yet difficult to use on
a day-to-day basis, so that practitioners often
reach for underpowered ad-hoc text formats that
require error-prone string parsing. We propose
a pragmatic JSON-based linguistic data format
that is flexible enough to cover most types of
linguistic annotations and scenarios. It avoids
the need for string parsing, as the serialized data
representation is trivially convertible to tabular
data structures that are immediately usable in
data analysis applications.

1 Introduction

While there are very many data formats that have
been introduced for use with linguistic data, they
seem to either be highly general and capable of
representing any kind of annotation yet unwieldly
to use, thus requiring extra software to translate
between the abstract underlying data model and a
more application-specific und user-friendly view
of that data, or they are easy to work with but very
limited in the kinds of annotations that they support.
There seems to be room for practical data formats
that lie somewhere in the middle, ones that are
lightweight and easy to use, yet flexible and capable
of supporting a range of possible annotations. This
is the sort of format that Tabular JSON is intended
to be.

2 Related Work

Specialized data formats for linguistic corpora in-
clude ones such as Salt (Zipser and Romary, 2010)
or Paula XML (Dipper, 2005; Dipper and Götze,
2005; Chiarcos et al., 2008). These are capable
of representing any kind or nearly any kind of an-
notation, since their main purpose is the exchange
of corpus data between systems and the long-term
storage of data. However, due to their generality,
they are complex formats and are not suitable as

everyday working formats. Generally, some kind
of specialized software is required to translate the
general representation on disk to something usable
in a given application scenario.

Formats such as UIMA CAS XMI1 and FoLiA
(van Gompel and Reynaert, 2013) are somewhat less
complex and more human-readable, with UIMA
CAS making greater use of stand-off representa-
tions. Both support a broad range of possible
annotation types. Though new type systems may
be defined with UIMA CAS, there doesn’t appear
to be a straightforward way to add custom anno-
tation types to FoLiA. Both of these formats are
nevertheless complex enough to warrant the use of
specialized software in order to produce and con-
sume data in these formats, DKPro-Cassis (Klie and
de Castilho, 2024) and the FoLiA Python library,
respectively.

Finally, perhaps the most widely used formats are
those derived from the CoNLL-X formats (Buch-
holz and Marsi, 2006), CoNLL-U2 most prominent
among them. These are all text formats that have
one token per line, tab-separated fields, and sen-
tences separated by empty lines. The variants may
have different numbers of columns, which contain
different kinds of data – this is generally determined
by the variant name, but the CoNLL-U Plus format
allows for the number and names of columns to be
specified in a special header line.

Though the format is fairly human-readable, pars-
ing (and re-parsing) it is inefficient and error-prone,
as different users are bound to overlook different
edge cases. These problems are compounded in
cases where more complex types of annotations
are to be represented and new ad-hoc representa-
tions are invented to accomodate them within the
confines a single column.

1https://uima.apache.org/
2https://universaldependencies.org/format.html

https://uima.apache.org/
https://universaldependencies.org/format.html

3 Description

3.1 Guiding principles
The main goal of Tabular JSON is to be a format
that is practical for daily use:

• Minimize ad-hoc parsing.

• Require no special software.

• Support a variety of annotation types.

Reading and writing the data should not require
users to do string parsing, which is inefficient and
error-prone. Ideally, once the data are parsed, they
remain in a structured form and can be read or
written with no further format-specific knowledge
or software required: a general-purpose JSON
parser should suffice.

A practical format for linguistic data needs to
be able to represent a broad range of annotation
types: It is not uncommon to have annotations that
have the shape of spans or relations between tokens
or spans. These types of entities, among others,
ought to be naturally representable making hacks to
represent them on a token-wise basis unnecessary.

3.2 Data model
It’s important to distinguish between the data format
that is used on disk and the data model that is
expressed in that format. To some extent, they’re
related, since some formats are not capable of
representing some kinds of logical entities. Trees
don’t go well with CSV, for instance, but they’re a
natural fit for XML.

In the interests of practicality we use a data model
that is essentially tabular, which ensures seamless
compatibility with common data analysis packages.
Our model follows broadly the principles of “tidy
data” (Wickham, 2014): Tidy data is characterized
by observations or basic units of analysis being
represented in rows and various variables or prop-
erties of those units of analysis being represented
in columns. Tidy data is easier to work with, to
reshape and to analyze, and it works well with
vectorized operations, such as are used in R or
Pandas.

3.3 Data formats
A suitable tabular representation could then be im-
plemented in any of a number of formats – CSV,
JSON, SQLite, Parquet, XML, etc. are all perfectly
capable of representing a sequence of objects with
some fixed set of attributes. We chose JSON over

the alternatives because it is immediately and intu-
itively usable and keeps the parsing of text formats
to a minimum.3

CSV (and TSV) formats may seem like an obvi-
ous choice for a tabular-oriented format, but there
is no standardized form of CSV, instead numer-
ous mutually incompatible dialects, using different
delimiters, quoting strategies, etc., which makes
parsing it error-prone. Furthermore, in order to
include metadata about a given document and mul-
tiple tables for different kinds of data, you end up
needing multiple files for each document.

SQLite is a great alternative to textual formats in
some ways: The data can be more efficiently read
and written to disk, and larger-than-memory data
can also be processed easily. And with SQL, there is
a powerful query language built-in. However, users
often want to be able see their data in a text editor
directly, as is possible with a text-based format, and
they may not wish to use SQL.

While XML is more verbose and can be more ef-
fort to work with, it also has some clear advantages:
XML is more stable, and there are more established
standards for describing and verifying XML data.

Ultimately, JSON has advantages that seem to
outweigh the strengths of XML. For JSON there is
a high-quality package included in the Python stan-
dard library, which straightforwardly maps JSON
values onto Python data structures. The JSON you
see on disk is essentially equivalent to the Python
data structures you get simply by loading that JSON
data. The format’s design, by relying on flat ta-
bles primarily, allows for a similarly immediately
usable data structure in R using jsonlite or in
Julia with JSON.jl. Furthermore, there are many
great general-purpose JSON tools – jq, jello,
visidata, etc. – that can also be used for working
with Tabular JSON directly. In this way, users are
free to choose the tools that work best in a given
scenario, but this doesn’t mean that they need to
spend time and effort parsing text formats and fixing
the attendant bugs.

Of course, as noted above, this tabular data model
could be implemented in any of the formats men-
tioned above. In some situations, it may be prefer-
able to implement this data model in one of those
formats or some other format instead.

3Of course, JSON is, like XML, a text-based format, how-
ever it is a well-known and well-specified standard notation,
for which there are myriad reliable parsers available. They can
be reliably parsed in a way CSV, for instance, cannot.

3.4 Design principles
The need for software that translates between a
comprehensible user-facing data model and one that
is appropriate for serialization is avoided by making
the serialization first-class: The serialization is the
data model and is intended for direct interaction by
users. We think of this as an exterior-first approach
(Chu, 2023).

Different kinds of data are generally stored in
separate tables, each with a set of keys appropriate
to that kind of data. Each of these tables includes
references, either to single tokens (= token) or to
a range of tokens (= begin and end) in the main
tokens table. In this way, some kinds of data are
stored in a stand-off style.

The design aims to avoid some of the usability
issues that accompany stand-off annotations by
having these references be by index, thus enabling
fast and easy retrieval of both single tokens and
spans of tokens (via slicing). This also makes it
easier to join the data in different tables using built-
in operations in common data analysis packages.
All of the index references use 1-based indexing,
so they are directly usable in R, Julia, and Lua
as-is, but some minor adjustments are required in
Python. In general, any empty values are to be
omitted, so they are distinguishable from empty
strings and values such as "_". The other strategy
we employ is to only store some data in stand-off
fashion: Annotations that apply to single tokens are
simply included in the main tokens table.

Other advantages of stand-off representations are
preserved. Different annotation layers can be easily
added or removed without disturbing the others, and
it is also possible, e.g., to have multiple instances
of the same kind of annotation in order to store the
annotations from different annotators in the same
file.

3.5 Data layout
Each document in a corpus is represented by a
single JSON object, which can either be stored as
its own file or as a line in a JSON Lines file. This
top-level contains, minimally, a metadata object
and a token array:
{"id": "o9234f78",
"metadata": { ... },
"token": [...], ... }

Whereas the metadata object is a collection of
key–value pairs, adaptable to the needs of a given
project, the token array is what we will call a “table”:

property Token annotations
relation Relations between tokens
span Spans over tokens
set Sets of tokens
spanset Sets of Spans over tokens
hierset Hierarchical sets of spans over

tokens

Figure 1: Annotation types.

an array of objects, which all have roughly the same
set of keys. This is a row-based data representation
that is readily translated directly into a data frame
data structure by common data analysis packages.

Further annotations are included in tables under
additional top-level properties and have forms that
are determined by the type of data that these annota-
tions represent. All of these additional tables refer
to the main token table by means of indices. The
format specifies a fixed set of possible annotation
types (Figure 1), and each annotation type has a
particular set of required keys.

Each document specifies the annotations it in-
cludes using the annotations key in the metadata
object.
"metadata": {
"annotations": {
"lemma": {"type": "property"},
"line2": {"type": "span",
"description": "Secondary line ref."},
...

}
},

The inclusion of this metadata tells users what top-
level keys to expect and, due to the type value, what
keys to expect in the associated tables. Additional
keys besides type and description are allowed
here, so there is a place for other useful information,
e.g. provenance, etc. The specification provides for
a set of standardized property names to be used for
common annotations to aid in interoperability.

Token annotations. Some annotations, namely
all those that apply strictly to single tokens, are
included in the token table directly as property
annotations. This includes such things as lemmas,
normalized word forms, and POS tags.

{"id":"t2","form":"cats","lemma":"cat",
"pos":"NOUN", ... }

A special case of token annotations is covered by
the object annotation type. This annotation type

Name Type Desc.

form property Surface form
lemma property Lemma
pos property POS
dependency relation Dependencies
sentence span Sentences
coreference spanset Coreference

Figure 2: Some common annotations and their types.

describes a column in the tokens table that contains
arbitrary JSON data. It is provided as an escape
hatch, e.g. for representing sub-token-level data.

Relations between tokens. Dependencies are
stored in a dependency table, whose rows are of the
relation type, since dependencies are expressed
as relations between tokens. Each row in this table
has two references to the tokens table, from, in this
case referring to the head token, and to, referring
to the dependent token.
{"from":2,"to":1,"label":"det"}

Spans over tokens. Spans are always represented
with a pair of properties, begin and end, which refer
to the main token table. Sentences are represented
as spans over tokens:
{"id":"s1","begin":1,"end":6,

"label":"decl"}

Besides sentences, all layout information, such
as that concerning page or paragraph or line bound-
aries, is represented as spans over tokens. This
annotation type is also used for things like quota-
tions and headings, where these are present.

Sets of spans over tokens. Entities of the
spanset annotation type are a kind of span, so
they contain begin and end properties, however
in addition to this they also have an set property,
which is the same for all members of a set. This
annotation type is useful for representing things
like coreferences:

{"set":"c1","begin":1,"end":2}
{"set":"c1","begin":4,"end":4}

Further information about the entity covered by
such a span may be provided using the optional
label property.

Hierarchical sets of spans over tokens. Each
entry in a hierset-type table denotes a span of
tokens, and so it has begin and end properties.

In order to express hierarchical data structures,
the entries must be able to refer to one another
– these are all non-terminals. To this end, each
entry must have an ID and a parent property,
which specifies the node above it in the tree. This
could be useful for representing consituency trees
or discourse structure (note that the spans need not
be limited to a single sentence or coincide with
sentence boundaries). E.g.:

{"id":"c1","begin":1,"end":4,"label":"S"}
{"id":"c2","begin":1,"end":1,"label":"NP",

"parent":"c1"}
{"id":"c3","begin":2,"end":4,"label":"VP",

"parent":"c1"}
{"id":"c4","begin":3,"end":4,"label":"NP",

"parent":"c3"}

4 An Example Use Case

In the course of a larger project there is often a
need to convert data between various formats, and
so conversion applications are written that tend to
converge on a particular architecture: There are
various reader and writer modules, some internal
data model, and optionally a set of transformations
that can be applied to that data model. There
are existing applications for this purpose, such as
Pepper,4 why not use that?

One reason is that modules would need to be
written in Java, and it could be that your team
doesn’t have expertise in Java or may not want to
use it. (Note that this is not due to any issue with
Java per se but could be the case for any particu-
lar implementation language.) Another reason is
the internal data model, Salt, which, though very
general and powerful, is not a representation that
you would use for any other purpose, so that any
modules you write are only useful in this Pepper
context.

There are two main aspects of Tabular JSON,
which make it useful in such a scenario: One is the
exterior-first design and the other is the tabular data
model.

What in most conversion scenarios is an inter-
nal data model is external in the case of Tabular
JSON; the internal representation is identical to the
serialization. This means that different parts of a
conversion, annotation, and analysis pipeline need
not know about one another. They can be developed
independently from one another and could even use
different programming languages altogether, yet all

4https://corpus-tools.org/pepper/

https://corpus-tools.org/pepper/

of these independent components have access to the
same, complete underlying data structures. All of
the various modules only need to know about Tabu-
lar JSON. This is the advantage of an exterior-first
orientation.

The other important aspect is that this lingua
franca is intended to be directly usable itself, since
it would otherwise just be one more additional
format to deal with. This is the motivation behind
the tabular data model, which is geared towards
the way data analysis frameworks treat data and is
also a more intuitive way of representing data than
graph-based representations, such as Salt.

5 Conclusion

There is a tension between, on the one hand, a
general and powerful format that can represent ade-
quately any kind of data, but which inevitably must
depend on some software layer that can translate
between this general format and a usable inter-
nal model, and on the other hand, a simple and
lightweight yet limited format that may not be suffi-
cient for many applications, forcing the invention
of error-prone ad-hoc solutions.

The JSON-based format described in this paper
is intended as a practical, lightweight format for
linguistic applications that has minimal dependen-
cies and is directly usable, because its on-disk form
is essentially identical to a usable internal data
structure. The use of a known set of data types
allows users to reason about the data and work
with it in this form directly – practically erasing the
distinction between a serialized form and internal
data model. This frees users from having to parse
ad-hoc text-based formats or depend on particular
specialized software.

The complete specification of the format and
a JSON schema for validation are available
at the project’s public repository, accessible at
this URL: https://gitlab.rub.de/comphist/
tabular-json. See also Appendix A for a com-
plete example document.

6 Limitations

The specification establishes a set of standardized
property names for basic kinds of annotations, such
as POS and lemmas, in order to aid interoperability.
However the number of standardized names remains
quite small currently, so that interoperability in
practice is limited. Though we plan to expand this
set in future iterations, some challenges remain: It is

foreseeable that different projects may not agree on
the naming scheme and prefer different names (e.g.
feats vs. infl vs. morph, etc.) or that different
projects may wish to model the same information
in different ways, for instance, modelling named
entities as token properties vs. spans. Further, one
of the goals of this format is to enable the storage
and use of novel and not yet established kinds of
annotations, and it is impossible in principle to
come up with property names for these things in
advance.

Most of the different kinds of annotations that
the format provides for are stored as stand-off an-
notations, which, while it has its advantages, is an
impediment to human-readability. If one wants to
know which tokens belong to a given sentence, say,
one must follow the references from the sentences
array back to the tokens array. We try and make
this as simple and straightforward as possible by the
use of indices that can be used to directly retrieve
a single token or slice of the tokens array in such
cases. However, what is simple programmatically
isn’t necessarily easy for humans, and this is one of
the reasons that projects may prefer to model some
things differently than in the specification.

7 Ethical Considerations

As this work presents a data format, I see its ethical
dimensions being primarily those of freedom, fair-
ness, and re-use: Users should not be required or
‘nudged’ to use particular proprietary software in
order to work with a given data format, such as with,
say, Excel files. Since it relies only on the simple
and well-documented JSON standard, data in our
format are usable from any programming language
environment with no special dependencies, which
make the data reusable and offers potential users a
high degree of flexibility. The format should also
be usable with any kind of language data, historical
or modern, due to the use of UTF-8.

Acknowledgments

Thanks to the reviewers for their helpful feed-
back. Gefördert durch die Deutsche Forschungsge-
meinschaft (DFG) – SFB 1475 – Projektnummer
441126958.

References
Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X

shared task on multilingual dependency parsing. In

https://gitlab.rub.de/comphist/tabular-json
https://gitlab.rub.de/comphist/tabular-json
https://aclanthology.org/W06-2920
https://aclanthology.org/W06-2920

Proceedings of the Tenth Conference on Computa-
tional Natural Language Learning (CoNLL-X), pages
149–164, New York City. Association for Computa-
tional Linguistics.

Christian Chiarcos, Stefanie Dipper, Michael Götze, Ulf
Leser, Anke Lüdeling, Julia Ritz, and Manfred Stede.
2008. A flexible framework for integrating annota-
tions from different tools and tag sets. In Traitement
Automatique des Langues, Volume 49, Numéro 2
: Plate-formes pour le traitement automatique des
langues [Platforms for Natural Language Process-
ing], pages 217–246, France. ATALA (Association
pour le Traitement Automatique des Langues).

Andy Chu. 2023. Oils is exterior-first (code, text,
and structured data). https://www.oilshell.org/
blog/2023/06/ysh-design.html. Accessed 2024-
05-04.

Stefanie Dipper. 2005. XML-based stand-off repre-
sentation and exploitation of multi-level linguistic
annotation. In Proceedings of Berliner XML Tage
2005 (BXML 2005), pages 39–50, Berlin, Germany.

Stefanie Dipper and Michael Götze. 2005. Accessing
heterogeneous linguistic data – generic XML-based
representation and flexible visualization. In Proceed-
ings of the 2nd Language & Technology Conference:
Human Language Technologies as a Challenge for
Computer Science and Linguistics, pages 206–210,
Poznan, Poland.

Jan-Christoph Klie and Richard Eckart de Castilho. 2024.
DKPro Cassis – reading and writing UIMA CAS files
in Python.

Maarten van Gompel and Martin Reynaert. 2013. FoLiA:
A practical XML format for linguistic annotation – a
descriptive and comparative study. Computational
Linguistics in the Netherlands Journal, 3:63–81.

Hadley Wickham. 2014. Tidy data. Journal of Statistical
Software, 59(10):1–23.

Florian Zipser and Laurent Romary. 2010. A model ori-
ented approach to the mapping of annotation formats
using standards. In Workshop on Language Resource
and Language Technology Standards, LREC 2010,
La Valette, Malta.

A An Example Document

{
"id": "doc1",
"metadata ": {

"title": "Example document",
"year": "2024" ,
"version ": "1.0",
"annotations ": {

"pos": {
"use": "pos_xpos"

},
"pos_xpos ": {

"type": "property",
"model": "en_core_web_sm",

"source ": "Spacy"
},
"pos_upos ": {

"type": "property",
"model": "en_core_web_sm",
"source ": "Spacy"

},
"lemma": {

"type": "property",
"description ": "omitted when

same as form",
"model": "en_core_web_sm",
"source ": "Spacy"

},
"sentence ": {

"type": "span"
},
"line": {

"type": "span"
},
"coreference ": {

"type": "spanset",
"source ": "ajr"

},
"dependency ": {

"type": "relation",
"model": "en_core_web_sm",
"source ": "Spacy"

}
}

},
"token": [

{
"id": "t1",
"form": "The",
"lemma": "the",
"pos_xpos ": "DT",
"pos_upos ": "DET"

},
{

"id": "t2",
"form": "cats",
"lemma": "cat",
"pos_xpos ": "NNS",
"pos_upos ": "NOUN"

},
{

"id": "t3",
"form": "slept",
"lemma": "sleep",
"pos_xpos ": "VBD",
"pos_upos ": "VERB"

},
{

"id": "t4",
"form": ",",
"pos_xpos ": ",",
"pos_upos ": "PUNCT"

},
{

"id": "t5",
"form": "and",
"pos_xpos ": "CC",
"pos_upos ": "CCONJ"

},
{

"id": "t6",
"form": "they",
"pos_xpos ": "PRP",
"pos_upos ": "PRON"

https://aclanthology.org/2008.tal-2.9
https://aclanthology.org/2008.tal-2.9
https://www.oilshell.org/blog/2023/06/ysh-design.html
https://www.oilshell.org/blog/2023/06/ysh-design.html
https://doi.org/10.5281/zenodo.3994108
https://doi.org/10.5281/zenodo.3994108
https://clinjournal.org/clinj/article/view/26
https://clinjournal.org/clinj/article/view/26
https://clinjournal.org/clinj/article/view/26
https://doi.org/10.18637/jss.v059.i10
https://inria.hal.science/inria-00527799
https://inria.hal.science/inria-00527799
https://inria.hal.science/inria-00527799

},
{

"id": "t7",
"form": "purred",
"lemma": "purr",
"pos_xpos ": "VBD",
"pos_upos ": "VERB"

},
{

"id": "t8",
"form": "softly",
"pos_xpos ": "RB",
"pos_upos ": "ADV"

},
{

"id": "t9",
"form": ".",
"pos_xpos ": ".",
"pos_upos ": "PUNCT"

}
],
"coreference ": [

{
"set": "c1",
"begin": 1,
"end": 2

},
{

"set": "c1",
"begin": 6,
"end": 6

}
],
"line": [

{
"id": "l1",
"begin": 1,
"end": 4

},
{

"id": "l2",
"begin": 5,
"end": 9

}
],
"sentence ": [

{
"id": "s1",
"begin": 1,
"end": 9

}
],
"dependency ": [

{
"id": "dep1",
"from": 2,
"to": 1,
"label": "det"

},
{

"id": "dep2",
"from": 3,
"to": 2,
"label": "nsubj"

},
{

"id": "dep3",
"from": 3,
"to": 3,
"label": "root"

},
{

"id": "dep4",
"from": 3,
"to": 4,
"label": "punct"

},
{

"id": "dep5",
"from": 3,
"to": 5,
"label": "cc"

},
{

"id": "dep6",
"from": 7,
"to": 6,
"label": "nsubj"

},
{

"id": "dep7",
"from": 3,
"to": 7,
"label": "conj"

},
{

"id": "dep8",
"from": 7,
"to": 8,
"label": "advmod"

},
{

"id": "dep9",
"from": 7,
"to": 9,
"label": "punct"

}
]

}

	Introduction
	Related Work
	Description
	Guiding principles
	Data model
	Data formats
	Design principles
	Data layout

	An Example Use Case
	Conclusion
	Limitations
	Ethical Considerations
	An Example Document

