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Abstract

This work presents the development and evalu-
ation of a dependency parser for Middle High
German Universal Dependencies utilising mod-
ern German as a support language for low-
resource MHG. A neural dependency parser is
trained with Stanza achieving UAS = 92.95 and
LAS = 88.06. To ensure the parser’s utility in
facilitating and speeding up manual annotation
to build a scaling UD treebank of MHG, a thor-
ough error analysis shows the model’s struc-
tural reliability as well as frequently confused
labels. Hence, this work constitutes an effort
to counterbalance the under-representation of
historical languages in dependency treebanks
and attend to the need of historical treebanks
in contemporary linguistic research by utilising
the UD extensions and accordingly annotated
corpora published by Dipper et al. (2024).

1 Introduction

Historical linguistics is not only about understand-
ing outdated or long-forgotten languages, but often
brings valuable insight to the analysis of linguis-
tic change in contemporary research. However,
researchers in the historic field are bound to pre-
served written resources, which are often limited or
of poor quality. Recently, computational linguistics,
first and foremost Natural Language Processing
(NLP), has become a field of great benefit for his-
torical linguistics enabling the efficient exploitation
of given resources in low-resource scenarios. Al-
though the development of Universal Dependencies
(UD) as a cross-lingual framework for morphosyn-
tactic annotation encouraged the creation of de-
pendency treebanks for various languages, historic
stages of those languages are still underrepresented
among syntactically parsed corpora. So far no tree-
bank comparable in size to modern treebanks exists
which includes dependency annotations for Middle
High German (MHG), the language stage spoken
and written in what is today southern and central

Germany around the medieval period (1050–1350)
and representing the beginnings of Modern High
German in phoneme structure as well as syntax
(Weddige, 2015).

As manual annotation is costly in time and ef-
fort, this work aims at the development of a neural
dependency parser for MHG Universal Dependen-
cies to be utilised in pre-annotation and correction
when creating a scaling treebank. Due to the lim-
ited amount of annotated data, I will treat MHG as
a low-resource language and explore modern Ger-
man as a high-resource support language. Stanza1

as a Python package known for dealing well with
multi-linguality (Qi et al., 2020) is used for training
the parser.

The paper is structured as follows. Section 2 in-
troduces contemporary research in the fields of UD
and NLP for low-resource languages. The avail-
able data published and annotated by Dipper et al.
(2024) are described in Section 3. Section 4 in-
troduces the methods of training conducted with
Stanza. The results as well as details of the error
analysis are presented in Section 5. The discussion
of the results and some suggestions for future work
on the parser follow in Section 6. The model in-
stance, a script demonstrating its application and a
collection of Python scripts developed for model
evaluation are available on GitLab2. The main con-
tributions of this paper are: (i) a UD parser for
Middle High German and (ii) a thorough error anal-
ysis ensuring its utility in corpus development.

2 Related Work

The Universal Dependencies framework constitutes
the theoretical basis this paper relies on. Since its
initial publication by Nivre et al. (2016) it has not
only become a widely accepted linguistic frame-

1https://stanfordnlp.github.io/stanza/
2https://gitlab.ruhr-uni-bochum.de/comphist/

konvens-depparsing-mhg

https://stanfordnlp.github.io/stanza/
https://gitlab.ruhr-uni-bochum.de/comphist/konvens-depparsing-mhg
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work, but also a community project providing and
developing treebanks for over 100 languages. Due
to its cross-lingual consistency even across typolog-
ically diverse languages, UD treebanks have been
enabling (multilingual) parser development as well
as research in the field of cross-lingual learning.
UD – following the tradition of dependency gram-
mars – provides a closed set of dependency relation
types, but allows for custom subtypes to incorpo-
rate special cases or specific constructions unique
to one or a small set of languages. Several publica-
tions propose extensions to the original UD scheme,
among which are Dipper et al. (2024) proposing
a set of extensions for modern and Middle High
German and providing a corpus of 1856 annotated
MHG sentences, which will serve as a basis for the
development of the dependency parsing model in
this paper.

Low-resource NLP provides methods to coun-
terbalance the under-representation of historic lan-
guages in quantitative and computational linguis-
tics often being attributed to the lack of suffi-
cient resources. Eckhoff and Berdičevskis (2016)
name high variation, e.g. due to non-standardised
spelling, and the overall small amount of preserved,
digitised and annotated texts as difficulties when
working with historical languages. They explore
off-the-shelf NLP tools in pre-annotation for tree-
bank production for Old East Slavic and show im-
provements in annotation speed and no interference
with parsing quality when applying parsing mod-
els which were not developed specifically for the
annotation task at hand. Since 2016, several ef-
forts for developing or adapting tools to support
the development of parsed corpora of historical lan-
guages have been made, among which are Sapp
et al. (2023) exploring automatic constituency pars-
ing to speed up manual annotation and correction
of Early New High German. They utilise Mid-
dle Low German as a support language and de-
velop a cross-dialectal parser for this low-resource
scenario reproducing the improvement in parsing
speed obtained by Eckhoff and Berdičevskis (2016).
Ortmann (2020, 2021) develops and applies auto-
matic parsing models for topological field identifi-
cation and phrase recognition in historical German
and partly utilises models trained on modern Ger-
man for parsing historical data. The studies show
that training data containing modern and historic
passages improve parsing quality compared to the
application of purely modern models on historic
data, resembling the successful utilisation of cross-

lingual training for low-resource NLP.
When researching low-resource languages, one

has to not only adapt one’s training techniques, but
also efficiently exploit the limited amount of avail-
able data. Zupon et al. (2022) suggest a method
for automatic correction of syntactic dependency
annotation differences between different data sets.
According to their study, it can be beneficial to
automatically detect annotation mismatches be-
tween different texts or corpora and convert the
mismatches before the training process begins, re-
sulting in a technique one could call automatic
curation.

3 Data

Data set #Sent #Tok Annot. Cur./Mod.

M005 513 9288 A1, A2 ✓
M008 435 5836 A1, A3
M205 480 5024 A1
M246 11 255 A2
M335 10 165 A1

251 4144 A1, A2 ✓
200 4718 A2

M340 21 434 A1

News 50 884 A4, A5 ✓
50 988 A4, A6 ✓

Reviews 50 662 A4, A5 ✓
50 679 A4, A6 ✓

Table 1: Available data sets reporting number of sen-
tences, number of tokens and annotation as well as cu-
ration (MHG) or modification (ModG) status.

The historical data utilised in this paper were ob-
tained from the Reference Corpus of Middle High
German (ReM; Klein et al., 2016), annotated3 ac-
cording to Dipper et al. (2024) by three annotators
as well as partially curated4 and then cleaned auto-
matically5. All annotated MHG data are religious
texts or poetry.

The modern data originate from the German
GSD treebank (McDonald et al., 2013), were au-
tomatically parsed using a modified version of the

3Dipper et al. (2024) propose an annotation scheme for
modern and historical German, which is based on the orig-
inal UD scheme for German. They achieve inter-annotator
agreement of α = 0.85.

4Curation of a subset of the data was done by hand by
the annotators discussing diverging annotations and finding
common solutions.

5A heuristic algorithm was run over the historical data to
obtain root and period annotations, which had been left out
by the annotators. Some fragmentary sentences had to be
excluded from the data completely due to Stanza’s inability
to deal with incomplete dependency structures during parser
training.



Stanford typed dependencies for English (de Marn-
effe et al., 2006; de Marneffe and Manning, 2008)
and then corrected manually by three annotators
according to the UD augmentations proposed by
Dipper et al. (2024). Replacing manual curation,
the modern data were modified according to the
method for automatic correction of syntactic depen-
dency annotation differences proposed by Zupon
et al. (2022). Their algorithm detects (head, rela-
tion, dependent)-triples differing between text pas-
sages annotated by two annotators and produces
a joint version of the text by choosing the triple
with the higher overall frequency between every
differing pair of triples in question.

Short name Dev Test Train #Sent #Tok

MHG-cur 112 111 535 758 13400
MHG-all 228 229 1590 2099 32171
MHG+ModG 303 304 1692 2299 35384

Table 2: Data sets for parser development reporting
number of sentences in dev, test and train set as well as
total number of sentences and tokens.

Three different data sets were assembled based
on the pre-processed data as shown in Table 2.
MHG-cur consist of only the curated passages
of M005 and M335. MHG-all unites curated as
well as single-annotated MHG data and was split
with regard to the principle that the test and de-
velopment sets consist of only curated MHG data
and the single-annotated as well as the remaining
curated data are accumulated in the training set.
MHG+ModG combines all usable data presented
in Table 1 including MHG and modern data and
was split equivalently to MHG-all. Note that all
test sets consist of only curated MHG data as this
work focuses on evaluating the parsing of MHG.

4 Methods

Stanza is an open-source library developed by Qi
et al. (2020) providing a language-agnostic and
data-driven NLP pipeline. It was chosen as the
development tool in this paper because of its high-
scoring multilingual models reported in Zeman
et al. (2018) and it being well-adapted to the UD
framework. For example it requires CoNLL-U for-
matted data and is accustomed to the annotation
layers represented by the format as well as pro-
vides efficient processing for them. The factor
of multi-linguality is especially important to the
cross-lingual parsing of two historical stages of

German conducted in this paper opposed to train-
ing a parsing model for only one language (stage).
In addition to publicly available pre-trained mod-
els, Stanza provides an interface to train customised
models.

The dependency model trained with Stanza6 is
an instance of a graph-based, Bi-LSTM-based deep
biaffine neural dependency parser based on the
Multi-Layer Perceptron approach by Kiperwasser
and Goldberg (2016), augmented by Dozat and
Manning (2016) with the concept of biaffine at-
tention and finally adapted for Stanza by Qi et al.
(2020). They introduce the linearisation order of
two words in a given language and their typical lin-
ear distance as additional linguistically motivated
features to the former model to improve parsing ac-
curacy. The model is described as generalising well
even based on small amounts of training data and
is therefore well-suited for the given low-resource
scenario. The developers emphasise the thorough
regularisation by applying extensive dropout and
the overall high performance. By default, opti-
misation is conducted via the Adam algorithm by
Kingma and Ba (2014).

Compared to the default parameters, I set the
batch size to 5000 due to technical limitations and
decreased the learning rate from 0.003 to 0.002,
which resulted in significantly shorter run time and
higher accuracy as presented in Table 8 in the ap-
pendix.

I experimented with character- and word level
embedding models provided by Stanza and pre-
trained on modern German data. The evaluation
showed that these embeddings do not interfere with
model performance (see Appendix A), so they were
included in the training of the models presented in
the next section and represent another instance of
modern German as a support language.

Part-of-speech tags were obtained from the orig-
inal ReM annotations for all MHG data in train-
ing and evaluation and were not automatically pro-
duced by the Stanza pipeline. Annotations accord-
ing to two different schemata were provided: STTS
(Schiller et al., 1999) and UPOS (Petrov et al.,
2011).

During training the current parsing model is eval-
uated on the development set after every hundredth
iteration by calculating LAS, MLAS, and BLEX

6Training was conducted on a Linux workstation equipped
with an Nvidia GeForce GTX 980 graphics card with CUDA
version 12.1 and 4 GB of memory, an Intel Core i7-5820K
processor and 15 GB of RAM.



(see section 5.1) with custom subtypes mapped
to the original UD types. After 3000 iterations
with no improvement of the LAS, the optimiser is
switched from Adam to AMSGrad developed by
Reddi et al. (2018). After another 3000 iterations
without improvement, training is stopped automati-
cally. The number of training steps needed for each
model can be obtained in Appendix A. After train-
ing, evaluation of the parsing model is conducted
on the test set, of which the results are presented in
the following section.

5 Results

This section reports on evaluation scores of the
parsing models trained on the three data sets pre-
sented in Section 3 as well as an error analysis of
the output produced by the highest-scoring model.

5.1 Parser Evaluation

data set UAS LAS CLAS MLAS BLEX

MHG-cur 91.99 86.30 78.58 77.37 78.58
MHG-all 91.68 85.63 77.93 76.43 77.93
MHG+ModG 92.95 88.06 81.57 80.75 81.57

Table 3: Evaluation of trained models, reporting UAS,
LAS, MLAS, CLAS and BLEX in % calculated on the
test set.

All metrics were calculated with the scripts from
the CoNLL 2018 UD Shared Task (Zeman et al.,
2018) provided by Stanza and mapping custom sub-
types to their respective original UD labels.7 The
reported metrics evaluate different dimensions of a
dependency parsing model. In addition to the stan-
dard metrics labelled attachment score (LAS) and
unlabelled attachment score (UAS), three measures
in particular relevant to the UD framework have
been proposed: content word LAS (CLAS), mor-
phology aware LAS (MLAS) and bi-lexical depen-
dency score (BLEX). They each introduce specific
aspects to a basic metric: CLAS only considers
content-words when determining LAS; MLAS ex-
tends CLAS by part-of-speech tags and morpholog-
ical features; BLEX scores content-word relations

7For example, Dipper et al. (2024) discriminate different
subtypes of the original UD label obl, among which are obl:loc
for local, obl:dir for directional and obl:tmp for temporal
oblique arguments. All of these subtypes are mapped to the
original label obl by the evaluation scripts provided by the
CoNLL 2018 UD Shared Task. A more fine-grained evaluation
without mapping subtypes to original labels was conducted
with a modified version of the script, of which the results can
be obtained in Table 4.

with lemmatisation but does not consider features
and tags. Table 3 reports on the results achieved
in the presented training effort. Additional results
showing model training with different parameter
configurations can be obtained in Table 8 in the ap-
pendix. A more fine-grained evaluation including
custom subtypes of the UD labels is presented in
Table 4.

data set LAS CLAS MLAS BLEX

MHG-cur 82.12 77.56 75.34 77.56
MHG-all 82.34 77.67 75.69 77.67
MHG+ModG 85.22 80.52 79.45 80.52

Table 4: Fine-grained evaluation of trained models re-
porting LAS, CLAS, MLAS and BLEX in % calculated
on the test set and with regard to customised labels.

The results of both calculations imply a supe-
riority of the model trained on mixed historical
and modern data (MHG+ModG), referred to as
the combined model from now on. Its high scores
are presumably not solely due to the substantial
increase in data, as the model trained on MHG-all
does not score significantly higher than the model
trained on MHG-cur, but more so due to the syn-
tactical diversity present in the data, which lead to
the model generalising well on unseen data. With
UAS > .92, LAS > .88, and all reported scores
> .80 in Table 3, the combined model even outper-
forms state-of-the-art Stanza models for historical
language varieties and one for modern German
trained on the complete GSD treebank as presented
in the Stanza documentation.8

5.2 Error Analysis
Stanza provides precision, recall and F1 measures
for each label calculated on the test set, which are
scores widely used for binary classification tasks,
but which can also be applied to dependency pars-
ing.
Table 5 presents the ten most reliably parsed labels,
while a complete list of scores for each label as well
as label counts on the test set can be obtained in
Table 9 in the appendix. As shown there, all basic
elements of a German sentence (root, nsubj, iobj,
obj) reach recall scores of ≥ .75, so at least 75%
of them are parsed correctly by the evaluated pars-
ing model. Having the basic structure of a sentence
parsed correctly in pre-annotation is very beneficial
for manual correction especially due to the partly

8https://stanfordnlp.github.io/stanza/
performance.html (accessed May 5th 2024)

https://stanfordnlp.github.io/stanza/performance.html
https://stanfordnlp.github.io/stanza/performance.html


Label Precision Recall F1

compound:prt 1.000 1.000 1.000
punct 0.999 1.000 0.999
case 0.982 0.986 0.984
det 0.981 0.984 0.983
amod 0.948 0.958 0.953
mark 0.954 0.948 0.951
root 0.938 0.938 0.938
cc 0.936 0.936 0.936
aux 0.938 0.920 0.929
nsubj 0.887 0.876 0.882

Table 5: Top 10 labels with highest F1 scores, reporting
precision, recall, and F1 produced by the combined
model on the test set.

very long and complex sentences in MHG. Presum-
ably most important is the correct identification of
the root and the subject, which is done by the parser
with respective F1 scores of .936 for the root (root)
and .882 for nominal subjects (nsubj). Another
achievement of the parsing model lies in its abil-
ity to reliably parse frequent functional categories
such as det, mark, or cc, which all score recall of
> .935. Stable parsing of categories which do not
usually require long consideration but are rather
repetitive or even tedious for the human annota-
tor is enormously helpful in preparation of manual
annotation, as leaving this task to the hands of a
parsing model enables the annotator to concentrate
on the more complex decisions during annotation.

no. Label 1 Label 2 F1

1 advmod:nmod compound:adv 0.333
2 obl:dir obl:loc 0.333
3 obl:loc obl:dir 0.283
4 compound:case compound:adv 0.222
5 advcl ccomp 0.188
6 advmod:loc advmod:dir 0.161
7 xcomp:pred amod:pred 0.154
8 obl:mod obl:arg 0.149
9 obl:loc obl:mod 0.143

10 obl:mod obl:loc 0.126

Table 6: Top 10 confusions of the combined model on
the test set measured by F1. Recall that optimal F1 for
different tags is 0.

Being conscious of the weaknesses of a parser
and hence the likely errors in a pre-annotated text
is important for effectively utilising the parser out-
put in manual annotation. Secondly, the notion
of frequently confused labels enables future im-
provement of the parsing model as new data can be
annotated or corrected with special regard to these
confusions. Table 6 reports on the 10 most frequent
confusions of labels measured by an equivalent of

an F1 score.9 Challenging distinctions seem to lie
between directional and locative oblique modifiers
and adverbs, in differentiating between argument
and modifier status as well as in discriminating the
different subtypes of obl introduced by Dipper et al.
(2024). These three sources of confusion within
the parser output resemble in the error analysis in
Dipper et al. (2024) reporting on annotation dif-
ferences between two human annotators. These
parallels hint to more fundamental problems than
deficient training including uncertainty in meaning
and valence of MHG predicates. Further research
and familiarisation with these topics by the anno-
tators resulting in higher accuracy in the training
data could possibly decrease the F1 scores of these
confusions.

5.3 Effects of sentence length

According to Ortmann (2021), Middle High Ger-
man is known for its complex and deeply embedded
syntactic structure and remarkably high variation
in sentence length. Presumably, the unusual length
of some sentences in the data at hand can also be
explained by the text genre being mostly religious
texts and poetry. The data contain sentences of up
to 88 tokens, as shown in Figure 1. The test set
of the combined model reflects this high variation
with an average sentence length of 18.23, a median
of 15 and a maximum of 88 tokens per sentence.

Figure 1: Distribution of sentence length in the test set
of the combined model (MHG+ModG).

To gain an understanding of the effects of sentence
length on the model’s accuracy and to improve the
parser’s utility in pre-annotation, Table 7 presents
the evaluation scores separate for each quantile

9F1 is calculated as follows:

2 ∗ a1l1 ∗ a2l2
a1l1 + a2l2

with a1, a2 as the annotators and l1, l2 as the labels annotated
by the respective annotator. Possible values are between 0
and 1, where 1 means perfect agreement if l1 = l2, and 0
means perfect disagreement if l1 ̸= l2. Thus, the measure
corresponds to the F1 score if one of the annotators is treated
as the gold standard.



of sentence length as well as for the outliers as
calculated by the scripts from the CoNLL 2018
UD Shared Task (Zeman et al., 2018). As above
custom subtypes have been mapped to their original
UD labels. The reliability of the parser output for
different sentence lengths is important for human
annotators as they can decide to concentrate on
those sentences with problematic lengths and hence
boost efficiency of the annotation.

As can be expected, all scores peak in the first
quantile with sentences consisting of three to ten
tokens and are lowest in the report for the outliers
including sentences with 46–88 tokens. What first
attracts attention is the strikingly high UAS in the
first quantile, which can be ascribed to the few op-
portunities for syntactic variation in short sentences
and the simple syntactic structures resulting from
this circumstance, including the low number of sub-
ordinate clauses, which have been presented as a
source of confusion before. What is also striking is
the development of all scores in between the first
quantile and the outliers. Where one could have
expected a rather linear decline of all scores pro-
portional to sentence length, Table 7 shows a drop
from first to second quantile followed by increasing
LAS, CLAS, MLAS, and BLEX up to the fourth
quantile from about three points in percentage on
each score. Only the UAS is stable at around 92.5
in each of these three quantiles – it then decreases
to a score of 90.66 for the outliers. This promises
high structural stability of the parser output even
across sentences highly varying in length.

Q SL UAS LAS CLAS MLAS BLEX

Q1 3–10 97.28 87.22 89.96 86.87 88.96
Q2 11–15 92.44 83.63 77.98 77.37 77.98
Q3 16–24 92.87 84.88 79.22 78.21 79.22
Q4 25–45 92.42 86.15 80.16 79.16 80.16
OL 46–88 90.66 82.46 74.00 73.00 74.00

Table 7: Evaluation scores of the sentences parsed by the
combined model separately for each quantile (Q1-4) of
sentence length and outliers (OL). Reported are sentence
length (SL) as well as UAS, LAS, CLAS, MLAS and
BLEX.

We can conclude that short sentences of up to
ten tokens are parsed very reliably regarding arcs
as well as labels and that the UAS and therefore
the structural quality of the parsed output declines
with sentence length, but that labelled scores are
not as affected by token counts of up to 45. Outliers
with extreme counts of up to 88 tokens have to be

handled with care, but even here the parsing model
is evaluated with scores of 90.66 for UAS and 82.46
for LAS, which are extraordinarily stable despite
the the extreme sentence length. These insights
should be kept in mind during manual correction
of the parser output.

6 Discussion and Future Work

This paper presented the training and evaluation of
a dependency parser of Middle High German in the
Universal Dependencies framework. The highest-
scoring parsing model reaches state-of-the-art re-
sults in all reported evaluation metrics and hence
is a satisfactory achievement of the initial goal. As
this parser is the first of its kind for MHG and only
one of the few for historical languages in general, it
constitutes a striking progress for the representation
of historical languages in contemporary linguistic
frameworks such as UD. A growing MHG treebank
emerging from a reliable cycle of automatic parsing
and manual correction will bring great benefit to
linguistic research. That includes historic as well as
diachronic research on German syntax and on the
development of the German language in general.
Parsing unseen data and replacing annotation from
scratch with manual correction of the automatically
parsed output will speed up data production and
benefit treebank development. The main strengths
of the presented model are its structural stability
represented in high UAS scores and the reliable
parsing of basic syntactic elements as well as par-
ticularly repetitive parts of the annotation task. An
additional success is the utilisation of modern Ger-
man as a support language for syntactically parsing
low-resource MHG. This cross-lingual approach
raises hopes for a joint multi-lingual parser for var-
ious stages of historical German paving the way
for treebanks of all stages of historical German
within the same theoretical framework. Aside from
all success, the error analysis points out room for
improvement on some frequently confused labels,
which demonstrate problematic decisions concern-
ing some more fundamental linguistic distinctions
between argument and modifier status. Further
manual annotation and correction efforts on MHG
data need to be made to achieve reliable predictions
concerning this question as well as expand the set
of potential training data.

Further efforts on improving the parser could
include a delexicalised approach to cross-lingual
parsing or training customised embedding mod-



els on historical data instead of utilising the ones
trained on modern German, if delexicalisation does
not emerge as the method of choice. Incorporat-
ing further historic stages as represented in the
reference corpus of Early New High German (ReF
Wegera et al., 2021) by for example mapping the
syntactic annotations of the Indiana Corpus (Sapp
et al., 2023) or the Mercurius Treebank (Demske
et al., 2004) to the UD schema could pave the way
to a joint parsing model for different historic stages
of the German language. A more practical ap-
proach for future improvements is the usage of an
updated version of the utilised corpus to eliminate
outdated labels as well as incorporate clarifications
for the problematic distinctions within the proposed
subtypes.

This work is part of the beginning of the devel-
opment of a Middle High German treebank embed-
ded in the Universal Dependencies framework. The
first manual annotations published by Dipper et al.
(2024) and the first parsing model published with
this paper constitute the starting point of the cyclic
process of treebank development to fill the void of
dependency treebanks of historical German.

Limitations

Aside from all success, even the highest-scoring de-
pendency parsing model presented in this paper has
its limitations. The fine-grained error analysis pre-
sented in Section 5.2 illustrates frequent confusions
and hints at likely errors present in automatically
parsed data. On a larger scale, these errors reflect
unresolved linguistic discussions or ambiguities as
for example the distinction between argument and
modifier status. Unresolved questions in contem-
porary research are of course represented in the
data and therefore reproduced by the model, so the
output has to be evaluated and utilised with regard
to these conflicts.

On a higher level, automatic parsing models in
their early phases – especially when trained on
limited amounts of data – can not replace manual
efforts. This paper made it very clear that these
models are designed for pre-annotation and not for
purely automatic parsing. To reach this goal, the
cycle of parser and treebank development first has
to be repeated time and again.

Ethical Considerations

This paper complies with the ACL Ethics Policy10.
The development of parsing models aims at facili-
tating manual annotation efforts and therefore mo-
tivate further scientific research and debate. In this
case, it even supports counter-balancing the under-
representation of historical treebanks in modern
frameworks. Of course it has to be kept in mind
that automatic pre-annotation can reproduce biases
represented in the utilised data and therefore has to
be applied with care. The thorough error analysis
and evaluation presented in this paper should sup-
port the sensible application of the trained models.
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uation scores of all trained models as well as of
all labels present in the data sets. The first five
rows of Table 8 illustrate parameter tuning with
different combinations of learning rate and utilised
pre-trained embedding models.
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no. data set lr emb char min steps UAS LAS CLAS MLAS BLEX

1 MHG-cur 0.003 ✓ ✓ 41 12,100 91.74 86.65 79.48 78.19 79.48
2 MHG-cur 0.002 ✓ ✓ 29 8,700 91.99 86.30 78.58 77.37 78.58
3 MHG-cur 0.003 ✓ × 25 11,800 91.89 86.05 78.44 77.06 78.44
4 MHG-cur 0.003 × ✓ 46 12,800 91.28 85.84 78.26 76.79 78.26
5 MHG-cur 0.003 × × 20 10,100 91.99 86.40 78.86 77.48 78.86
6 MHG-all 0.003 ✓ ✓ 53 15,200 91.68 85.63 77.93 76.43 77.93
7 MHG+ModG 0.003 ✓ ✓ 112 30,600 92.15 86.85 79.69 78.90 79.69
8 MHG+ModG 0.002 ✓ ✓ 50 13,700 92.95 88.06 81.57 80.75 81.57

Table 8: Evaluation scores of trained models (data sets), reporting learning rate (lr), usage of word (emb) or
character (char) embeddings, run time (min), number of steps (steps) as well as UAS, LAS, MLAS, CLAS and
BLEX calculated on the test set. Model 1, 6, and 8 are the ones presented in Section 5.

Label Precision Recall F1 #Label Label Precision Recall F1 #Label

compound:prt 1.0000 1.0000 1.0000 15 det:predet 0.5000 1.0000 0.6667 2
punct 0.9987 1.0000 0.9994 771 parataxis 0.6154 0.6423 0.6286 137
case 0.9823 0.9858 0.9841 282 compound:pav 0.5556 0.7143 0.6250 7
det 0.9810 0.9842 0.9826 631 expl:pv 0.5333 0.7273 0.6154 11
amod 0.9482 0.9581 0.9531 191 appos 0.6053 0.5476 0.5750 42
mark 0.9538 0.9483 0.9510 174 flat 0.6667 0.5000 0.5714 4
root 0.9375 0.9375 0.9375 304 vocative 0.6098 0.5208 0.5618 48
cc 0.9355 0.9355 0.9355 124 aux:pass 0.5000 0.6364 0.5600 11
aux 0.9384 0.9195 0.9288 149 nmod:det 0.5000 0.6250 0.5556 8
nsubj 0.8874 0.8758 0.8816 612 xcomp:pred 0.6000 0.5000 0.5455 12
xcomp 0.8571 0.8824 0.8696 34 ccomp 0.5957 0.4308 0.5000 65
advmod 0.8113 0.8889 0.8483 324 obl:loc 0.4615 0.4545 0.4580 66
advmod:tmp 0.8438 0.8438 0.8438 96 expl 0.4643 0.4483 0.4561 29
cop 0.8571 0.8276 0.8421 87 dislocated 0.6667 0.3158 0.4286 19
aux:cop 0.8571 0.8182 0.8372 22 obl:compar 0.6667 0.2857 0.4000 7
discourse 0.8333 0.8333 0.8333 18 obl:dir 0.3333 0.3415 0.3373 41
nummod 1.0000 0.7143 0.8333 7 advmod:dir 0.4444 0.2353 0.3077 17
obl:tmp 0.9048 0.7600 0.8261 25 obl:arg 0.4444 0.1739 0.2500 23
nmod 0.8444 0.7308 0.7835 104 acl 0.6667 0.1053 0.1818 19
iobj 0.7711 0.7485 0.7596 171 obl 0.0 0.0 0.0 1
obj 0.6988 0.8109 0.7507 349 nmod:part 0.0 0.0 0.0 9
conj 0.7241 0.7500 0.7368 112 nmod:arg 0.0 0.0 0.0 1
acl:relcl 0.6909 0.7451 0.7170 51 csubj 0.0 0.0 0.0 5
compound:case 0.7143 0.7143 0.7143 7 orphan 0.0 0.0 0.0 3
advmod:loc 0.7778 0.6034 0.6796 58 compound:adv 0.0 0.0 0.0 2
obl:mod 0.6232 0.7350 0.6745 117 amod:pred 0.0 0.0 0.0 3
advcl 0.6220 0.7315 0.6723 108 advmod:nmod 0.0 0.0 0.0 7
hypopara 0.5000 1.0000 0.6667 1 advcl:relcl 0.0 0.0 0.0 0

Table 9: Evaluation scores of labels sorted by F1, reporting precision, recall, F1 and label count produced by the
combined model (model 8) on the test set.


	Introduction
	Related Work
	Data
	Methods
	Results
	Parser Evaluation
	Error Analysis
	Effects of sentence length

	Discussion and Future Work
	Appendix

