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Abstract

Retrieval Augmented Generation (RAG) is be-
coming an essential tool for easily accessing
large amounts of textual information. However,
it is often challenging to determine whether the
information in a given response originates from
the retrieved context, the training, or is a result
of hallucination. Our contribution in this area is
twofold. Firstly, we demonstrate how existing
datasets for information retrieval evaluation can
be used to assess the ability of Large Language
Models (LLMs) to correctly identify relevant
sources. Our findings indicate that there are
notable discrepancies in the performance of
different current LLMs in this task. Secondly,
we utilise the datasets and metrics for citation
evaluation to enhance the citation quality of
small open-weight LLMs through fine-tuning.
We achieve significant performance gains in
this task, matching the results of much larger
models.

1 Introduction

In Retrieval Augmented Generation (RAG) (Lewis
et al., 2020) the generation process of a language
model is augmented at inference time with addi-
tional textual information retrieved from a corpus
of documents. This approach aims to factually
ground LLMs, reduce hallucination and provide
access to information after the knowledge cut-off
of the language model (Lewis et al., 2020).

Our focus is on the evaluation and improvement
of RAG systems. We believe that it is necessary to
correctly reference the information used for answer
generation in order to make the factual accuracy
verifiable by users in a practical setting. While
there are ways to evaluate retrieval performance
(Thakur et al., 2021; Muennighoff et al., 2023)
and also factual correctness (Es et al., 2024; Chen
et al., 2024), we see a research gap in evaluating
the ability of models to correctly reference their
sources. In this paper we present RAGE (Retrieval

Augmented Generation Evaluation), a framework
focused on evaluating the citation performance of
language models used for RAG. Furthermore, we
show how the citation evaluation metrics of RAGE
can be used to directly improve the citation quality
through fine-tuning.

2 Related Work

Several works have focused on the evaluation of
RAG systems. Es et al. (2024) evaluate several
different aspects of RAG including faithfulness, an-
swer relevance and context relevance. Chen et al.
(2024) propose a benchmark focusing on noise ro-
bustness, negative rejection, information integra-
tion and counterfactual robustness. Neither con-
sider the attribution of referenced documents.

Gao et al. (2023) provide insights into how RAG
systems can be prompted to generate text with ci-
tations. They also present a way of assessing the
citation quality of LLMs, which includes the use of
entailment models to assess the entailment of gener-
ated model responses and cited passages. Our work
differs by using lightweight information retrieval
datasets for citation evaluation and by having a
clearly structured dataset format, making it more
adaptable to specific use-cases.

Concurrently to us, Li et al. (2024) research fine-
tuning to improve source attribution in RAG and
developed a somewhat similar approach to ours.
They also use Supervised Fine Tuning (SFT) for
aligning model responses to a desired format, but
do so using public datasets rather than generating
new synthetic data as we do. We argue that the use
of synthetic data makes the process more adaptable
to specific use cases. They use preference optimisa-
tion (Rafailov et al., 2023) to optimise for citation
quality, whereas we directly use citation quality
metrics as a reward function for Proximal Policy
Optimization (PPO), which can be automated more
directly.



3 The RAGE Framework

In this section we describe RAGE (Retrieval Aug-
mented Generation Evaluation), our automatic eval-
uation framework for RAG systems.1 RAGE is de-
signed to assess the performance of a RAG system
in correctly referencing the documents it used for
answer generation.

Typically RAG involves two steps, retrieval of
relevant documents and generation augmented with
the relevant texts.

RAGE specializes in assessing the augmented
generation component, specifically its ability to cite
its sources. We define this component as any sys-
tem that takes in a query with a list of documents
and generates an answer to the query whilst refer-
encing the documents used for answer generation.

The fundamental idea of RAGE is to present
augmented generation systems with a query accom-
panied by both relevant and irrelevant documents,
then assessing the systems’ capability to accurately
identify and cite the relevant sources.

3.1 Datasets

The design of RAGE is based on ideas from the
evaluation of Information Retrieval (IR) systems.
IR systems are typically evaluated using datasets
consisting of three distinct components: a corpus
of documents, a set of queries, and a mapping table
that indicates for each query the relevance of some
specific documents (Thakur et al., 2021).

For RAGE, we extend this dataset structure with
two additional mapping tables. We introduce a
mapping of queries to irrelevant and to seemingly
relevant documents in addition to the mapping of
relevant documents. Documents are seemingly
relevant when they appear as if they may contain
the information necessary to answer a given query
but don’t actually do. This results in three distinct
mapping tables in addition to the documents and
queries.

We base our experiments on the Natural Ques-
tions (Kwiatkowski et al., 2019) dataset which was
designed for the question answering domain and
use the version adjusted for information retrieval
by Thakur et al. (2021).2 We argue that datasets
designed for question answering are well-suited for

1The codebase is available at https://github.com/othr-
nlp/rage_toolkit.

2We have also experimented with the HotpotQA (Yang
et al., 2018) dataset. That dataset yields similar results which
we here omit for brevity.

evaluating RAG systems due to the typical applica-
tion of RAG in this domain.

We create the mapping of irrelevant documents
by randomly sampling the document corpus while
excluding the relevant documents for a given query.

For the mapping of seemingly relevant docu-
ments, we generate a vector representation of all
documents and queries using the multilingual-e5-
small embedding model (Wang et al., 2024). Subse-
quently, for each query, we compare its embedding
to all the document embeddings using an L2 simi-
larity measure, while again excluding the relevant
documents. The ten documents that show the high-
est similarity to the given query were mapped.

Other IR datasets can trivially be converted to the
required format by scripts that are part of RAGE3.

3.2 Procedure

The evaluation process employed in RAGE follows
two steps.

Step 1: Create a relevancy mixture of docu-
ments. For each query, a mixture of relevant,
irrelevant and seemingly relevant documents is cre-
ated. The proportions of relevant, irrelevant, and
seemingly relevant documents in the mixture for
each query can be freely adjusted in an evaluation
run. A prompt is generated containing processing
instructions, the document mixture, and the query
itself. The prompt is then passed to the augmented
generation component under evaluation. An exam-
ple of a prompt and a LLM response used in our
experiments is given in Appendix A.

Step 2: Analyze LLM answer and compute per-
formance metrics. The LLM response is anal-
ysed w.r.t. various performance metrics including
Citation-Precision, Citation-Recall, the number of
Distinct Citations, and Response Length.

Citation-Precision is defined as the ratio of rele-
vant citations to the total number of citations within
the response. Similarly, Citation-Recall is deter-
mined by the ratio of relevant distinct citations to
the total number of relevant documents included
in the document mixture during the first step. Re-
sponse Length is measured by the total number
of words, and finally Distinct Citations counts the
unique citations within the response. Addition-
ally, the harmonic mean of Citation-Precision and
Citation-Recall yields the F1-Score.

3Some datasets already converted to the RAGE format are
available at https://huggingface.co/othr-nlp.

https://github.com/othr-nlp/rage_toolkit
https://github.com/othr-nlp/rage_toolkit
https://huggingface.co/othr-nlp


Model F1 Score Precision Recall Answer Length Cited Distinct

Baseline .16 .14 .19 - 1.47

LLaMA 2 7B .47 .41 .55 77.7 1.88
LLaMA 2 13B .45 .40 .51 67.6 1.63
LLaMA 2 70B .66 .64 .67 41.3 1.40

Mistral 7B .61 .51 .77 45.8 2.17
Mixtral 8x7B .73 .64 .85 41.8 1.83

GPT 3.5 .78 .75 .80 18.4 1.34
GPT 4 .82 .81 .83 21.1 1.29

Table 1: RAGE evaluation results for different state-of-the-art LLMs evaluated on the Natural Questions
(Kwiatkowski et al., 2019) Dataset from the BEIR Benchmark (Thakur et al., 2021). As a baseline we include an
augmented generation system which randomly cites 1-3 of the provided documents.

The metrics are calculated for each query and
then averaged to determine the final scores for a
given evaluation dataset.

3.3 Evaluation Setup
In our experiments, we evaluate citation perfor-
mance of some state-of-the-art LLMs. To achieve
this, we first combine the query and the mixture
of relevant, irrelevant, seemingly relevant docu-
ments into a prompt that is then to be passed to the
LLM in question. For our experiments, we used
1-3 relevant, 3 irrelevant and 3 seemingly relevant
documents for all runs.

The prompt furthermore contains processing in-
structions which state to use only the information
contained within the documents and to cite in a
predefined format. Prompt generation is identical
for all augmented generation components (and has
not undergone much prompt engineering). For an
example of prompt, query and LLM response, we
again refer to Appendix A.

We selected LLMs of differing model size in
terms of parameters, availability (open- or closed-
weight) and performance on common benchmarks
for our trial run of RAGE.

The evaluation was performed on the Natural
Questions dataset (Kwiatkowski et al., 2019) with
the described adaptations (Section 3.1).

3.4 Results
The results of our evaluation are shown in Table 1.
Baseline performance is significantly surpassed by
all models, indicating an understanding of the task
and citation format.

Smaller models tend to produce longer answers
and more distinct citations which leads to good

recall but poorer precision. There is a tendency for
larger models to perform better.

GPT-3.5 and GPT-4 (OpenAI, 2023) perform
best out of the box and produce short answers and
few distinct citations, indicating concise responses.

To test the robustness of RAGE, we also con-
ducted experiments with different proportions in
the document mixtures. The results indicate that
RAGE works consistently well across these varia-
tions, though higher proportions of seemingly rel-
evant documents increase task difficulty. We in-
cluded those results in Appendix B.

4 Fine-Tuning for Citation Quality

In this section, we describe our approach to fine-
tune open-weight LLMs for improved citation qual-
ity. We use the metrics and datasets as defined
above for RAGE and use synthetic target data pro-
duced by GPT-3.5.

4.1 High-level Approach
Our fine-tuning technique to improve citation qual-
ity is inspired by Ouyang et al. (2022). They fine-
tune LLMs to follow human instructions by first ap-
plying SFT to align the model outputs to a desired
format and subsequently using PPO (Schulman
et al., 2017) to further align to human preferences.
Similarly, our approach is also twofold:

Step 1: Use supervised fine-tuning (SFT) to align
model outputs to a preferred answer format.
The idea of SFT for language models is to continue
the self-supervised next token prediction objective
of the pretraining phase with labeled task-specific
data. For our models, we use synthetic data from
GPT-3.5, which showed a concise answer style



Model Tuning F1 Score Precision Recall Answer Length Cited Distinct

LLaMA 2 7B .47 .41 .55 77.7 1.88
SFT .47 .47 .46 18.7 1.25
PPO .53 .43 .68 142.3 2.92
SFT+PPO .70 .74 .66 18.1 1.05

Mistral 7B .61 .51 .77 45.8 2.17
SFT .56 .57 .55 20.6 1.19
PPO .72 .65 .80 40.5 1.68
SFT+PPO .70 .74 .66 16.4 1.02

GPT 3.5 .78 .75 .80 18.4 1.34

Table 2: Evaluation results for fine-tuned models evaluated on Natural Questions (Kwiatkowski et al., 2019). Base
models and GPT-3.5 are included for comparison.

with high precision and recall, to adjust the answer
format of the smaller models.

Step 2: Improve citation-quality with reinforce-
ment learning via proximal policy optimization
(PPO). Reinforcement learning is a useful ap-
proach for language model fine-tuning, as it re-
quires only a quality measure of the generated
sequences, known as the reward function, rather
than labeled example responses. We use a reward
function based on the RAGE evaluation metrics
outlined above and the PPO algorithm to directly
improve citation quality. The reward function and
the datasets are described in more detail later. PPO
is applied separately or on top of the SFT process.

4.2 Fine-Tuning Datasets

This section presents the composition of the
datasets we used for SFT and PPO fine-tuning.

SFT: Inspired by Mukherjee et al. (2023), we used
the performance gap of the small 7B models to
GPT-3.54 to generate synthetic training data. As
shown in Table 1, GPT-3.5 provides good preci-
sion and recall with a short answer length, making
it ideal for aligning the smaller models. We used
the Natural Questions (Kwiatkowski et al., 2019)
dataset and the same process as in the evaluation
to generate a set of prompts for GPT-3.5. We then
collected the responses of GPT-3.5, combined them
with the prompts and added model-specific special
tokens to create the final SFT dataset. 250 queries
of Natural Questions were withheld from the train-
ing dataset for evaluation, leaving a total of 3201
fine-tuning examples.

4The exact model version is gpt-3.5-turbo.

PPO: For PPO fine-tuning we also generated
prompts as described in the evaluation section,
each containing citation instructions, documents
and query. We generated the prompts using the
Natural Questions (Kwiatkowski et al., 2019) and
HotpotQA (Yang et al., 2018) datasets, withhold-
ing 250 examples from each for evaluation, thereby
compiling a training dataset of 10,347 examples.

4.3 PPO Reward Function
Instead of using a reward model for reward gen-
eration as done by Ouyang et al. (2022), we use
a simple reward function by calculating the arith-
metic mean of citation precision and citation recall:

Reward =
Recall + Precision

2

This function directly rewards improved citation
quality without the need for an expensive reward
model training. To prevent the model from exploit-
ing the reward function, we use a KL-penalty as
described by Ouyang et al. (2022).

4.4 Experimental Details
We used the instruction fine-tuned versions of
Llama2 7B (Touvron et al., 2023) and Mistral 7B
(Jiang et al., 2023) as bases. For both base models,
three versions were trained and evaluated: SFT-
only, PPO-only and PPO+SFT. We use QLoRA
(Dettmers et al., 2023) with 4-bit quantization and
a rank of 64 for the adaptation matrices for both
SFT and PPO. SFT was performed for three epochs
and PPO for one epoch on the respective dataset.

4.5 Results and Discussion
The fine-tuned models are evaluated via RAGE
using the 250 queries withheld from the fine-tuning



datasets. Results are shown in Table 2.
The PPO+SFT model versions show that fine-

tuning leads to gains compared to the base mod-
els and they approach GPT-3.5’s citation precision
despite the significantly smaller model sizes. Mis-
tral 7B PPO+SFT experiences a decrease in recall,
likely attributable to the significantly shorter an-
swer lengths imposed by SFT. Mistral 7B PPO-
only achieves the highest scores in terms of F1-
score and recall among the fine-tuned models; how-
ever, it exhibits significantly lower precision and
produces longer answers compared to PPO+SFT.
For both, SFT reduces the average answer length
to that of GPT-3.5, while resulting in a loss of re-
call. Interestingly, training observations indicate
that the shorter answer lengths after SFT, enhance
PPO training, improving reward gains and reducing
training times. This efficiency is likely due to faster
answer generation and fewer token generation steps
for reward distribution.

The results clearly indicate that fine-tuning is
effective in improving citation performance for
RAG. We find that fine-tuning improves the F1-
score by .10 to .20 points or a relative reduction of
F1 error of 28 - 43 %.

5 Ethical Considerations

All experiments performed in this work were con-
ducted in accordance with the ACM Code of Ethics.
We believe that there should be no conflicts and
that this work does not raise any ethical issues. All
datasets used are publicly available or synthetically
generated. Both cases are referenced accordingly.
We do not use personal data or other sensitive in-
formation.

6 Limitations

The major limitation of our work is that RAGE con-
siders only citation quality for evaluation. More
aspects have to be covered to provide a complete
RAG evaluation framework. At the moment, we
refer to other work to include aspects like measures
for factual correctness, how good information from
the documents is integrated and a general mea-
sure of how fluent the answer is. This especially
becomes relevant when evaluating the fine-tuned
model versions as the improvement in citation qual-
ity does not necessarily come with an improvement
in the other metrics or could even worsen perfor-
mance in some cases. Tests of our models do not
indicate this, but it is still important to consider

when applying them in practice. Also currently,
there are only two evaluation datasets converted
to the format used in RAGE. A greater variety of
datasets would further improve the significance of
the evaluation.
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and seemingly-relevant documents. The response
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B Effects of Varying the Relevancy
Mixture

Figure 2 shows the effects of using different mix-
tures of relevant, irrelevant and seemingly-relevant
documents for a given query on citation precision
and recall. The number of relevant documents was
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Query: When did hollywood become the centre of the film industry?

Prompt:
Instruction: Write an accurate, engaging, and concise answer for the given question using only the provided documents
(some of which might be irrelevant) and cite them properly using the format [< doc_id >]. For example if a particular
information is from document 3 reference it with [3]. Use an unbiased and journalistic tone. Always cite for any factual
claim. When citing several search results, use [1][2][3]. Cite at least one document and at most three documents in each
sentence. If multiple documents support the sentence, only cite a minimum sufficient subset of the documents.

Documents:

[1]: Hollywood was a small community in 1870 and was incorporated as a municipality in 1903. It was consolidated

with the city of Los Angeles in 1910, and soon thereafter a prominent film industry emerged, eventually becoming the

most recognizable film industry in the world.

[2]: By 1912, major motion-picture companies had set up production near or in Los Angeles. In the early

1900s, most motion picture patents were held by Thomas Edison’s Motion Picture Patents Company in New Jersey,

and filmmakers were often sued to stop their productions. To escape this, filmmakers began moving out west, where

Edison’s patents could not be enforced. Also, the weather was ideal and there was quick access to various settings. Los

Angeles became the capital of the film industry.

[3]: The history of the Forest Service [. . . ]

[. . . ]

[6]: The cinema of the United States, often metonymously referred to as Hollywood [. . . ] Since the 1920s,

the film industry of the United States has had higher annual grosses than any other country’s [. . . ]

[. . . ]

Question: When did hollywood become the centre of the film industry?

Remember to answer as short as possible.

Answer: Hollywood became the center of the film industry in the early 1900s as major motion-picture com-

panies moved there to escape patent disputes and take advantage of ideal weather and easy access to various settings

[1][2]. By the 1920s, Hollywood produced the largest number of films and had the highest annual grosses in the film

industry [6].

Figure 1: An example prompt and LLM response produced during the evaluation process. The query was taken
from the Natural Questions (Kwiatkowski et al., 2019) dataset contained in the BEIR benchmark (Thakur et al.,
2021). The prompt was automatically generated and contains the documents assembled from relevant, irrelevant and
apparently relevant documents as described in Section 3.2. The structure of the prompt template essentially follows
the concept presented in (Gao et al., 2023). The answer was generated by a Mistral 7B model (Jiang et al., 2023).
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Figure 2: Comparative evaluation of mean citation precision (Figure 2a) and recall (Figure 2b) across three document
relevancy mixtures in the Natural Questions (Kwiatkowski et al., 2019) dataset. The mix setup includes 1-4 relevant,
3 irrelevant, and 3 seemingly relevant documents. The irrelevant setup consists of 1-4 relevant and 6 irrelevant
documents, with no seemingly relevant documents. The seemingly-relevant setup features 1-4 relevant and 6
seemingly relevant documents, excluding any irrelevant documents.


