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Abstract
We revisit the phenomenon of syntactic com-
plexity convergence in conversational interac-
tion, originally found for English dialogue,
which has theoretical implication for dialog-
ical concepts such as mutual understanding.
We use a modified metric to quantify syntac-
tic complexity based on dependency parsing.
The results show that syntactic complexity con-
vergence can be statistically confirmed in one
of three selected German datasets that were
analysed. Given that the dataset which shows
such convergence is much larger than the other
two selected datasets, the empirical results in-
dicate a certain degree of linguistic generality
of syntactic complexity convergence in conver-
sational interaction. We also found a different
type of syntactic complexity convergence in
one of the datasets while further investigation
is still necessary.

1 Introduction
The interactive alignment theory (Pickering and
Garrod, 2004) states that, in interaction, mutual
understanding is reached through the support of
adaptive processes, which result in a reduction of the
communicative efforts of the dialogue participants.
Pickering and Garrod (2004) have mentioned the co-
adaptivity of interlocutors’ verbal behaviour on the
following six levels: phonetic, phonological, lexical,
syntactic, semantic and situational. Several studies
have comprehensively explored the co-adaptivity
in interlocutors on the linguistic structure of the
above-mentioned levels. For example, the empiri-
cal results from perception tasks in Pardo (2006)
verify the increasing similarity of the phonetic reper-
toire, which indicates phonetic convergence during
conversational interaction. Garrod and Anderson
(1987), in their lab-based study, show that inter-
locutors in conversational interaction coordinate
their utterances to form a mutually acceptable form
of description, which indicates the convergence of
lexical choice in interaction.

In this paper, we focus on linguistic alignment
on the syntactic level. Our argument is that with
the development of mutual understanding during
conversational interaction, certain types of syntac-
tic convergence can be observed. Previous studies
found alignment of syntactic complexity, but only
for English data, which lacks linguistic generality.
Therefore, we try to find more empirical evidence to
show that syntactic alignment happens in other lan-
guages, such as German, too. The goal of this paper
is to revisit the syntactic complexity convergence
phenomenon discussed by Xu and Reitter (2016)
and test whether it holds for German dialogue data,
too. To this end, we selected the following three con-
versation datasets for German: MUNDEX (Türk
et al., 2023), TexPrax (Stangier et al., 2022), and
VERBMOBIL (VM2) (Kay, 1992).

2 Background

2.1 Dependency Structure

In this paper, we quantify syntactic complexity with
the help of dependency parsing (Kübler et al., 2009).
We follow the definition of dependency structure
by Liu et al. (2023). A linguistic structure, such as a
dependency structure, consists of relations of pairs
of natural language tokens. Let Σ denote a finite
set of natural language tokens (the vocabulary).
Let𝑉 = {𝑤1, 𝑤2, . . . , 𝑤𝑁 } denote a spanning node
set with its element 𝑤𝑖 ∈ Σ∗ (Kübler et al., 2009).
The element 𝑤𝑖 is a ‘head’ or a dependent in a
dependency structure. The spanning node set 𝑉
represents a sentence 𝜔 = 𝑤1𝑤2 . . . 𝑤𝑁 . The de-
pendency structure of the sentence 𝜔 is then a typed
structure 𝜁 = (𝑉, 𝐸, 𝑅), where 𝑅 is the set of depen-
dency relation types, 𝐸 ⊆ 𝑉 ×𝑉 × 𝑅 the set of arcs,
if (𝑥, 𝑦, 𝑟) ∈ 𝐸 , it holds that ∀𝑟 ≠ 𝑟 ′, (𝑥, 𝑦, 𝑟 ′) ∉ 𝜁 .
Under the definition above, a dependency structure
is typically a directed acyclic graph (DAG) and the
dependency relations within the structure are binary
and asymmetric.



We use a statistic and neural sequential model
based parsing method, namely the StanfordNLP
parser Stanza (Qi et al., 2018) for our goal in this
paper. Stanza is trained upon the Universal Depen-
dencies (UD) Treebanks (Nivre et al., 2020). UD
Treebanks store the information about the depen-
dency relations among the lexicon, i.e., given a
word, what are the most likely words that can serve
as its heads or dependents in a dependency structure.
The core idea can be mathematically expressed as
follows based on Zhang et al. (2016):

𝑃head(𝑤 𝑗 | 𝑤𝑖 , 𝜗) =
exp(𝑔(𝑤𝑖 , 𝑤 𝑗))∑ |𝜗 |
𝑘=0 exp(𝑔(𝑤𝑖 , 𝑤𝑘))

where 𝜗 is the lexicon, 𝑔(·) is a function which
outputs the association score of one word choosing
the other word as its head. 𝑃head(𝑤 𝑗 | 𝑤𝑖 , 𝜗) thus
tells us what is the most likely head word 𝑤 𝑗 given
the dependent word 𝑤𝑖 and the lexicon. With the
generated probability information, the maximum
spanning tree algorithm, e.g., Chu-Liu/Edmonds
algorithm (Chu, 1965; Edmonds et al., 1967) is then
used to decide what is the most likely dependency
structure for a given sentence.

2.2 Syntactic Complexity
The topic of syntactic complexity has been of signif-
icant interest for researchers working within either
functional (cognitive) or computational frameworks
of linguistics. According to Szmrecsányi (2004),
syntactic complexity refers to syntactic structures
which entail increasing cognitive load to parse and
process. Sentences that are ranked as more syntac-
tically complex are considered more difficult for
humans to process (Lin, 1996).

Szmrecsányi (2004) further summarizes three
measures for evaluating the syntactic complexity,
namely word counts, node counts, and a so-called
“Index of Syntactic Complexity”. Word counts use
length of a given sentence – number of words, sylla-
bles, intonation units – to approximate the syntactic
complexity, which is based on the straightforward
intuition, that a lengthy sentence tends to be more
structurally complex than a short one. Node count
uses the idea that the more phrasal nodes a linguistic
unit dominates, the more complex a sentence is (e.g.,
Rickford and Wasow, 1995). “Index of Syntactic
Complexity” focuses on percentage of subordinate
clauses (Beaman, 1984) as well as embeddedness
of word forms (Givón, 1991), which is reflected by
the following indicators (i) the number subordinat-
ing conjunctions, e.g., because, since, etc.; (ii) the

number of WH-pronouns, e.g., what, which, etc.;
(iii) embeddedness of the verb forms, e.g., finite or
infinite; (iv) the number of noun phrases.

According to Xu and Reitter (2016), the conver-
gence of syntactic complexity between two speakers
in dialogue correlates to two theories: one is the In-
teractive Alignment theory (Pickering and Garrod,
2004), which combines the development of mu-
tual understanding with linguistic alignment. The
other is the Uniform Information Density hypothe-
sis (Jaeger and Levy, 2006; Jaeger, 2010), which
states that speakers will strive to keep information
density roughly constant. Based on this hypothesis,
if a speaker decreases its information amount, the
other will increase the amount instead. According
to Jaeger and Levy (2006) and Jaeger (2010), in-
formation density is expected to be proportional to
the complexity of syntactic structure. This give us
an implication that in a dialogue, if a speaker’s syn-
tactic complexity is decreasing, the interlocutor’s
syntactic complexity should be increasing. This
implication is consistent with dependency local-
ity theory (DLT; Gibson, 2000), which claims that
comprehension difficulty is associated with some
complex dependency structures. The interplay of
syntactic complexity and language comprehension
has been further investigated in, e.g., Liu (2008),
which shows that, average dependency distance pos-
itively correlates with the comprehension difficulty
(processing effort).

Xu and Reitter (2016) then showed three mea-
sures to quantify the syntactic complexity: sentence
length, branching factors, and tree depth. Tree depth
is used to described how deep a syntactic tree can
grow. The deeper a tree is, the more complex a
sentence is considered. Branching factor reports the
average number of children of all non-leaf nodes
in the parse tree of a sentence. Thus, a syntactic
tree that contains, e.g., more constituents or noun
phrases within a sentence of a given length, is more
complex.

3 Data

In order to check the dynamics of syntactic com-
plexity in conversational interaction, we select the
following three German datasets for our study:

MUNDEX consists of task-oriented dialogues
and focuses on explanation in interaction (Türk et al.,
2023). Each dialogue is a explanation scenario in-
volving a speaker (the explainer) explaining how
to play a board game to a recipient (the explainee).

https://stanfordnlp.github.io/stanza/depparse.html


The dataset is still under construction but in total
it consists of 87 dialogues between dyads of Ger-
man native speakers. At its current stage, speech
diarization was mainly performed automatically
using Whisper ASR (Radford et al., 2022).

TexPrax consists of task-oriented dialogues from
factory workers on how to solve specific technical
issues (Stangier et al., 2022). The data are collected
anonymously using an open source messaging ap-
plication in a simulated factory environment. The
dataset has in total 202 task-oriented German dia-
logues containing 1,027 sentences with sentence-
level expert annotations, such as turn taking labels.

The VERBMOBIL (VM2) dataset (Kay, 1992)
is based on recordings of various appointment
scheduling scenarios, and consists of 30,800 ut-
terances collected in face-to-face interactions. All
utterances are annotated with dialogue acts.

The main difference among the three datasets
is that in MUNDEX, compared to TexPrax and
VM2, one speaker (the explainer) speaks much
more than the other (explainee) in every dialogue.
This property of the data has been well reflected in
our later analysis (e.g., see Figure 2 in Section 5).
While for the other two datasets, utterance length
among the participants is similar. Moreover, VM2
is much larger than the other two selected datasets.

There are two common points among the three
selected datasets. First of all, in each dialogue
there are only two dialogue participants. For the
speaker role assignment, we define the interlocutor
who initiates the dialogue as dialogue initiator,
the other interlocutor who follows the dialogue as
dialogue follower. In this study specifically, we
choose to give the role of dialogue initiator to the
dialogue participant who starts the conversation.
This is based on our observation in the three datasets
that there are no topic shifts in the dialogues. For
example, MUNDEX is based on a pre-defined
scenario, where an explainer explains a board game
to an explainee. Therefore, we do not consider that
we need to shift participant roles, as in Xu and
Reitter (2016), which uses the Switchboard dataset,
where each dialogue may have multiple topic shifts.

Secondly, at the end of the interactions, a certain
level of mutual understanding can be estimated: in
MUNDEX, the explainees are likely to understand
the game rules and to be able to play the game; in
TexPrax, the workers know the technical issues
from their co-worker; in VM2 appointments have
been successfully made in most of the cases. Under

this preposition, in this study, by looking at the
change of syntactic complexity, namely the phe-
nomenon of syntactic complexity convergence, we
assume that we can infer the level of mutual under-
standing with the development of the dialogue.

4 Methods
To quantify the syntactic complexity, we follow
the measures developed in Xu and Reitter (2016),
mainly looking at branching factor, tree depth, and
sentence length. Given that all of the three factors
can influence the syntactic complexity, it makes
sense to quantify the three factors into a single value
to represent the syntactic complexity.

We use the number of heads (word count) as a
normalisation factor. In dependency structure, the
heads are the nodes which have both incoming and
outgoing edges, the tree depths are the maximum
number of arcs a tree can have from its root to a
terminal node. Given two dependency structures
with the same number of heads, if one structure has
bigger length, it indicates that the heads in general
controls more sub-nodes, and thus the structure
is more complex. Given a speaker’s utterance, we
calculate utterance length 𝐿 and use dependency
parsing to get the number of heads 𝛼 as well as the
maximum tree depth 𝛽. The syntactic complexity
𝑆𝐶 of the utterance is thus computed as following:

𝑆𝐶 =

{
𝜆 · 𝐿

𝛼
+ (1 − 𝜆) · 𝛽 if 𝛼 > 0

(1 − 𝜆) · 𝛽 otherwise

where 𝜆 is a tuning factor set to 0.5 by default.
Here we use two German example sentences with

corresponding dependency trees to show what is
considered as syntactically complex. The example
in Figure 1a is a sentence which is considered
syntactically simple based on our definition, its
maximum tree depth is three and it only has three
heads, its sentence length is four. The example in
Figure 1b in contrast is considered syntactically
complex, its maximum tree depth is four and it has
four heads, its length is 8. The quantified syntactic
complexity for the first sentence, according to our
method, is 2.167 (three heads as the root node is
also considered as a head by Stanza parser, tree
depth is three, length is four) while for the second
one it is 3 (four heads as the root node is also
considered as a head by Stanza parser, tree depth is
four, length is eight).

Moreover, utterances in the three selected
datasets have varied length. According to our obser-



(a) Simple dependency structure (translation: “There are three
rounds”).

(b) Complex dependency structure (translation: “So I think I
have explained all important things”).

Figure 1: Two examples showing the dependency struc-
ture syntactic relationships according to UD. Edges are
directed from heads to dependents.

vation, a speaker may produce multiple utterances
before the turn is shifted to a listener, which occurs
frequently in the MUNDEX dataset. Therefore, it is
not rational to calculate syntactic complexity values
on a turn-by-turn basis. As a simple solution, for
both dialogue initiator and follower, we calculate
the syntactic complexity value on an utterance-by-
utterance basis. We perform data separation based
on the role definition mentioned in in Section 3.

5 Results and Discussion

To verify the convergence of syntactic complexity
between two speakers in dialogue, we use a lin-
ear mixed effects model, specifically regression, to
model the dynamics of syntactic complexity (statis-
tics in Table 1, all reported beta coefficient values
are statistically significant). It turns out that among
the three selected datasets, only VM2 shows the
syntactic complexity convergence, as supported by
a negative beta coefficient value for the dialogue
initiators and a positive beta coefficient value for
the dialogue followers, which indicates that the syn-
tactic complexity of the dialogue initiator generally
decreases with the development of the utterance
position. In contrast, the opposite tendency can be
observed for the dialogue followers, where the beta
coefficient value is positive.

As for the other two selected datasets, in
MUNDEX, the beta coefficient value is positive for
both dialogue initiators and followers while in Tex-
Prax, the beta coefficient value is instead negative
for both dialogue initiators and followers, which
indicates that syntactic complexity convergence is
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Figure 2: Comparing the development of syntactic com-
plexity of dialogue initiators (left) and followers (right)
over the course of the interactions in each corpus. Shaded
areas are bootstrapped 95% confidence intervals.

not supported by the statistics.
Looking at the plots in Figure 2, it seems that the

increasing/decreasing tendencies are small but still
obvious in VM2. This can be explained, at least
in part, by the relatively small values of the beta
coefficients. Nevertheless, given that the range of
syntactic complexity values is not so large (see Ta-
ble 2), we assume that the reported effect sizes are
valid. For the MUNDEX dataset, it turns out that di-
alogue followers’ syntactic complexity is gradually
increasing, while dialogue initiators’ syntactic com-
plexity remains quite stable, although it is slightly
increasing as well. We considered this as a different
type of syntactic complexity convergence. One pos-
sible explanations could be that, in MUNDEX’s
scenario, the explainers have to continuously intro-
duce different rules and constraints of the game,
and thus the syntactic complexity value for dia-
logue initiators slightly increased (as evidenced by
the statistics in Table 1). While for the dialogue



Table 1: Beta coefficient report on the three dialogue data
sets (∗ represents statistically significant correlations 𝑝 <

0.05, ∗∗ represents statistically significant correlations
𝑝 < 0.01, and ∗∗∗ represents statistically significant
correlations 𝑝 < 0.001).

MUNDEX TexPrax VM2
Initiator 0.0009∗∗ −0.02∗∗∗ −0.02∗∗∗
Follower 0.14∗∗∗ −0.22∗∗∗ 0.005∗

Table 2: Range of syntactic complexity values for dia-
logue initiators and followers across corpora.

SC Initiators SC Followers
min max min max

MUNDEX 1.5 5.9 1 3.2
TexPrax 1 4.73 1 4.14
VM2 1 4.14 1 4.57

followers, with the development of an explanation,
they got more engaged and thus started to use more
complex structures or produce longer utterances.
In the TexPrax dataset, a general decreasing trend
can be observed for both dialogue initiators and fol-
lowers, which is in general not consistent with the
phenomenon of syntactic complexity convergence.

From an information-theoretic perspective, the
convergence of syntactic complexity between dia-
logue participants reflects the convergence of shared
information (Genzel and Charniak, 2002, 2003),
which is seen as evidence that dialogue participants
are working co-constructively to build common
ground (Clark, 1996). The results reported in this
study show that the convergence of syntactic com-
plexity as a linguistic phenomenon can be observed
in dialogues, (1) in different languages (e.g., in
English and at least partially in German); (2) un-
der different scenarios (e.g., explaining a game in
MUNDEX or making an appointment in VM2).

6 Conclusions

In this paper, we revisit the phenomenon of syntac-
tic complexity convergence by examining it specifi-
cally for German dialogue data. The convergence
of syntactic complexity is assumed to be strongly
related to the uniform information density theory as
well as to the interactive alignment theory, which
correlates the development of mutual understand-
ing with linguistic alignment. Our empirical results
show that the convergence also exists in one of
the three German dialogue datasets we analysed,
which provides further evidence for the generality

of syntactic complexity convergence. Given that
the VM2 dataset is much larger than the other two
datasets, we are prone to claiming that syntactic
complexity convergence has its linguistic generality.
We also found a different type of syntactic complex-
ity convergence in the MUNDEX dataset, while
further investigation is still necessary.
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When processing German utterances, we did not
consider possible solutions to deal with disfluencies.
One possible solution would have been to replace
disfluent sentences with fluent (i.e., grammatical)
ones. This, however, could change the syntactic
complexity values. In order to take into account the
effect of disfluencies on syntactic complexity, an
empirical study on whether disfluencies increases
syntactic complexity needs to be carried out before-
hand. Another issue we haven’t explored further
is whether linear models are optimal for our data
analysis. A potential future work is to fit a model
with a quadratic term for hypothesis testing.
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