@inproceedings{saadat-fellay-2024-dna,
title = "{DNA} Language Model and Interpretable Graph Neural Network Identify Genes and Pathways Involved in Rare Diseases",
author = "Saadat, Ali and
Fellay, Jacques",
editor = "Edwards, Carl and
Wang, Qingyun and
Li, Manling and
Zhao, Lawrence and
Hope, Tom and
Ji, Heng",
booktitle = "Proceedings of the 1st Workshop on Language + Molecules (L+M 2024)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.langmol-1.13",
doi = "10.18653/v1/2024.langmol-1.13",
pages = "103--115",
abstract = "Identification of causal genes and pathways is a critical step for understanding the genetic underpinnings of rare diseases. We propose novel approaches to gene prioritization and pathway identification using DNA language model, graph neural networks, and genetic algorithm. Using HyenaDNA, a long-range genomic foundation model, we generated dynamic gene embeddings that reflect changes caused by deleterious variants. These gene embeddings were then utilized to identify candidate genes and pathways. We validated our method on a cohort of rare disease patients with partially known genetic diagnosis, demonstrating the re-identification of known causal genes and pathways and the detection of novel candidates. These findings have implications for the prevention and treatment of rare diseases by enabling targeted identification of new drug targets and therapeutic pathways.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="saadat-fellay-2024-dna">
<titleInfo>
<title>DNA Language Model and Interpretable Graph Neural Network Identify Genes and Pathways Involved in Rare Diseases</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ali</namePart>
<namePart type="family">Saadat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jacques</namePart>
<namePart type="family">Fellay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Language + Molecules (L+M 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Carl</namePart>
<namePart type="family">Edwards</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qingyun</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manling</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lawrence</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Hope</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Identification of causal genes and pathways is a critical step for understanding the genetic underpinnings of rare diseases. We propose novel approaches to gene prioritization and pathway identification using DNA language model, graph neural networks, and genetic algorithm. Using HyenaDNA, a long-range genomic foundation model, we generated dynamic gene embeddings that reflect changes caused by deleterious variants. These gene embeddings were then utilized to identify candidate genes and pathways. We validated our method on a cohort of rare disease patients with partially known genetic diagnosis, demonstrating the re-identification of known causal genes and pathways and the detection of novel candidates. These findings have implications for the prevention and treatment of rare diseases by enabling targeted identification of new drug targets and therapeutic pathways.</abstract>
<identifier type="citekey">saadat-fellay-2024-dna</identifier>
<identifier type="doi">10.18653/v1/2024.langmol-1.13</identifier>
<location>
<url>https://aclanthology.org/2024.langmol-1.13</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>103</start>
<end>115</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DNA Language Model and Interpretable Graph Neural Network Identify Genes and Pathways Involved in Rare Diseases
%A Saadat, Ali
%A Fellay, Jacques
%Y Edwards, Carl
%Y Wang, Qingyun
%Y Li, Manling
%Y Zhao, Lawrence
%Y Hope, Tom
%Y Ji, Heng
%S Proceedings of the 1st Workshop on Language + Molecules (L+M 2024)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F saadat-fellay-2024-dna
%X Identification of causal genes and pathways is a critical step for understanding the genetic underpinnings of rare diseases. We propose novel approaches to gene prioritization and pathway identification using DNA language model, graph neural networks, and genetic algorithm. Using HyenaDNA, a long-range genomic foundation model, we generated dynamic gene embeddings that reflect changes caused by deleterious variants. These gene embeddings were then utilized to identify candidate genes and pathways. We validated our method on a cohort of rare disease patients with partially known genetic diagnosis, demonstrating the re-identification of known causal genes and pathways and the detection of novel candidates. These findings have implications for the prevention and treatment of rare diseases by enabling targeted identification of new drug targets and therapeutic pathways.
%R 10.18653/v1/2024.langmol-1.13
%U https://aclanthology.org/2024.langmol-1.13
%U https://doi.org/10.18653/v1/2024.langmol-1.13
%P 103-115
Markdown (Informal)
[DNA Language Model and Interpretable Graph Neural Network Identify Genes and Pathways Involved in Rare Diseases](https://aclanthology.org/2024.langmol-1.13) (Saadat & Fellay, LangMol-WS 2024)
ACL