@inproceedings{lee-lee-2024-repurformer,
title = "Repurformer: Transformers for Repurposing-Aware Molecule Generation",
author = "Lee, Changhun and
Lee, Gyumin",
editor = "Edwards, Carl and
Wang, Qingyun and
Li, Manling and
Zhao, Lawrence and
Hope, Tom and
Ji, Heng",
booktitle = "Proceedings of the 1st Workshop on Language + Molecules (L+M 2024)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.langmol-1.14",
doi = "10.18653/v1/2024.langmol-1.14",
pages = "116--127",
abstract = "Generating as diverse molecules as possible with desired properties is crucial for drug discovery research, which invokes many approaches based on deep generative models today. Despite recent advancements in these models, particularly in variational autoencoders (VAEs), generative adversarial networks (GANs), Transformers, and diffusion models, a significant challenge known as the sample bias problem remains. This problem occurs when generated molecules targeting the same protein tend to be structurally similar, reducing the diversity of generation. To address this, we propose leveraging multi-hop relationships among proteins and compounds. Our model, Repurformer, integrates bi-directional pretraining with Fast Fourier Transform (FFT) and low-pass filtering (LPF) to capture complex interactions and generate diverse molecules. A series of experiments on BindingDB dataset confirm that Repurformer successfully creates substitutes for anchor compounds that resemble positive compounds, increasing diversity between the anchor and generated compounds.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lee-lee-2024-repurformer">
<titleInfo>
<title>Repurformer: Transformers for Repurposing-Aware Molecule Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Changhun</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gyumin</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Language + Molecules (L+M 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Carl</namePart>
<namePart type="family">Edwards</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qingyun</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manling</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lawrence</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Hope</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Generating as diverse molecules as possible with desired properties is crucial for drug discovery research, which invokes many approaches based on deep generative models today. Despite recent advancements in these models, particularly in variational autoencoders (VAEs), generative adversarial networks (GANs), Transformers, and diffusion models, a significant challenge known as the sample bias problem remains. This problem occurs when generated molecules targeting the same protein tend to be structurally similar, reducing the diversity of generation. To address this, we propose leveraging multi-hop relationships among proteins and compounds. Our model, Repurformer, integrates bi-directional pretraining with Fast Fourier Transform (FFT) and low-pass filtering (LPF) to capture complex interactions and generate diverse molecules. A series of experiments on BindingDB dataset confirm that Repurformer successfully creates substitutes for anchor compounds that resemble positive compounds, increasing diversity between the anchor and generated compounds.</abstract>
<identifier type="citekey">lee-lee-2024-repurformer</identifier>
<identifier type="doi">10.18653/v1/2024.langmol-1.14</identifier>
<location>
<url>https://aclanthology.org/2024.langmol-1.14</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>116</start>
<end>127</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Repurformer: Transformers for Repurposing-Aware Molecule Generation
%A Lee, Changhun
%A Lee, Gyumin
%Y Edwards, Carl
%Y Wang, Qingyun
%Y Li, Manling
%Y Zhao, Lawrence
%Y Hope, Tom
%Y Ji, Heng
%S Proceedings of the 1st Workshop on Language + Molecules (L+M 2024)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F lee-lee-2024-repurformer
%X Generating as diverse molecules as possible with desired properties is crucial for drug discovery research, which invokes many approaches based on deep generative models today. Despite recent advancements in these models, particularly in variational autoencoders (VAEs), generative adversarial networks (GANs), Transformers, and diffusion models, a significant challenge known as the sample bias problem remains. This problem occurs when generated molecules targeting the same protein tend to be structurally similar, reducing the diversity of generation. To address this, we propose leveraging multi-hop relationships among proteins and compounds. Our model, Repurformer, integrates bi-directional pretraining with Fast Fourier Transform (FFT) and low-pass filtering (LPF) to capture complex interactions and generate diverse molecules. A series of experiments on BindingDB dataset confirm that Repurformer successfully creates substitutes for anchor compounds that resemble positive compounds, increasing diversity between the anchor and generated compounds.
%R 10.18653/v1/2024.langmol-1.14
%U https://aclanthology.org/2024.langmol-1.14
%U https://doi.org/10.18653/v1/2024.langmol-1.14
%P 116-127
Markdown (Informal)
[Repurformer: Transformers for Repurposing-Aware Molecule Generation](https://aclanthology.org/2024.langmol-1.14) (Lee & Lee, LangMol-WS 2024)
ACL