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Abstract

Large Language Models (LLMs) like ChatGPT
excel at diverse tasks when given explicit in-
structions, yet they often struggle with special-
ized domains such as molecular science, lack-
ing in-depth reasoning and sophisticated plan-
ning capabilities. To address these limitations,
we introduce ChatMol Copilot, a chatbot-like
agent specifically engineered for protein de-
sign and small molecule computations. Chat-
Mol Copilot employs a multi-level abstraction
framework to expand the LLM‘s capability. At
the basic level, it integrates external compu-
tational tools through function calls, thus of-
floading complex tasks and enabling a focus on
strategic decision-making. The second level is
data abstraction. Large data sets (such as a large
number of molecules created by a generative
model) are stored in Redis cache, and the redis
keys are referenced by LLMs for data sources
involved in computation. The third level of ab-
straction allows the LLM to orchestrate these
tools, either directly or via dynamically gen-
erated Python executables. Our evaluations
demonstrate that ChatMol Copilot can adeptly
manage molecular modeling tasks, effectively
utilizing a variety of tools as directed. By
simplifying access to sophisticated molecular
modeling resources, ChatMol Copilot stands
to significantly accelerate drug discovery and
biotechnological innovation, empowering bio-
chemists with advanced, user-friendly AI capa-
bilities. The open-sourced code is available at
https://github.com/ChatMol/ChatMol

1 Introduction

Large Language Models (LLMs) equipped with
specialized tools are catalyzing significant advance-
ments across various scientific fields. In chemistry
research, platforms like Coscientist (Boiko et al.,
2023) and Chemcrow (M. Bran et al., 2024) have
revolutionized lab automation and computational
tasks. Furthermore, the novel CodeAct approach,

which utilizes "Code as Action," leverages the cod-
ing prowess of LLMs to automate complex pro-
cesses (Wang et al., 2024). Similarly, tools such as
AlphaFold 3 (Abramson et al., 2024) have achieved
remarkable success in predicting protein interac-
tions and structures, underscoring the potential of
computational methods in molecular biology.

Despite these strides, significant challenges per-
sist in the molecular engineering field, particularly
regarding the execution of complex modeling tasks
and the interpretation of their outcomes (Greener
et al., 2022). These challenges stem from a need
for greater automation and a more intuitive inter-
action with computational tools. In response, we
introduce ChatMol Copilot, a dedicated platform
that enhances molecular modeling computations.
ChatMol Copilot is designed with a multi-level ab-
straction framework to maximize automation and
user-friendliness. At its foundation, it integrates
external computational tools via function calls, sim-
plifying the interface to show only inputs, outputs,
and functional descriptions, thereby isolating the
LLM from complex computational details. The ad-
vanced layer of this framework allows the LLM to
either orchestrate these tools directly or through dy-
namically generated Python executables. This pa-
per demonstrates how ChatMol Copilot effectively
manages molecular modeling tasks and delivers
precise, actionable responses to user inquiries, sig-
nificantly streamlining the computational workflow
in molecular science.

2 ChatMol Copilot Architecture

The ChatMol Copilot is designed around the capa-
bilities of Large Language Models (LLMs). The
system architecture aims to optimize workflow effi-
ciency and precision in molecular modeling tasks.

Workflow Overview (Figure 1): The process be-
gins with user instructions, which are interpreted
by the LLM. This interpretation step determines
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Figure 1: The general workflow of ChatMol Copilot.

whether the user’s request can be directly answered
or if it necessitates the use of specialized tools.
ChatMol Copilot supports a broad range of molec-
ular modeling applications, encompassing both
small molecules (such as pharmaceuticals) and
macromolecules (such as proteins and their inter-
actions). In addition to pre-defined tools, the sys-
tem can create new tools by writing and executing
Python code. This significantly expands its capa-
bilities beyond the predefined action space. Data
abstraction is employed to alleviate the burden of
data processing from LLMs. Besides internal data
usage, the system has access to significant biolog-
ical databases, enabling it to retrieve and utilize
publicly available data as needed. As conversations
progress, the integration of user demands with the
computational capabilities of ChatMol Copilot fa-
cilitates the completion of increasingly complex
tasks.

2.1 Equipped Tools

Numerous specialized neural networks have been
developed for various molecular property predic-
tion tasks (Wu et al., 2018). ChatMol Copilot in-
tegrates a range of tools to meet diverse computa-
tional needs, enabling comprehensive and efficient
analysis.

Neural Network-Based Tools: For tools that uti-
lize neural network inference, such as ESMFold
(Lin et al., 2023) and ProteinMPNN (Dauparas

et al., 2022), we have implemented publicly acces-
sible APIs. This ensures minimal hardware require-
ments for users.

Local Execution Tools: For faster, Python-based
tools, execution is handled locally on the user’s
computer. Examples include RDKit (Landrum
et al., 2013) and TM-align (Zhang and Skolnick,
2005). Table 1 lists the primary tools integrated
into the system for both small molecule and macro-
molecule analysis.

2.2 Integration with Microservices

Microservices are a staple in modern cloud comput-
ing architectures due to their scalability and mod-
ularity. Each microservice operates independently
with a well-defined API and service description.
In the ChatMol framework, we have developed a
generic method for integrating these microservices
into the ChatMol toolbox see Table 1.

For each microservice in our registry, Python
code is generated based on the input parameter
descriptions. This code is then wrapped into a stan-
dard function call, compiled on-the-fly, and added
to our function calling list. As new microservices
are registered, the function list is automatically up-
dated, greatly enhancing the toolbox’s capabilities
while simplifying ongoing maintenance.
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Figure 2: General protein design task. Text within purple boxes are instructions from users, and text within green
boxes are answers given by ChatMol Copilot. Texts colored blue with underlines are hyperlinks for download files.
The table and cartoon represented protein are real screen shots from the GUI of ChatMol Copilot.

2.3 Code as Actions and Redis Cache

Expanding the system’s capabilities can be
achieved through the automatic generation and ex-
ecution of code, known as CodeAct. In ChatMol
Copilot, we implemented a generic Python code
executor and a universal data object access mech-
anism using Redis cache. Code generation can be
based on task descriptions and knowledge from
documents. Redis cache and generic data object
read/write operations in code enabling the LLM
to manage tasks and data flow much simpler by
referencing data with their keys.

3 Use Cases of ChatMol Copilot for
Molecular Modeling

This section showcases four examples demonstrat-
ing the wide-ranging capabilities of ChatMol Copi-
lot in molecular modeling tasks. These use cases
illustrate how ChatMol Copilot adheres to user
instructions, utilizing appropriate tools from its
equipped toolkit and microservices to meet the de-
mands of biochemists, from protein modeling to
small molecule de novo synthesis.

3.1 General Protein Design Task

Proteins, essential macromolecules in cells, per-
form various biological functions, including DNA
duplication, metabolic reaction catalysis, and cell

cycle regulation. They are also pivotal in healthcare
as therapeutic agents like insulin and antibodies,
and in various industries as catalysts for cleaner
energy and chemicals (Huang et al., 2016).

A fundamental challenge in protein design is to
find a sequence that folds into a desired structure
(Dauparas et al., 2022). This task is complicated
by epistasis, where residue-residue interactions can
lead to misfolding and loss of function. To address
this, we utilized ProteinMPNN (Dauparas et al.,
2022) for sequence design and ESMFold (Lin et al.,
2023) to predict the fold of the designed sequences.
The effectiveness of the designs was validated by
comparing their structures to the initial templates,
with ChatMol Copilot presenting the results in a
well-organized table format. Key metrics such as
Root Mean Squared Error (RMSD) and TM-score
are highlighted to assess the structural integrity of
the designed sequences Figure 2.

3.2 Peptide/MHC-II Binding Affinity
Prediction

The prediction of binding affinity between peptides
and MHC-II complexes is critical for assessing
the immunogenic potential of newly designed pro-
teins (Jensen et al., 2018). In this use case, Chat-
Mol Copilot was tasked with mutating a peptide
sequence five times randomly, then calculating and
tabulating the binding affinities of these variants
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Figure 3: Protein ligand docking task.

with the HLA-DPA10103-DPB10201 allele. This
multi-step process, handled efficiently by a single
user prompt, showcases ChatMol Copilot’s abil-
ity to manage complex, multi-stage computational
tasks effectively Figure 4.

3.3 Molecular docking task
In both designing of drugs or enzymes, molecular
docking is commonly involved to determine the
intermolecular interactions (Meng et al., 2011). A
common molecular docking process requires input
of: (1) receptor structure, (2) ligand conformer, (3)
docking parameters including centre of box and
the size of the box. We show that ChatMol Copi-
lot will facilitate this multi-step task by using a
set of related tools. With the name of a ligand
provided, the copilot used the tool to search for
SMILES and another tool to generate a conformer.
After downloading the structure file of the receptor
from the RCSB PDB database, the docking param-
eters were automatically determined under the help
of the pocket prediction tool. Finally, the docked
complex will be presented to the user Figure 3.

3.4 Molecule generation and filtering with
generated Python code

Generating novel molecules with desired properties
and structures is very important in drug discovery.
A recently large molecule generation model SAFE
(Noutahi et al., 2024) is open-sourced. There are

6 different modes for molecule generation, each is
provided as an API service, and all the 6 APIs are
integrated into ChatMol. In the following example,
200 molecules are requested to be generated with a
common core. The molecules are stored in Redis
cache with key ’SuperStructure_smiles’. Figure 5.

Molecular properties were calculated using a
functional call, and the results were stored in Redis
cache. To apply filtering with Lipinski’s rule of 5
(Lipinski et al., 2012) to the generated molecules a
Python function is created by GPT-4o: Figure 6.

In this code, the generated molecules with their
properties were read from Redis, and the then Lip-
inski’s rule of 5 is applied to remove molecules
that violate the rules. The remaining molecules are
saved into Redis. At the end of the code, the total
number of the resulting molecules and the first 5
samples are returned.

4 Discussion and Conclusions

In this work, we present a practical solution how to
leverage large language models to assist molecular
design and computation, particularly for proteins.
We also propose the architecture with multi-level
abstraction so as to achieve a higher level of au-
tomation, which combines multiple steps in one
shot. The automatic code generation and execution
expands the systems capabilities beyond the prede-
fined action space. The data abstraction with Redis
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cache makes the "Code as Actions" (Wang et al.,
2024) more practical for molecular modeling and
computation. Similar to the basic concept of "Code
as Actions," we use LLMs to generate PyMOL
commands in ChatMol based on user instructions,
performing relatively complex molecular visual-
ization tasks. Closed-source commercial models
like GPT-4 and the Claude series can write PyMOL
commands with high accuracy based on user in-
structions. Smaller open-source models, when fine-
tuned with specific instructions, can also perform
this task. As the capabilities of relatively smaller
LLMs like phi-3 (Abdin et al., 2024) continue to
improve, we can expect future open-source, afford-
able models to replace current commercial models
for ChatMol Copilot needs, further democratizing
this field. Even though our current experiments are
primitive, we believe that the multi-level abstrac-
tion approach is a promising direction to achieve
even higher intelligent for molecular design and
computation.
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A Cases of using ChatMol Copilot

A.1 Protein stability engineering task

Enzyme stability engineering plays a crucial role in
various biotechnological applications by enhancing
the resilience of enzymes to environmental con-
ditions and enabling them to maintain their cat-
alytic activity over extended periods. This process
involves modifying specific amino acid residues
within the enzyme structure to improve its thermal
stability, pH tolerance, resistance to proteolytic
degradation, and overall performance under vary-
ing conditions.

In the process copilot performed, it searches the
RCSB PDB database for the LinB enzyme and
download it. Subsequently, stabilizing mutations
are recommended based on the energy values cal-
culated for each mutation in the provided protein
structure according users instructions. These muta-
tions represent amino acid substitutions that are pre-
dicted to increase the stability of the enzyme. By in-
troducing these mutations, the enzyme’s structural
integrity can be enhanced, leading to improved en-
zymatic activity and potential applications in bio-
catalysis, drug development, and other biotechno-
logical processes.

A.2 Generate a set of molecules, compute the
molecular properties and display the
results in a table

In this case, the de novo generation method is used
to create a set of molecules. A set of molecular
properties are computed for each molecule, and the
results are collected for all molecules and a table is
created. All these steps are accomplished with just
one prompt.

B All tools

B.1 Ligand binding pocket prediction

A message passing nerual network (Gilmer et al.,
2017) based pocket prediction tool was developed
named PocketMPNN. Although many pocket pre-
diction methods were available, a residue-level pre-
diction tool was still in the absence. However, it is
of significant importance to facilitate the molecular
docking process. Therefore, we developed a neural
network trained on the PDB-Bind database (Wang
et al., 2005) for pocket residue prediction and a pub-
licly available API was provided. We only took this
as a demonstration due to it not being computation
extensive and still having satisfactory accuracy.

B.2 Protein structure prediction

The public API provided by the ESM Metagenomic
Atlas was used for structure prediction. The ESM-
Fold is of good prediction accuracy and fast re-
sponse compared with MSA-based prediction such
AlphaFold2. Within the length of 400 aa, this API
usually responds within 20 seconds. Additionally,
ESMFold’s reliance on evolutionary information
enables it to handle diverse protein sequences and
structural motifs with high fidelity.

B.3 Mutation effect prediction

The public API of Pythia (Sun et al., 2023) was
used for mutation effect prediction. The Pythia
is a ultra fast mutation effect predictor with good
accuracy.

B.4 Protein structure visualisation

During the conversation, py3Dmol (Rego and Koes,
2015) is used to show a cartoon representation of a
protein. For more interactive and general visuali-
sation and interaction, the streamlit plugin of Mol*
(Sehnal et al., 2021) was used.
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Figure 4: Using MHC binding affinity prediction tool

Figure 5: Using SAFE for molecular generation
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B.5 Docking

The AutoDock Vina is a fast and widely applied
docking tool. We implemented a RESTful API to
make it adaptable in the form of a function calling
for LLM to use this tool.

B.6 Blind Docking

During the docking process, it is necessary for the
geometric centre of a pocket to be assigned. How-
ever, this inspection of a structure can be challeng-
ing without an experimentally determined protein-
ligand complex. Here, we combined the pocket
prediction with the Autodock Vina, using the geo-
metric centre of predicted pocket residues as a hint
for docking.

B.7 Protein sequence design

We use ProteinMPNN for protein sequence design.
It is a neural network based on the message pass-
ing neural network, trained on protein structure to
generate the native protein sequences and has been
experimentally verified to be a robust tool. We
also implemented a public accessible API for this
copilot.

C Other details of ChatMol Copilot

C.1 Visualisation Components (Mol*,
PyMOL and py3Dmol)

Visualisation is one of the most important com-
ponents for the interactions between a user and
ChatMol system. In ChatMol Copilot, three dif-
ferent visualisation components can be used. In
addition to traditional interactions via the mouse,
one important new way of using computers is to
communicate with human natural language. This
is made possible via LLMs, such as ChatGPT. The
advantages of the three visualisation components
are listed below:

PyMOL (DeLano et al., 2002) has high visual
quality, and widely adopted by science communi-
ties.

MolStar (Mol*) serves as a basis for the next-
generation data delivery and analysis tools for (not
only) macromolecular structure data.

py3Dmol is a python package can be integrated
easily in other python code.

We provide three options there so that users have
choices according to their personal preferences.

C.2 Registry for computational services

To improve the interoperability of various compu-
tational services, all backend services are wrapped
with FastAPI. For the convenience of usage and
management of these services, a simple registry
system for all FastAPI services is implemented.
The registry itself is also a FastAPI service, which
provides registration for new services, a map for
finding and query the services, and for load bal-
ancing and routing. Each registry record con-
tains a brief description of the service, the service
name, the endpoint URL and the description of
input/output parameters.

C.3 Function Calling and Agentic Approach

Agentic approach is the new trend of workflow
automation and more deeply the road map to arti-
ficial general intelligence (AGI) as pointed out by
Andrew Ng in his very recent talk at here.

As our initial approach in this new paradigm, we
have implemented tool use and self reflection in our
system design. In additional third party tools, all
our internal computational tools which are already
wrapped into FastAPI calls are further integrated
into ChatMol as function calling services that can
be orchestrated using LLMs, such as ChatGPT.

C.4 Registered Services

Registry This is the first service of the registry sys-
tem. The main function of this service is to register
other services. To register a server, the following in-
formation must be provided: service name, a brief
description of the service, the URL for the service
endpoint, a list of input parameter names, and the
description of the parameters. AlphaConf A super-
fast 3D conformation generation method developed
by ChemXAI. The input is a file of molecules in
SDF format, and the output is a file of generated
3D conformations. It takes less than 30 minutes to
generate conformations for all ChEMBL database
molecules on a 16-core linux machine. The con-
formation quality as measured by the coverage of
bioactive conformers is comparable or even bet-
ter than the best commercially available products,
such as Omega or ConfGenX. AlphaConf follows
a divide-n-conquer and build-up strategy similar
to CAESAR algorithm (Li et al., 2007). A highly
efficient 3D conformation storage technology is
used to compress storage by factor up to 3 orders
of magnitude. 100,000 conformations/second (16
core machine). 142M confs of ChEMBL storage:
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Figure 6: Python code generated for Lipinski’s rule of five
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Table 1: Integrated Tools in ChatMol Copilot

Macromolecules Description Small Molecules Description

PocketMPNN Ligand binding pocket
prediction

SAFE Molecule generation

ESM Atlas Protein structure predic-
tion

generate 3D conforma-
tion

3D conformation by
RDKit

Pythia Mutation effect predic-
tion

get smiles feature Calculate features of
molecules

py3Dmol, Mol* Visualizer predict logp from
smiles

Prediction logP for
molecules

Autodock Docking simulation smiles similarity Compare molecular
similarity

ProteinMPNN Protein sequence de-
sign

AlphaConf Fast conformation gen-
eration

BAPrediction Peptide-MHC-II bind-
ing affinity

AlphaShape Shape based virtual
screening

search rcsb, query
uniprot, fetch asked
pdb, get smiles from
name

Query databases VB2000 Ab initio valence bond
calculation

2.7GB.
AlphaShape Shape and pharmacophore based

virtual screening with GPU acceleration. 1000,000
molecule shape comparison/second on a 2-
RTX4090 GPU machine.

VB2000 3.0 This is a completely new implemen-
tation of early work VB2000 (Li and McWeeny,
2002). A modern ab initial valence bond calcu-
lation program. The first version was released in
year 2000, and the current version is 3.0. More
information of VB2000 from the official website at
here.

BAPrediction Binding affinity prediction of
peptide-MHC-II molecules. The prediction model
is trained with the latest data sets, which include
both binding affinity data (BA) and eluted ligand
binding data. A combination of XGBoost and a
novel feature engineering method has been used to
improve the prediction accuracy. It provides better
results than the published results in literature.

Molecule Generation SAFE is a very recently
released open-source molecular generation model
is used. The model has 87M parameters and is
trained with 1.1 billion compounds in SAFE rep-
resentations. The SAFE model provides 4 modes
for molecule generation: 1) DenovoGen (de novo
molecular generation). Random generation of

molecules with no constraints. The output is a
set of SMILES strings of the generated molecules.
The input parameter is the number of molecules to
be generated. 2) SuperStructure. In super structure
generation, new molecules are generated based on
a starting core. A smiles of the starting core need
to be provided. 3) MotifExtend. In motif exten-
sion, we are interested in generating a molecule
containing a given motif as a starting point. The
extension point of the motif need to be labelled.
4) LinkerGen. Linker generation for linking two
fragments. The smiles of two terminal fragments
need to be provided in the inputs.

C.5 ChatMol in PyMOL
As an example of "code as action" and the uti-
lization of open-source LLMs, we demonstrate a
case where LLMs are directly used to generate
PyMOL command lines and perform correspond-
ing molecular visualization tasks in PyMOL. This
case involves the use of two LLMs: GPT-4o and
a fine-tuned Llama-3-8B-instruct. Both models
correctly execute the commands "download 1pga"
and "remove waters." However, GPT-4o produced
an incorrect response Figure 7 when handling the
command "color it by secondary structures".
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Figure 7: Performing same task using GPT-4o and fine-tuned llama-3-8b instruct
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