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Abstract

In the context of text classification, the finan-
cial burden of annotation exercises for creating
training data is a critical issue. Active learning
techniques, particularly those rooted in uncer-
tainty sampling, offer a cost-effective solution
by pinpointing the most instructive samples for
manual annotation. Similarly, Large Language
Models (LLMs) such as GPT-3.5 provide an
alternative for automated annotation but come
with concerns regarding their reliability. This
study introduces a novel methodology that in-
tegrates human annotators and LLMs within
an Active Learning framework. We conducted
evaluations on three public datasets. IMDB
for sentiment analysis, a Fake News dataset
for authenticity discernment, and a Movie Gen-
res dataset for multi-label classification. The
proposed framework integrates human annota-
tion with the output of LLMs, depending on
the model uncertainty levels. This strategy
achieves an optimal balance between cost ef-
ficiency and classification performance. The
empirical results show a substantial decrease in
the costs associated with data annotation while
either maintaining or improving model accu-
racy.

1 Introduction

Active learning allows machine learning algorithms
to choose their learning data selectively. This
methodology optimizes learning efficiency while
reducing the need for labor-intensive labeled in-
stances, often leading to enhancing the perfor-
mance metrics with less training (Settles et al.,
2008).

While Active Learning has been explored in re-
search for over two decades, it has seen a resur-
gence of interest in Natural Language Processing
(NLP), particularly around 2009-2010. This resur-
gence has been aligned with adopting neural mod-
els in NLP research (Zhang et al., 2022b). Recent
trends suggest the advantageous pairing of Active

Learning techniques with deep learning methodolo-
gies (Zhang et al., 2022b).

A prevalent strategy within Active Learning is
uncertainty sampling. This technique involves the
algorithm selecting instances in which the model
might be least certain about their labels. For in-
stance, in binary classification tasks, it might select
an instance whose probability of belonging to the
positive class is nearest to 0.5. This often employs
a ’pool-based’ approach where a human expert val-
idates and assigns true labels to the selected sam-
ples, which are then used to update the classifier
iteratively (Lewis and Gale, 1994). Additional ap-
proaches like Query-By-Committee (QBC) (Seung
et al., 1992) and Expected Gradient Length (EGL)
(Settles, 2009) offer alternative techniques in Ac-
tive Learning.

Broadly speaking, Active Learning aims to re-
duce the expenses associated with human annota-
tion, achieving this by strategically selecting the
most informative data points for labeling (Hachey
et al., 2005). However, Active Learning is not the
only strategy employed to minimize human anno-
tation costs. LLMs have been applied to various
text annotation tasks such as political Twitter mes-
sage categorization (Törnberg, 2023), relevance
and topic detection in tweets (Gilardi et al., 2023),
and hate speech classification (Huang et al., 2023).
Some recent studies have also examined the poten-
tial of utilizing Active Learning in Prompt-Based
Uncertainty sampling with LLMs (Yu et al., 2023).

In this study, we propose a novel pipeline for
text classification focusing on three distinct, open-
source datasets: IMDB for sentiment analysis, a
dataset for identifying fake news, and another for
classifying Movie Genres. We introduce a frame-
work that integrates Active Learning based on un-
certainty sampling with human and GPT-3.5 anno-
tations. This integration is tailored to adaptively
choose between human and machine annotators
based on the uncertainty levels estimated from GPT-
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3.5’s annotation.
To the best of our knowledge, this is the first

study that comprehensively evaluates the utility and
efficiency of combining human annotators, Active
Learning, and GPT-3.5 in a text classification task.
We extend the traditional Active Learning method-
ologies by integrating uncertainty measurements
from LLM, such as GPT-3.5, into our annotation se-
lection process. This not only minimizes the costs
of manual annotation but also capitalizes on the
strengths of machine learning models for efficient
and accurate text classification.

Our approach offers a nuanced trade-off analysis
between cost and accuracy, using real-world pric-
ing models for both human and machine annotation.
The goal is to provide a robust, cost-effective, and
scalable text classification pipeline that leverages
the best of both human expertise and advanced ma-
chine learning techniques. The code provide in
anonymous GitHub.1

In the subsequent sections, we explore a method-
ology that combines human expertise with LLMs
in an Active Learning framework. We detail the
experimental setup and methodologies, including
uncertainty-based sampling and LLMs for data an-
notation. The results are analyzed for their accu-
racy and efficiency, leading to a discussion on the
broader implications and future potential of this
approach in text classification.

2 Related Works

Text classification is an instrumental task in Nat-
ural Language Processing (NLP) that uses meth-
ods ranging from traditional machine learning tech-
niques to advanced neural networks such as Long
Short-Term Memory (LSTM) (Qaisar, 2020) and
Convolutional Neural Networks (CNN) (Haque
et al., 2019). Although these methods primarily
focus on improving model accuracy, our study di-
verges by emphasizing the reduction of labeled data
through selective annotation, subsequently enhanc-
ing the model performance. We also manage the
pool of unlabeled data by removing instances that
have been labeled, thus continuously refining our
dataset for model training.

2.1 Uncertainty-based Active Learning

Anderson et al. (Andersen and Zukunft, 2022)
explored Active Learning based on uncertainty
across different models, including support vector

1GitHub Code

machines, logistic regression, and decision trees.
They proposed a criterion for manual annotation
that identifies a certain percentage of the most un-
certain predictions for each model type as a stop-
ping point for annotation. For example, they sug-
gested a 12.71% threshold for logistic regression
to achieve desired model performance.

In (Goudjil et al., 2018) Active Learning is ap-
plied on text analysis tasks. The authors used
support vector machines and Active Learning-
supported SVM (AL-SVM) models. They intro-
duced a thresholding mechanism, such as setting
a 70% threshold for AL-SVM, to select instances
with less than 70% probability for annotation.

2.2 Advanced Active Learning Methods
In (Yuan et al., 2020), a range of Active Learning
techniques, such as Active Learning by Process-
ing Surprisal and Entropy, are examined. However,
their work did not establish any clear stopping cri-
terion to determine how many Active Learning it-
erations are necessary.

In the work by Zhang et al. (Zhang et al., 2022a),
they proposed a method that uses local sensitivity
and adversarial perturbations in the Active Learn-
ing loop. They aimed to alleviate the sampling bias
that comes from selecting only the most uncertain
examples. They used data augmentation and adver-
sarial perturbation to measure the local sensitivity
of instances, thereby picking examples that lie near
the decision boundary. Their approach also incor-
porated a "learning hardness" criterion to sidestep
examples that are hard to learn or potentially mis-
labeled.

2.3 Active Learning with Language Models
Yue Yu et al. (Yu et al., 2023) proposed a method
called PATRON that integrates prompt-based tech-
niques for cold-start data selection in Active Learn-
ing. Their method uses estimated uncertainty
for data points, adopting two key design strate-
gies—uncertainty propagation and a partition-then-
rewrite (PTR) strategy to ensure a balance between
informativeness and diversity in sample selection.

Building upon these foundations, recent studies
have furthered our understanding of the potential
of Active Learning when combined with LLMs.
Zhang et al. (Zhang et al., 2023) introduced a
framework where LLMs serve as active annotators,
underscoring the efficiency of LLMs in reducing
annotation costs while maintaining accuracy. "Be-
yond Labels" further expanded this concept by inte-
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grating human annotators with machine-generated
natural language explanations, demonstrating the
potential for more informative annotations in low-
resource settings.

In (Xiao et al., 2023), the authors proposed a
novel collaborative learning approach, reducing the
need for human annotation by leveraging LLMs
as weak annotators. This framework indicates the
potential of LLMs to enhance unsupervised perfor-
mance in various NLP tasks. On the other side, Lu
et al. (Lu et al., 2023) presented empirical evidence
that smaller models trained with expert annotations
can outperform LLMs in domain-specific tasks,
highlighting the irreplaceable value of human ex-
pertise.

Furthermore, Margatina et al. (Margatina et al.,
2023) explored selecting demonstrations for few-
shot learning with LLMs, revealing that demonstra-
tions semantically similar to test examples yield
superior performance across tasks and model sizes.
This finding supports our methodology of integrat-
ing human annotators and GPT-3.5 in a new Active
Learning paradigm evaluated across multiple open-
source datasets.

Lastly, in (Margatina and Aletras, 2023), the au-
thors critically examined the challenges in Active
Learning research, especially in simulated envi-
ronments. They emphasize the need for realistic,
transparent, and reproducible Active Learning re-
search, aligning with our approach of combining
human expertise with the capabilities of LLMs to
address the challenges in text classification and
Active Learning.

While these works have significantly advanced
the field of Active Learning, there remains a gap
in leveraging the power of LLMs like GPT-3.5 for
both annotation and uncertainty estimation in an
integrated Active Learning framework. Our work
aims to bridge this gap by using both human an-
notators and GPT-3.5 in a novel Active Learning
paradigm, which we evaluate across multiple open-
source datasets.

3 Methodology

This section details the methodology employed for
text classification, emphasizing the integration of
Large Language Models in data annotation. The
approach encompasses an Active Learning frame-
work, applying uncertainty-based sampling across
varied datasets to enhance accuracy and efficiency.

Algorithm 1 Procedure for Collecting Sentiment
Label and Confidence
Require: Movie review text X[i]
Ensure: Sentiment label and confidence level in

JSON format
1: Prompt: “What is the sentiment of the follow-

ing movie review, and how confident are you
about this ’sentiment’?"

2: Instructions: “Give your answer as a single
word, either ’positive’ or ’negative’ and a sin-
gle percentage in JSON format delimited with
space."

3: Display: “Review text: ”’ X[i] ”’"

3.1 Active Learning based on uncertainty
sampling

Our Active Learning approach revolved around the
concept of uncertainty sampling. In each itera-
tion of the Active Learning process, we used an
iterative strategy to select the most uncertain data
points from the unlabeled data pool, employing the
logistic regression model’s predicted probabilities.
The ranking of data points based on their predicted
probabilities provided a measure of uncertainty or
confidence measure for each sample. This rank-
ing helps to identify and select the data points for
which the classifier was most uncertain, enabling
the model to learn from these challenging instances
and refine its classification performance.

Data Selection: In each Active Learning itera-
tion, the data samples with the highest uncertainty
scores from the pool of unlabeled data are selected,
adding these data samples to the training set for
the next iteration. This process of focusing on
high-information gain data allowed the model to
learn from its previous mistakes and incrementally
improve its overall performance with each itera-
tion. By iteratively selecting and incorporating
informative data, the Active Learning approach op-
timizes the learning process efficiently, requiring
significantly fewer labeled samples compared to
conventional supervised learning methods.

Pool Initiation: We initiated the Active Learn-
ing process by creating an initial set of data that
incorporated a small fraction of the entire data avail-
able for the classification task. This set served as
the starting point for the learning process, enabling
the model to make its initial predictions. The rest
of the data, not included in the initial set, consti-
tuted the ’unlabeled pool.’ This pool continuously
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Figure 1: F1 Score Progression from 2% to 52% Training Data Portions in the Fake News Dataset. This figure
visualizes the evolution of F1 scores across different training data portions, ranging from 2% to 52%, for various
annotation methods, including GPT-only, Hybrid models, Human-only, Few-shot learning, and a baseline of random
sampling. Each incremental step represents an increase in the training dataset size, highlighting the performance
changes in F1 scores across the experiments.

provided a source of uncertain samples to be se-
lected and labeled during each iteration of the Ac-
tive Learning process.

3.2 Proxy-Validation Set

One of the key contributions of our work is the
creation of a ’proxy-validation’ set. This set, which
is a subset of the total data, served to estimate
the model’s performance at each iteration of the
Active Learning process, acting as a set of labeled
samples. It also emulated the statistical distribution
presented in the main unlabeled pool, undergoing
updates alongside each iteration.

During each Active Learning iteration, we com-
puted the model’s accuracy on the proxy-validation
set. To ensure consistency, we applied the same
percentage of confidence for low-confidence data
removal to the proxy-validation set as we did to the
main unlabeled pool. The remaining data in the
proxy-validation set provided us with an estima-
tion of the main pool’s accuracy, a crucial measure
when true labels for the pool were unavailable.

3.3 LLM-based Data Annotation

We employed the GPT-3.5 API to annotate our
dataset, increasing the overall efficiency of the Ac-
tive Learning process. A set of prompts is designed
for GPT-3.5 to predict the sentiment of movie re-
views and to report confidence in each prediction.
The use of LLM for annotation allowed us to ob-
tain sentiment labels and corresponding confidence
scores for each data, opening the way for several
experimental conditions. The procedure for IMDB
datasets is illustrated in Algorithm 1.

Adaptation of Active Learning to Prompt En-
gineering: Building on the foundational concepts
of Active Learning, a new approach is introduced
to apply the components mentioned above in a so-
lution based on LLMs such as GPT-3.5.

Unlike usual Active Learning methods, which of-
ten require retraining models with carefully chosen
labeled data, our method takes a different path by
focusing on improving the prompts given to GPT-
3.5. This approach makes the most of the model’s
pre-existing knowledge and avoids the need for re-
training. Instead, GPT-3.5’s responses carefully
crafted the prompts.
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Figure 2: Cost per F1 Score Analysis During Iterative Training Data Increments in the Fake News Dataset. This
figure illustrates the cost efficiency (cost per F1 score) for different annotation strategies as the training data portion
increases from 2% to 52%. It compares the cost-effectiveness of GPT-only, Hybrid models, Human-only, and
Few-shot learning methods, providing insights into the financial implications of each annotation approach over the
iterative training process.

Initially, we utilize zero-shot learning, present-
ing tasks to GPT-3.5 without any specific examples.
The model’s response and associated confidence
scores provide an initial measure of its proficiency
in the given task. These confidence scores are anal-
ogous to uncertainty measures in traditional Active
Learning, guiding our subsequent steps.

In instances where GPT-3.5 exhibits lower con-
fidence (below 70% in the IMDB dataset and be-
low 80% in two other datasets), we transition to a
few-shot learning approach. This progression in-
volves providing the model with low-confidence
tasks. These thresholds were chosen based on an
analysis of our datasets, which revealed that lower
thresholds did not significantly change many la-
bels, while higher thresholds led to an excessively
large portion of the data being re-annotated. With
these thresholds, we managed to target approxi-
mately 10 to 15 percent of the IMDB and Movie
Genres datasets and about 4 percent of the fake
news dataset, ensuring a manageable yet effective
scope for applying few-shot learning.

This methodology effectively replicates the
essence of Active Learning, where the model it-

eratively improves by focusing on the most infor-
mative or uncertain samples. By applying this ap-
proach to prompt design, we leverage the innate
capabilities of LLMs for more efficient and targeted
learning.

4 Experimental Setup

In the experimental setup, we explore the impact
of using GPT-3.5 for data annotation under various
scenarios, including different confidence thresh-
olds and combinations of human and GPT-3.5 an-
notations. The experiments were conducted across
three datasets: IMDB, Movie Genress, and fake
news.

GPT-3.5 Labels Only Our first experiment in-
vestigates the feasibility of employing an LLM for
data annotation using only the labels provided by
GPT-3.5.

Human Labels Only As a baseline, our second
experiment involves using human annotations ex-
clusively. This experiment serves as a control to
measure the effectiveness of GPT-3.5’s annotations
against traditional human annotation.

Hybrid Labels: Confidence Threshold Exper-
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Portion 10% 20% 30% 40% 50%

Method Cost F1 Cost F1 Cost F1 Cost F1 Cost F1

GPT only 0.46 0.8201 0.92 0.8651 1.3809 0.9152 1.84 0.9439 2.30 0.9629

GPT conf > 70 74.44 0.8548 170.45 0.9077 283.37 0.9446 373.04 0.9671 442.42 0.978

GPT conf > 80 219.04 0.8522 476.13 0.908 733.22 0.9469 958.60 0.9696 1151.85 0.9802

GPT conf > 90 369.12 0.8533 750.09 0.9112 1139.51 0.9495 1517.10 0.9700 1873.55 0.9800

Human only 423.24 0.8597 846.49 0.9085 1269.73 0.9475 1692.98 0.9693 2116.22 0.9796

Few-shot <70 0.95 0.8469 1.77 0.8973 2.60 0.9407 3.33 0.9631 4.07 0.9773

Table 1: IMDB Dataset Results: F1 Scores and Costs (in USD) for Various Annotation Methods on the IMDB
Dataset. This table illustrates the comparative performance and cost-efficiency of different annotation approaches,
including GPT-only, Hybrid models with varying confidence thresholds, Human-only, and Few-shot learning
strategies across 10% to 50% data portions.

Portion 10% 20% 30% 40% 50%

Method Cost F1 Cost F1 Cost F1 Cost F1 Cost F1

GPT only 1.53 0.8099 3.06 0.8339 4.59 0.8576 6.12 0.8837 7.66 0.9041

GPT conf > 70 7.16 0.8099 12.91 0.8394 25.70 0.8573 34.27 0.8764 41.44 0.9028

GPT conf > 80 39.53 0.7889 77.66 0.8319 97.49 0.8675 159.54 0.9017 187.82 0.9243

GPT conf > 90 437.85 0.9007 843.33 0.9426 1289.63 0.9646 1714.82 0.9771 2156.90 0.9871

Human only 1409.02 0.9074 2818.04 0.956 4227.07 0.9701 5636.09 0.9745 7045.11 0.9791

Few-shot <70 1.59 0.7838 3.14 0.8335 4.69 0.8667 6.24 0.8888 7.81 0.9092

Table 2: Fake News Dataset Results: Comparative Analysis of F1 Scores and Annotation Costs (in USD) for the
Fake News Dataset. The table presents a detailed breakdown of the performance metrics and financial implications
of using GPT-only, various Hybrid models, Human-only, and Few-shot annotations at different data portions.

iments These experiments explore the efficacy of
combining GPT-3.5’s predictions with human anno-
tations at various confidence levels set by GPT-3.5.

Confidence Threshold 90 For data points where
GPT-3.5’s confidence score exceeds 90%, we uti-
lize the labels provided by the model. If the con-
fidence score is below 90%, human annotations
are used. This experiment aims to evaluate the
performance and cost-effectiveness of relying pre-
dominantly on AI annotations at a high confidence
level.

Confidence Threshold 80 In this setup, GPT-
3.5’s labels are adopted for data points with a con-
fidence score above 80%. For those below this
threshold, human annotations are employed. This
approach aims to balance AI efficiency and human
accuracy at an intermediate confidence level.

Confidence Threshold 70 Here, the threshold
is set at 70% confidence. GPT-3.5’s labels are used
for data points above this level, while human an-
notations supplement the lower-confidence points.
The objective is to assess the impacts of a lower
threshold on annotation efficiency and accuracy.

GPT-3.5 with Few-Shot Learning for Active
Learning This experiment investigates the applica-
tion of GPT-3.5’s few-shot learning for data anno-
tation in an Active Learning context, specifically
focusing on data points with varying confidence
levels. Unlike the hybrid approach that combines
human and GPT-3.5 annotations, this setup uti-
lizes GPT-3.5’s few-shot learning capabilities ex-
clusively. The aim here is to assess how GPT-3.5’s
few-shot learning can enhance the model’s annota-
tion performance, particularly for data points where
it initially shows low confidence. The strategy in-
volves:

One-Shot Learning for Higher Confidence Data
Points: For data points where GPT-3.5’s confidence
score is above a certain threshold, we employ one-
shot learning. GPT-3.5 is provided with a single
relevant example to refine its understanding and
improve annotations.

Few-Shot Learning for Lower Confidence Data
Points: For data points with confidence scores
below the threshold, few-shot learning is imple-
mented, where GPT-3.5 is given three examples to
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Portion 10% 20% 30% 40% 50%

Method Cost F1 Cost F1 Cost F1 Cost F1 Cost F1

GPT only 0.81 0.3530 1.62 0.4066 2.43 0.4236 3.24 0.4233 4.05 0.4337

GPT conf > 70 6.01 0.3767 8.31 0.4056 17.31 0.4235 25.56 0.4308 31.58 0.4364

GPT conf > 80 125.82 0.2688 169.79 0.4806 233.10 0.4998 299.39 0.5053 347.83 0.5358

GPT conf > 90 263.48 0.6212 534.40 0.716 809.79 0.7513 1078.48 0.7959 1353.87 0.8271

Human only 744.92 0.6039 1489.84 0.711 2234.77 0.7520 2979.69 0.8099 3724.61 0.8443

Few-shot <70 0.88 0.37 1.74 0.4223 2.60 0.4726 3.4615 0.4761 4.31 0.4996

Table 3: Movie Genres Dataset Results: Performance Metrics and Costs (in USD) Across Different Annotation
Methods for the Movie Genres Dataset. This table compares the F1 scores and associated costs for GPT-only,
Hybrid annotation at different confidence levels, Human-only, and Few-shot learning across incremental portions of
the dataset.

assist its annotations.
Confidence Thresholds: In the IMDB Dataset,

A 70% confidence threshold is used. Data points
above this threshold receive one-shot learning,
while those below it are processed with few-shot
learning. However, for Movie Genres and Fake
News Datasets, An 80% confidence threshold is
applied. Similarly, data points above this threshold
are handled with one-shot learning and those below
it with few-shot learning.

Baseline Comparison (Random Data Addi-
tion): Each experimental setup includes a com-
ponent where data points are added to the training
set randomly, serving as a baseline for comparison.
This strategy illustrates the advantages of our more
targeted Active Learning approaches.

Comparison and Cost Estimation: We evaluate
each experimental setup based on two main met-
rics: the F1 score and the associated annotation
costs. The focus is on finding the optimal balance
between accuracy and cost-efficiency, particularly
in the hybrid annotation and few-shot learning sce-
narios. The results highlight the trade-offs involved
in using GPT-3.5’s annotations to reduce costs.

Cost Estimation: For a more thorough under-
standing of the feasibility of each approach, the
annotation costs associated with each experiment
were evaluated. These costs were computed based
on the pricing structure provided by the AI Plat-
form Data Labeling Service for human labels2, and
the pricing for the GPT-3.5 API 3 for LLM gen-
erated labels. For human annotation costs, we re-
ferred to the AI Platform Data Labeling Service
pricing, which uses units per human labeler, with

2https://cloud.google.com/ai-platform/
data-labeling/pricing

3https://openai.com/pricing

each unit encompassing a fixed number of words.
The total cost of human annotation was calculated
by multiplying the total number of units labeled
by human annotators with the per-unit price. For
LLM annotation costs, we utilized the pricing struc-
ture provided for the GPT-3.5 API, which charges
based on the number of tokens processed. The to-
tal cost of machine annotation was determined by
multiplying the total number of tokens processed
by GPT-3.5 with the cost per token. By taking
both F1-Score and cost into consideration, we es-
tablished a comprehensive comparison of each ex-
periment. This comparison provided insights into
the trade-off between cost and accuracy, allowing
us to identify the most economically efficient ap-
proach that does not compromise the performance
of our Active Learning model. This comprehen-
sive evaluation and comparison serve as a valuable
guide in implementing Active Learning strategies
for text classification tasks.

5 Analysis and Results

The methodology exhibited notable scalability
across three distinct datasets, each presenting
unique classification challenges: IMDB Reviews:
This dataset involved a binary classification task,
determining the sentiment of movie reviews as ei-
ther positive or negative. Fake News: Another bi-
nary classification task where the variability in text
lengths presented an additional layer of complexity.
Movie Genres: This dataset represented a more
intricate four-class classification based on movie
plots. The consistent application of the methodol-
ogy across these datasets underscores its adaptabil-
ity and versatility in handling varying text lengths
and classification complexities.
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The F1 scores and costs associated with each
experimental setup were analyzed. For instance, in
the IMDB dataset, GPT-only annotations demon-
strated a progressive increase in F1 scores from
0.8201 at 10% to 0.9629 at 50%, with corre-
sponding costs ranging from 0.4603 to 2.3015.
Conversely, the human-only approach showed F1
scores from 0.8597 to 0.9796, with significantly
higher costs.(Table 1)

Critically, Figure 1 demonstrates that all annota-
tion methods significantly outperform random sam-
pling. This superiority is evident across various
metrics, particularly as the training data incremen-
tally increases from 2% to 52%. These findings un-
derscore the effectiveness of structured annotation
strategies over random approaches in enhancing
the efficiency and accuracy of text classification.

Confidence thresholds played a crucial role in
balancing automated and manual annotations. In
the IMDB dataset, a 70% threshold was used,
where data points above this threshold received
one-shot learning, and those below it were pro-
cessed with few-shot learning. For the Movie Gen-
res and Fake News datasets, an 80% threshold was
applied. These thresholds were determined based
on the datasets’ characteristics, targeting approxi-
mately 10 to 15 percent of the IMDB and Movie
Genres datasets and about 4 percent of the Fake
News dataset for few-shot learning. This strategy
effectively replicated the essence of Active Learn-
ing, focusing on the most informative or uncertain
samples.

The cost implications of each setup were a fo-
cal point. For instance, the Hybrid 80 model for
IMDB and the Hybrid 90 for Movie Genres demon-
strated significant cost-efficiency while achieving
comparable accuracies to human-only labels but
at a fraction of the cost. This was effectively il-
lustrated through logarithmic scale representations,
Figure 2 highlighting stark cost disparities and in-
dicating the practicality of the chosen thresholds
and annotation strategies.

The concept of proxy validation emerged as a
crucial aspect of the study. Analysis revealed a
notable correlation between the F1 score of the
proxy validation and the remaining pool, indicating
that proxy validation serves as a reliable indicator
of the overall pool quality. Though some varia-
tions between the F1 score of proxy validation and
the actual pool were observed, these discrepancies
were minimal. Detailed examples and a deeper

analysis of this phenomenon are provided in the
appendix. Increasing the size of the proxy valida-
tion compared to pool data might lead to even more
similar F1 scores between proxy validation and the
pool, enhancing the reliability of this method as an
indicator.

The study also delved into the analysis of GPT-
3.5’s output confidence scores. In the IMDB
dataset, 11% of the annotations were found to be in-
correct overall. However, in instances where GPT-
3.5’s confidence was below 70%, the rate of incor-
rect annotations rose to nearly 50%. Similar trends
were observed in the Movie Genres dataset (33%
overall inaccuracies, rising to 50% for data under
80% confidence) and the Fake News dataset (27%
overall inaccuracies, increasing to nearly 50% for
data under 80% confidence). These findings sug-
gest that the model’s confidence score can be a
reliable indicator of uncertainty and the likelihood
of annotation errors.

These results have significant implications for
the application of Active Learning models, particu-
larly in how confidence scores can be interpreted
and used. The observed correlation between lower
confidence scores and higher rates of annotation
errors supports the idea that GPT-3.5’s confidence
can be treated similarly to uncertainty measures in
traditional Active Learning models. This insight
opens up new avenues for utilizing LLMs in Active
Learning frameworks, where confidence scores can
guide the annotation process more effectively.

Conclusion

The paper demonstrates that combining Large Lan-
guage Models (LLMs), such as GPT-3.5, with hu-
man annotators in an Active Learning framework
significantly enhances text classification tasks. This
hybrid approach, which selectively employs either
GPT-3.5 or human annotations based on confidence
thresholds, efficiently balances cost and accuracy.
The methodology reduces data annotation expenses
while maintaining or even improving model per-
formance compared to traditional human-only an-
notation methods. The study also introduces the
concept of proxy validation, which effectively es-
timates the quality of the entire unlabeled dataset,
proving useful in optimizing the annotation process.
Overall, the research highlights the benefits of inte-
grating advanced AI models with human insights
to create more efficient, accurate, and scalable so-
lutions for text classification.
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A Appendix

In this appendix, additional figures and detailed ex-
planations to supplement the findings and method-
ologies presented in the main body of the study are
provided. These supplementary materials are cru-
cial for a deeper understanding of the performance
and efficiency of our proposed Active Learning
framework, as well as the effectiveness of our proxy
validation approach and prompt design strategy in
handling various text classification tasks. Each sec-
tion of the appendix is dedicated to a specific aspect
of our research, offering visual representations, ex-
ample prompts, and thorough descriptions of the
datasets and Active Learning process used in our
study.

A.1 Additional Figures of Active Learning
Performance and Cost

This part presents visual representations to further
elucidate our model’s performance across different
datasets. These figures are integral to understand-
ing the effectiveness and efficiency of the proposed
Active Learning framework in handling varied text
classification tasks.

Figure 5 presents a detailed comparison of the
model’s performance on the IMDB dataset across
various methods, including the proposed Active
Learning framework and a baseline method of ran-
dom data addition. The figure illustrates the F1
scores as a percentage for each method, showcas-
ing the effectiveness of selective data addition in
enhancing model accuracy and precision over itera-
tive learning processes.

Similarly, Figure 6 provides a comparative anal-
ysis for the Movie Genres dataset. It juxtaposes the
results of the Active Learning framework against
the baseline random data addition method. This
comparison is crucial in demonstrating the model’s
capability to handle different classification tasks
and the superiority of the selective addition ap-
proach in improving performance metrics.

A.2 Proxy Validation Correlation Examples

This section of the appendix illustrates through ex-
amples the effectiveness of using a small subset of
the data (5% of the entire dataset) as a proxy valida-
tion tool. These figures demonstrate how the proxy
validation F1 scores serve as reliable indicators of
the overall pool quality, which is particularly im-
portant in real-world scenarios where access to the
complete pool labels is not feasible.

Figure 9 showcases the correlation for the IMDB
dataset. It compares the F1 scores obtained from
GPT-3.5 annotations (with confidence > 90%) and
GPT-3.5 only annotation to the F1 scores from the
proxy validation set. The key observation here is
the trend alignment between the proxy validation
scores and the overall pool quality. This figure
serves as an empirical example to demonstrate how
effectively the proxy validation set can estimate
the model’s performance and help in determining
an optimal stopping point for the Active Learning
process.

Figure 10 focuses on the Movie Genres dataset
and presents a similar analysis. It contrasts the
F1 scores for GPT-3.5 annotations with confidence
levels > 70% and GPT-3.5 only against the proxy
validation F1 scores. Despite the varying confi-
dence levels, both scenarios consistently correlate
with the proxy validation scores. This figure high-
lights the effectiveness of the proxy validation in
mirroring the potential performance of the model in
the broader dataset, thus serving as a guide for the
continuation or cessation of data annotation efforts.

A.3 Prompt Design
To illustrate the type of prompt used for GPT-3.5
annotation, consider the example shown in Figure
3 for the IMDB dataset.

prompt = f"""
What is the sentiment of the

following movie review ,
and how confident you are about this

’sentiment ’,
which is delimited with triple

backticks?

Give your answer as a single word ,
either ’positive ’

or ’negative ’ and a single
percentage in JSON format
delimited with space.

Review text: ’’’{X[i]}’’’
"""

Figure 3: Example of a GPT-3.5 prompt for sentiment
analysis in movie reviews, formatted to request output
in JSON format.

This prompt was designed to be straightforward,
directing GPT-3.5 to classify a given movie review
as either Positive or Negative. The simplicity of the
prompt ensures clarity in the task, allowing GPT-
3.5 to focus solely on the sentiment analysis of the
provided review text.
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The example provided in Figure 4 shows a few-
shot prompt used in the study for the Movie Genres
dataset.

prompt = f"""
Determine the genre of the movie based

on the following plot:

For the plot provided , classify its
genre as a single word (without
other marks or words like ’genre
:’), either "comedy", "action", "
drama", or "horror ".

Use the few -shot learning examples
below to improve your prediction:

Few -shot Examples:
‘‘‘{newsetX.iloc[0]}‘‘‘ genre:{ newsetY

.iloc [0]}
‘‘‘{newsetX.iloc[1]}‘‘‘ genre:{ newsetY

.iloc [1]}
‘‘‘{newsetX.iloc[2]}‘‘‘ genre:{ newsetY

.iloc [2]}
Movie plot:
‘‘‘{newsetX.iloc[i]}‘‘‘
"""

Figure 4: Example of a GPT-3.5 few-shot learning
prompt for Movie Genres classification.

This prompt provides GPT-3.5 with a few ex-
amples to illustrate the task, followed by a new
description for classification. The structure of the
prompt is key in ’teaching’ the model and the na-
ture of the task, using just a few examples, enabling
it to apply this understanding to new, unseen de-
scriptions.

A.4 Dataset and Active Learning details
Figure 7 and Figure 8 delve into the cost implica-
tions associated with achieving different F1 scores
in the IMDB dataset Movie Genres dataset, respec-
tively. These figures provide a detailed breakdown
of the costs incurred in each experiment, offering
insights into the economic feasibility and efficiency
of models in achieving high levels of accuracy at a
reduced cost.

The sizes of the datasets used in our research
were carefully chosen to ensure a comprehensive
analysis while maintaining manageability. The
IMDB dataset consisted of 10,000 entries, provid-
ing a rich source of movie reviews for sentiment
analysis. The fake news dataset comprised 5,000
entries, offering a diverse range of articles for the
identification of veracity in news content. Lastly,
the Movie Genres dataset included 4,000 entries,
encompassing various movie descriptions for genre

classification. A critical aspect of our dataset selec-
tion was the balance in each dataset. We ensured
that each dataset was carefully balanced to repre-
sent a wide range of scenarios and conditions. This
balance was crucial in avoiding biases and ensuring
that the results of our study were fair and unbiased.

The Active Learning phase of our study began
with an initial dataset comprising 2% of the total
data for each dataset. This initial selection served
as the baseline for our model. From this point, we
engaged in a systematic and incremental learning
process, expanding the dataset by 0.002% in each
iteration. This process was repeated over a total of
250 iterations. By the end of these iterations, we
had cumulatively added an additional 50% of data
to our initial pool, bringing the total data utilized to
52%. This gradual and iterative approach was criti-
cal in optimizing the learning curve of the model,
allowing it to progressively improve its classifica-
tion accuracy while being exposed to more data
samples.
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Figure 5: F1 Score Progression from 2% to 52% Training Data Portions in the IMDB Dataset. This figure
visualizes the evolution of F1 scores across different training data portions for various annotation methods,
including GPT-only, Hybrid models, Human-only, Few-shot learning, and a baseline of random sampling.

Figure 6: This figure shows the visualization and evolution of F1 scores of the Movie Genres Dataset across
different training data portions for various annotation methods compared with a baseline of random sampling.
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Figure 7: Cost per F1 Score Analysis During Iterative Training Data Increments in the IMDB Dataset. This figure
illustrates the cost efficiency (cost per F1 score) for different annotation strategies as the training data portion
increases from 2% to 52%. It compares the cost-effectiveness of GPT-only, Hybrid models, Human-only, and
Few-shot learning methods.

Figure 8: Cost per F1 Score Analysis During Iterative Training Data Increments in the Movie Genress Dataset. This
figure shows the cost efficiency (cost per F1 score) for different annotation strategies as the training data portion. .
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Figure 9: Correlation Between GPT-3.5 Annotation Confidence and Proxy Validation in IMDB Dataset: This figure
illustrates the alignment of proxy validation F1 scores with GPT-3.5 annotations at confidence levels above 90%
and GPT-3.5-only annotation.

Figure 10: Proxy Validation F1 Score Trends for Different GPT-3.5 Confidence Levels in Movie Genre Dataset:
Displaying the trend similarity in proxy validation F1 scores for GPT-3.5 annotations with confidence levels above
70% and GPT3.5 only.
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