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Abstract

Instruction tuning has become an integral part
of training pipelines for Large Language Mod-
els (LLMs) and has been shown to yield strong
performance gains. In an orthogonal line of
research, Annotation Error Detection (AED)
has emerged as a tool for detecting quality
problems in gold standard labels. So far, how-
ever, the application of AED methods has been
limited to classification tasks. It is an open
question how well AED methods generalize
to language generation settings, which are be-
coming more widespread via LLMs. In this
paper, we present a first and novel benchmark
for AED on instruction tuning data: DONKII.
It comprises three instruction-tuning datasets
enriched with error annotations by experts and
semi-automatic methods. We also provide a
novel taxonomy of error types for instruction-
tuning data. We find that all three datasets con-
tain clear errors, which sometimes propagate
directly into instruction-tuned LLMs. We pro-
pose four AED baselines for the generative set-
ting and evaluate them extensively on the newly
introduced dataset. Our results show that the
choice of the right AED method and model
size is indeed crucial and derive practical rec-
ommendations for how to use AED methods to
clean instruction-tuning data.

1 Introduction

Recent successes in instruction tuning (InstT) have
shown that Large Language Models (LLMs) can
generalize to a wide range of tasks in the zero-
shot setting (Wei et al., 2022; Sanh et al., 2022;
Ouyang et al., 2022). InstT achieves this by train-
ing an LLM on instruction-output pairs, where
the instruction describes the task and the output
contains the expected solution to the task. After
fine-tuning on the InstT dataset and an optional
reinforcement learning phase (Ouyang et al., 2022),
LLMs are able to generalize to instructions not
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seen during fine-tuning. In an orthogonal line of
inquiry, researchers have studied Annotation Error
Detection (AED), which allows to detect erroneous
annotations in labelled datasets. These low qual-
ity instances are then corrected or removed in a
semi-automated process (Vlachos, 2006; Klie et al.,
2022; Weber and Plank, 2023). However, how to
best apply AED for natural language generation
has so far not been studied. In this work, we com-
bine both strands of research and ask whether AED
methods can help to detect errors in InstT datasets
and thus help to improve model quality by improv-
ing data quality.

Applying AED methods to InstT datasets
presents a number of challenges. (1) The system-
atic development and comparison of AED methods
requires datasets with annotations indicating which
instances contain annotation errors. Such datatsets
are not yet available for InstT. (2) To our knowl-
edge, researchers have applied AED methods only
in the discriminative setting (Klie et al., 2022) and
it is not immediately clear how existing methods
can be adapted to generative problems. (3) It is not
obvious what even constitutes an error in InstT.

In this work, we address these three challenges;
see also Figure 1 for an illustration of our contribu-
tions:1 (1) We present Donkii, the first instruction
tuning benchmark to enable the evaluation of AED
methods. Donkii contains error annotations on
top of three existing InstT datasets derived from
manual error annotation efforts. We also introduce
a hierarchy of error types for InstT datasets; see
Figure 2. (2) We derive four AED baselines for
generative problems based on recent work on train-
ing dynamics for AED (Swayamdipta et al., 2020;
Pleiss et al., 2020). (3) We use Donkii to evaluate
the proposed AED baselines and study the effects
of model size, different types of errors, and differ-
ent types of InstT data. The results show that there

1Data and code are available at https://github.
com/mainlp/donkii.
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Figure 1: The Donkii dataset helps to design AED methods that can clean InstT datasets.

is a clear best-performing AED method for InstT
data among the four evaluated.

2 Background

2.1 Instruction Tuning

Instruction tuning (InstT) is an emerging paradigm
that leverages natural language instructions to fine-
tune language models, thereby improving zero-shot
performance on unseen tasks (Sanh et al., 2022;
Ouyang et al., 2022; Wei et al., 2022; Wang et al.,
2022b, inter alia). In InstT, an LLM is fine-tuned
to produce a desired output given an instruction
text. In some datasets, the instruction is further
divided into a definition or prompt component,
which defines the task and an optional input compo-
nent (Wang et al., 2022b; Taori et al., 2023). In this
work, we distinguish three types of InstT datasets
based on their provenance: meta-datasets, human-
authored datasets and LLM-authored datasets.

The first InstT datasets were meta-datasets,
which convert existing NLP datasets into InstT data
with human-authored prompt templates (Khashabi
et al., 2020; Ye et al., 2021; Mishra et al., 2022;
Sanh et al., 2022; Wei et al., 2022). Researchers
typically construct them by writing one or more
prompt templates for an existing NLP dataset. This
template is then used to transform each instance of
the existing dataset into an InstT instance. Here,
we call the combination of an existing dataset and
a prompt template a task. For human-authored
InstT datasets on the other hand, the dataset cre-

ators ask human annotators to author InstT in-
stances (Ouyang et al., 2022) or mine InstT in-
stances from existing human-authored resources
such as forums and wikis (Zhou et al., 2023).
LLM-authored datasets instead are generated by
LLMs. This is typically achieved by prompting
the LLM with a few examples of what InstT in-
stances look like and instructing the model to gen-
erate new ones (Wang et al., 2022a; Honovich et al.,
2023; Taori et al., 2023) or by providing elaborate
rules about what properties InstT instances should
have (Bai et al., 2022; Sun et al., 2023).

Finally, dataset creators have proposed mixtures
of these approaches, e.g. by manually correcting
LLM-authored instances (Ruebsamen and Contrib-
utors, 2023) or by combining instances generated
by different approaches (Zhou et al., 2023). Some
of these works highlight the importance of high
quality data (Zhou et al., 2023; Ruebsamen and
Contributors, 2023), but to the best of our knowl-
edge, our study is the first to systematically evalu-
ate AED techniques.

2.2 Annotation Error Detection

AED for Natural Language Processing (NLP)
datasets has a long tradition, which has recently
been comprehensively reviewed Klie et al. (2022).
Existing AED methods can be divided into six
different categories (Klie et al., 2022): variation-
based methods exploit the observation that in-
stances with similar surface forms tend to have the
same label (Dickinson and Meurers, 2003; Larson
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et al., 2020). Model-based methods use a cross-
validation scheme to generate predictions for the
whole dataset and then use these predictions to
flag errors, e.g. by highlighting instances where the
predicted label is different from the one assigned
(Amiri et al., 2018; Yaghoub-Zadeh-Fard et al.,
2019). Training-dynamics-based approaches com-
pute statistics on quantities collected during train-
ing (Swayamdipta et al., 2020; Pleiss et al., 2020;
Siddiqui et al., 2022). Vector-space-proximity-
based methods assume that instances that are close
in a suitable vector space should have the same
label (Larson et al., 2019; Grivas et al., 2020).
Ensemble-based methods use statistics of the pre-
dictions of ensemble members to find errors (Alt
et al., 2020; Varshney et al., 2022) and rule-based
approaches rely on manually defined rules to spot
erroneous instances (Kvĕtoň and Oliva, 2002). In
this work, we focus on training dynamics because
they performed well in a recent evaluation (Klie
et al., 2022), can be relatively easily adapted to
generative settings and have a low computational
overhead. We leave the evaluation of other types
of methods to future work.

An orthogonal classification of AED methods is
into flaggers and scorers (Klie et al., 2022). Flag-
gers model AED as a binary classification task (er-
ror vs non-error) and scorers assign an error score
to each instance that reflects the likelihood that the
instance contains an annotation error. In this work,
we focus on scorers, because the ranking induced
by them allows more fine-grained decisions about
which instances to inspect (Weber and Plank, 2023)
and they can be converted to flaggers by choos-
ing an appropriate threshold (Swayamdipta et al.,
2020).

3 Proposed AED baselines for text
generation datasets

We present four AED baselines for text generation
datasets. For this, we adapt methods based on train-
ing dynamics that were previously used for AED in
classification problems (Swayamdipta et al., 2020;
Pleiss et al., 2020). We chose these methods be-
cause they performed well in earlier work (Klie
et al., 2022; Weber and Plank, 2023) and because
their adaptation to generative settings is relatively
straight-forward. All four methods assign an error
score to an instance, with a higher score ideally
reflecting a higher probability of an incorrect an-
notation. All scores use the probabilities pe,l that

the model assigned to the token l of the instance’s
output sequence at epoch e during training. We
propose the following measures: (1) Perplexity,
which is the epoch-averaged perplexity of the in-
stance based on pe,l:

PPL =
1

E

E∑

e=1

pple, (1)

where E is the number of epochs and pple the per-
plexity at epoch e. (2) The (negative) average
probability, determined by averaging pe,l:

Pµ = − 1

E

E∑

e=1

1

L

L∑

l=1

pe,l, (2)

where L is the number of tokens in the output se-
quence.

(3) The (negative) minimum probability, de-
rived from the minimum of pe,l:

Pmin = − 1

E

E∑

e=1

L
min
l=1

pe,l. (3)

(4) The (negative) Area-under-the-Margin score
(AUM) (Pleiss et al., 2020), which we adapt to the
generative setting by calculating it for each token
in the output sequence and averaging the resulting
scores:

AUM =
1

E

E∑

e=1

1

L

L∑

l=1

max
y′l ̸=yl

pe(y
′
l|xl)− pe,l, (4)

where yl is the token at position l and
maxy′l ̸=yl pe(y

′
l|xl) is the maximum probability as-

signed by the model at epoch e for position l exclud-
ing the assigned token. In addition, we consider a
variant of each score that uses only the last epoch;
see §5.2 for the results of this ablation.

4 Datasets and Error Types

We describe Donkii’s three different data sources
that we have enriched with annotations of er-
roneous instances: P3-Donkii, SNI-Donkii, and
ADC-Donkii.2 Each is based on an existing In-
stT dataset and on manual inspection of the er-
rors in that dataset: P3-Donkii is derived from
the meta-dataset Public Pool of Prompts (Sanh
et al., 2022), SNI-Donkii from the meta-dataset
Super-Natural Instructions (Wang et al., 2022b),

2See Appendix A for our data statement.
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Figure 2: The DONKII taxonomy of six error categories, four of which are further divided into more specific
subcategories.

and ADC-Donkii from the LLM-authored dataset
Alpaca (Taori et al., 2023) and its partially cor-
rected version AlpacaDatasetCleaned (Ruebsamen
and Contributors, 2023). We enrich each of these
datasets with labels indicating which instances con-
tain errors, using different mixtures of expert an-
notation and programmatic analysis of the source
data. For each dataset, we construct three differ-
ent sets of instances: X ∗ which contains no errors,
Xerr, for which we know that it contains errors, and
Xunk, for which we do not know if it contains er-
rors. We evaluate AED methods by their ability
of discriminating X ∗ from Xerr. We exclude Xunk
from evaluation, as we do not exhaustively anno-
tate the datasets with errors due to their sheer size
and resource availability; see §5.1 for details.

4.1 P3-Donkii

Public Pool of Prompts (P3) (Sanh et al., 2022) is a
meta-dataset for InstT which was created by asking
researchers and open-source contributors to trans-
form existing datasets by writing prompts using
the InstT templating engine promptsource (Bach
et al., 2022). We construct the P3-Donkii dataset
by introducing different types of synthetic errors
into the P3 data. We use this synthetic setup for
P3 so that we have full control over the the number
and types of errors in the dataset.3 To find realis-
tic error classes, we first detect existing errors in
the P3 data. We use PPL to assign error scores
to tasks in P3, employing both mean and median
aggregation (see §5.2 for details on this).4 We then
manually inspect the top 20 highest scoring tasks

3An alternative approach would have been a full manual
annotation of P3 which was out of reach because of the large
size of the dataset.

4In principle, this semi-automatic process of finding error
categories with PPL could bias our evaluation results. How-
ever, our purely manual analysis of SNI shows similar error
categories, so we are confident that the introduced bias is
minimal.

by looking at their highest scoring instances. In our
manual inspection, we found the following types
of problems:
Empty output: The output is an empty string
where it should not be.
Incorrect output: The output contains severe or-
thographic or factual errors.
Missing context information: The prompt is trun-
cated during preprocessing. This can make crucial
information unavailable, e.g. missing context in
extractive QA.

We then correct the errors that we found in the
20 tasks in P3. We rebuild the empty output data
from scratch using promptsource and verify that
the output strings are not empty. We remove tasks
that contain a high number of low quality outputs.
We discard instances that do not fit within the set
maximum length, so that there is no missing infor-
mation.

Finally, we reintroduce the detected errors in a
controlled manner by modelling them synthetically.
For each type of error, we randomly sample five
tasks and perturb their instances:
Empty output: We replace the output in all in-
stances for the task with an empty string.
Low quality output: For each instance of the
task, with a probability of 0.5, we replace the gold-
standard output with output generated by prompt-
ing Llama-7b (Touvron et al., 2023).
Missing information: For each instance of the
task, with a probability of 0.5, we truncate the
gold-standard prompt to half of its original length.
Flipped output: For each instance, with a proba-
bility of 0.5, we replace the output with the output
of another instance. This is a widely used pertur-
bation used in AED research (Klie et al., 2022),
which we adapted to InstT datasets.

We collect all perturbed instances in Xerror (the
set of instances the AED methods should detect)
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and those of the same original5 unperturbed task
in X ∗ (the set of instances which should not be
detected by the AED methods). The instances of
unperturbed tasks constitute Xunk.

4.2 SNI-Donkii
We construct SNI-Donkii by mining errors that
arose during the creation of the Super-natural in-
structions (SNI) (Wang et al., 2022b) dataset and
have been corrected for the current version of SNI.
SNI6 is a meta-dataset for InstT, created by a large
number of researchers by transforming existing
datasets into InstT tasks. It contains a total of 1,616
tasks covering a wide range of NLP tasks such as
question answering, text classification, sentiment
analysis, textual entailment, and summarization.
The project implemented quality control through
peer review conducted via GitHub7 and a crowd-
sourced evaluation.

We create SNI-Donkii by comparing the version
of each task before the final round of peer review
(the first version uploaded to GitHub) and after
peer review (the version on GitHub at the time of
writing). From the 1,613 tasks that we were able to
download without error, we collect all 455 tasks t ∈
T where the output of at least one instance changed.
For 17 of these tasks, all expert annotators (two co-
authors and one NLP MSc student) agreed8 that at
least 90% of the changed instances contain an error.
See Table 2 for an example of the annotation task
and Table 3 for examples of found errors. For the
annotation guidelines see Appendix B.

From this annotation, we construct SNI-Donkii
as follows: For all tasks without errors, we add 64
instances of the latest version – or less if the task
contains fewer than 64 instances – of it to Xunk. For
the erroneous tasks, we add 64 changed instances
from the oldest version to Xerr and 64 from the
newest version to X ∗.9 When we had fewer than 64
updated instances, we put them all into Xerr. In this

5Note, that for all tasks during our initial exploration of
the dataset, we use the corrected error-free version of the task.

6https://github.com/allenai/
natural-instructions

7https://github.com/allenai/
natural-instructions/commits/master

8We opted for a roundtable discussion rather than major-
ity voting because we found that annotating errors in InstT
datasets is a difficult task. Even though we relied exclusively
on expert annotators, they sometimes missed crucial details
about instances and revised their annotations during the dis-
cussion. A disadvantage of this discussion-based setup is that
we cannot reliably estimate inter-annotator agreement.

9We chose 64 instances because Wang et al. (2022b) find
that performance plateaus with more instances per task.

case, we filled up Xunk with extra instances from
the oldest version to keep the number of instances
for each task about the same. Table 1 gives the
statistics of the resulting dataset.

4.3 ADC-Donkii

Alpaca (Taori et al., 2023) is an LLM-authored
dataset constructed by following the self-instruct
recipe proposed by Wang et al. (2022a). The cre-
ators of Alpaca repeatedly prompted text-davinci-
00310 with in-context examples of InstT instances
sampled from a pool of human and LLM-authored
instances and asked the LLM to provide a new in-
stance. This yielded a dataset of 52,000 different
InstT instances. In a separate effort called Alpaca-
DataCleaned (ADC) (Ruebsamen and Contributors,
2023), members of the open source community cor-
rected errors in the Alpaca data using a mixture
of manual and rule-based annotation.11 To con-
struct ADC-Donkii, we collect 300 instances from
Alpaca that do not occur in ADC and pair each of
them with the instance with the closest BM25 score
from ADC. Using these pairs, three of this study’s
authors manually annotate whether one of the two
instances is clearly preferable because the other
contains at least one error. The annotation guide-
lines can be found in Appendix C. As with SNI, we
do not disclose which instances are from Alpaca
and which are from ADC to avoid introducing un-
necessary bias. If, after a roundtable discussion, all
three annotators agree that one of the two instances
is preferable, we add it to X ∗ and the other to Xerr.
We add all other instances from Alpaca and ADC to
Xunk. Table 1 shows the statistics for the resulting
dataset.

4.4 Error categories

During annotation, we identified six main cate-
gories of errors, each with several subcategories.
Note, that these error categories are not exhaustive
and are observed in the annotated sample, rather
than encompassing all possible categories of errors.
A more detailed and nuanced analysis of possible
errors in instruction tuning data is the subject of
future work. The proposed hierarchy is shown in
Figure 2; a sample from Donkii errors is shown in
Table 3. More examples for each category can be

10https://platform.openai.com/docs/
models

11https://github.com/gururise/
AlpacaDataCleaned/issues/31
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Source data |Xunk| |X ∗| |Xerr| |T | |Terr| L̄inp L̄out Err Prov

P3 Sanh et al. (2022) 399,472 12,237 12,237 417 20 118 9 Syn. Meta

SNI Wang et al. (2022b) 101,783 1,088 585 1,613 17 165 6 Nat. Meta

ADC
Taori et al. (2023)

(Ruebsamen and Contributors, 2023) 48,425 173 146 - - 15 44 Nat LLM

Table 1: Statistics for the three Donkii datasets. |T | denotes the total number of tasks, and |Terr| the number of tasks
with at least one instance with an error. Note, that ADC does not provide a grouping of instances into tasks. L̄inp/L̄out
denotes the average input/output length in white-space-delimited tokens. ‘Err’ is the type of error (synthetic or
naturally ocurring) and ‘Prov’ the provenance (meta-dataset vs LLM-authored). ‘Lic’ is the license under which the
authors published their data.

Instruction 1: Name two deserts in the Sahara.
Input 1:
Output 1: The two deserts in the Sahara are the
Great Western Erg and the Great Eastern Erg.

Instruction 2: Recognize the following bird’s
species.
Input 2: <Image of a bird>
Output 2: Western Great Egret (Ardea alba max-
ima).

Label: 1 is better than 2
Error category: Image in input

Table 2: Example for the pair-wise annotation task that
we used to flag errors in SNI-Donkii and ADC-Donkii.

found in the Appendix D. The error categories are
the following:
Incorrect output: Problems are observed in the
output. This may include providing inaccurate or
incorrect output, such as providing a three-letter
abbreviation when a two-letter abbreviation was
requested. Other problems in this category include
not providing any output at all, reversing the label
in binary classification tasks, and providing output
that is in the wrong output space, such as answer-
ing a/b/c/d in a multiple choice question when the
options are listed as 1/2/3/4. In addition, the output
may be an off-instruction response that is related to
the instruction but does not follow it, for example,
responding with a code example that can calculate
an average instead of directly outputting the aver-
age of the given numbers as requested. Finally, the
output may contain ungrammatical text.
Factual knowledge and mathematics: This cat-
egory covers outputs that may be time-dependent,
contain factual errors, or contain incorrect arith-
metic.
Noise: Instances in which the instruction, input,
or output contains some form of noise. This noise

can range from NoInput stubs to duplicating the
instruction in the output.
Underspecified input: Instances in which the in-
struction and input do not provide sufficient infor-
mation to complete the task. For example, a task
may ask to find the average of a set of numbers
without giving the actual numbers. This category
also includes cases where the instruction is unclear
and cannot be completed correctly due to a lack of
specification. For example, a task may require clas-
sifying data points into multiple categories without
explicitly describing the semantics of the categories
or providing the data points. We argue that these in-
stances are errors because the LLM should ask the
user for the necessary input rather than assuming
(i.e. ‘hallucinating’) input.
Model-modality mismatch: Instances that require
additional modalities are placed in this category, to
reflect that the examined InstT datasets are used
for text-only LLMs. Unsupported modalities may
include tables, images (as in Table 2), and the use of
additional tools to browse and retrieve information
from the web.
Formatting: Instances with corrupted formatting,
such as missing white spaces and the use of punc-
tuation instead of white spaces.

In general, the identified errors are very similar
to known errors made by models for open-ended
text generation (Dou et al., 2022; Ge et al., 2022),
with less emphasis on issues of syntax and word
choice.

5 How well does AED do in Instruction
Tuning data?

In this section, we provide baseline results for error
detection in InstT datasets. To do this, we evaluate
the baselines introduced in §3 using the Donkii
datasets proposed in §4.
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Error Source Instruction Input Output (shortened)

Requires
web brows-
ing

Alpaca Summarize the New York
Times article about the rise of
AI.

www.nytimes.com/2020/06/16/
opinion/ai-growth.html

The New York Times article titled “The Rise of Artificial Intelligence”
looks at the growing impact of AI on the world today. <...>

Bad math Alpaca Calculate the mean of the
numbers 3, 4, 6, 10, 11

The mean of the numbers 3, 4, 6, 10, 11 is 6.4. This is calculated by
adding the numbers together and then dividing by the number of values
(5). (3 + 4 + 6 + 10 + 11 = 34; 34 / 5 = 6.4).

Unclear
instruction Alpaca Sort the following 10 fruits

into three categories.
Bananas, Apples, Pineapples,
Plums, Cherries, Peaches, Grapes,
Watermelons, Mangoes, Oranges

Category 1: Bananas, Apples, Pineapples, Plums, Cherries;

Formatting SNI [...] story: I went down to the tidepool to
watch the tide roll out. [...] selected
sentence: I went down to the tide-
pool to watch the tide roll out.

I decide togotothe tidepool >Causes/Enables> I gotothe tidepool

Labels
flipped

SNI You are given two sentences
(Sentence1 and Sentence2).
Answer “Yes” if these sen-
tences are a paraphrase of
one another, otherwise answer
“No”.

Sentence1: The broader Standard
& Poor ’s 500 Index .SP> gained
3 points , or 0.39 percent , at 924 .,
Sentence2: The technology-laced
Nasdaq Composite Index .IXIC rose
6 points , or 0.41 percent , to 1,498 .

Yes

Table 3: Examples of some error categories of the Donkii taxonomy.

small base large xl
rand PPL Pµ Pmin AUM PPL Pµ Pmin AUM PPL Pµ Pmin AUM PPL Pµ Pmin AUM

P3 50.0 73.64.4 84.31.0 51.30.8 52.70.7 76.10.6 81.70.3 51.20.0 53.60.1 70.73.5 77.40.4 49.40.6 52.20.2 61.30.0 66.00.0 58.60.0 46.00.0

SNI 34.9 30.70.2 30.30.2 27.90.1 28.70.1 31.80.4 42.40.9 30.20.3 29.80.1 33.41.0 48.11.7 34.50.9 34.10.6 33.00.7 38.90.2 32.20.2 31.60.4

ADC 45.1 54.50.3 55.40.3 50.30.5 47.90.7 53.70.21 51.90.5 50.80.7 51.40.7 52.20.4 48.90.2 47.50.5 47.21.2 53.10.0 53.10.0 51.30.0 47.30.0

AVG 43.3 52.9 56.7 43.2 43.1 53.9 58.7 44.1 44.9 52.1 58.1 43.8 44.5 49.1 52.7 47.4 41.6

Table 4: Results of four different AED methods applied to the Donkii datasets. All scores are Average Precision in
percent. The larger number is the mean across three seeds and the smaller number the standard deviation. The best
result per dataset is in bold. Rand is the random baseline.

5.1 Evaluation protocol

We follow the evaluation protocol for scoring-based
AED methods for classification tasks of Klie et al.
(2022) and Chong et al. (2022) – with one mod-
ification. We follow the protocol by treating the
problem as a ranking task, where an AED model
assigns an error score to each instance xi. How-
ever, unlike Klie et al. (2022) and Chong et al.
(2022), we have three sets of instances instead of
two: X ∗, which contains few to no errors, Xerr
which contains many errors, and Xunk for which we
do not know the proportion of errors. We judge the
quality of the ranking by how well it distinguishes
between X ∗ and Xerr and ignore Xunk during eval-
uation. Note that while we use only X ∗ and Xerr
for evaluation, we train on xi ∈ X ∗ ∪ Xerr ∪ Xunk.
We use average precision (AP), i.e. the area under
the precision-recall curve, implemented with scikit-
learn (Pedregosa et al., 2011) to score the rankings
and use |Xerr|

|X ∗|+|Xerr| as an estimator for the random
baseline (Bestgen, 2015).

We conduct all experiments with four models of
different sizes from the T5 family12 (Raffel et al.,
2020) in the version that Lester et al. (2021) con-

12https://huggingface.co/google/
t5-base-lm-adapt

tinually fine-tuned as language models. We chose
T5 because it has worked well in previous InstT
work (Sanh et al., 2022; Wei et al., 2022; Wang
et al., 2022b). See Appendix E for the hyperpa-
rameters. We repeat all experiments with three
different seeds and report the mean and standard
deviation of the results.

5.2 Results
The results can be found in Table 4. On average,
Pµ (average probability) performs the best across
all model sizes, with PPL coming in second. AUM
is tied for the third place with Pmin, each outper-
forming the other for two of the four model sizes.
This ranking is relatively stable for each individual
dataset and the best configuration always uses Pµ.
We conclude from this that Pµ clearly emerges as
the best performing baseline for AED in our nat-
ural language generation setup. This shows the
striking benefits in term of simplicity and effective-
ness of our proposed Pµ metric. The improvement
over the random baseline is relatively large at over
34 percentage points (pp) for P3-Donkii but more
modest for SNI-Donkii and ADC-Donkii at 13.2
pp and 10.3 pp respectively. This is probably due
to the fact that synthetically introduced errors are
generally easier to detect than naturally occurring
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ones (Klie et al., 2022).
For model size, small is the best for P3 and

ADC, while large is the best for SNI. On average,
base and large perform best, while small also per-
forms surprisingly well. Therefore, for a new InstT
dataset, we recommend starting with a base-sized
model for efficiency reasons.

P3 out (9777) inp (2460) - - -

rand 50.0 50.0 - - -
Pµ 89.40.9 68.00.1 - - -
ADC out (13) inp (13) noi (77) fac (14) mul (29)

rand 37.0 48.0 48.4 29.8 50.9
Pµ 62.60.8 72.20.2 49.80.4 55.70.8 61.50.5

SNI out form (64) noi (2) - mul (3)

rand 38.2 50.0 3.0 - 2.3
Pµ 51.71.7 51.90.9 30.68.6 14.93.9

Table 5: Results per error category. All scores are AP
(higher is better) in percent of Pµ using the best perform-
ing model size for the dataset. The category names are
abbreviated: out: incorrect output, inp: underspecified
input, noi: noise, fac: factual error, mul: multi-modality,
form: formatting. The number in brackets gives the
number of instances per category.

We analyse the performance of the different scor-
ers per annotated error category. For each dataset,
we use Pµ with the respective best performing
model size. The results can be found in Table 5.
Interestingly, the results differ strongly across error
categories and dataset. Pµ outperforms the random
baseline for all but two categories, which are noisy
instances in ADC-Donkii and formatting errors
in SNI-Donkii. Surprisingly, other configurations,
which on average perform worse than Pµ, are able
to beat the random baseline for these error types
with the respectively best scorers outperforming
random by 18.1/13.7 pp for noise/formatting.
On instance vs task-level and epoch aggrega-
tion Our annotation of SNI and P3 showed that er-
rors in meta-datasets often affect a large proportion
of all instances for a given task.13 We wondered
whether we could exploit this property by aggregat-
ing error scores across all instances for a given
task and thus perform AED on tasks rather than
instances. For this, we conducted additional ex-
periments using SNI-Donkii, where we computed
two scores for each task by taking the mean and
median across all instances for the given task. We
then follow the same ranking-based evaluation pro-
tocol as for individual instances. Here, we observe

13This observation motivated our annotation efforts for P3
and SNI.

a slightly different ordering of methods, with PPL
achieving the highest score. On average, the ag-
gregation by median yielded higher scores than
aggregation by mean. The absolute AP is much
higher than for single instance error detection at
69.3% (vs 48.1%), suggesting that task aggrega-
tion may be useful for detecting systematic errors
in meta-datasets.

We also examine the effect of aggregating
scores over all epochs. For this, we ablate the
epoch aggregation by using the final logits directly
to compute the AED scores. For each dataset,
we compute the difference between the best per-
forming size-score combination with and without
epoch aggregation. We find that the scores drop by
1.3/3.9/1.2 percentage points AP for P3/SNI/ADC
respectively without aggregation over epochs. This
further supports the observation that averaging
AED scores over epochs generally improves per-
formance (Swayamdipta et al., 2020; Pleiss et al.,
2020; Weber and Plank, 2023).

6 Conclusion

This work presents the first study on annotation
error detection for generation tasks, in particular,
instruction tuning data. Despite the popularity of
InsT, there are no evaluation datasets for AED with
marked errors. Therefore, we present Donkii, a
suite of three existing InstT datasets enriched with
novel error annotations and an error taxonomy de-
rived from manual annotation efforts. We propose
four different AED methods for generative mod-
els and systematically evaluate them on the Donkii
datasets. We find that there is a clear best perform-
ing method for single instances with Pµ and for
task-level AED with PPL. In any case, the choice
of model size is critical for optimal AED perfor-
mance. In Appendix F we report on preliminary
experiments in which we investigated how annota-
tion errors impact downstream performance. For
future work, we plan to apply AED methods to
more structured generative meta-datasets such as
Huguet Cabot and Navigli (2021) or Fries et al.
(2022).

Limitations

Identified errors in InsT datasets. We acknowl-
edge that the error categories we have identified are
not exhaustive. This is because the current errors
have been annotated based on manual examina-
tion of medium-sized samples. We also acknowl-
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edge that our error category does not cover issues
related to toxicity, hallucinations, and safety, as
we believe that these issues are so important that
they require specialized treatment in more focused
work (Gehman et al., 2020; Sap et al., 2022; Rau-
nak et al., 2021; Dziri et al., 2022; Greshake et al.,
2023, inter alia).

Small sample size for individual categories We
invested significant manual effort in annotation,
but strongly favoured precision over quantity, with
three expert annotators first labeling each sample
individually and then discussing the results. As a
result, the number of errors found per category is
moderate to small (see Table 5). We believe that
an even larger annotation effort would be required
in the future to ensure that all findings on error
categories are robust.

Ethics & Broader Impact

Instruction-tuned LLMs have been widely adopted
by non-expert users (OpenAI, 2023). We believe
that this makes fine-grained control over the model
outputs and thus, by extension, over the content of
the InstT dataset an ethical imperative. One facet
of this is errors in the data, and so we believe that
using AED methods to analyse InstT datasets can
potentially have a positive impact on LLM users.
However, the demographics of all annotators are
fairly uniform, and yet in some cases there was
substantial disagreement on what constitutes an er-
ror. Therefore, we believe that a broader discussion
involving more stakeholders is needed to get a di-
verse perspective on what is the desired behaviour
of LLMs and thus what constitutes an error in InstT
datasets.
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A Donkii Data Statement

Following (Bender and Friedman, 2018), the fol-
lowing outlines the data statement for Donkii:

• A. CURATION RATIONALE Enrichment
of existing instruction-tuning datasets with
annotations for erroneous instances

• B. LANGUAGE VARIETY English with
the exact variant(s) unkown because of the
large number of different sources of data

• C. SPEAKER DEMOGRAPHIC Unknown
because of the large number of different data
sources

• D. ANNOTATOR DEMOGRAPHIC Three
post-doctoral researchers and one Master’s
student (age: 25-40), gender: male and fe-
male. Native language: Russian, German. So-
cioeconomic status: higher-education student
and university researchers.

• E. SPEECH SITUATION Unknown be-
cause of the large number of different data
sources

• F. TEXT CHARACTERISTICS Unknown
because of the large number of different data
sources

• PROVENANCE APPENDIX

– Alpaca (Taori et al., 2023), CC By
NC 4.0, https://github.com/
tatsu-lab/stanford_alpaca

– AlpacaDataCleaned (Ruebsamen
and Contributors, 2023), Apache
2.0, https://github.com/
gururise/AlpacaDataCleaned

– Public Pool of Prompts (Sanh
et al., 2022), Apache 2.0,
https://huggingface.co/
datasets/bigscience/P3

– Super-Natural Instructions (Wang
et al., 2022b), Apache 2.0, https:
//github.com/allenai/
natural-instructions

B SNI Annotation Guidelines

For this annotation effort, we assume a pair-wise
annotation setting. You are shown two tasks and
the instances that differ between them. You should
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judge whether one of the two tasks contains fewer
errors than the other one. Each task has the follow-
ing fields:

• Definition: The instruction to the language
model. E.g. ‘solve the following equation for
x’

• Instances: Each with the following fields:

• Input: The input complementing the instruc-
tion. E.g. ‘equation: x + 2 = 5’. Output: The
gold-standard output expected from the model

There are four possible labels:

1. A is better than B

2. B is better than A

3. A and B are the same

4. I don’t know

Additionally, there is a field for short free-form
comments where you can (but don’t have to) note
a reason for your annotation.

We assume that the dataset is used to train a
current text-only vanilla LLM like GPT3 or Llama.
That is, it does not have access to tools and cannot
process multi-modal input.

The following rules apply for differences be-
tween tasks A and B. We assume that the difference
mentioned in the rule is the only difference between
both (ceteris paribus). If more than one rule ap-
plies, we leave the choice to the best judgment of
the annotator. The goal is to make only relative
judgments for the given pair without considering
the “absolute quality” of the instances. Even when
both contain very little or many errors, if B clearly
contains more significant errors than A, this should
be annotated as “A is better than B”.

Rules:

• If B contains more errors than A, but those are
only few and thus don’t affect the majority of
the instances differing between A and B, then
A and B are equal. As a guideline: If more
not more than 90% contain the error, then they
probably should be equal.

• Be lenient in your annotations. If you are
unsure whether something is an error, then
better go for A and B are equal.

• Factual correctness: If the output of A can
be interpreted as factually correct, but the one
in B cannot, then A is better than B. Example:

– Instruction: Tell me the title of the most
popular song released in 2020 so far.

– Output A: The most popular song re-
leased in 2020 so far is "Blinding Lights"
by The Weeknd.

– Output B: The most popular song re-
leased in 2020 so far is "The Box" by
Roddy Rich.

– Explanation: A is better than B, because,
while the answer to A is ambiguous
(there are multiple measures of popular-
ity), “The Box” was released in 2019 and
thus is clearly wrong.

• Noise: If B contains noise (e.g. technical
artifacts) but A does not, then A is better than
B. Example:

– Instruction: Suggest the best strategy for
a five-second TV commercial.

– Input A:
– Input B: “NoInput”
– Explanation: A is better than B, because

“NoInput” is clearly a technical artifact
(even despite A being empty - i.e. no
output better than noise).

• Only output: Judge A and B based on the out-
put field not instruction or input. Justification:
It is not clear whether low-quality input with
high-quality output improves or diminishes
instruction tuning performance. Example:

– Instruction A: Convert the following
number in hexadecimal format.

– Input A: 18
– Instruction B: Convert the number 18 to

hexadecimal
– Input B:
– Explanation B: A and B are equal, even

though one could prefer A over B be-
cause input and instruction are cleanly
separated.

• Unclear instruction: If it is impossible to
guess user intent based on the instruction in
B, but it is possible to guess it in A, then A is
better than B. Example:
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– Instruction A: Find the average value of
the following list of numbers

– Instruction B: Process the following data
and output the results

– Input: List: [3, 7, 2, 5]
– Explanation: A is better than B because

for B it is not clear at all how the model
should process the data.

• Tool usage: If B requires tool usage (e.g. ac-
cess to a search engine) but A doesn’t, then A
is better than B. Justification: We assume that
the dataset is used to instruction-tune a vanilla
LM without access to tools. Example:

– Instruction A: Provide a brief overview
about the following topic.

– Input A: Volcanology
– Instruction B: Take a Wikipedia article

and rewrite it in your own words.
– Input B:

https://en.wikipedia.org/wiki/Volcanology
– Explanation: A is better than B because

B requires access to a web browser.

• Multi-modal input: If B contains multi-
modal input (e.g. an image file) but A doesn’t,
then A is better than B. Justification: We as-
sume that the dataset is used to instruction-
tune a vanilla text-only LM. Example:

– Instruction: Critique the given painting.
– Input A: The painting is an abstract com-

position of vibrant yellow, blue, and pink
hues that appear in an haphazard, yet bal-
anced form and serve as an evocation of
life, joy, and emotion.

– Input B: [Painting attached]
– Explanation: A is better than B because

B contains multimodal input.

• Temporal knowledge: If B contains temporal
knowledge but A doesn’t, then A is better
than B. Justification: We want the instruction-
tuned model to handle temporal knowledge
gracefully. Example:

– Instruction A: What is the name of the
46th president of the United States?

– Instruction B: What is the name of the
current president of the United States?

– Explanation: A is better than B because
the answer to B will change over time
while the answer to A is static.

• Formatting: If A and B differ only in format-
ting, then A and B are equal Example:

– Output A: - Astonished - Amazed -
Shocked - Stunned - Speechless - Be-
wildered"

– Output B: Astonished, amazed, shocked,
stunned, speechless, bewildered. Expla-
nation: A is equal to B because the out-
put only differs in formatting

C ADC Annotation Guidelines

For this annotation effort, we assume a pair-wise
annotation setting. You are shown two instances
and have to judge which of both would you prefer-
ably include in an instruction-tuning dataset. Each
instance has two to three fields:

• Instruction: The instruction to the language
model. E.g. ‘solve the following equation for
x’

• Input (optional): The input complementing
the instruction. E.g. ‘equation: x + 2 = 5’.
Instructions can be self-contained, thus Input
is optional.

• Output: The gold-standard output expected
from the model

There are four possible labels:

1. A is better than B

2. B is better than A

3. A and B are the same

4. I don’t know

Additionally, there is a field for short free-form
comments where you can (but don’t have to) note
a reason for your annotation.

We assume that the dataset is used to train a
current text-only vanilla LLM like GPT3 or Llama.
That is, it does not have access to tools and cannot
process multi-modal input.

The following rules apply for differences be-
tween instances A and B. We assume that the differ-
ence mentioned in the rule is the only difference be-
tween both (ceteris paribus). If more than one rule
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applies, we leave the choice to the best judgment
of the annotator. The goal is to make only relative
judgments for the given pair without considering
the “absolute quality” of the instances. Even when
both are very high or low quality, if B is clearly
worse than A, this should be annotated as “A is
better than B”.

Rules:

• Factual correctness: If the output of A can
be interpreted as factually correct, but the one
in B cannot, then A is better than B. Example:

– Instruction: Tell me the title of the most
popular song released in 2020 so far.

– Output A: The most popular song re-
leased in 2020 so far is "Blinding Lights"
by The Weeknd.

– Output B: The most popular song re-
leased in 2020 so far is "The Box" by
Roddy Rich.

– Explanation: A is better than B, because,
while the answer to A is ambiguous
(there are multiple measures of popular-
ity), “The Box” was released in 2019 and
thus is clearly wrong.

• Noise: If B contains noise (e.g. technical
artifacts) but A does not, then A is better than
B. Example:

– Instruction: Suggest the best strategy for
a five-second TV commercial.

– Input A:
– Input B: “NoInput”
– Explanation: A is better than B, because

“NoInput” is clearly a technical artifact
(even despite A being empty - i.e. no
output better than noise).

• Only output: Judge A and B based on the out-
put field not instruction or input. Justification:
It is not clear whether low-quality input with
high-quality output improves or diminishes
instruction tuning performance. Example:

– Instruction A: Convert the following
number in hexadecimal format.

– Input A: 18
– Instruction B: Convert the number 18 to

hexadecimal
– Input B:

– Explanation B: A and B are equal, even
though one could prefer A over B be-
cause input and instruction are cleanly
separated.

• Unclear instruction: If it is impossible to
guess user intent based on the instruction in
B, but it is possible to guess it in A, then A is
better than B. Example:

– Instruction A: Find the average value of
the following list of numbers

– Instruction B: Process the following data
and output the results

– Input: List: [3, 7, 2, 5]
– Explanation: A is better than B because

for B it is not clear at all how the model
should process the data.

• Tool usage: If B requires tool usage (e.g. ac-
cess to a search engine) but A doesn’t, then A
is better than B. Justification: We assume that
the dataset is used to instruction-tune a vanilla
LM without access to tools. Example:

– Instruction A: Provide a brief overview
about the following topic.

– Input A: Volcanology
– Instruction B: Take a Wikipedia article

and rewrite it in your own words.
– Input B:

https://en.wikipedia.org/wiki/Volcanology
– Explanation: A is better than B because

B requires access to a web browser.

• Multi-modal input: If B contains multi-
modal input (e.g. an image file) but A doesn’t,
then A is better than B. Justification: We as-
sume that the dataset is used to instruction-
tune a vanilla text-only LM. Example:

– Instruction: Critique the given painting.
– Input A: The painting is an abstract com-

position of vibrant yellow, blue, and pink
hues that appear in an haphazard, yet bal-
anced form and serve as an evocation of
life, joy, and emotion.

– Input B: [Painting attached]
– Explanation: A is better than B because

B contains multimodal input.

• Temporal knowledge: If B contains temporal
knowledge but A doesn’t, then A is better
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than B. Justification: We want the instruction-
tuned model to handle temporal knowledge
gracefully. Example:

– Instruction A: What is the name of the
46th president of the United States?

– Instruction B: What is the name of the
current president of the United States?

– Explanation: A is better than B because
the answer to B will change over time
while the answer to A is static.

• Formatting: If A and B differ only in format-
ting, then A and B are equal Example:

– Output A: - Astonished - Amazed -
Shocked - Stunned - Speechless - Be-
wildered"

– Output B: Astonished, amazed, shocked,
stunned, speechless, bewildered. Expla-
nation: A is equal to B because the out-
put only differs in formatting

• Global properties: If A and B differ only
with respect to the full dataset, e.g. because
A increases grammatical diversity in the in-
put but B doesn’t, then A and B are equal
Example:

– Instruction A: The average of 10 num-
bers is 85. If the numbers 70 and 76 are
removed from the set of numbers, what
is the average of the remaining numbers?

– Instruction B: Find the average of 85, 44
and 102.

– Explanation: A and B are equal, even
though more complex problems as A are
much less frequent in the whole dataset
than problems of the type B.

• Subjectivity: If the annotator feels that their
preference for one instance is strongly subjec-
tive, then A and B are equal.

• Leniency: Be lenient in your annotations. If
you are unsure whether something is an error,
then better go for A and B are equal. If both
outputs can be interpreted as correct, then A
and B are equal
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D Examples of errors
Error Source Instruction Input Output (shortened)

Incorrect output

Wrong
output SNI Given a sentence and an entity, the task

is to select the authors sentiment towards
the enity. Sentiments can be Positive,
Neutral and Negative. <...>

What is the sentiment of the follow-
ing document towards the entity Hay-
ley Smith ? Hayley Smith was diag-
nosed with chronic depression in her
early twenties: “I’d been bottling up
quite a bit through most of my teens.
Then it hit me a like a brick wall ” she
said.

Neutral

Empty
output Alpaca Create a flow chart to explain the work-

ing of a web browser.
Labels
flipped SNI In this task you will be given a passage

and a yes/no question based on the pas-
sage. You should answer the question
using the information from the passage.

Superfecundation is the fertilization of
two or more ova from the same cycle
by sperm from separate acts of sexual
intercourse, which can lead to twin ba-
bies from two separate biological fathers.
[...] question: can a woman produce
twins of different fathers?

No

Output
space SNI You are given a science question (easy-

level) and four answer options (associ-
ated with "A", "B", "C", "D"). Your task
is to find the correct answer based on sci-
entific facts, knowledge and reasoning.

Which group of organisms can show sig-
nificant trait changes in the shortest pe-
riod of time? (A) bacteria (B) birds (C)
fish (D) reptiles

1

Off-
instruction Alpaca Given three numbers (x, y, z), find the

greatest common factor.
2, 4, 2008 The greatest common factor of 2, 4, and

8 is 2.
Grammar

error SNI In this task, you are given a question and
an answer, you would be asked to cre-
ate the sentence based on the Question-
Answer provided. It should be contained
within the Question-Answer provided.

Question: What is the most common
type of cancer in adult males? Answer:
prostate

Prostate is the most common type of can-
cer in adult males.

Factual Errors

Temporal
context Alpaca What is the average annual salary for a

customer service developer?
The average annual salary for a customer
service developer is usually around
$74,508.

Bad math Alpaca Calculate the average of the following
three numbers: 10, 12, 15.

The average of 10, 12, and 15 is 12.67.

Encyclopedic Alpaca What is the average air pressure of a
human’s lungs?

The average air pressure in a human’s
lungs is between four and seven centime-
ters of water (4–7 cm H2O).

Noise

Noise Alpaca Write an essay about the benefits of pub-
lic transportation.

No input required. Public transportation is an invaluable
resource for communities and cities
around the world. <...>

Underspecified Input

Missing
context

information
Alpaca Write a tweet summarizing this article

about an animal rescue in Thailand.
The article Amazing news! An animal rescue in

Thailand has successfully freed 63 bears
from animal trafficking. The rescued
bears will now receive the proper care
and attention they need.

Unclear
instruction Alpaca Sort the following 10 fruits into three

categories.
Bananas, Apples, Pineapples, Plums,
Cherries, Peaches, Grapes, Watermel-
ons, Mangoes, Oranges

Category 1: Bananas, Apples, Pineap-
ples, Plums, Cherries; Category 2:
Peaches, Grapes, Watermelons; Cate-
gory 3: Mangoes, Oranges

Model-modality mismatch

Requires
web

browsing
Alpaca Provide a summarization of the article. https://en.wikipedia.org/wiki/

Artificial_intelligence
Artificial Intelligence, commonly
known as AI, refers to the simulation
of human intelligence processes by
machines, especially computer systems.
<...>

Table
in input Alpaca Dataset of 500 people with the variable

“income”.
The mean income is $50,000.

Image
in input Alpaca How would you use this photo in a mar-

keting campaign?
<image included in email> The photo can be used to create a com-

pelling marketing campaign that draws
attention to the product or service. <...>

Image
in output Alpaca Make a word cloud on the given topic. Artificial Intelligence <Word Cloud Output>

Formatting

Formatting SNI In this task, you will be given a short
story. One sentence from the story is
chosen. Consider the events that hap-
pen before that sentence, or are likely to
have happened before it. Does any of
them directly cause it, or simply make
it possible? You should write your an-
swer in the form " A >causes/enables>
B". Try to use phrases and sentences
from the story to compose your answer
when possible.

story: I went down to the tidepool to
watch the tide roll out. I sat on the dock
and waited, while listening to my mp3
player. Once the tide was out, I saw
Something shiny in the muddy bottoms.
I went down and found that it was a gold
ring! Today was my lucky day! selected
sentence: I went down to the tidepool to
watch the tide roll out.

I decide togotothe tidepool
>Causes/Enables> I gotothe tide-
pool

Table 6: Examples of errors.213



E Hyperparameters

We experiment with four sizes, namely small (60
million parameters), base (220 million), large (770
million), and 3B (3 billion) using NVIDIA A100
cards. We train each of the models for 10 epochs
as a seq2seq LM using a batch size of 60 and a
learning rate of 1e− 3. Note, that we train separate
models for each of the three datasets and leave the
exploration of possible synergies across datasets for
future work. We set the maximum source length
to 512/768/768 for P3-Donkii/SNI-Donkii/APC-
Donkii and the output length to 256.
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F Preliminary experiments on the impact
of errors on downstream performance

We conduct a preliminary experiment on how er-
rors in InstT datasets affect downstream perfor-
mance in a case study. For this, we use the training
and evaluation setup of Tk-Instruct (Wang et al.,
2022b), which is the main model trained on SNI
using the code provided by the authors.14 To inves-
tigate the effect of errors, we contrast two models:
Tk-Instructerr and Tk-Instruct∗. Both models are
based on the three billion parameter version of T5.
For Tk-Instructerr, we use all 17 tasks that we found
to be erroneous in SNI-Donkii. To these, we add a
sample of an additional 100 tasks from the original
Tk-Instruct training data. This results in a training
data set of 6, 985 instances across 117 tasks and an
error rate of approximately 8%. For Tk-Instruct∗

we replace all erroneous instances with corrected
instances from the same task. We adapt the train-
ing pipeline to our limited computational budget:
We train and evaluate the model in a strict zero-
shot setting without providing few-shot examples
to reduce the input length of the instances. Second,
we use only at most 64 instances per task, because
Wang et al. (2022b) find that increasing this num-
ber does not improve performance. We train the
model for 30 epochs with a batch size of 1024. We
use the same held-out task mixture for evaluation
as Wang et al. (2022b) but remove all tasks that
are in our training data. To evaluate the impact
of errors on instruction tuning, we follow Wang
et al. (2022b) and use RougeL for evaluation. Sur-
prisingly, we find that the difference between the
two models is small. Tk-Instruct∗ achieves an over-
all RougeL score of 35.9%, while Tk-Instructerr
achieves 35.7%. Moreover, Tk-Instructerr even
generates the correct answer for instances where it
observed incorrect answers during training. Both
observations suggest that instruction-tuned models
may be robust to small numbers of errors in their
training data. However, when we prompt the pub-
lished version of T015, the model trained on P3,
with a prompt template for which during training it
erroneously always observed empty strings as out-
put16, we find that it will always respond with an
empty string. This motivates further research into

14https://github.com/yizhongw/
Tk-Instruct

15https://huggingface.co/bigscience/T0_
3B

16"Question 1: [...]? Question 2: [...]? Do these questions
convey the same meaning? Yes or no?"

when and how errors in InstT datasets propagate
into models.
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