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Abstract

Recent developments in active learning algo-
rithms for NLP tasks show promising results
in terms of reducing labelling complexity. In
this paper we extend this effort to imbalanced
datasets; we bridge between the active learning
approach of obtaining diverse and informative
examples, and the heuristic of class balancing
used in imbalanced datasets. We develop a
novel tune-free weighting technique that can
be applied to various existing active learning
algorithms, adding a component of class bal-
ancing. We compare several active learning
algorithms to their modified version on mul-
tiple public datasets and show that when the
classes are imbalanced, with manual annota-
tion effort remaining equal the modified ver-
sion significantly outperforms the original both
in terms of the test metric and the number of
obtained minority examples. Moreover, when
the imbalance is mild or non-existent (classes
are completely balanced), our technique does
not harm the base algorithms.

1 Introduction

Pre-trained Language Models (PLMs) and Masked
Language Models (Peters et al., 2018; Devlin et al.,
2019; Liu et al., 2019) have revolutionized NLP by
supplying meaningful contextual embeddings for
tokens and sentences. These models pushed SoTA
on many tasks, proving especially effective for text
classification tasks (Sun et al., 2019). For many
of these tasks, given enough labeled data for fine-
tuning a PLM, satisfactory results can be achieved.
On the other hand, due to the rapid growth in tex-
tual datasets, for many domains and tasks it is often
the case that while a vast amount of textual data is
available, only a small portion of the text-instances
belong to a specific class of interest (Li et al., 2018;
Padurariu and Breaban, 2019; Shaikh et al., 2021).

This sparsity makes annotation challenging be-
cause naive data sampling methods do not produce
enough examples belonging to a class of interest.

It is often possible to use some filtering heuris-
tic before performing manual annotations, so that
the percentage of data belonging to the class in
question will rise. This approach however is not
scalable, since it requires hand-crafting for each
specific task or even class. In addition, when fil-
tering is imperfect, the PLM may never observe
an important cluster of examples, hurting its gener-
alization capabilities. Therefore, It is essential to
minimize the amount of human annotations needed
in order to acquire labeled data that will be suf-
ficient for the model to reach a satisfying perfor-
mance. This calls for the use of Active Learning
(AL) techniques. There are many works applying
AL techniques for PLM fine-tuning (Gissin and
Shalev-Shwartz, 2019; Ash et al., 2020; Dor et al.,
2020) but most do not specifically consider the
imbalanced dataset case.

Standard AL objectives include obtaining sam-
ples which the model is less certain about and in-
creasing the diversity of the chosen sample set. Ex-
isting AL methods (C Lin, 2018; Kim and Yoo,
2022) aimed to handle imbalanced datasets suggest
doing so by alternating between some approach
designed to obtain positive examples1, and another
approach with standard AL objectives. The short-
coming of this alternating approach is that the ex-
act balance of objectives, i.e., how many samples
should be chosen aimed to be positive vs diverse,
etc., is dependent on the imbalance of the dataset.
As a result, existing methods either require a bal-
ancing hyperparameter that cannot be tuned in a
practical2 setting, or need to learn the correct bal-
ancing ratio over time, making the methods effi-
cient only after a large amount of labelling.

In this work we take a different approach that
modifies an AL algorithm to favor positive exam-

1Throughout this paper we assume w.l.o.g. that the positive
class is the minority class.

2AL is most needed when labeled data is missing, therefore
assuming a dev set is unpractical.
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ples in a way that is self-tuned to obtain an equal
amount of positive and negative samples. The core
idea of our approach is to debias the inherent skew
in the imbalanced dataset by utilizing the inverse-
propensity score of the probability of a sample to
be positive, according to the model obtained thus
far. The simplest form of our algorithm is to sam-
ple according to these scores. Intuitively, once the
model is reasonable, and this happens quickly in
the era of pre-trained models, the amount of posi-
tive samples is in the same order of magnitude as
the negative samples. We show that these scores
can be used not only as a tool to modify the uni-
form sampling approach, but can be combined with
other algorithms providing their own weights to
the data points (Yuan et al., 2020), or clustering
approaches aimed to maximize diversity (Gissin
and Shalev-Shwartz, 2019; Ash et al., 2020).

We demonstrate that for the imbalanced setting,
our adaptation of SoTA AL algorithms outperform
their original counterparts in multiple datasets. We
show that this behavior is consistent across various
levels of data imbalance and that in the balanced
setting, our adaptation is comparable to the original
AL algorithms. The latter property is crucial from
a practical perspective as the imbalance ratio of
a dataset is rarely known in advance and can be
difficult to estimate.

Concluding, we showcase a weakness of re-
cent AL approaches when dealing with imbal-
anced datasets and devise a novel self-tuned re-
weighting solution that complements existing (in-
cluding SoTA) AL algorithms, improving their per-
formance on imbalanced datasets. We experiment
on four imbalanced datasets from different tasks
and domains. We publish our code and imbalanced
datasets for reproducibilty and to encourage future
research in this area3.

2 Related Work

Conventional active learning. There is a myr-
iad of works on active learning in different set-
tings (Ren et al., 2021; Fu et al., 2013). Herein,
we consider a pool-based active learning scenario
where the algorithm has access to a large unlabeled
dataset U that can be labeled through human an-
notations. As previously mentioned, our solution
modifies existing active learning algorithms in or-
der to better deal with imbalanced datasets. We
identify three types of active learning algorithms:

3https://github.com/balancingAL/ImbAL

random, embedding-based, and score-based algo-
rithms. Random sampling, the simplest approach,
generates a distribution over U from which k dis-
tinct samples are randomly selected (e.g., uniform
sampling).

Embedding-based algorithms embed unlabeled
samples in a high dimensional space. A subset
of samples is then selected for annotation using a
clustering algorithm based on their embedding, to
increase the sample diversity. BADGE (Ash et al.,
2020) is an embedding-based algorithm where the
sample gradient from the last layer of the model,
taken from the log loss of the predicted label, is
used as an embedding. ALPS (Gissin and Shalev-
Shwartz, 2019) adopts a similar approach, but uses
an embedding that captures the language model
uncertainty of the different tokens in the sentence.

Score-based algorithms attach a model score to
each sample. The most common score-based ap-
proach is Least Confidence (Lewis and Gale, 1994)
which selects the top-K samples with the highest
model uncertainty. A more recent work called
DAL (Gissin and Shalev-Shwartz, 2019) trains a
classifier to detect new samples dissimilar from the
already labeled data.

Active learning in skewed datasets. Compared
to active learning, relatively only a few studies have
specifically addressed the issue of class imbalance.
A common approach in handling class imbalance
is to skew the active learning algorithm towards
ranking positive samples higher. ODAL (Barata
et al., 2021) is an extension of DAL that targets
the cold-start setting using an outlier detection al-
gorithm until a single positive sample is found.
HAL (Kazerouni et al., 2020) suggests a Hybrid
Active Learning algorithm that switches between
selecting ‘exploitation’ that chooses points where
the model is uncertain and ‘exploration’ that either
chooses samples uniformly at random or according
to how far they are from already chosen samples,
yet this approach requires a hyperparameter deter-
mining how to balance exploration and exploitation,
that is crucial to the performance, and setting it is
said to be an open problem.

Recent works try to combine conventional active
learning algorithms with positive-skewed sampling.
C Lin (2018) explore a method that combines mul-
tiple strategies for selecting new examples such as
standard active learning, sampling in a skewed way
towards positive examples, and generating exam-
ples of the minority type (via manual annotators).
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They apply a Multi-armed bandit (MAB) algorithm
(UCB) to balance between the strategies. Similarly,
BMP (Kim and Yoo, 2022) defines two types of
policies, one samples from the positive class and
the other uses a standard AL algorithm such as
random or VE (Beluch et al., 2018), and uses a
MAB algorithm to dynamically allocate batches
to the different policies. It is folklore knowledge
that MAB algorithms require a large number of
rounds (at least 10s) before they can learn anything
meaningful4, and indeed the number of rounds in
the mentioned papers are 55 or more. Having a
large number of rounds can be computationally ex-
pensive as SoTA active learning algorithms require
applying a large ML model on all examples, as well
as time consuming in a human annotation setting.
We thus focus on a small number of rounds (say,
5), making these works less applicable.

3 Setting

We consider the pool-based active learning setting,
where we are given a pool of unlabeled samples U .
At each iteration t, some subset St ⊂ U of size k
is selected for annotation. This subset, sometimes
together with S1, . . . , St−1, is used to train a model
Mt. The subset St is selected by a sampling algo-
rithm A, which is usually dependent on the model
Mt−1. A formal description of this process is given
in Algorithm 1. The goal in this setting is to select
a subset D ⊂ U to be labeled, such that a model
trained on D optimizes some metric on a separate
test set. We focus on the binary classification prob-
lem, as it includes multiple common and important
imbalanced scenarios such as phishing attempts,
fraud, etc. (Kazerouni et al., 2020; Barata et al.,
2021; C Lin, 2018).

4 Our approach

Consider some iteration t where we have at our
disposal a model Mt−1 trained on samples labelled
in previous iterations.5 For a sample x ∈ U , we
consider Mt−1(x) as an approximation of the prob-
ability of x being a positive example. If we uti-

4This follows from a simple statistics exercise showing
that with a handful of rounds, the posterior distributions of
the reward of each option is very close to the prior, or that the
confidence intervals remain large.

5We assume that the process begins with a model trained
on a handful of examples. This is a realistic setting, as it is
rarely the case that a practitioner will aim to solve a classi-
fication problem without having a single labelled example.
Alternatively, we can begin with uniform weights. We discuss
this issue in Section 5.9.

Algorithm 1 Pool-based Active Learning
Input: Unlabeled data pool U , number of samples
per iteration k, number of iterations T , sampling
algorithm A, classifier model training algorithm
M and seed samples S.
D ← S
M0 =M(D) ▷ Initiate classifier model
for t← 1 : T do

St = A(Mt−1,U , k) ▷ Sampling step
Annotate St

U ← U \ St

D ← D ∪ St

Mt =M(D) ▷ Learning step
Return MT

lize the naive random algorithm to select samples
x ∈ U , then Mt−1(x) is a random variable in [0, 1].
Our goal is to construct a distribution p over U
such that the resulting random variable Mt−1(x)
is uniformly distributed in [0, 1]. To motivate this
idea, consider a case where the model is perfectly
calibrated, meaning the probability it provides is
correct. Here, if sampled according to p, half of
the examples, in expectation, will be positive (in
Observation 1 we provide an additional bound un-
der a weaker assumption). Another advantage of
such a distribution appears even in the case of bal-
anced datasets. Consider a case where many of the
examples are easy to classify. It is likely that in an
early stage easy samples will be concentrated near
0 and 1 in the distribution of Mt−1(x). This means
that our sample strategy will upweight exactly the
problematic points where the model is uncertain,
such that we obtain the property of biasing towards
informative examples.

The distribution p described above can be
achieved by weighting each sample inversely to its
propensity results in a uniform sample. Thus, we
call this method InvProp. In terms of implemen-
tation, we discretize the interval [0, 1] into m bins
uniformly, meaning [0, 1

m), [ 1m , 2
m), . . . , [m−1

m , 1],
as can be seen in Figure 1(a). For bin i that con-
tains bi samples we give each sample a probability
proportional to 1

bi
(see Figure 1(b)).

The following lemma demonstrates the robust-
ness of InvProp-weights to the exact, and unknown,
degree of imbalance in the data.

Lemma 1. Let A be the random algorithm with
InvProp weights defined over 2 bins, and let M be a
model with precision α. Also, let S = A(M,U , k)
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(a) Histogram of confidence scores Mt(x).

(b) Inverse propensity distribution p.

Figure 1: Confidence scores histogram and the proba-
bility fitting the InvProp-weights.

be the subset of size k sampled byA. If the number
of samples in bin [1/2, 1] is at least β · k for β > 0,
then the expected number of positive samples in S
is E

[∣∣{s ∈ S | ys = 1}
∣∣] ≥ α·γ·k

2 , where γ = β/2
if β < 1 and γ = 1− 1

2β if β ≥ 1.

The proof for the lemma can be found in Ap-
pendix A. The lemma does not directly translate
to the setting with m > 2 bins, but by altering the
precision assumption with that of the model being
approximately calibrated, we keep the guarantee of
obtaining a constant fraction of positive examples6.
In our ablation studies (see section 5.8) we see that
the precise number of bins has a small effect on the
result, resulting in our decision to use an arbitrary
default value (of m = 10) in our experiments.

4.1 Extending to SoTA algorithms

The random algorithm combined with the InvProp
distribution, as described above, enjoys being
skewed towards the minority class and informa-
tive samples. Nevertheless, recent AL algorithms
have been able to provide additional benefit over

6The precise assumption is that for a bin [ρ, ρ+ 1/m], at
least αρ of the samples have a positive label. This property
measures how calibrated the model is; indeed a perfectly
calibrated model guarantee this with α = 1. In this case we are
guaranteed that in expectation,

∑m−1
i=0

iαγk
2m2 = (m−1)

4m
αγk ≥

αγk/6 samples are positive.

the naive random approach. This leads us to in-
corporate our weighting scheme in SoTA AL al-
gorithms. To this end, we consider the underlying
distribution p of the InvProp method as a weighting
function, assigning each point x a weight denoted
by w(x) (in the section above this is the probability
of choosing x). For score based algorithms that
choose samples based on a score s(x), we modify
the score to become sw(x) = w(x) · s(x) (see Al-
gorithm 2). For embedding-based algorithms that
choose samples based on clustering, we modify the
clustering procedure to be weighted according to
w(x) (see Algorithm 3). With this strategy, we are
able to modify SoTA algorithms such as BADGE
(Ash et al., 2020), ALPS (Yuan et al., 2020) and
DAL (Gissin and Shalev-Shwartz, 2019) to be bet-
ter suited to imbalanced datasets.

Algorithm 2 Weighted Score-based AL
Input: Unlabeled data pool U , number of samples
to select k, scoring function s, weight function w.
sw(x) =

∑
x∈S w(x) · s(x)

Return argmaxS⊆U
{
sw(x)

∣∣ |S| = k
}

Algorithm 3 Weighted Embedding-based AL
Input: Unlabeled data pool U , number of samples
to select k, embeddings ex, weight function w.

Cluster {ex}x∈U with weights w(x) into k clus-
ters, pick S to be the samples nearest to the
cluster centers.
Return S

5 Experiments

5.1 Datasets & Measure
We follow recent AL work (Ein-Dor et al., 2020;
Yuan et al., 2020; Wang et al., 2021) and use 4 popu-
lar text classification datasets. DBpedia-14 (Zhang
et al., 2015) contains text snippets from 14 different
DBpedia (Lehmann et al., 2015) classes. Each snip-
pet’s label is the ontology class it was taken from.
SST-2 (Socher et al., 2013) is a binary classification
dataset containing sentences from movie reviews
labeled by their sentiment. PubMed-20K-RCT
(Dernoncourt and Lee, 2017) contains sentences
from PubMed abstracts labeled by their role in the
abstract. AG_news (Zhang et al., 2015) contains
news snippets classified into 4 categories.

Binary-Imbalanced data. We generate several
Binary-Imbalanced versions from each of the above
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mentioned datasets. This is done by first selecting
a class from the original dataset to serve as the
positive (minority) class in the generated dataset.
Samples from all other classes are regarded as neg-
ative. Both train and test sets are updated this way.
For DBpedia-14, due to its larger number of classes
and small variance we observe on this dataset, we
randomly select 3 of the classes to serve as the mi-
nority class. For the rest of the datasets we use each
of the original classes as a minority class. After
selecting a positive class and updating the train and
test sets, we sample positive examples from the
training set so that the fraction of positive samples
in the resulting dataset will be equal to the desired
value. We construct datasets where the fraction of
positives is 1/x for x ∈ {2, 10, 20, 50, 100}, i.e., 4
different imbalance ratios and a balanced dataset.
See Table 1 for further details about the datasets.

Measure. As customary in studies related to
imbalanced classes, we measure Balanced Accu-
racy and ROC-AUC, metrics that are insensitive to
change in class distribution. Thus, the test set is not
down-sampled, as this would only add noise to the
evaluation. In addition, we compare the Positives
Ratio, the fraction of minority samples found by
each algorithm. This will allow us to evaluate the
skew produced by our technique. Due to aggrega-
tions over different datasets, we found the standard
deviations tend to be large, making confidence in-
tervals uninformative. We thus measure statistical
significance via p-values7 and mark in bold results
whose p-value is smaller than 5% for all compared
results.

5.2 Active Learning Algorithms

We test our proposed weighting method by incor-
porating it into well established AL algorithms.

• BADGE (Ash et al., 2020) is an embedding-
based algorithm. It generates a weak label ac-
cording to the prediction of the current model.
The weak label is used to calculate the gradi-
ent of the last layer of the model. The gradi-
ents are used as the embeddings.

• ALPS. (Yuan et al., 2020) Is an embedding-
based algorithm. It generates an embedding
according to the MLM objective. Some tokens
are masked and predicted by the model. The
embeddings are defined as the cross entropy
distance between the prediction of the model

7The p-value is calculated using a relative t-test of the
elements whose mean is calculated.

and the actual masked tokens.
• DAL. (Gissin and Shalev-Shwartz, 2019) Is

a score-based algorithm. It trains a classifi-
cation model to predict whether a sample is
labelled or unlabelled. The “top” unlabelled
samples (the samples with the highest confi-
dence score) are selected.

• Random. The naive random baseline which
selects samples uniformly at random.

5.3 Weighting Methods

Other than our main approach of InvProp, we eval-
uate two additional weighting methods.

• Uniform ignores the imbalance issue and as-
signs the same weight to all samples, effec-
tively running the original AL algorithm.

• PosProb assigns a point x the weight
Mt−1(x), meaning the probability according
to the available model that the sample is pos-
itive. This option is explored as a strawman
that promotes positive samples, but is not
adaptive to the imbalance ratio.

We test 3 weighting methods (Uniform, PosProb,
InvProp), incorporated into the 4 mentioned AL
algorithms. Overall, 12 procedures are tested.

Previous studies came to the conclusion that
even though AL algorithms improve over naive ran-
dom sampling, there is no single algorithm which
performs best for all models and tasks (Lowell
et al., 2019; Dor et al., 2020). Hence, we do not aim
to show that one algorithm outperforms another, we
aim to test whether utilizing our weighting method
improves the performance of each of the base algo-
rithms when applied on imbalanced datasets.

5.4 Experimental Setup

We evaluate each algorithm on all Binary-
Imbalanced datasets through 10 runs, each with
a different random seed that determines the shuf-
fling and random initialization. The results of these
runs were averaged to produce the reported results.
We ran the algorithms for 5 AL iterations, selecting
50 samples at each iteration.

We use the uncased bert-base model with 110M
parameters8 (Devlin et al., 2019) as the PLM, and
set the maximum sequence length to 128 and the
number of train epochs to 2. To cope with the im-
balance of the data that was already labeled, we use
oversampling to ensure that the positive samples

8https://huggingface.co/transformers/
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Dataset Classes Original train/test Selected minority classes
DBpedia-14 14 560K/70K Company, Animal, Album
SST-2 2 ∼ 67K/872 all classes
Pubmed-20K-RCT 5 ∼ 180K/30K all classes
AG_news 4 120K/7.6K all classes

Table 1: Dataset details. Number of classes and train/test sizes in the original dataset, and the set of classes from
the original dataset used as the minority class in the Binary-Imbalanced datasets we created (see section 5.1).

are at least a quarter of the training samples. This
heuristic is known to vastly reduce the negative ef-
fects of the imbalance (Estabrooks and Japkowicz,
2001). At each iteration, we fine-tune the original
pre-trained model using all examples, rather than
fine-tuning the resulting model of a previous itera-
tion, as this is known to provide better performance
(Ash and Adams, 2020).

At the beginning of each run, we generate a ran-
dom labeled subset of 5 negative and 5 positive
samples that is given to the algorithm. An intuitive
design would be that of a ‘cold start’, beginning
with no labeled data. However, we found this setup
to have a very high variance in terms of the fi-
nal performance. In Section 5.9 we elaborate on
the conjectured reason for this, provide experimen-
tal results to support our claim, and motivate our
choice of starting with 5 examples of each class.

5.5 Main Results

In order to concisely compare between the weight-
ing methods, we aggregate the results over either
algorithms or datasets. Table 2 compares the per-
formance of the InvProp and Uniform weighting
method on the 4 datasets. A detailed comparison
to PosProb can be found in Section 5.6. For each
Binary-Imbalanced dataset and weighting method,
we select the algorithm that performed best for the
combination, based on its average score over 10
random seeds. We then take the average metric over
Binary-Imbalanced variants of a dataset to obtain
a single score for each (metric, dataset, weighting
procedure) triplet. Here, we consider only Binary-
Imbalanced datasets with an imbalance ratio of 1

50 .
In both AUC and Balanced Accuracy, InvProp pro-
vides either superior or comparable results. As a
justification, there is an overwhelming advantage
to our weighting method in terms of positive ratio,
nearly doubling the number of positive examples.

In Table 3 we compare the performance of the
weighting methods between different AL algo-
rithms. For each algorithm we average the score
obtained by a specific weighting method over all

Balanced Accuracy AUC Positives Ratio
InvProp Uniform InvProp Uniform InvProp Uniform

AG_news 0.7889 0.7674 0.9475 0.9414 0.3601 0.2030
DBpedia 0.9876 0.9826 0.9983 0.9983 0.4377 0.2287
Pubmed 0.6338 0.6387 0.8813 0.8606 0.2516 0.1217
SST-2 0.6523 0.6299 0.8709 0.8538 0.2045 0.0989

Table 2: Comparison of InvProp with Uniform across
multiple datasets (for an imbalance ratio of 1

50 ).

Balanced Accuracy AUC Positives Ratio
InvProp Uniform InvProp Uniform InvProp Uniform

ALPS 0.7002 0.6887 0.8712 0.8625 0.0368 0.0271
BADGE 0.7203 0.7181 0.8914 0.8901 0.2730 0.1646
DAL 0.7036 0.6692 0.8948 0.8560 0.2823 0.0142
Random 0.7248 0.6763 0.8986 0.8681 0.2442 0.0196

Table 3: Comparison of InvProp and Uniform across
multiple base algorithms (for an imbalance ratio of 1

50 ).

Binary-Imbalanced datasets, averaged on 10 ran-
dom seeds. Here we also consider an imbalance
ratio of 1

50 . For both AUC and Balanced Accu-
racy we see a clear advantage to InvProp-weighting
compared to Uniform weighting, in that it is either
better or comparable for all algorithms. In terms
of the Positives Ratio, the effect on the different
algorithms varies, but we see a clear increase when
using the InvProp weighting method. The method
is able to produce more positives, and as shown
in Appendix B is able to do this throughout the
different iterations.

Two interesting insights that are not directly re-
lated to our study are (1) the algorithms differ in
their robustness to imbalance, with BADGE prov-
ing to be quite robust, especially when Uniform
weighting is applied; (2) the Random algorithm
combined with our weighting method becomes a
strong baseline and is in fact the leader w.r.t both
Balanced Accuracy and AUC.

We ran a similar comparison against the PosProb
baseline and concluded that for an imbalance ratio
of 1

50 , the results are comparable. We provide the
full experiments comparing all 3 weighting meth-
ods on multiple imbalance ratio combinations, on
all datasets and base algorithms in Section 5.6. In
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Balanced Accuracy AUC Positives Ratio
InvProp Uniform InvProp Uniform InvProp Uniform

2.0 0.9009 0.9029 0.9518 0.9534 0.4816 0.4855
10.0 0.8253 0.8149 0.9348 0.9306 0.3259 0.1436
20.0 0.7709 0.7519 0.9175 0.9061 0.2779 0.0946
50.0 0.7122 0.6881 0.8890 0.8692 0.2091 0.0564
100.0 0.6839 0.6612 0.8552 0.8454 0.1692 0.0375

Table 4: Comparison of InvProp with Uniform across
multiple degrees of imbalance.

addition, a qualitative analysis of the informative-
ness of selected positive samples can be found in
Appendix C.

5.6 Sensitivity to Imbalance Ratio

The main approach of techniques addressing
dataset imbalance is to skew the sampling process
towards positive samples. This leads to the question
of when each technique should be applied; optimiz-
ing towards positive samples may have a negative
effect on the results when the real-world distribu-
tion is almost balanced. Therefore, we evaluate
the performance of InvProp-weighting on datasets
with different imbalance ratios. As described in
Section 5.1, we generated datasets with different
imbalance ratios. Specifically, we use datasets with
an imbalance ratio of 100, 50, 20, 10 and 2 (i.e.
balanced). As in earlier experiments, we repeat
the experiment on each Binary-Imbalanced dataset
with 10 different random seeds. For each imbal-
ance ratio we compare the average performance
of each weighting method over all AL algorithms
and datasets (the results per dataset and algorithm
appear in Appendix D). Results of this experiment
are reported in Table 4; it is easy to see that the
InvProp-weighting method outperforms the Uni-
form baseline across all imbalance ratios which
represent an imbalanced dataset. In addition, even
for the balanced scenario, the baseline slightly out-
performs our method in only one metric, AUC,
while being comparable in the Balanced Accuracy
metric and in Positives Ratio. This allows us to
recommend the usage of InvProp-weighting even
if the imbalance ratio is unknown.

As mentioned in Section 5.5, the PosProb
weighting method performance is comparable to
InvProp when considering a dataset with an imbal-
ance ratio of 1

50 . In Table 5 we extend this com-
parison and compare the effect of the imbalance
ratio on these two weighting methods. This shows
that InvProp either outperforms or is comparable
to PosProb in both Balanced Accuracy and AUC.

Balanced Accuracy AUC Positives Ratio
InvProp PosProb InvProp PosProb InvProp PosProb

2.0 0.9009 0.8313 0.9518 0.9442 0.4816 0.6425
10.0 0.8253 0.8155 0.9348 0.9310 0.3259 0.3702
20.0 0.7709 0.7744 0.9175 0.9140 0.2779 0.2821
50.0 0.7122 0.7128 0.8890 0.8833 0.2091 0.1831
100.0 0.6839 0.6800 0.8552 0.8513 0.1692 0.1273

Table 5: Comparison of InvProp with PosProb across
multiple degrees of imbalance.

A deeper dive into the Balanced Accuracy scores
shows that PosProb performs best (compared to
InvProp) on datasets with an imbalance ratio of 20.
Since the weights of PosProb are independent of
the imbalance of the dataset, i.e., down-sampling
the minority class does not affect the proportion
between weights of two of the remaining samples,
it is expected that the performance of PosProb will
peak at some specific imbalance ratio and decline
as the imbalance ratio changes further away from
this peak.

Another important aspect of the results is the
number of positive samples accumulated by each
solution. For the balanced dataset, PosProb over-
skews the selection toward the positive class, lead-
ing to more than 60% of positive selected sam-
ples. As the imbalance grows, this stabilizes, and
for imbalance ratio of 50 and 100 InvProp is able
to identify a larger number of positive samples.
The higher AUC score of InvProp points toward
PosProb finding less diverse positive samples due
to the large weight it assigns to positive samples
which the model is certain about.

5.7 Extreme imbalance

To further test the limits of our methods, we extend
the imbalance ratios to 200 and 1000. Results are
presented in Table 6. Interestingly, even though the
InvProp and PosProb weighting schemes manage
to produce more positive examples than the uni-
form scheme, the Balanced Accuracy and the AUC
metrics are better for the uniform as the imbalance
ratio reaches extremes such as 1000. This could
be explained by the weighting methods choosing
positive examples that are too similar which do not
contribute to the efficacy of the model. In general,
we believe that in such extreme cases, where pos-
itive examples are so scarce, the trained model is
unable to learn and is under-performing, hindering
the efficacy of any AL approach. The performance
of all AL algorithms with the Uniform weighting
scheme exemplifies this, where we see that random
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Balanced Accuracy AUC Positives Ratio
InvProp PosProb Uniform InvProp PosProb Uniform InvProp PosProb Uniform

200.0 0.6619 0.6543 0.6377 0.8244 0.8251 0.8302 0.1263 0.0886 0.0267
1000.0 0.6181 0.6154 0.6160 0.7821 0.7831 0.8081 0.0535 0.0304 0.0103

Table 6: Comparing the weighting schemes against extreme imbalance ratios.

sampling produces the highest AUC score all of
the AL algorithms, with statistical significance (see
Table 9, Appendix D).

5.8 Sensitivity to number of bins

One drawback of InvProp-weighting compared to
Uniform and PosProb-weighting is the addition of
a new parameter, the number of bins. We evaluate
the effect of the number of bins on the performance
of different AL algorithms (with InvProp-weights)
on the Binary-Imbalanced variants of the AG_news
dataset. We consider InvProp with 2, 5, 10, 15 and
20 bins. Results appear in table 11 in Appendix D.
In table 12 (Appendix D), we evaluate the sensi-
tivity to the number of bins by measuring signif-
icance with a relative t-test. This table lists the
p-value p(m) of a test comparing AUC and Bal-
anced Accuracy for the selection of m bins (for
m ∈ {2, 5, 15, 20}) to that of 10, as 10 was our
choice throughout the paper. The results demon-
strate that our method is insensitive to the bin
count hyper-parameter, as except for one outlier,
all p-values fall in [0.05, 0.95]. This motivates our
choice to avoid optimizing this parameter, thus fix-
ing it to a single value throughout the paper. This
experiment was performed for all imbalance ra-
tios discussed in this paper (2, 10, 20, 50, 100). For
brevity, we report only on an imbalance ratio of
100, since for this value the affect of the number of
bins parameter was the largest. Since we conclude
that this parameter is not significant even for this
imbalance ratio, this conclusion is relevant across
all imbalance ratios.

5.9 Warm start

Recall that in lieu of starting the learning process
with no examples (cold-start), we start the process
with 5 examples from each class. In Table 10
(Appendix) we show the size of the confidence
intervals for the BADGE algorithm over the differ-
ent datasets, showing an increase of at least 1.5X ,
sometimes over 10X when comparing the cold-
start to the chosen warm-start scenario. A major
cause of the cold-start variance is the time it takes
the learner to achieve a handful of positive exam-

ples. Indeed, when the imbalance ratio is 50, a
random selection is expected to obtain only 1 posi-
tive sample in each iteration, and in many runs the
learner fails simply as it does not find a sufficient
initial amount of positive examples. A full solu-
tion should discuss realistic methods for obtaining
an initial seed of examples, but this challenge is
outside the scope of this paper. In order to remove
the noise in the evaluation process originating from
the time it takes to obtain a handful of examples,
we have all methods initialize with the mentioned
warm-start. We chose to work with particularly 5
examples as this is a small enough number of sam-
ples for it to be easy to obtain even in the imbal-
ance scenario, and on the other hand, the variance
is significantly reduced compared to the ‘cold-start’
setting.

6 Conclusions

In this paper, we tackled the problem of AL in im-
balanced datasets. We propose a novel weighting-
technique, InvProp , and apply it to three recent AL
algorithms (BADGE, APLS and DAL) as well as
to naive random sampling. We show results for the
PosProb weighting scheme in addition to InvProp
and compare to a uniform weighting baseline on
four datasets. We show that InvProp-weighting con-
sistently finds more positive examples, and leads
to better or comparable performance compared to
other weighting schemes on all tested datasets and
AL algorithms. We also test various imbalance
settings showing that InvProp outperforms the Uni-
form baseline across all imbalance ratios which
represent some imbalance. In addition, on a bal-
anced dataset the Uniform baseline outperforms
our method in only one metric, while being com-
parable in the rest. Compared to PosProb, our
solution proved to be more robust to changes in the
imbalance ratio. When testing extreme scenarios
where the imbalance is less than 0.5%, all tested
algorithms perform worse than the simple random
sampling baseline, suggesting that AL algorithms
are not advantageous given an uninformative model.
Concluding, we show our novel weighting scheme
improves several SoTA AL algorithms on various
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datasets and imbalance ratios.
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