
Proceedings of the 5th Workshop on Computational Approaches to Historical Language Change, pages 1–11
August 15, 2024 ©2024 Association for Computational Linguistics

Computer-Assisted Language Comparison with EDICTOR 3

Johann-Mattis List and Kellen Parker van Dam
Chair for Multilingual Computational Linguistics

University of Passau
Passau, Germany

Abstract

Computer-assisted approaches to historical and
typological language comparison have made
great progress over the past two decades.
Specifically for the classical tasks of histori-
cal language comparison, many computational
methods have been published that mimic cer-
tain steps of the traditional workflow of the
comparative method. In contrast to the diver-
sity of new computational methods, there is
only a limited number of interactive tools and
interfaces that help scholars to curate and re-
fine their data both before and after the ap-
plication of computational methods. One of
the few publicly available interfaces is EDIC-
TOR (https://edictor.org), an interactive tool
for computer-assisted language comparison.
EDICTOR has been around for some time, and
allows scholars to annotate and align cognate
sets in various ways. With EDICTOR 3, the
original tool has been enhanced, offering not
only new features for data annotation, but also
providing the possibility to use purely auto-
matic methods for initial cognate detection,
phonetic alignment, and correspondence pat-
tern inference in an integrated workflow.

1 Introduction

The traditional comparative method in historical
linguistics relies on a multitude of techniques for
historical language comparison that have been es-
tablished to compare languages systematically in
order to shed light on their internal and external his-
tory (Ross and Durie, 1996). While having been tra-
ditionally carried out manually for more than 200
years (see Atkinson 1875 for an early and detailed
description of the method), the last two decades
have seen many attempts to provide automatic ap-
proaches for various individual steps of the com-
parative method and beyond (List, forthcoming(a)),
reflecting some kind of a quantitative turn in his-
torical linguistics (Geisler and List, 2022). Among
the automated approaches most directly addressing

the individual steps underlying the traditional work-
flow of the comparative method, we find methods
for the detection of cognate words (List, 2012a;
Jäger et al., 2017; Dellert, 2018), methods for pair-
wise and multiple phonetic alignment (Prokić et al.,
2009; List, 2012b; Kilani, 2020), and methods for
the identification of regular sound correspondence
patterns (List, 2019).

While these methods have been shown to work
rather well for language families with a shallow
time depth (List et al., 2017), with phylogenetic
trees inferred from automatically annotated cog-
nate sets showing only minor differences to phy-
logenetic trees inferred from manually annotated
cognate sets (Rama et al., 2018), the black box
character by which these automatic methods arrive
at their results, along with their failure to find deep
etymological relations (Greenhill et al., 2023), has
prevented scholars from switching to completely
automated workflows. At the same time, however,
the manual compilation of etymological datasets,
where scholars compare thousands of words across
dozens and at times even hundreds of languages,
has reached its practical limits.

In a situation where computational methods can-
not be used to replace humans and humans can-
not cope with increasing amounts of digital data,
computer-assisted solutions – as opposed to fully
computer-based or fully manual – may offer an
alternative in combining the best of both worlds
by uniting the efficiency of computers with the
accuracy of human annotation. In 2017, it was
tried to put this idea into praxis by proposing a
new framework for Computer-Assisted Language
Comparison (CALC) that would not only try to
enhance existing methods for computational histor-
ical language comparison, but also seek to develop
web-based tools that could serve as an interface
between computational and manual approaches, al-
lowing for an interactive workflow in which data
– which must be provided in human- and machine-

1

https://edictor.org


readable form – would be constantly passed back
and forth between computers and machines (List,
2017b). Instead of identifying cognate sets from
scratch in larger datasets, the idea was to employ
automated methods for the pre-processing of lin-
guistic data and then have human experts correct
these initial analyses. Given that the correction of
pre-processed data would be done in a dedicated
web-based tool, it would also be possible to test
the consistency of human annotation and offer an-
notators additional possibilities to explore cross-
linguistic data in order to improve their analysis.

With the introduction of the EDICTOR tool (see
Version 1.0, https://one.edictor.org, List 2017a), a
first step in this direction was carried out. EDIC-
TOR offered a web-based interface to annotated
cognates in multilingual wordlists and align them at
the same time. Via its simplified data structure (us-
ing a single TSV file to represent words, cognates,
and alignments in multilingual wordlists), EDIC-
TOR was also integrated with the LingPy library
(List and Moran, 2013) that provided access to auto-
matic methods for cognate detection and phonetic
alignments. Later enhancements of EDICTOR (see
Version 2.0 at https://two.edictor.org, Version 2.1
at https://two-1.edictor.org) have offered more fea-
tures for annotation, but the basic character of the
tool as a purely web-based application that could
be used for annotation but not for the conduction
of automatic methods has not changed since then.

With EDICTOR 3, not only new features, but
also some substantial modifications are introduced
to the tool. As of Version 3, EDICTOR will not
only be distributed as a web-based tool that can be
accessed via its URL (https://edictor.org), but also
in the form of a software package written in Python
that can be locally installed and does not require
internet access to run. The advantage of this new
architecture is that EDICTOR can also integrate
with external software packages and thus allow for
a true exchange with external software packages
that provide enhanced methods for basic steps of
the comparative method.

2 Background

Although tools and interfaces that would assist lin-
guists in the annotation of etymological data have
been around for several decades now, the number
of linguists who would make active use of these
tools is rather small. One of the first software pack-
ages that offered full support for various impor-

tant tasks in historical language comparison is the
STARLING database program, originally designed
and created by Sergey Starostin (1953-2005). The
origins of the software go back to the early 1990s
(Starostin, 2000b). In its core, STARLING is a
database system that offers users the possibility to
create small databases consisting of multiple ta-
bles linked with each other. The software offers
dedicated functionality to annotate cognates, to
check for the individual sounds in a given wordlist,
and to carry out distance-based phylogenetic re-
construction analyses based on the implementation
of several ideas proposed by Starostin (Starostin,
2000a).

A second interactive tool for computer-assisted
language comparison that is important to mention
in this context is RefLex (Segerer and Flavier,
2015). Unlike STARLING, which comes as a soft-
ware package that has to be installed on the users
computers, RefLex is entirely web-based, written
mostly in PHP, and accessed by connecting to the
server maintained by the RefLex authors. Using
RefLex requires a user account, and data must be
imported and exported from the internal database.
Originally designed to analyze data from African
languages, RefLex offers many general functionali-
ties that are very useful for etymological analysis
in historical linguistics, including an alignment edi-
tor by which cognate sets can be aligned manually,
methods to match elicitation glosses for concepts
across different sources, and the possibility to an-
notate cognates in multilingual wordlists.

As impressive and useful as STARLING and
RefLex are on their own, both tools have major
drawbacks that prompted the development of an al-
ternative interface for computer-assisted language
comparison, taking nevertheless a lot of inspira-
tion from the other tools. A major drawback of
STARLING is that it does not work well on Unix
systems, given that it is based on the now outdated
dBase database management system that only runs
on Windows operation systems. The major disad-
vantage of RefLex is that it requires a server with
users having to log into the system when using it.
This means that the tool can only be used with an
active internet connection. In addition, import and
export options have always been limited in RefLex
and it was – for example – never clear how align-
ments could be exported to text files in order to use
them in combination with other software tools.

As a result of these drawbacks, work began
already in 2014 to work on my own interactive

2

https://one.edictor.org
https://two.edictor.org
https://two-1.edictor.org
https://edictor.org


tool for computer-assisted language comparison.
The goal was to design a tool that would offer
functionality similar to those features that were
considered most useful in STARLING and Re-
fLex, while at the same time offering a closer
integration with automatic methods, most impor-
tantly those offered by the LingPy software pack-
age for quantitative tasks in historical linguistics
(https://lingpy.org, List and Moran 2013).

The first version of this tool (that would later
become the core of the CALC framework) was
published in 2017 under the title EDICTOR (short
for Etymological Dictionary Editor, List 2017a)
and successfully employed to annotate the data
underlying a larger phylogenetic analysis of Sino-
Tibetan languages (Sagart et al., 2019). The first
version of EDICTOR was written in JavaScript and
was made accessible in the form of a website that
users could access by opening the URL. Since the
tool was entirely client-based, users could inde-
pendently load their files to the JavaScript sand-
box and later save them after editing. Data was
never sent to any server, but was only edited inside
the users browsers on their client systems. EDIC-
TOR offered basic modules to annotate cognate
sets (both full and partial cognates, see List et al.
2016), these cognate sets could be aligned with
the help of a specific alignment editor, and rudi-
mentary methods were available in order to check
sound correspondences for language pairs. With
EDICTOR 2 (List, 2021a), this functionality was
further expanded by adding methods for the explo-
ration and annotation of morpheme glosses (Hill
and List, 2017; Schweikhard and List, 2020), ex-
tended exploration and export options for cognate
sets (including direct export to the NEXUS format
used in many phylogenetic applications, see Mad-
dison et al. 1997 and Forkel 2023 for details on the
format), and an initial interactive correspondence
pattern browser that would display correspondence
patterns inferred with the help of the method by
List (2019).

EDICTOR has played a crucial role in the further
development of computer-assisted techniques on
historical language comparison. The tool proved
not only important in the creation of reliable
datasets (of which quite a few were later included in
the Lexibank repository, List et al. 2022). It turned
out that the tool was also crucial for the develop-
ment of new computer-based methods, where it
was used to visualize findings in order to check pre-
liminary results and to create high-quality data for

testing of new methods for which test and training
data were usually lacking. Thus, in the retrospec-
tive, it would not have been possible to develop the
method for partial cognate detection presented in
List et al. (2016) without EDICTOR, since it would
not have been possible to create the data that was
later used to test the method. Similarly, the algo-
rithm for the inference of sound correspondence
patterns presented in List (2019) would not have
been possible without the interactive sound corre-
spondence pattern browser, which was crucial for
the development of the new method, allowing to
inspect findings immediately.

However, with time, EDICTOR also accumu-
lated a considerable number of bugs and strange
behaviors. Certain design problems that were not
identified as such in the beginning later turned out
to be problematic, and users’ design suggestions or
bug reports could often not be addressed immedi-
ately.

There were different reasons for the slow process
with respect to the development of the tool. On the
one hand, for scientists who develop tools and soft-
ware packages, there is always a tension between
the time they spend on development and the time
they spend on proper research, since development
is not necessarily seen as truly scientific work. On
the other hand, many problems that the tool was
supposed to handle turned out to be much harder
than expected. As a result, solutions often were
not available, and it was instead necessary to enter
very detailed discussions on the proper modeling
of particular problems before any changes to the
tool could be made.

Not all of these problems can be solved with
EDICTOR 3, but in contrast to previous releases
of EDICTOR, EDICTOR 3 tries to set several new
standards for the future development of the tool.
As a result, the list of features was for the first time
not only expanded, but certain features that had
never proven to be useful for historical language
comparison, were also discarded.

3 A New EDICTOR Version

3.1 Overview

EDICTOR 3 is a web-based tool that allows its
users to carry out several steps of the comparative
method interactively, producing data that can be di-
gested by computer programs. EDICTOR 3 comes
in two forms. Users can access the tool via its URL
at https://edictor.org or download the source code

3

https://lingpy.org
https://edictor.org


and create another instance of the tool on a local or
public server. Additionally, users can also install a
local version of EDICTOR 3 on their own computer
and access EDICTOR 3 locally, with no active in-
ternet connection being required. Both the public
and the local version of EDICTOR 3 basically sup-
port the same functionalities, but the local version
allows to save and access files stored locally (as
pure files or with the help of an SQLite database)
without having to go through the upload procedure
that passes local data to the JavaScript sandbox. In
addition, only the local version allows to obtain
high quality cognate judgments, phonetic align-
ments, and sound correspondence patterns from
dedicated Python packages (see § 3.3).

Like previous versions of the EDICTOR, EDIC-
TOR 3 is organized in panels that allow to initiate
actions or provide additional views on the data.
The core is a multilingual wordlist that stores data
in tabular form in a TSV file (see List et al. 2018
for an overview on the basic format). Panels are
currently grouped into three basic modules. The
Edit module offers basic functionality to edit data
in various forms (see § 3.2), the Compute mod-
ule offers methods for cognate detection, phonetic
alignments, and correspondence pattern inference
(see § 3.3), and the Analyze module offers addi-
tional tools by which the data can be analyzed and
inspected (see 3.4).

3.2 Editing Data

In EDICTOR 3, data can be edited in five different
ways. The most basic way to edit the data is to
use the Wordlist panel that allows to edit data in a
way similar to a spreadsheet editor but with some
additional functionalities that facilitate the annota-
tion of cognates and phonetic transcriptions. New
functionality has been added that allows users to
group segment data morphologically and to modify
the representation of sounds by grouping distinct
sounds into evolutionary units (List et al., 2024).
The Cognate Sets and Partial Cognate Sets panels
allow to edit cognate sets in a principled way. he
Morpheme Glosses panel, introduced with EDIC-
TOR 2 (see List 2021b), offers enhanced function-
ality for the annotation of morphological data with
the help of morpheme glosses (Hill and List, 2017;
Schweikhard and List, 2020). Finally, the Cor-
respondence Patterns panel, which had been in-
troduced earlier, now offers the possibility to edit
correspondence patterns actively and to identify

and mark exceptions in the reflexes of individual
cognate sets (List, forthcoming(b)).

3.3 Computing Data
So far EDICTOR has not allowed users to com-
pute data. The only exception was the alignment
of individual of cognate sets, where EDICTOR of-
fered the possibility to align words in the interactive
window prior to carrying out manual refinements.
With EDICTOR 3, basic methods for cognate detec-
tion, phonetic alignment (multiple sequence align-
ment), and correspondence pattern detection are
now available as part of the newly introduced Com-
puting module of the tool.

For each of the three tasks, two basic solutions
are offered to the users. When running with Python
internally and having installed the required soft-
ware packages, the data is passed to Python and the
dedicated methods are used to carry out the task. If
EDICTOR 3 is accessed via the website, simplified
implementations of the three methods in JavaScript
are being used.

The basic approach for cognate detection is the
LexStat method for full cognates (List, 2012a) or its
counterpart for partial cognates (List et al., 2016).
Implementations for both methods are available
from LingPy (https://pypi.org/project/lingpy, List
and Forkel 2023a, Version 2.6.13). The fallback
function is based on matching consonant classes,
as originally introduced by Dolgopolsky (1964)
and then popularly employed in the STARLING
package (see Turchin et al. 2010 for a detailed de-
scription and List 2014 for details on the imple-
mentation). For partial cognates, the approach is
adjusted in order to be applied to individual mor-
phemes rather than full words.

The basic approach for phonetic alignments of
multiple sound sequences is based on the Sound-
Class based Alignment method (List, 2012b). The
method itself breaks down the complexity in lin-
guistic sequences by converting phonetic transcrip-
tions to sound classes and then conducts tradi-
tional multiple sequence alignment analyses us-
ing an adjusted version of the T-Coffee algorithm
(Notredame et al., 2000). The method is also
implemented in LingPy. As a fallback method,
EDICTOR 3 employs a very simple and very fast
method for multiple alignments that runs in lin-
ear time. This method first selects the longest se-
quence among the candidate sound sequences and
then aligns all remaining sequences one by one
with this longest sequence. The individual align-

4

https://pypi.org/project/lingpy


ments are stored and later combined in such a way
that all individual gaps introduced in the longest
sequence are preserved. Despite the simplicity of
the approach, it yields useful results in the majority
of cases. When being confronted with complex
alignment tasks, it clearly lags behind the SCA ap-
proach. However, since the method was created
to speed up manual alignments, it is always easier
to align sound sequences automatically in a first
step and then refine them in a second step manually
than starting the alignment manually from scratch.

The basic approach for correspondence pattern
detection follows the method proposed in List
(2019), which makes use of a greedy approach
to solve the minimum clique cover problem in
undirected networks (Bhasker and Samad, 1991)
to group alignment sites (individual columns of
a multiple alignment) into clusters from which
correspondence patterns can be inferred. This
method is implemented in the LingRex package
(https://pypi.org/project/lingrex, List and Forkel
2023b, Version 1.4.2). The fallback method offered
by EDICTOR 3 is based on a much simpler strat-
egy that uses the sorting method QuickSort (Hoare,
1962) to arrange compatible alignment sites next
to each other in a table and then groups those align-
ment sites that are compatible to each other into
correspondence patterns. In contrast to the method
by List (2019), this approach does not guarantee
to find an exhaustive clique cover of the alignment
site network. For the practical purpose of getting
a first grouping of alignment sites into correspon-
dence patterns, however, it has turned out to be
very useful to speed up the process of manually
annotating correspondence patterns.

The three methods in combination equip users
with a workflow that starts from a raw wordlist
in phonetic transcription, then identifies cognates,
aligns them, and finally infers correspondence pat-
terns from the data. In this form, the workflow
accounts for the majority of the individual steps of
the classical comparative method (Ross and Durie,
1996). What it leaves out are methods for phono-
logical reconstruction and phylogenetic reconstruc-
tion. Since classical phonological reconstruction,
however, builds on previously identified correspon-
dence patterns (Anttila, 1972), EDICTOR 3 offers
a very solid basis to build phonological reconstruc-
tions on top of explicitly annotated sound corre-
spondence patterns. For phylogenetic reconstruc-
tion, the aforementioned option to export data to
the NEXUS format comes in handy.

3.4 Analyzing Data

EDICTOR 3 not only supports editing and comput-
ing of multilingual wordlist data but also allows to
inspect the data in different ways through the Ana-
lyze module of the tool. With the help of the Sounds
panel, users can inspect the individual sounds in
individual language varieties, by comparing how
frequently and in which words they occur and how
they fit into classical phoneme inventory tables.
The Colexifications panel allows for a quick investi-
gation of full and partial colexifications, the former
referring to cases of polysemy or homophony, in
which a word form expresses two or more concepts
in a wordlist (François, 2008), and the latter refer-
ring to those cases where morphemes with identi-
cal forms recur across different words (List, 2023).
The panel offers additional functionality to visu-
alize full and partial colexifications with the help
of bipartite networks (Hill and List, 2017). The
Correspondences panel allows users to compare
the sound correspondences inferred from the pair-
wise alignments of two language varieties. While
this functionality may seem much less useful and
important, it may prove useful in those cases where
one the focus lies on specific relations between two
language varieties, such as – for example – in the
case of two alternative proposals for phonological
reconstruction (Pulini and List, 2024). The Cog-
nates panel allows for a detailed inspection o the
distribution of cognate sets across a multilingual
wordlist, providing a tabular view in which each
column is reserved for one language and each row
represents one cognate set. Through this specific
panel, users can also export their cognate sets to
the above-mentioned NEXUS format, which can
then be fed to dedicated software packages for phy-
logenetic reconstruction.

3.5 Implementation

EDICTOR 3 is implemented as a web-based
application written in JavaScript. The newly
introduced local server functionality that al-
lows users to employ the tool locally is imple-
mented in Python. The code base is curated
on GitHub (https://github.com/digling/edictor, and
archived as part of the Python Package Index
(https://pypi.org/project/edictor). For users who
prefer to use the tool without installing it, the most
recent version of EDICTOR can be accessed from
https://edictor.org, a development version is usually
accessible from https://dev.edictor.org, and earlier

5

https://pypi.org/project/lingrex
https://github.com/digling/edictor
https://pypi.org/project/edictor
https://edictor.org
https://dev.edictor.org


(a) data in preliminary state (b) data after cognate detection

(c) data in aligned form (d) data with inferred patterns

Figure 1: Integrated computer-assisted workflow in EDICTOR 3. The screenshots represent the different stages by
which analyses with LingPy and LingRex applied to the Germanic wordlist data are carried out in the interactive
mode.

versions are accessible from https://one.edictor.org
(Version 1.0), https://two.edictor.org (Version 2.0),
and https://two-1.edictor.org (Version 2.1). Issues
in the code as well as discussions about particular
features are typically handled via GitHub’s issue
tracker (https://github.com/digling/edictor/issues).

4 Examples

In the following, we will try to illustrate the new
features and ideas that made it into EDICTOR 3
with the help of three examples. These consist of
(1) an integrated computer-assisted workflow that
can be used to compute cognates, alignment, and
correspondence patterns from scratch, (2) an illus-
tration of the new functionalities for the annotation
of correspondence patterns, and (3) a discussion
of the new approaches that allow to speed up the
process of manipulating data provided in phonetic
transcription.

4.1 Integrated Computer-Assisted Workflow
To illustrate how an integrated computer-assisted
workflow can be carried out with the help of EDIC-
TOR 3, we make use of a small dataset of 110 basic
concepts translated into seven Germanic languages.
This dataset was originally compiled by Starostin
(2005) and later adjusted later adjusted to the for-
mat required by EDICTOR and LingPy for testing
purposes (List, 2014). The dataset itself can be
accessed directly from EDICTOR 3, by opening
the landing page (https://edictor.org) and then navi-
gating to the tab Examples, where it can be selected
under the title Germanic Wordlist (List 2014).

Screenshots that illustrate the different stages of
the workflow are shown in Figure 1 (a-d).

The analysis itself shown in this example fails to
identify the Icelandic wordform as being cognate
with the forms in the other languages, which is most
likely due to the specific phonetic transcriptions
chosen. For computer-assisted purposes, however,
the ultimate accuracy of any algorithm is much
less important than the general reliability and – as
neatly illustrated in this example – the integration
with interactive tools that allow scholars to quickly
preprocess a given dataset automatically in order
to refine the individual findings in a second stage.

4.2 Inspecting and Editing Correspondences

Correspondence patterns inferred by the automatic
workflow shown in the previous section can be
further edited and modified by the user. Patterns
are reflected in the form commonly employed by
EDICTOR and LingRex. Patterns are defined with
respect to the phonetic alignment. Sites in an align-
ment are grouped into patterns by assigning them
common integers that serve as identifiers and must
be greater than zero. The value 0 itself is reserved
for those cases in which an alignment site is not
assigned to any pattern in the data. This holds
for cases of singletons (words that are not cognate
with any other words in a given dataset) or where
the method for correspondence pattern detection
cannot find enough evidence to group the data fur-
ther (e.g. for cognate sets that do not have enough
reflexes in the data).

6

https://one.edictor.org
https://two.edictor.org
https://two-1.edictor.org
https://github.com/digling/edictor/issues
https://edictor.org


right click: 
ignore sound

left click: 
toggle word

left click: 
pop up 

alignment
window

Figure 2: Correspondence patterns inferred by the computational workflow. Additional editing of corresponcence
patterns is possible by clicking into the pattern identifiers in the column PATTERN and editing values there directly.

Figure 2 shows how correspondence patterns are
visualized in EDICTOR 3. Each alignmen site is
listed in one row of a table, preceded by the cog-
nate set identifiers, followed by the position of the
site in the alignment, followed by the pattern iden-
tifier and the concepts reflected by the cognate sets.
For each language, the alignment site value is then
listed in fixed order. This order itself can be edited
by the user in order to put related language vari-
eties together or to put proto-languages in front.
Clicking on a particular sound will show the full
word, allowing users to toggle between different
views, highlighting particular sounds or individual
words in which the sounds occur. With the help
of a right mouse click, the pattern can be toggled
in such a way that the particular sound is ignored
when assembling the pattern, using inline align-
ments for the representation (List, forthcoming(b)).
This allows users to explicitly ignore certain reflex
sounds from correspondence patterns that might
show unexpected results. Ultimately, this comes
close to a formal version of Grimm’s handling of
Germanic data, when he noted exceptions from
the consonant shift that he had observed (Grimm,
1822). By putting exceptions at the side, one can
collect them to try and resolve them later.

As can be seen from the example illustration, the
automated workflow has no problem in detecting
the classical correspondence of the affricate ini-
tials in German corresponding to alveolar stops in
the other Germanic languages. This proves again
the usefulness of computer-assisted approaches in
increasing the efficiency of linguistic annotation.

4.3 Segmenting and Grouping

The wordlist panel in EDICTOR 3 comes with a
new feature that allows for an improved editing

of sound sequences. Already in the first version,
it was possible to insert phonetic transcriptions in
SAMPA / X-Sampa (see Gibbon et al. 1997, 60-108
for a specification of SAMPA), which would then
automatically be converted to the International Pho-
netic Alphabet in plain Unicode (IPA, 1999) and
automatically segmented into individual sounds,
following the standards proposed by the Cross-
Linguistic Data Formats initiative for the handling
of phonetic transcriptions (Forkel et al., 2018). In
EDICTOR 3, these editing functionalities were
streamlined and extended by adding additional pos-
sibilities to segment words into morphemes and to
group individual sounds into evolving units.

The extended sequence editing features are il-
lustrated in Figure 3, where some German words
are provided as sample sequences along with their
morpheme structure, annotated with the help of
morpheme glosses. While the conversion from
input in SAMPA/X-SAMPA is automatically trig-
gered when selected by the user (conversion can
also be turned of if phonetic transcriptions are pro-
vided from the original data or if users prefer to
user their own IPA keyboard), the segmentation of
individual characters into speech sounds in pho-
netic transcription is carried out when inserting a
sequence with a preceding space. Since trailing
spaces are disallowed in the standard format of the
column storing sound sequence data in EDICTOR
(typically called TOKENS), this does not conflict
with alternative annotations or other forms of user
input. Once sound sequences are inserted into the
text fields, EDICTOR automatically colors them,
using a color schema that distinguishes 10 different
sound classes, as originally proposed by Dolgopol-
sky (1964). These sequences can then be edited
in consecutive steps. First, by right-mouseclicking

7



right-click to segment

shift/ctrl-click to group

automatically segment 
and convert

_vEks@l+@n 

Figure 3: Sequence editing in EDICTOR 3. In addition to the conversion from SAMPA to IPA, EDICTOR 3 also
supports the convenient segmentation of sound sequences into morphemes and the grouping of sounds into evolving
units.

on individual sound segments, a morpheme bound-
ary marker (the +) is inserted before the segment
that was clicked, thus allowing users to quickly
segment their words into morphemes. Second, by
pressing the SHIFT or the CTRL button and right-
mouse-clicking a segment, it will be grouped with
the segment following it, using the specific anno-
tation for grouped sounds developed in List et al.
(2024).

In combination with additional panels, such as
the dedicated panel for the handling of Morpheme
Glosses that was introduced with an earlier version
of EDICTOR, the tool now equips users with mul-
tiple possibilities to efficiently annotate language-
internal cognates by segmenting words into mor-
phemes and handling co-evolving sounds as single
units. Our hope is that these additional methods
will soon allow us to create a larger collection of
morpheme-segmented wordlists that could later be
used to test automatic approaches to the task of
morpheme segmentation in computational histor-
ical linguistics, for which by now no satisfying
solution exists (List, 2024).

5 Outlook

With EDICTOR 3, we hope to enter a new stage
of computer-assisted language comparison, by pro-
viding a tool that is increasingly robust, allowing
for multiple ways of access, and offering sophis-
ticated methods for data annotation and analysis
that are more and more fine-grained and adapted to
the complex task of etymological analysis in his-
torical linguistics. For the future, we plan not only
to improve the integration with existing tools (for

example by providing enhanced export functionali-
ties to major phylogenetic software packages), but
also to consolidate the current code base. While
unit tests for the Python code running the local
server application have now been set up, with the
tool being tested on all major operation systems,
the JavaScript code base was written over a long
time frame, containing numerous lines of code that
should be refactored. In order to improve the acces-
sibility of the tool further, we also plan to conduct
more explicit trainings by offering webinars and by
sharing tutorials in video form where we run users
through major annotation stages and workflows.

Although not perfect yet, however, we think that
EDICTOR 3 already now provides a greatly im-
proved user experience with new functionalities,
and we hope that the tool will prove useful for those
who want to work with computer-assisted work-
flows instead of conducting purely quantitative or
purely qualitative analyses. The tool is intended
to help linguists in their etymological work, not to
replace them by switching to exclusively automatic
approaches that discard 200 years of scholarship.
This general spirit of computer-assisted language
comparison has not changed with EDICTOR 3, and
we hope that the tool will prove actually useful for
comparative work in historical linguistics.

Supplementary Material

EDICTOR 3 has been archived with
PyPi at https://pypi.org/project/edictor
(Version 3.0), is curated on GitHub at
https://github.com/digling/edictor, and can
be accessed online from https://edictor.org.

8

https://pypi.org/project/edictor
https://github.com/digling/edictor
https://edictor.org


Limitations

Computer-assisted approaches to historical lan-
guage comparison still face many limitations that
cannot be overcome by one single tool. The ma-
jority of the limitations we face in building tools
that assist linguists conducting computer-assisted
as opposed to purely classical studies consist in the
modeling of etymological relations between words
(both when comparing words inside one and the
same language and across multiple languages). Re-
garding EDICTOR 3, three very urgent limitations
can be found in the lack of a principled handling of
complex paradigms in multilingual wordlists (1),
the limitation of the models used to handle partial
cognates to account for non-concatenative morphol-
ogy (2), and the absence of general procedures to
check or annotate conditioning context that would
explain multiple sound reflexes in individual lan-
guages for the same proto sound (3). We do not
have any concrete ideas to solve any of these three
problems at the moment, but we discuss them often
and hope to be able to improve our work on these
open problems at some point in the future.

Acknowledgments

This project was supported by the ERC
Consolidator Grant ProduSemy (PI Johann-
Mattis List, Grant No. 101044282, see
https://doi.org/10.3030/101044282). Views
and opinions expressed are however those of the
author(s) only and do not necessarily reflect those
of the European Union or the European Research
Council Executive Agency (nor any other funding
agencies involved). Neither the European Union
nor the granting authority can be held responsible
for them.

We thank all those who have been supporting
the development of EDICTOR in the past by test-
ing the tool, suggesting modifications, and dis-
cussing new features and annotations. Special
thanks in this context go to Carlos Barrientos, Fred-
eric Blum, Nicolás Brid, Fabrício Gerardi, Abbie
Hantgan, Nathan W. Hill, Guillaume Jacques, John
Miller, Laurent Sagart, and Roberto Zariquiey. We
also thank the doctoral students in the ProduSemy
project – Katja Bocklage, Alz̧bȩta Kuçerová, Arne
Rubehn, and David Snee – for testing and dis-
cussing development versions of EDICTOR 3.

References
Raimo Anttila. 1972. An introduction to historical and

comparative linguistics. Macmillan, New York.

Robert Atkinson. 1875. Comparative grammar of the
Dravidian languages. Hermathena, 2(3):60–106.

J. Bhasker and Tariq Samad. 1991. The clique-
partitioning problem. Computers & Mathematics
with Applications, 22(6):1–11.

Johannes Dellert. 2018. Combining information-
weighted sequence alignment and sound correspon-
dence models for improved cognate detection. In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 3123–3133.

Aron B. Dolgopolsky. 1964. Gipoteza drevnejšego rod-
stva jazykovych semej Severnoj Evrazii s verojatnos-
tej točky zrenija [A probabilistic hypothesis concer-
ing the oldest relationships among the language fam-
ilies of Northern Eurasia]. Voprosy Jazykoznanija,
2:53–63.

Robert Forkel. 2023. CommonNexus. A nexus (phylo-
genetics) file reader and writer [Software, Version
1.9.1]. Max Planck Institute for Evolutionary Anthro-
pology, Leipzig.

Robert Forkel, Johann-Mattis List, Simon J. Green-
hill, Christoph Rzymski, Sebastian Bank, Michael
Cysouw, Harald Hammarström, Martin Haspelmath,
Gereon A. Kaiping, and Russell D. Gray. 2018.
Cross-Linguistic Data Formats, advancing data shar-
ing and re-use in comparative linguistics. Scientific
Data, 5(180205):1–10.

Alexandre François. 2008. Semantic maps and the ty-
pology of colexification: intertwining polysemous
networks across languages. In Martine Vanhove,
editor, From polysemy to semantic change, pages
163–215. Benjamins, Amsterdam.

Hans J. Geisler and Johann-Mattis List. 2022. Of word
families and language trees: New and old metaphors
in studies on language history. Moderna, 24(1-
2):134–148.

Dafydd Gibbon, Roger Moore, and Richard Winski,
editors. 1997. Spoken Language Reference Materials.
De Gruyter Mouton, Berlin and Boston.

Simon J. Greenhill, Hannah J. Haynie, Robert M. Ross,
Angela Chira, Johann-Mattis List, Lyle Campbell,
Carlos A. Botero, and Russell D. Gray. 2023. A re-
cent northern origin for the uto-aztecan family. Lan-
guage, 0(0).

Jacob Grimm. 1822. Deutsche Grammatik, 2 edition,
volume 1. Dieterichsche Buchhandlung, Göttingen.

Nathan W. Hill and Johann-Mattis List. 2017. Chal-
lenges of annotation and analysis in computer-
assisted language comparison: A case study on Bur-
mish languages. Yearbook of the Poznań Linguistic
Meeting, 3(1):47–76.

9

https://doi.org/10.3030/101044282
http://www.jstor.org/stable/23036430
http://www.jstor.org/stable/23036430
https://doi.org/http://dx.doi.org/10.1016/0898-1221(91)90001-K
https://doi.org/http://dx.doi.org/10.1016/0898-1221(91)90001-K
https://aclanthology.org/C18-1264
https://aclanthology.org/C18-1264
https://aclanthology.org/C18-1264
https://pypi.org/project/commonnexus/
https://pypi.org/project/commonnexus/
https://pypi.org/project/commonnexus/
https://doi.org/10.1038/sdata.2018.205
https://doi.org/10.1038/sdata.2018.205
https://doi.org/10.19272/202201902005
https://doi.org/10.19272/202201902005
https://doi.org/10.19272/202201902005
https://doi.org/10.1515/9783110804508
https://doi.org/10.1353/lan.0.0276
https://doi.org/10.1353/lan.0.0276
https://arxiv.org/abs/MnsKAAAAIAAJ
https://doi.org/10.1515/yplm-2017-0003
https://doi.org/10.1515/yplm-2017-0003
https://doi.org/10.1515/yplm-2017-0003
https://doi.org/10.1515/yplm-2017-0003


Charles A. R. Hoare. 1962. Quicksort. The Computer
Journal, 5(1):10–16.

IPA. 1999. Handbook of the International Phonetic As-
sociation. Cambridge University Press, Cambridge.

Gerhard Jäger, Johann-Mattis List, and Pavel Sofroniev.
2017. Using support vector machines and state-of-
the-art algorithms for phonetic alignment to identify
cognates in multi-lingual wordlists. In Proceedings
of the 15th Conference of the European Chapter of
the Association for Computational Linguistics. Long
Papers, pages 1204–1215, Valencia. Association for
Computational Linguistics.

Marwan Kilani. 2020. FAAL: a feature-based align-
ing ALgorithm. Language Dynamics and Change,
11(1):30–76.

Johann-Mattis List. 2012a. LexStat. Automatic detec-
tion of cognates in multilingual wordlists. In Pro-
ceedings of the EACL 2012 Joint Workshop of Visu-
alization of Linguistic Patterns and Uncovering Lan-
guage History from Multilingual Resources, pages
117–125, Stroudsburg.

Johann-Mattis List. 2012b. SCA: Phonetic alignment
based on sound classes. In Marija Slavkovik and Dan
Lassiter, editors, New directions in logic, language,
and computation, pages 32–51. Springer, Berlin and
Heidelberg.

Johann-Mattis List. 2014. Sequence comparison in his-
torical linguistics. Düsseldorf University Press, Düs-
seldorf.

Johann-Mattis List. 2017a. A web-based interactive
tool for creating, inspecting, editing, and publishing
etymological datasets. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics. System Demon-
strations, pages 9–12, Valencia. Association for Com-
putational Linguistics.

Johann-Mattis List. 2017b. Computer-Assisted Lan-
guage Comparison. Reconciling computational and
classical approaches in historical linguistics [Re-
search Project, 2017–2022]. Max Planck Institute
for Evolutionary Anthropology, Leipzig.

Johann-Mattis List. 2019. Automatic inference of sound
correspondence patterns across multiple languages.
Computational Linguistics, 45(1):137–161.

Johann-Mattis List. 2021a. EDICTOR. A web-based
tool for creating, editing, and publishing etymologi-
cal datasets. Max Planck Institute for Evolutionary
Anthropology, Leipzig.

Johann-Mattis List. 2021b. Using EDICTOR 2.0 to
annotate language-internal cognates in a German
wordlist. Computer-Assisted Language Comparison
in Practice, 4(4).

Johann-Mattis List. 2023. Inference of partial colexi-
fications from multilingual wordlists. Frontiers in
Psychology, 14(1156540):1–10.

Johann-Mattis List. 2024. Open problems in computa-
tional historical linguistics [version 2; peer review:
3 approved, 1 approved with reservations]. Open
Research Europe, 3(201):1–27.

Johann-Mattis List. forthcoming(a). Computational
approaches to historical language comparison. In
Claire Bowern and Bethwyn Evans, editors, Rout-
ledge Handbook of Historical Linguistics, 2 edition,
pages 1–20. Routledge, London and New York.

Johann-Mattis List. forthcoming(b). Productive Signs:
A computer-assisted analysis of evolutionary, typo-
logical, and cognitive dimensions of word families.
In International Conference of Linguists, 0, pages
1–12. De Gruyter.

Johann-Mattis List and Robert Forkel. 2023a. LingPy.
A Python library for quantitative tasks in historical
linguistics [Software Library, Version 2.6.13]. MCL
Chair at the University of Passau, Passau.

Johann-Mattis List and Robert Forkel. 2023b. LingRex:
Linguistic reconstruction with LingPy. Max Planck
Institute for Evolutionary Anthropology, Leipzig.

Johann-Mattis List, Robert Forkel, Simon J. Greenhill,
Christoph Rzymski, Johannes Englisch, and Rus-
sell D. Gray. 2022. Lexibank, a public repository
of standardized wordlists with computed phonologi-
cal and lexical features. Scientific Data, 9(316):1–31.

Johann-Mattis List, Simon J. Greenhill, and Russell D.
Gray. 2017. The potential of automatic word compar-
ison for historical linguistics. PLOS ONE, 12(1):1–
18.

Johann-Mattis List, Nathan W. Hill, Frederic Blum, and
Cristian Juárez. 2024. Grouping sounds into evolving
units for the purpose of historical language compar-
ison [version 1; peer review: 2 approved]. Open
Research Europe, 4(34):1–8.

Johann-Mattis List, Philippe Lopez, and Eric Bapteste.
2016. Using sequence similarity networks to iden-
tify partial cognates in multilingual wordlists. In
Proceedings of the Association of Computational
Linguistics 2016 (Volume 2: Short Papers), pages
599–605, Berlin. Association of Computational Lin-
guistics.

Johann-Mattis List and Steven Moran. 2013. An open
source toolkit for quantitative historical linguistics.
In Proceedings of the ACL 2013 System Demonstra-
tions, pages 13–18, Stroudsburg. Association for
Computational Linguistics.

Johann-Mattis List, Mary Walworth, Simon J. Greenhill,
Tiago Tresoldi, and Robert Forkel. 2018. Sequence
comparison in computational historical linguistics.
Journal of Language Evolution, 3(2):130–144.

David R. Maddison, David L. Swofford, and Wayne P.
Maddison. 1997. NEXUS: an extensible file format
for systematic information. Syst. Biol., 46(4):590–
621.

10

https://doi.org/10.1093/comjnl/5.1.10
http://aclweb.org/anthology/E/E17/E17-1113
http://aclweb.org/anthology/E/E17/E17-1113
http://aclweb.org/anthology/E/E17/E17-1113
https://doi.org/10.1163/22105832-01001300
https://doi.org/10.1163/22105832-01001300
https://doi.org/10.1007/978-3-642-31467-4_3
https://doi.org/10.1007/978-3-642-31467-4_3
https://doi.org/10.1515/9783110720082
https://doi.org/10.1515/9783110720082
http://aclweb.org/anthology/E/E17/E17-3003
http://aclweb.org/anthology/E/E17/E17-3003
http://aclweb.org/anthology/E/E17/E17-3003
https://doi.org/10.3030/715618
https://doi.org/10.3030/715618
https://doi.org/10.3030/715618
https://doi.org/10.3030/715618
https://doi.org/http://doi.org/10.1162/coli_a_00344
https://doi.org/http://doi.org/10.1162/coli_a_00344
https://arxiv.org/abs/https://digling.org/edictor
https://arxiv.org/abs/https://digling.org/edictor
https://arxiv.org/abs/https://digling.org/edictor
https://doi.org/10.58079/m6l3
https://doi.org/10.58079/m6l3
https://doi.org/10.58079/m6l3
https://doi.org/10.3389/fpsyg.2023.1156540
https://doi.org/10.3389/fpsyg.2023.1156540
https://doi.org/10.12688/openreseurope.16804.2
https://doi.org/10.12688/openreseurope.16804.2
https://doi.org/10.12688/openreseurope.16804.2
https://doi.org/10.17613/8nya-dn09
https://doi.org/10.17613/8nya-dn09
https://doi.org/10.17613/zfwr-sn25
https://doi.org/10.17613/zfwr-sn25
https://doi.org/10.17613/zfwr-sn25
https://pypi.org/project/lingpy
https://pypi.org/project/lingpy
https://pypi.org/project/lingpy
https://doi.org/10.5281/zenodo.1544943
https://doi.org/10.5281/zenodo.1544943
https://doi.org/10.1038/s41597-022-01432-0
https://doi.org/10.1038/s41597-022-01432-0
https://doi.org/10.1038/s41597-022-01432-0
https://doi.org/10.1371/journal.pone.0170046
https://doi.org/10.1371/journal.pone.0170046
https://doi.org/10.12688/openreseurope.16839.1
https://doi.org/10.12688/openreseurope.16839.1
https://doi.org/10.12688/openreseurope.16839.1
https://anthology.aclweb.org/P16-2097
https://anthology.aclweb.org/P16-2097
http://aclweb.org/anthology/P/P13/P13-4003
http://aclweb.org/anthology/P/P13/P13-4003
https://doi.org/10.1093/jole/lzy006
https://doi.org/10.1093/jole/lzy006
https://doi.org/10.1093/sysbio/46.4.590
https://doi.org/10.1093/sysbio/46.4.590


Cédric Notredame, Desmond G. Higgins, and Jaap
Heringa. 2000. T-Coffee. Journal of Molecular
Biology, 302:205–217.

Jelena Prokić, Martijn Wieling, and John Nerbonne.
2009. Multiple sequence alignments in linguistics.
In Proceedings of the EACL 2009 Workshop on Lan-
guage Technology and Resources for Cultural Her-
itage, Social Sciences, Humanities, and Education,
pages 18–25.

Michele Pulini and Johann-Mattis List. 2024. First
steps towards the integration of resources on his-
torical glossing traditions in the history of Chinese:
A collection of standardized fǎnqiè spellings from
the Guǎngyùn. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 7343–7348, Torino, Italy.
ELRA and ICCL.

Taraka Rama, Johann-Mattis List, Johannes Wahle, and
Gerhard Jäger. 2018. Are automatic methods for
cognate detection good enough for phylogenetic re-
construction in historical linguistics? In Proceedings
of the North American Chapter of the Association of
Computational Linguistics, pages 393–400.

Malcom Ross and Mark Durie. 1996. Introduction.
In Mark Durie, editor, The comparative method
reviewed. Regularity and irregularity in language
change, pages 3–38. Oxford University Press, New
York.

Laurent Sagart, Guillaume Jacques, Yunfan Lai, Robin
Ryder, Valentin Thouzeau, Simon J. Greenhill, and
Johann-Mattis List. 2019. Dated language phylo-
genies shed light on the ancestry of Sino-Tibetan.
Proceedings of the National Academy of Science of
the United States of America, 116:10317–10322.

Nathanael E. Schweikhard and Johann-Mattis List. 2020.
Developing an annotation framework for word for-
mation processes in comparative linguistics. SKASE
Journal of Theoretical Linguistics, 17(1):2–26.

Guillaume Segerer and S. Flavier. 2015. RefLex: Refer-
ence Lexicon of Africa. CNRS, Paris and Lyon.

Sergej A. Starostin. 2005. Germanic 100 wordlists. The
Tower of Babel, Moscow.

Sergej Anatolévič Starostin. 2000a. Comparative-
historical linguistics and lexicostatistics. In Time
depth in historical linguistics, volume 1 of Papers
in the prehistory of languages, pages 223–265. Mc-
Donald Institute for Archaeological Research, Cam-
bridge.

Sergej Anatolévič Starostin. 2000b. The STARLING
database program. RGGU, Moscow.

Peter Turchin, Ilja Peiros, and Murray Gell-Mann. 2010.
Analyzing genetic connections between languages by
matching consonant classes. Journal of Language
Relationship, 3:117–126.

11

https://doi.org/10.1006/jmbi.2000.4042
https://aclanthology.org/2024.lrec-main.646
https://aclanthology.org/2024.lrec-main.646
https://aclanthology.org/2024.lrec-main.646
https://aclanthology.org/2024.lrec-main.646
https://aclanthology.org/2024.lrec-main.646
https://aclanthology.coli.uni-saarland.de/papers/N18-2063/n18-2063
https://aclanthology.coli.uni-saarland.de/papers/N18-2063/n18-2063
https://aclanthology.coli.uni-saarland.de/papers/N18-2063/n18-2063
https://doi.org/10.1073/pnas.1817972116
https://doi.org/10.1073/pnas.1817972116
http://www.skase.sk/Volumes/JTL43/index.html
http://www.skase.sk/Volumes/JTL43/index.html
http://reflex.cnrs.fr
http://reflex.cnrs.fr
http://starling.rinet.ru/
http://starling.rinet.ru
http://starling.rinet.ru
https://www.jolr.ru/files/(34)jlr2010-3(117-126).pdf
https://www.jolr.ru/files/(34)jlr2010-3(117-126).pdf

