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Abstract

Thus far, the research community has focused
on a simplified computational modeling of se-
mantic change between two time periods. This
simplified view has served as a foundational
block but is not a complete solution to the com-
plex modeling of semantic change. Acknowl-
edging the power of recent language models,
we believe that now is the right time to extend
the current modeling to multiple time periods
and diachronic word sense induction. In this
position paper, we outline several extensions of
the current modeling and discuss issues related
to the extensions.

1 Introduction

Lexical Semantic Change (LSC) is the problem of
automatically identifying words that change their
meaning over time (Periti and Montanelli, 2024;
de Sá et al., 2024; Tahmasebi et al., 2021; Kutuzov
et al., 2018; Tang, 2018). Conceptually, this prob-
lem implicitly involves a fundamental step of di-
achronic word sense induction to distinguish each
individual sense of a word over all the multiple
time periods of interest (Periti et al., 2023; Al-
sulaimani and Moreau, 2023; Alsulaimani et al.,
2020; Emms and Jayapal, 2016; Tahmasebi, 2013).
However, the computational challenges in handling
large corpora and the absence of comprehensive
benchmarks have in practice led to a simplified
modeling focused on two time periods 𝑡1 and 𝑡2
only. These are either modeled individually 𝑡1, 𝑡2
or in a single time interval ⟨𝑡1, 𝑡2⟩ considering all
the data jointly.

Typically, approaches over two time periods
are assumed to be directly extendable to real sce-
narios involving multiple time periods. For ex-
ample, approaches designed for a single inter-
val ⟨𝑡1, 𝑡2⟩, can be iteratively re-executed across
multiple, contiguous intervals ⟨𝑡1, 𝑡2⟩, ⟨𝑡2, 𝑡3⟩, …,
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⟨𝑡𝑛−1, 𝑡𝑛⟩ (Giulianelli et al., 2020). However, mul-
tiple re-executions presents a computational chal-
lenge that significantly escalates as the number of
considered periods increases. Procedures that were
initially considered optional steps to expedite mod-
eling in two time periods become fundamental over
multiple time periods. For instance, since words
can occur thousands of times in a diachronic corpus,
it becomes imperative to randomly sample a limited
number of occurrences and to leverage hardware
components, such as GPU processor units.

Due to the absence of diachronic lexicographic
resources (e.g., dictionaries, thesauri), and the gap
between a general resource and specific data, the
modeling of word sense is commonly approached
in an unsupervised manner. Clustering techniques
are generally employed to aggregate usages of a
specific word into clusters, with the idea that each
cluster denotes a specific word meaning that can
be recognized in the considered documents. How-
ever, clusters of usages (regardless of method of
clustering) do not necessarily correspond to precise
senses (Martinc et al., 2020), but typically represent
noisy projections related to specific context (Periti
and Montanelli, 2024). As a result, manual activity
is always required to translate the automatically
derived clusters into a diachronic sense inventory.
This sense inventory is the basis for interpreting
the identified semantic change and modeling sense
evolution (see Figure 1). While automatic meth-
ods, such as keywords extraction (Kellert and Mah-
mud Uz Zaman, 2022), or generating definitions
for word usages (Giulianelli et al., 2023), have been
proposed to support cluster interpretation, a reli-
able interpretation still needs manual supervision.
Therefore, when multiple time periods are consid-
ered, interpretability challenges increase several or-
ders of magnitude, making the direct re-execution
of existing approaches unsuitable for effectively de-
tecting semantic change and the evolution of each
individual word meaning (Periti et al., 2023, 2022).
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Figure 1: Word usages and their corresponding representations, for time period 𝑡1, 𝑡2, and 𝑡3 are denoted with ■,
△, ⬖, respectively. Typically, the clustering of representations is done for individual time interval (i.e., two time
periods jointly) and manual supervision is required to translate the clusters of each time interval to a diachronic
sense inventory. The amount of manual supervisions increase with the number of considered time intervals.

We thus argue that the diachronic word sense in-
duction over multiple time periods inherent to LSC
requires more careful considerations compared to
the simplified modeling currently done. More ef-
forts should be devoted to develop approaches for
assisting text-based researchers like linguists, his-
torians and lexicographers as much as possible.

Our original contribution
In this paper, we discuss the complexities inher-
ent in modeling semantic change for each word
sense individually over multiple time periods. We
challenge the general assumption that conventional
approaches designed to address LSC over two time
periods are easily extendable over multiple time
periods. Because currently, contextualized em-
beddings represents the preferred tool for address-
ing LSC (Periti and Tahmasebi, 2024), we will
use these as an example. Our discussion is how-
ever more general, and can be applied regardless
of which model is used to represent individual
word usages – such as definitions (Giulianelli et al.,
2023), co-occurrence vectors (Schütze, 1998), lex-
ical replacements (Periti et al., 2024), or bag-of-
substitutes (Kudisov and Arefyev, 2022) – or sense
clusters in general as in Tahmasebi and Risse, 2017.

We advocate for an alternative modeling of LSC
over multiple time periods, and specifically, we
present i) five distinct approaches for tracking se-
mantic change and the evolution of word meanings;
and ii) three distinct settings for assessing seman-
tic change over time. Our work has significant

implications for both the computational modeling
and the creation of benchmarks, contributing to the
ongoing discussion presented by Periti and Mon-
tanelli (2024); Hengchen et al. (2021); Montariol
et al. (2021) on the open challenges associated with
modeling semantic change.

2 Background and related work

Since SemEval-2020 (Schlechtweg et al., 2020),
there is an established evaluation framework for
LSC to compare the performance of various mod-
els and approaches. However, given the substantial
annotation efforts required to create reliable bench-
marks over multiple time periods, the framework is
typically adopted to create simplified benchmarks
over two time periods, with gold labels for semantic
change but without diachronic sense labels (Ling
et al., 2023; Chen et al., 2023; Kutuzov et al.,
2022a; Zamora-Reina et al., 2022; Kutuzov and
Pivovarova, 2021; Basile et al., 2020; Schlechtweg
et al., 2020).1 In such benchmarks, the LSC prob-
lem is defined as follows.

2.1 Problem statement over two time periods
Given a diachronic corpus  containing a set of
documents (e.g., sentences, paragraphs) from two
time periods 𝑡1 and 𝑡2, the current modeling of LSC
involves the following evaluation tasks:

1Kutuzov and Pivovarova, 2021 introduced a benchmark
encompassing two time intervals. However, these intervals
have been treated independently, leading to their consideration
as two distinct sub-benchmarks over a single time interval.
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i) to quantify the semantic change of words
(i.e., Graded Change Detection);

ii) to recognize words that change their meaning
by either gaining new ones or losing old ones
(i.e., Binary Change Detection, Sense Gain
Detection, Sense Loss Detection).

Words that change their meanings by means of
gaining or loosing senses will have a high degree
of (graded) semantic change, while words that have
a high degree of graded change do not need to have
lost or gained senses.

These tasks inherently involve the modeling of
word meanings across 𝑡1 and 𝑡2. However, due to
the lack of diachronic sense labels, researchers and
practitioners tend to focus on addressing tasks i)
and ii) without adequately tackling the challenges
associated with modeling sense evolution.

2.2 State-of-the-art approaches to LSC

Thus far, computational approaches to solve the
above tasks have followed a standard receipt using
a four-step pipeline (Periti and Montanelli, 2024).
Given a corpus  spanning two time periods 𝑡1 and
𝑡2, and a target word 𝑤:

1) extraction of the word occurrences from both
𝑡1 and 𝑡2;

2) computational representation of each occur-
rence (the current standard is to leverage pre-
trained contextualized embeddings);

3) word sense induction by aggregating embed-
dings with a clustering algorithm;

4) assessment of semantic change by leveraging
a distance measure on the embeddings from
𝑡1 and 𝑡2.

Approaches are typically distinguished in form-
based and sense-based. The former does not in-
duce sense (3) but quantifies semantic change using
(1,2,4), either as a shift in the dominant meaning
of 𝑤 or in its degree of polysemy. There is thus
no easy way to discern individual senses from the
change score without integrating “close reading”
by humans. Sense-based approaches remedies this
by relying on all steps (1-4) but generally induce
senses (3) in a synchronic way, without considering
the temporal nature of the documents (Ma et al.,
2024). That is, they consider all the documents
from 𝑡1 and 𝑡2 available as a whole and perform a
single clustering activity over the entire set of gen-
erated embeddings, regardless of their time origin.

2.3 Modeling senses through clusters

The clustering of representations via word sense
induction, step (3) above, serves as a tool to oper-
ationalize word senses in an unsupervised fashion
through unstructured text (Lake and Murphy, 2023).
On one hand, this operationalization offers a flexi-
ble adaptation to the data under consideration and
allows to derive senses that do not necessarily need
to be aligned with available static lexicographic
resources (Kilgarriff, 1997). For instance, senses
derived from youth slang (Keidar et al., 2022), or
scientific texts are unlikely to align with a general
lexicon meant to cover the whole spectrum of a
given language.

On the other hand, as computational models
derive information from the contexts surrounding
word tokens, sense modeling tends to emphasize
word usages rather than word meanings (Tahmasebi
and Dubossarsky, 2023; Kutuzov et al., 2022b).
Thus, while ideally we would like each cluster to
correspond to one, and only one sense, in prac-
tice, multiple clusters may correspond to different
nuances of the same sense. This effect is further
amplified when considering data from diverse time,
domains, or genres, where distinct linguistic regis-
ters, styles, or co-occurrence patterns may results
in different senses.

Additionally, the interpretation of clusters as
senses requires a notion of (word) “meaning” that
can both differ in the mind of humans according to
social or cultural background and age, as well as
in the varying usages of a word in context. Thus,
the mapping of clusters to senses involves i) identi-
fying commonalities on the usages of each cluster
that may be judged differently, as well as ii) map-
ping these commonalities to word meanings. The
outcome results in a sense inventory.

2.4 Modeling LSC over multiple time periods

Modeling LSC involves computationally deriving
word senses progressively over time. This entails
re-executing the steps (1-4) multiple times. At each
execution 𝑖, a set of clusters is generated and hu-
mans are needed to identify and update the sense
inventory. This involves mapping the clusters gen-
erated at the 𝑖-th execution to senses and aligning
senses temporally.

The way senses align over time give us important
insights into how word meanings change. Classify-
ing types of semantic change has been long studied
and different schema have been proposed (Blank,
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1997; Bloomfield, 1933; Paul, 1880). Among oth-
ers, common types of change include broadening
of meaning (e.g., dog was used to refer to dogs
of specific large and strong breeds), narrowing of
meaning (e.g., girl was used to refer to people of
either gender), novel senses (e.g., rock as a music
genre) and metaphorical extensions (e.g., surfing
the web). The result is a diachronic sense inven-
tory with temporal information on the active senses
at each time, as well as potential relationships be-
tween senses.

To facilitate the interpretation of semantic
change and the evolution of word meaning, the
current, synchronic modeling of senses can bene-
fit from diachronic modeling encompassing both
incremental word sense induction and cluster align-
ment (Kanjirangat et al., 2020). Aligning clusters
computationally will allow the simultaneous inter-
pretation of multiple clusters, thereby reducing the
burden of manual supervision at each time period.
Clusters aligned over time can potentially suggest
the continuation of an active sense, as well as the
broadening and narrowing of meanings. In contrast,
clusters not aligned over time can reveal both the
continuation of different senses, as well as types of
semantic change, like metaphoric extension.

Thus far, word meanings have been modeled
through conventional clustering algorithms such
as Affinity Propagation (Martinc et al., 2020) or
K-Means (Kobayashi et al., 2021). However, these
algorithms were originally designed for one-time
data clustering and are not inherently suited to
handle temporal dynamics. Specifically, clusters
generated at 𝑡𝑖−1 can become mixed up when re-
executing the algorithm with both previous data and
new data points at time ⟨𝑡𝑖−1, 𝑡𝑖⟩. Consequently, ob-
jects that were previously clustered together at time
𝑡𝑖−1 may either remain in the same cluster or be re-
assigned to different clusters based on the updated
data at time 𝑡𝑖. This dynamic nature complicates
the task of tracking the history of specific clusters
across different time periods, and can lead to the
creation of noisy clusters, especially when new data
points arrive according to a skewed distribution.

Diachronic sense clustering. Conventional un-
supervised clustering algorithms do not incorpo-
rate the faithfulness properties typical in incremen-
tal clustering literature, where clustering activities
at any given point in time should remain faithful
to the already existing clusters as much as possi-
ble (Chakrabarti et al., 2006) while at the same time

Figure 2: Clustering over consecutive time intervals.

be flexible to fit the new data. This would avoid
dramatic change in clusters from one time-step to
the next that do not derive from semantic change,
but from differences in the underlying documents
over time (Castano et al., 2024).

To this end, we argue that, for each target word,
modeling LSC over time should involve monitor-
ing the evolution of each individual senses across
all the time periods under consideration, as well as
tracing the types of each change. However, this ex-
tension is not straightforward; instead, it requires
crucial time series analysis to mitigate potential
noise introduced by the predictions of computa-
tional approaches (Kulkarni et al., 2015).

Monitoring and tracing word meaning evolution
and semantic change require a careful considera-
tion in the current four-step pipeline of sense-based
approaches. As for scalability and interpretability
issues related to (1-3), suggestions and workaround
are discussed in Periti and Montanelli, 2024; Mon-
tariol et al., 2021. In this paper, we further discuss
the extension of steps (3) and (4) when consider-
ing multiple time points. In particular, we discuss
diachronic word sense induction in Section 3, and
semantic change assessment in Section 4.

3 Diachronic word sense induction

For the sake of simplicity, consider a diachronic
corpus  spanning three general, consecutive time
periods 𝑡1, 𝑡2, 𝑡3, not necessarily contiguous. This
simplification does not lead to any loss of infor-
mation, but serves to aid the discussion in a clear

111



Figure 3: Clustering over consecutive time periods.

and concise fashion. At the same time, three time
points are easily extendable to the general case of
tens or hundreds of time periods. Word usages, and
their corresponding representations, for time period
𝑡1, 𝑡2, and 𝑡3 are denoted with ■, △, ⬖, respectively.
From here on, we will use contextualized embed-
dings as an example for contextualized represen-
tations. In the following, we present five different
approaches for monitoring the evolution of word
meanings and discuss suitability, and drawbacks.

3.1 Clustering over consecutive time intervals

Clustering algorithms used for jointly modeling
senses over two time periods 𝑡1 and 𝑡2 can be pro-
gressively re-executed over consecutive pairs of
time periods ⟨𝑡1, 𝑡2⟩ and ⟨𝑡2, 𝑡3⟩. To facilitate the
interpretation of sense evolution, a cluster align-
ment step is thus required between consecutive re-
executions. For instance, in Figure 2, the clusters
generated in step (B) are linked to those gener-
ated in step (A) through a cluster alignment step
(C) (Deng et al., 2019).

When clustering over consecutive time intervals
⟨𝑡1, 𝑡2⟩,… , ⟨𝑡𝑛−1, 𝑡𝑛⟩, the embeddings from 𝑛 − 2
time periods (all time periods but first and last)
are clustered twice. For instance, consider the em-
beddings △ from 𝑡2 in Figure 2: (A) they are first
clustered with the embeddings ■ from 𝑡1, and (B)
then re-clustered with the embeddings ⬖ from 𝑡3.
When a limited number of word usages is available,
this approach can potentially enhance the emer-
gence of certain senses, as patterns of embeddings
from 𝑡𝑖−1 are reinforced by additional evidence (if
present) from 𝑡𝑖. However, this compromises the

Figure 4: One-time clustering over all time periods.

faithfulness property, as embeddings from 𝑡𝑖 can be
clustered differently when considered jointly with
𝑡𝑖−1 compared to when considered jointly with 𝑡𝑖+1
(from a past and future perspective respectively).

3.2 Clustering over consecutive time periods

When a substantial number of documents is avail-
able for each time period, there is no need to cluster
the embeddings of a time interval as a whole. In-
stead, the embeddings of each time period can be
clustered individually, and a cluster alignment al-
gorithm can be applied progressively to link the
clusters across time periods (Kanjirangat et al.,
2020; Montariol et al., 2021). This approach is
represented in Figure 3. Step (A), (B), and (D)
represents the application of a conventional cluster-
ing algorithm over the embeddings of time period
𝑡1, 𝑡2, 𝑡3, respectively. Step (C) and (E) represents
cluster alignment steps to link the clusters gen-
erated through step (B) to the cluster generated
through step (A), and in turn, the clusters generated
through step (D) to the cluster generated through
step (B) (Deng et al., 2019).

Clustering over time periods involves a similar
number of clustering activities and cluster align-
ment steps as clustering over time intervals. How-
ever, each clustering activity is more scalable, as it
involves a smaller number of embeddings.

3.3 One-time clustering over all time periods

Embeddings from all the considered time periods
can be clustered jointly in one single execution.
For instance, in Figure 4 step (A), embeddings
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Figure 5: Incremental clustering over time periods.

■, △, ⬖ are clustered together as a whole. This
single clustering activity results in clusters that may
include embeddings from various combinations of
time periods. For example, a cluster may include
embeddings from a single, all, or selected time
periods. A cluster alignment step (B) can be further
executed to enable the modeling of sense evolution
and change type.

When dealing with hundreds of time periods
and a significant number of embeddings at once,
clustering can be unfeasible due to scalability is-
sues. In real scenarios, a diachronic corpus can
be dynamic (Periti et al., 2022), where documents
from subsequent time periods are not available as a
whole but are progressively added (e.g., posts from
social networks, Kellert and Mahmud Uz Zaman,
2022; Noble et al., 2021). In such scenarios this
approach is thus not suitable as it would require
re-execution of the clustering from scratch when
new documents are added.

Furthermore, the use of conventional clustering
algorithms is generally insensitive to the order of
time periods, allowing embeddings of later time pe-
riods to influence pattern of the earlier time periods.
This risks leading to a global view of word meaning
while precluding a local view where smaller and
gradual variation of individual senses as well as
small sense clusters are missed. These issues can
be mitigated by considering the temporal order of
documents in the clustering activity (Smyth, 1996).

3.4 Incremental clustering over time periods

Incremental clustering algorithms are designed
to effectively address the temporal nature of
data (Kulkarni and Mulay, 2013). Thus, they are

Figure 6: Scaling up with form-based approaches.

a suitable option to model the dynamic nature of
language where temporal progression is key. When
employed for diachronic word sense induction, they
can efficiently and directly update the prior cluster-
ing results by processing and assimilating new data
into existing clusters. The word usages observed
in past time periods are consolidated into a set of
clusters that constitute the memory of the word
meanings observed thus far (Periti et al., 2022).
This memory then serves as a foundation for un-
derstanding subsequent word usages in the current
time period. Like Figure 4, Figure 5 represents
similar steps (A-C) without alignment as clusters
generated in step (A-C) are directly and consecu-
tively updated.

Some of the incremental algorithms implement
the faithfulness property in an evolutionary way:
once a cluster has been created, it can only gain
new members (i.e, word usages) but can never loose
any members that have already been assigned to
it. Meanwhile, the word usages observed in the
present must be stratified or integrated over those
from the past, that is, either be placed in existing
clusters, or create new clusters. Other algorithms
implement the faithfulness property in a more flex-
ible way and enable small changes in past clusters
when more evidence is available.

3.5 Scaling up with form-based approaches

Regardless of the complexity of each presented
method, it is difficult to scale an approach to the
level of whole vocabulary in a large corpus. In addi-
tion, some senses remain stable for a long time be-
fore they potentially change meaning, others never
change. Therefore, clustering the senses during
the stability periods of words is superfluous. To
reduce computational needs and scale to the entire
vocabulary, form-based approaches (without sense-
induction) can be used to monitor stability allowing
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the use of more powerful sense-based approaches
only when there is indication of change.

By considering change only in the general usage
of a word, form-based approaches reduce the se-
mantic change problem significantly. Thus, they
serve for two important purposes: first, they can
be used to quantify the degree of change at the vo-
cabulary level, and thus give us the opportunity to
quantify change during different time periods (e.g.,
before and after WWI v. WWII); secondly, they
can be used to find words and periods of interest.

Such a kind of stability monitoring can be done
via change point detection (Kulkarni et al., 2015)
and be integrated with diachronic sense modeling
as shown in Figure 6. In particular, step A involves
quantifying semantic change through form-based
assessment to detect change points across the entire
time span covered by the corpus. Step B involves
modeling each individual sense of the word around
the detected change point(s) through approaches
presented in Section 3.1-3.4.

4 Semantic change assessment

The diachronic word sense induction is indepen-
dent from the assessment of change at the level
of senses or words. While the modeling of word
meaning relies on the notion of word senses, the
assessment of change depends on the research ques-
tions that we want investigate. E.g., considering a
perfect sense inventory we may want to ask how
many meanings have been lost and gained, and if
change is more evident in some time intervals com-
pared to others. The answer to these depend on the
way we assess change.

Assessment of change, like sense induction, has
focused on two time intervals which is the smallest
unit over which we can quantify change. How-
ever, generalizing from two intervals to multiple
intervals is not trivial and needs considerations that
depend heavily on the kind of research question
that is being asked, as well as the kind of data avail-
able. Short-term data contra long-term data, or
small contra large data require different strategies
for quantifying change. Here we present some pos-
sible strategies that extend to multiple time periods.

Assessment over consecutive time intervals
represents a general way to assess semantic change
over time ⟨𝑡1, 𝑡2⟩, ⟨𝑡2, 𝑡3⟩, …, ⟨𝑡𝑛−1, 𝑡𝑛⟩. This kind
of assessments can be affected by i) (random) fluc-
tuations in the underlying corpus, where the cover-
age of topics can be heavily influenced by real-life

events; and ii) noisy artifacts of the computational
modeling, e.g., influenced by frequency. The use
of time series analysis or statistical tests can reduce
the effect of potential artifacts from the data and
capture only significant changes evident in the time
series (Liu et al., 2021; Kulkarni et al., 2015).

This assessment represents a useful solution for
scenarios where the focus is on detecting immedi-
ate changes, such as in rapidly evolving fields or
during specific events that might impact language
usage. When comparing ⟨𝑡𝑖−1, 𝑡𝑖⟩, the assumption
is that all the active word meanings in 𝑡𝑖, except
for the new or changed ones, are active also in 𝑡𝑖−1.
However, some senses are periodic and an unde-
sirable side-effect is that they may be detected as
change each time they appear and disappear as they
are not represented in 𝑡𝑖−1.

Pairwise assessment over time periods Some-
times research questions may be tailored to specific
time intervals (e.g, before and after the time period
𝑡𝑖 of the corona pandemic). Thus, this assessment
aims to quantify the change across specific time in-
tervals ⟨𝑡𝑖−1, 𝑡𝑖⟩ and ⟨𝑡𝑗 , 𝑡𝑗+1⟩ such that 𝑖 < 𝑗. This
assessment is also useful for identifying changes in
periodic senses when the periodicity of the sense is
known. For example, the meaning of the term gold
related to the Olympic games that take place every
forth year.

This assessment is also useful when research
questions are tailored to specific types of change
irrespective of when the change occurs. For exam-
ple, when a diachronic sense inventory is available,
broadening or narrowing can be investigated re-
gardless of their time-specific appearance.

When all possible time intervals are considered,
this assessment is associated with a computational
complexity of (𝑛2) where 𝑛 is the number of con-
sidered periods. However, it provides a broader
view of how meaning evolves over different spans,
capturing trends that may not be apparent in consec-
utive intervals. For example, gradual changes over
time would not appear with assessment over con-
secutive time intervals as too little evidence would
be present, but could appear as radical changes
when larger gaps between intervals are used.

By considering all the possible time intervals
it is also possible to quantify the global level of
change over the whole corpus. This method is
insensitive to the order of the time periods and is
useful for capturing overarching trends and patterns
in semantic change across the entire timeline.
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Cumulative assessment over time When re-
search questions focus on the novel senses gained
at time period 𝑡𝑖, the comprehensive overview of
active senses from the past must be considered⋃𝑖−1

𝑗=1 𝑡𝑗 . Instead of considering only consecutive
or specific time intervals, each new time period
should be compared with the full diachronic sense
inventory. Cumulative assessment emphasizes the
overall evolution of meaning, providing a holistic
view of changes from the beginning to the end of
the timeline. It is useful for consolidating the ev-
idence across multiple time periods which would
not suffice on their own. For example, when re-
search questions focus on the novelty introduced
in time period 𝑡𝑖 compared to the past periods, the
assessment of change should consider the cumu-
lative evidence of the past as a single, large time
period. Similar assessment can be employed when
research questions want to compare a past time pe-
riod 𝑡𝑖 with respect to the following

⋃𝑛−1
𝑗=𝑖+1 𝑡𝑗 , until

the 𝑛𝑡ℎ time period.

5 Discussion and conclusion

Computational modeling of semantic change has
long been done in a simplified way due to the chal-
lenges related to modeling senses across multiple
time periods. However, sense inventories and the
type of change a word exhibits, are fundamental
aspects for text-based researchers like historians,
linguists and lexicographers, and therefore, the
full complexity of semantic change must be taken
into consideration in the computational modeling.
Now that we have powerful language models like
GPT-4 (OpenAI, 2023) and XL-LEXEME (Cas-
sotti et al., 2023) there are no excuses for tak-
ing a simplistic view on the modeling of semantic
change.

In this paper, we have presented possible ex-
tensions to expand on the simplistic view. These
extensions have equal implications both for the
computational modeling as for the generation of
manually annotated benchmarks which has also
been done over two time periods due to the sheer
volume of required annotations.

Crucial for the usefulness of semantic change
studies is a diachronic sense inventory where the
different senses are linked together to capture se-
mantic change type and linguistic relation. It is us-
ing the diachronic sense inventory that the majority
of the research questions can be answered. These
pertain both to linguistic, language-level questions,

but also to societal and cultural enquiries where text
can be used as evidence. How to best frame and
store the diachronic sense inventory is still an open
issue and requires involvement from the commu-
nities around computational modeling of semantic
change, word sense induction and lexical semantics
in general, as well as the text-based researchers that
will use the outcome.

Human supervision is necessary to develop a
reliable sense inventory. As diachronic corpora
can span multiple time periods and contain mil-
lions of documents, automatic supervision support
is mandatory to reduce manual efforts as much as
is possible. In this regard, aligning similar clusters
and detecting change types to speed up the inter-
pretation process is as crucial as it is difficult. Em-
ploying different kinds of diachronic word sense
induction and assessment as outlined here, will lead
to different amounts of manual interaction.

Aligning clusters over time poses a very chal-
lenging task, as some clusters may represent out-
liers, time intervals may be characterized by dif-
ferent numbers of clusters, and multiple noisy (or
nuanced) clusters denoting the same meaning may
emerge. As a result, the cluster alignment often in-
volves the discretization of a fuzzy problem (Kian-
mehr et al., 2010), that is the creation of new global
clusters that encompass sets of fuzzy clusters. Fur-
thermore, when cluster are aligned through a poste-
riori step rather than being linked and updated di-
rectly, the alignment process (worst case) involves
comparing each cluster with every other cluster
across all time periods. This risks amplifying the
potential level of noise and require intricate deci-
sions typically taken without any theoretical basis.

Thus far, the research community has focused
more on the quantification of semantic change
rather than the underlying word sense induction
because form-based approaches consistently out-
performed sense-based approaches. However, the
clustering algorithms that have been employed do
not take the temporal nature of documents into
consideration, and we thus argue that they are not
optimal for modeling word meaning over time.

In this paper, we have outlined several possible
paths forward, both in terms of diachronic word
sense induction and assessment of change. We
have left methods for change type detection for
future work. Each proposed path is suitable for
different kinds of research questions and data. For
example, by clustering embeddings over a whole
corpus, smaller senses that would not appear in
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sequential modeling can gain sufficient evidence
in global clustering. Such a method is however
computationally expensive. Other methods suf-
fer from the problem that when only consecutive
time periods are considered, slow and gradual shift
risks being missed and over long time periods other
strategies are more suitable. Among these methods,
we strongly advocate for a shift towards incremen-
tal methods as these are currently the best fit to the
LSC problem.

6 Limitations

This is a position paper and as such, we have not
reported any experiments nor proposed concrete al-
gorithms. Instead, we have outlined general weak-
nesses of the current methods in the field of com-
putational modeling of semantic change and dis-
cussed possible ways forward. We believe that
different kinds of solutions can be used for this pur-
pose, spanning from different classes of clustering
algorithms (e.g., evolutionary, Periti et al., 2023)
to different classes of graphs and networks (e.g.,
temporal, Ma et al., 2024).

We have focused on unsupervised methods that
induce senses through clustering of word represen-
tations. In particular, we have focused on contex-
tualized representations, which represent the de
facto standard, irrespective of the model that is
used to generate the representations (e.g., Devlin
et al., 2019; Hofmann et al., 2021; Cassotti et al.,
2023). We only mention other methods such as
word masking for lexical substitutions (Card, 2023;
Arefyev and Zhikov, 2020) or previous paradigms
such as the use of static embeddings (Shoemark
et al., 2019). Typically, static embeddings, as well
as methods based on SVD or PPMI (Hamilton et al.,
2016), collapse all the meanings of a word into a
single static vector, thus our proposals may not be
considered suitable for such solutions even if dy-
namic word embeddings such as those presented
by Bamler and Mandt (2017); Yao et al. (2018);
Rudolph and Blei (2018) are used. However, we
argue that the methods outlined in this paper are di-
rectly extendable to methods based on static embed-
dings where sense clusters are generated by looking
at the top neighbors in the embedding space (Go-
nen et al., 2020).

We have not focused on how to detect the type
of semantic change nor the cause of it, primarily
due to space limitations. However, we believe that
the methods outlined in this paper inherently offer

ways to detect type, but not necessarily cause, of
change. When we begin to target change types, we
need evaluation benchmarks. Creating such bench-
marks entail consolidating and digitizing the types
of change offered in taxonomies as, for example,
(Blank, 1997; Ullmann, 1957; Bloomfield, 1933;
Stern, 1931; Bréal, 1904; Darmesteter, 1893; Paul,
1880; Reisig, 1839), such as the work started by
Cassotti et al. (2024).
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