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Abstract

This paper describes our solution of the first
subtask from the AXOLOTL-24 shared task on
Semantic Change Modeling. The goal of this
subtask is to distribute a given set of usages
of a polysemous word from a newer time pe-
riod between senses of this word from an older
time period and clusters representing gained
senses of this word. We propose and experi-
ment with three new methods solving this task.
Our methods achieve SOTA results according
to both official metrics of the first substask. Ad-
ditionally, we develop a model that can tell if a
given word usage is not described by any of the
provided sense definitions. This model serves
as a component in one of our methods, but can
potentially be useful on its own.

1 Introduction

The shared task on explainable Semantic Change
Modeling (SCM) AXOLOTL-24 (Fedorova et al.,
2024) is related to automation of Lexical Semantic
Change (LSC) studies, i.e. linguistic studies on
how word meanings change over time. It consists
of two subtasks, however, we focus on the first one
and skip the definition generation subtask. Unlike
other shared tasks LSC held before, the first subtask
of AXOLOTL-24 requires automatic annotation of
individual usages of target words instead of target
words as a whole. An example of the provided data
and required outputs is shown on Figure 1. Namely,
for each target word, two sets of usages from an
older and a newer period are given (we will call
them old and new usages). Additionally, a set of
glosses describing word senses in the older time
period (old senses) are provided, and the old usages
are annotated with these sense glosses. Senses oc-
curring among the new usages (new senses) should
be discovered automatically. To be precise, the
goal is to annotate each new usage with one of the
given old sense glosses, or a unique sense identifier
if none of them is applicable. We will refer to those

Old usages
a cell in a castle

New usages
locked in a cell

call me on my cell

Glosses for old senses
1. a small room for one or
more prisoners in a prison
2. the smallest unit in an
organism

blood cells

cell with stone walls

he was put in a cell

1.

1.

Sense Sense

1.

2.

3.

1.

bacteria cell 2.

Old time period New time period

Target word: cell

Inputs

Outputs
Glosses for gained senses
3. a phone that does not have
wires and works by radio

Figure 1: An example of data for the first subtask of
AXOLOTL-24.

senses that occur only among old and only among
new usages as lost and gained senses, and all other
senses as stable senses.

To solve the task, we experiment with three types
of models. Word Sense Disambiguation (WSD)
models for a given word usage select among given
glosses the most suitable one. Word Sense Induc-
tion (WSI) models group word usages into clusters
corresponding to word senses, they are applicable
even when sense descriptions are not available. Fi-
nally, Novel Sense Detection (NSD) models find
usages corresponding to unknown word senses, the
ones that are not covered by the provided defini-
tions. We propose three methods that solve the
task. Our best solution denoted as Outlier2Cluster
combines all three types of models in a novel way,
essentially using an NSD model for each usage
to decide whether to return a definition selected
by a WSD model, or an identifier of a cluster this
usage was put into by a WSI model. On average
across languages, this solution achieves SOTA re-
sults among all participants of the first substask of
AXOLOTL-24 according to both official metrics.

An important additional contribution is the pro-
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posed NSD model and the related experiments. We
study the importance of different features of the
NSD model and its effect on SCM quality. Our
experiments suggest that improving NSD quality
is the most promising direction for the future.

2 Related work

LSCD methods. Several shared tasks related
to LSCD were organized in the past, includ-
ing Schlechtweg et al. (2020); Kutuzov and Pivo-
varova (2021); Zamora-Reina et al. (2022). Un-
like AXOLOTL-24 (Fedorova et al., 2024), they
required word-level predictions from their partici-
pants, either in the form of word ranking or binary
word classification. This type of task setup is gen-
erally mentioned under the name Lexical Seman-
tic Change Detection / Discovery (LSCD). In the
earlier shared tasks the best results were achieved
by solutions that employed non-contextualized
word-level embeddings such as word2vec (Mikolov
et al., 2013) and vector alignment methods such
as Canonical Correlation Analysis and Orthogonal
Procrustes Alignment (Pömsl and Lyapin, 2020;
Pražák et al., 2020). However, recently token-
level methods (Laicher et al., 2021; Rachinskiy and
Arefyev, 2021a, 2022) have surpassed them. These
methods rely on masked language models fine-
tuned on existing datasets for various tasks of lex-
ical semantics. For instance, solutions relying on
the contextualized embeddings from GlossReader,
which is a WSD system, have shown SOTA results
in the shared tasks on LSCD in Russian and Span-
ish (Rachinskiy and Arefyev, 2021a, 2022). Meth-
ods proposed in this work exploit GlossReader too,
both as a WSD model and as a source of contex-
tualized embeddings well-suited for LSC-related
tasks.

GlossReader is a multilingual gloss-based
WSD model originally developed to solve the
Word-in-Context task (Rachinskiy and Arefyev,
2021b). It modifies the English WSD model
BEM (Blevins and Zettlemoyer, 2020) replacing
the backbone with the multilingual XLM-R lan-
guage model (Conneau et al., 2020). The model
consists of a gloss encoder and a context encoder,
both initialized with the XLM-R weights and fine-
tuned jointly learning to select among all glosses
of a target word the one describing its sense in
a given context. Specifically, the dot product be-
tween the context embedding and the correct gloss
embedding is maximized.

NSD methods. Several methods were proposed
to solve the NSD task. Some of them perform WSI
internally. For instance, Lau et al. (2012); Cook
et al. (2014) employ a topic modelling approach
to jointly cluster old and new usages using the Hi-
erarchical Dirichlet Process. Clusters are ranked
based on the novelty score (the difference between
estimated probabilities of a cluster appearing in the
new and the old corpus). While the method was
originally designed for LSCD, the novelty ranking
of senses can be combined with a static threshold
to identify novel senses.

Alternatively, Mitra et al. (2015) performs WSI
separately for an old and a new corpus on graphs,
where an edge weight between two words is propor-
tional to the number of words appearing in bigrams
with both of them. A cluster in the new corpus is
labeled as a novel sense if words in this cluster have
weak links with the target word in the graph for the
old corpus. A recent method by Ma et al. (2024)
uses BERT (Devlin et al., 2019) to build contextu-
alized representations. It employs agglomerative
clustering to perform WSI and then matches old
and new clusters based on their centroids. The new
clusters that are not matched are considered novel
senses. Similarly to this method we use agglom-
erative clustering for WSI, but employing Gloss-
Reader to obtain contextualized embeddings.

In Erk (2006) several NSD methods were pro-
posed to detect word senses that are not described
in FrameNet (Baker et al., 1998). Instead of re-
lying on WSI, similarly to our NSD method their
best method formulates the task as an outlier de-
tection problem. They employ distances between
old and new usages requiring a significant number
of old usages for each sense, which are not always
available in AXOLOTL-24. Thus, we rely on dis-
tances between new usages and old glosses instead.
Another similar method is introduced in Lauten-
schlager et al. (2024). They use the XL-LEXEME
model (Cassotti et al., 2023) to build representa-
tions for usages and senses. Sense representations
are built from glosses or example usages of senses
taken from dictionaries. They do not always con-
tain the target word, which makes application of
XL-LEXEME non-trivial. Authors attempt to solve
this problem by modifying glosses and example us-
ages to include the target word. For each usage
its nearest sense is found based on the cosine simi-
larity or the Spearman’s correlation between their
embeddings. If the similarity is above a threshold,
the usage is considered to belong to some non-
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described sense. Our methods also rely on usage
and sense representations, but we use GlossReader
which has a separate gloss encoder and does not
require any preprocessing for glosses. We experi-
ment with many measures of similarity between a
sense and a usage embedding, and found the man-
hattan distance between l1-normalized embeddings
to outperform other measures and a classifier on a
combination of measures to perform best. However,
we did not experiment with example usages from
sense inventories. When such usages are available,
being combined with glosses they may potentially
improve sense representations.

3 Methods

3.1 Target word positions

All our methods assume that a usage is represented
as a string and two character-level indices pointing
to a target word occurrence inside this string. How-
ever, for the Russian subsets these indices were
absent. To find them, we first generated all gram-
matical forms for each target lemma using Pymor-
phy2 (Korobov, 2015). Then retrieved all occur-
rences of these forms as separate tokens in the pro-
vided usages employing regular expressions.1 For
usages with several occurrences of the target word
we selected one of them that has both left and right
context of reasonable length.2 We inspected new
usages from the development and the test sets that
did not contain any of the automatically generated
word forms and added absent forms manually, then
reran retrieval.3

3.2 WSD methods

The first group of methods in our experiments in-
clude pure WSD methods, which select one of the
provided definitions of old senses for each new
usage, and thus, cannot discover gained senses.

1E.g. ’\b(cat|cats)\b’, where \b denotes a word
boundary. Matching is case-insensitive.

2This idea is based on our observations that a word oc-
currence is encoded sub-optimally when it is either the first
or the last token, which is probably related to confusion of
Transformer heads that have learnt to attend to the adjacent to-
kens (Voita et al., 2019). The heuristic implemented takes the
second to last occurrence if there are more than two of them.
For two occurrences it takes argmaxu∈{u1,u2}min(lu, ru),
where lu, ru are the lengths of the left and the right contexts.

3Repeating this manual procedure for all Russian data
requires significantly more efforts and would have few benefits
for our methods. Thus, all old usages having this issue were
left without indices and new usages from the training set we
dropped.

GlossReader. We employ the original Gloss-
Reader model (Rachinskiy and Arefyev, 2021b) as
the baseline. For a given new usage u of a target
word w its usage representation ru is built with the
context encoder. Then gloss representations rg are
built for each gloss g of the target word w using the
gloss encoder. Finally, the gloss with the highest
dot product similarity to the usage is selected.

To improve the results, we further fine-tune the
GlossReader model on the data of AXOLOTL-24.

GlossReader FiEnRu is fine-tuned following
the original GlossReader training procedure on
three datasets: the train sets of the shared task in
Finnish and Russian, and the English WSD dataset
SemCor (Miller et al., 1994) which GlossReader
was originally trained on. We employ all old and
new usages from the Russian and Finnish datasets
along with their sense definitions. We fined-tuned
for 3 epochs using 90/10% train/validation split to
select the best checkpoint.4

GlossReader Ru is fine-tuned exactly the same
way, but only on the train set in Russian.

GlossReader Fi SG is fine-tuned on the Finnish
train set only. Unlike two previous models, we
made an attempt to teach this model how to dis-
cover novel senses. Specifically, we replaced all
glosses of gained senses with a Special Gloss (SG)
"the sense of the word is unknown" in Finnish5

and fine-tuned the model as before. For inference
we tried adding the special gloss to the provided
old glosses, essentially extending the WSD model
with NSD abilities. However, this resulted in a
noticeable decrease of the metrics on the Finnish
development set. Thus, we decided to use the spe-
cial gloss for training only.6

3.3 WSI methods
Unlike WSD methods, WSI methods do not use
definitions or any other descriptions of word senses.
Instead they discover senses of a word from an un-
labeled set of its usages by splitting this set into
clusters hopefully corresponding to word senses.
WSI methods cannot attribute usages to the pro-
vided old glosses, but can potentially group usages

4The last checkpoint was selected, though after ≈0.5
epochs metrics improve very slowly.

5"sanan merkitystä ei tunneta" as translated by Google
Translate

6The majority of words in the Finnish dataset have one
sense only, see Section 4.2. Pure WSD methods always return
perfect predictions for such cases, thus, it is very hard to
compete with them on this dataset. In the future we plan to
experiment with this model on the Russian dataset having
much smaller proportion of such words.
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of the same sense, including gained senses, into a
separate cluster.

Agglomerative is the only WSI method we pro-
pose and experiment with. For each new usage
its representation ru is built using the context en-
coder of the original GlossReader model. Then
we perform agglomerative clustering of old usages
using the cosine distance and average linkage on
these representations. This clustering algorithm
was successfully used to cluster vectors of lexical
substitutes, another kind of word sense represen-
tations, in several substitution-based WSI meth-
ods (Amrami and Goldberg, 2018, 2019; Arefyev
et al., 2020; Kokosinskii and Arefyev, 2024), as
well as for LSCD (Laicher et al., 2021; Ma et al.,
2024).

Agglomerative clustering starts with each usage
in a separate cluster, then iteratively merges two
closest clusters. The distance between two clusters
is the average pairwise cosine distance from the
usages in the first cluster to the usages in the second
one. Merging stops when the predefined number
of clusters is reached. We range the number of
clusters between 2 and 9 and select a clustering
with the highest Calinski-Harabasz score (Caliński
and Harabasz, 1974).7

3.4 SCM methods

WSD and WSI methods provide only partial so-
lutions of the semantic change modeling task, the
former cannot discover novel senses, and the latter
cannot annotate usages with the old glosses pro-
vided. We propose three new methods developed
to fully solve the task.

3.4.1 AggloM
Our first SCM method modifies the Agglomera-
tive WSI method by incorporating old usages and
senses into the clustering process. We perform ag-
glomerative clustering of a set containing both old
and new usages of a target word. Initially, each new
usage is assigned to a separate cluster. The old us-
ages are clustered according to the provided sense
annotations. Then at each iteration we compute the
distances from each cluster containing only new
usages to all other clusters. The distance between
two clusters is defined as the minimum cosine dis-
tance between the usage representations from the
first and the second cluster.8 We then merge two

7For one or two usages the Calinski-Harabasz score is not
defined. We return a single cluster in such cases.

8This is known as single linkage.
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Figure 2: Outlier2Cluster pipeline. Inputs are in green
and outputs are in blue. Triangles denote ML models.

nearest clusters, one of which contains new usages
only. This iterative merging process stops when
the number of clusters is larger than the number of
old senses by k ≥ 0. Therefore AggloM returns
exactly k novel senses, where k is a hyperparam-
eter.9 We do not use this method on the Russian
datasets because for most senses there are no old
usages there.

AggloM FiEnRu is identical to AggloM but
relies on the fine-tuned GlossReader FiEnRu.

3.4.2 Cluster2sense
In the second SCM method we first independently
cluster new usages using the Agglomerative WSI
method and annotate them with the old senses using
GlossReader FiEnRu. We then keep the clustering
obtained from WSI, but relabel those clusters that
overlap heavily with one of the predicted senses.
Specifically, we label a cluster c with a sense s if
c has the highest Jaccard similarity to s among all
the old senses of the target word, and at the same
time s has the highest similarity to c among all the
clusters built for new usages of this word. Notably,
two clusters cannot be labeled with a single sense,
thus the clustering of usages is identical to the one
originally predicted by WSI. Some clusters will not
be labeled with any sense, thus, Cluster2sense can
discover gained senses. At the same time, some
senses will not be assigned to any cluster, which
means the potential to discover lost senses as well.

3.4.3 Outlier2Cluster
Unlike Cluster2Sense which relabels whole clus-
ters, Outlier2Cluster relabels individual usages.
Figure 2 shows the processing pipeline. First
WSD and WSI predictions are independently made

9In the preliminary experiments on the Finnish develop-
ment set we selected k = 0, which means that all new usages
are eventually merged into clusters representing old senses.
This is likely related to the low proportion of gained senses
in this dataset and noisy usages which make them hard to
discover.
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by GlossReader FiEnRu and Agglomerative re-
spectively. Then we discover usages of gained
senses. For that we propose a Novel Sense Detec-
tion (NSD) model finding usages of those senses
that we do not have definitions for.10 Finally, we
return WSI predictions for all these discovered us-
ages, and WSD predictions for all other usages.

Novel sense detection. We treat the NSD task
as an outlier detection problem, essentially finding
those usages that are distant enough from all the
provided definitions. Since GlossReader selects
the most similar definition for a given usage, it is
enough to check if this definition is distant enough
to conclude that the usage is an outlier. To check
this we employ a logistic regression classifier. Each
input example corresponds to a single usage and
a gloss selected for this usage by the WSD model.
The output is 1 if this usage is an outlier, i.e. does
not belong to the predicted sense, and 0 otherwise.

We use distances (computed with several dis-
tance functions) between GlossReader represen-
tations of the new usages and the glosses for old
senses as features for logistic regression.

For the new usage u and the selected definition
g we take the corresponding representations ru and
rg from a gloss encoder and a context encoder re-
spectively. We take these representations from two
different GlossReader models, the original one and
GlossReader FiEnRu, and calculate distances from
ru to rg using different distance and normaliza-
tion functions. This gives 10 different features
presented in Table 1. We also include three extra
features: the number of old usages, old senses, and
new usages for the target word in the dataset. We
employ the Standard Scaler to normalize features
and train the logistic regression with L2 regulariza-
tion of C = 1.

Thus, the trained logistic regression can be used
for each usage to decide whether the WSD method
has assigned a correct sense or should be replaced
with some cluster corresponding to a gained sense.
If the score is above a threshold of 0.65, which was
selected on the development sets of the shared task,
the usage is considered an outlier.

We train two NSD models on the Russian and
the Finnish development sets separately and use
the trained models for the corresponding test sets.

10In the context of the shared task these are gained senses.
However, the approach is general enough to discover lost
senses when a modern dictionary and old usages are given, or
just senses from the same time period as the dictionary but not
covered by it.

Distance Function Cos. Euclid. Manh.
Encoders Normalized
GR FiEnRu No ✓ ✓ ✓
GR FiEnRu L1-norm ✓
GR FiEnRu L2-norm ✓
GR No ✓ ✓ ✓
GR L1-norm ✓
GR L2-norm ✓

Table 1: Ten distance-based features used in the NSD
model. Distances are calculated between usage and
gloss representations obtained from context and gloss
encoders of the same GlossReader model. GR stand for
GlossReader, Cos. is the cosine distance, Euclid. is the
euclidean distance, Manh. is the manhattan distance.

For the surprise language, we do not have labeled
data to select one of two models or train a separate
model, thus, we simply report the results of both
models.

Outlier relabeling. We experiment with two
ways of assigning clusters to the detected outliers.
Our first approach (w/o WSI) groups all outliers
into a single new cluster. Alternatively, w/ WSI
approach assigns the clusters predicted by the WSI
method to outliers. We use the first option for the
Finnish test set, as we observed that the words in
the Finnish development set rarely have more than
one gained sense. On the contrary, the words in the
Russian development set have many gained senses,
therefore, we employ w/ WSI for the Russian test
set. For the surprise language Outlier2Clusterfi
employs w/o WSI and Outlier2Clusterru employs
w/ WSI.

All of the described methods are briefly summa-
rized in Table 2.

4 Evaluation setup

The first AXOLOTL-24 subtask evaluates seman-
tic change modeling systems in three diachronic
datasets in Finnish, Russian, and German (Fe-
dorova et al., 2024). Train and development sets
are provided for the first two, but not for the last.
We will now describe the datasets in more detail.

4.1 Data sources

The source for the Finnish dataset of the shared
task is resource (1997). The usages are divided
into two groups: before 1700 and after 1700. The
usages in the dataset are not complete sentences
but short phrases. Some parts of the phrase can be
missing and replaced with double hyphens, presum-
ably due to OCR errors. Furthermore, the usages
from both the old and the new corpus exhibit no-
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Requires Requires Requires a Able to Able to
Underlying usages of old train set with discover predict
embeddings old senses glosses gained senses∗ gained senses old senses

GR GR - ✓ - - ✓
GR FiEnRu GR FiEnRu - ✓ - - ✓
GR Ru GR Ru - ✓ - - ✓
GR Fi SG GR Fi SG - ✓ ✓ - ✓
Agglomerative GR - - - ✓ -
AggloM GR ✓ - - if k > 0 ✓
AggloM FiEnRu GR FiEnRu ✓ - - if k > 0 ✓
Cluster2Sense GR, GR FiEnRu - ✓ - ✓ ✓
Outlier2Cluster GR, GR FiEnRu - ✓ ✓ ✓ ✓

Table 2: A brief description of the proposed methods. GR stands for GlossReader model. ∗GR Fi SG is trained
to predict the special gloss for usages of all gained senses. In Outlier2Cluster the NSD model is trained to detect
usages of gained sense.

table differences from modern Finnish. They often
feature characters (such as c, z, w, and x), that are
not commonly found in contemporary Finnish. It
is important to highlight that the glosses provided
for word senses are in modern Finnish.

Two data sources used to create the Russian
dataset are Dahl (1909) processed by Mikhaylov
and Shershneva (2019) and Mickus et al. (2022).
The first one was the source of old usages and
glosses, and the latter provided new usages and
glosses. However, the specific procedure used to
map senses between these two sources was undis-
closed at the time of the competition. Some old
senses are not accompanied by old usages in the
Russian datasets. Consequently, our methods for
the Russian datasets do not rely on the old usages.
Notably, the Russian datasets lack information re-
garding the position of a target word within a usage
or the actual word form of the target word. As a re-
sult, we incorporate the identification of the target
word’s position within a usage as a preprocessing
step in our solution.

The shared task also includes a test dataset in a
surprise language revealed only at the test phase
of competition with no development or train sets.
The source of this dataset is a German diachronic
corpus with sense annotations (Schlechtweg et al.,
2020; Schlechtweg, 2023).

4.2 Data Statistics
To get insights into the data we categorize the target
words within the train and the development sets
based on several characteristics:

• Has lost senses: does the word have old senses
for which there are no new usage?

• Number of gained senses: how many senses
are there having new usages only?

67% 63% 64% 66% 64% 55% 63%
33% 37% 36% 34% 36% 45% 38%Has lost

senses?
true
false

95% 94% 95% 100% 79% 85% 96%
21%

Disjoint
senses?

true
false

38% 39% 40% 72% 99% 100% 88%
62% 61% 60% 28%New has

one
sense?

true
false

52% 54% 54% 79% 99% 100% 100%
48% 46% 46% 21%

Has one
sense?

true
false

fi train fi dev fi test
ru trainru dev ru testde test

76% 70% 74% 49% 67%
21% 51% 21%

96% 97%
Number
of gained
senses

Total number of words 4289 254 275 924 201 211 24

2+
1
0

Figure 3: Proportions of target words falling into differ-
ent categories in the shared task datasets.

• Disjoint senses: are the sets of senses for old
and new examples disjoint?

• New has one sense: do all the new usages
have the same meaning?

• Has one sense: do all the usages (both old and
new) have the same meaning?

The number of target words in each category for
all11 the datasets of the shared task is presented on
Figure 3.

In the Finnish datasets, almost half of target
words have only one sense and approximately 70%
of words have no gained senses. Therefore, the
conservative methods that rarely discover gained
senses are preferable for the Finnish datasets.

The main observation for the Russian datasets is
the dramatic differences in proportions of almost all
categories between the train and the development

11This information for the test sets was not available during
the competition.
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set. We can see that the statistics of the test set are
similar to those of the development set. Contrary
to the Finnish sets, almost all words in the Russian
development set have gained senses. Therefore,
methods which are prone to predict new senses
rather than old ones are preferable for the Russian
development set.

The German dataset is relatively small and con-
tains 8 times fewer words than the other test sets.
We can see that it is similar to the Finnish datasets
in the proportion of gained and lost senses.

4.3 Metrics

The shared task employs two metrics to evaluate
the systems, the Adjusted Rand Index (ARI) and
the F1 score.

ARI (Hubert and Arabie, 1985) is a well-
established clustering metric employed to evaluate
how well new usages are clustered by a system. In
the subtask, ARI is computed for all the new usages
of a target word, the ground truth clusters corre-
spond to senses. Notably, cluster labels are not
taken into account by ARI. It means that old senses
and gained senses are indistinguishable from each
other in terms of ARI.

The F1 score is used in the first subtask to esti-
mate how well a system can discriminate between
old senses. It is computed only for the new usages
of the old senses, and not for the usages of the
gained senses. The F1 score for a target word is
the average of the F1 scores for all old senses. If a
target word does not have any new usages with the
old senses, it is arbitrarily assigned the F1 score
of 1 if old senses are not predicted for any of its
usages and 0 otherwise. Thus, in this edge case
a system is heavily penalized when even a single
usage is misclassified as one of the old senses.

All new usages of the old senses which are
(incorrectly) predicted as belonging to a gained
sense are considered to belong to a single auxiliary
"novel" class when calculating the F1 score. The F1
score for this class is zero as it has zero precision.
For this reason, even a single usage misclassified as
a gained sense can dramatically affect the overall
score for a target word independently of the total
number of its usages.12

12Assume the target word has k old senses. In case when
only old senses are predicted: F = F1+...+Fk

k
. If we replace

one of the correct predictions of sense 1 with an incorrect pre-
diction of a gained sense: F ′ =

F ′
1+...+Fk+0

k+1 < F1+...+Fk+0
k+1 .

The drop in this metric is F
F ′ > k+1

k
E.g. in the case k = 1,

which is a frequent case in the Finnish AXOLOTL-24 dataset,

5 Results

5.1 Our submissions

The number of submissions for the test sets per
team was not limited in the competition. We eval-
uate ten models on the test sets: four WSD mod-
els (based on GlossReader, GlossReader FiEnRu,
GlossReader Ru, and GlossReader Fi SG), one
WSI model (Agglomerative with GlossReader
representations), two AggloM models (based on
GlossReader and GlossReader FiEnRu represen-
tations), Cluster2Sense, and Outlier2Cluster with
different configurations for the German dataset:
Outlier2Clusterru and Outlier2Clusterfi. Table 3
demonstrates the evaluation results. We also in-
clude the best submissions from other teams for
comparison.

WSD and WSI. The best results in terms of the
F1 score are achieved by pure WSD methods. The
F1 score is calculated only for the usages of old
senses, this gives a huge advantage to WSD meth-
ods because incorrect prediction of old senses for
usages of gained senses is not penalized, while the
opposite reduces the F1 score severely as explained
in Section 4.3.

WSD methods have notably higher ARI than
Agglomerative and Cluster2Sense (both of them
predict the same clusters but label them differently)
for the Finnish and German datasets. On the con-
trary, Agglomerative and Cluster2Sense are the
best-performing methods for the Russian dataset.
Our explanation for this fact comes from the analy-
sis in Section 4.2. The sets of senses of the new and
the old usages in the Finnish and German datasets
overlap heavily, which is beneficial for WSD meth-
ods. The overlap is much smaller for the Russian
dataset, which hurts ARI of the WSD methods. Dis-
covering gained senses is crucial for the Russian
dev and test set.

AggloM. The AggloM method with the hyper-
parameter k = 0 (never predicts gained senses)
does not fall far behind pure WSD methods. The
main reasons for that probably are the usage of the
same underlying context encoder and prediction
of only old senses. Therefore, AggloM is a viable
alternative to the GlossReader models when word
senses are described with usage examples instead
of sense definitions.

Outlier2Cluster. Outlier2Cluster achieves

an incorrect prediction of a gained sense for a single usage
results in more than 2x decrease of the F1 score.
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ARI F1
Method Fi Ru De FiRu AVG Fi Ru De FiRu AVG
WSD methods
GR 0.581 0.041 0.386 0.311 0.336 0.690 ⋄0.721 0.694 0.706 0.702
GR FiEnRu ⋄0.649 0.048 ⋄0.521 0.348 0.406 ⋄0.756 ⋄0.750 ⋄0.745 ⋄0.753 ⋄0.750
GR Ru 0.568 0.053 0.464 0.310 0.361 0.568 ⋄0.750 ⋄0.724 0.659 0.681
GR Fi SG ⋄0.638 0.059 ⋄0.543 0.348 0.413 ⋄0.752 ⋄0.729 ⋄0.758 ⋄0.741 ⋄0.746
WSI methods
Agglomerative 0.209 ⋄0.259 0.316 0.234 0.261 0.055 0.152 0.042 0.104 0.083
SCM methods
AggloM 0.581 0 0.492 0.290 0.357 0.674 0 0.695 0.337 0.456
AggloM FiEnRu ⋄0.631 0 0.485 0.315 0.372 ⋄0.731 0 0.639 0.366 0.457
Cluster2Sense 0.209 ⋄0.259 0.316 0.234 0.261 0.432 0.346 0.432 0.389 0.403
Outlier2Cluster ru

fi
⋄0.649 ⋄0.247 0.322

0.480 ⋄0.448 0.406
⋄0.459 ⋄0.756 0.645 0.510

⋄0.745 0.701 0.637
⋄0.715

Other teams
Holotniekat 0.596 0.043 0.298 0.319 0.312 0.655 0.661 0.608 0.658 0.641
TartuNLP 0.437 0.098 0.396 0.267 0.310 0.550 0.640 0.580 0.595 0.590
IMS_Stuttgart 0.548 0 0.314 0.274 0.287 0.590 0.570 0.300 0.580 0.487
ABDN-NLP 0.553 0.009 0.102 0.281 0.221 0.655 0 0.638 0.328 0.431
WooperNLP 0.428 0.132 0 0.280 0.186 0.503 0.446 0 0.475 0.316
Baseline 0.023 0.079 0.022 0.051 0.041 0.230 0.260 0.130 0.245 0.207

Table 3: The results on the test tests. The best result for each metric is underlined, the best result in each group is in
bold font. A diamond (⋄) denotes those results that are worse than the best one, but the difference is practically
insignificant (we consider relative differences smaller than 0.05 as practically insignificant). The official AXOLOTL-
24 leaderboard is based on the average metrics across the languages having the training sets provided (the FiRu
columns) and all languages (the AVG columns).

SOTA or near-SOTA ARI13 for Russian and
Finnish, but falls behind WSD methods for Ger-
man, which has no labeled data to train a dedicated
NSD model. However, Outlier2Cluster can dis-
cover gained senses unlike WSD methods. Thus,
we consider Outlier2Cluster to be preferable for
the SCM task and suggest training the NSD model
for each language of interest.14

The important hyperparameter of the NSD
model, and consequently the Outlier2Cluster model
exploiting it as a component, is the threshold di-
viding usages into outliers and normal usages. Fig-
ure 4 shows the dependence of the metrics on the
threshold value for the Finnish and Russian devel-
opment sets. Both w/ WSI and w/o WSI versions
of Outlier2cluster are included. We also compute
the results of Outlier2Cluster with the WSI oracle
which perfectly clusters the detected outliers ac-
cording to their ground truth senses, and the NSD
oracle which perfectly detects usages of gained
senses. The methods we study in this Section are
briefly summarized in Table 4.

We can see that the F1 score (computed only

13We made Outlier2Clusterfi submissions in the competi-
tion separately for different datasets. For this reason, it was not
selected as our best submission by the competition organizers.

14We used only small development sets with ≈ 200 target
words to train novel sense detection models.
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Figure 4: ARI and F1 on the development sets depend-
ing on the threshold of novel sense detector. Higher
threshold means higher proportion of WSD predictions
and less WSI predictions.
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Method WSD WSI NSD
w/ WSI GR FiEnRu Agglomer. LogReg
w/o WSI GR FiEnRu One cluster LogReg
w/ WSI oracle GR FiEnRu Oracle LogReg
NSD oracle GR FiEnRu Agglomer. Oracle

Table 4: A brief summary of methods for the NSD
threshold study.

over new usages with old senses) monotonically
increases with the increasing threshold, i.e. with
fewer outliers detected. This again shows that try-
ing to detect usages of gained senses and clean the
old senses from them hurts the F1 score, supporting
the criticism of this metric in Section 4.3.

ARI reaches a peak at the threshold of 0.65 for
the Russian dataset with F1 being close to maxi-
mum as well. We therefore set the threshold at 0.65
for the Russian NSD model. This gives the SCM
model that almost achieves the ARI of pure WSI
predictions (threshold of 0) while having only a bit
smaller F1 score compared to the best WSD model.

For the Finnish dataset, higher ARI monotoni-
cally increase with the threshold, i.e. with the pro-
portion of predictions taken from the WSD model.
This agrees with the observations from Table 3 that
the pure WSD models give the best ARI for Finnish.
We can also see that the threshold values in the mid-
dle, where neither WSI nor WSD predictions are
dominant, result in a significant decrease in ARI.
It means, that our NSD model cannot be used ef-
fectively to combine the predictions for Finnish.
We select a high threshold of 0.65 for the Finnish
dataset, resulting in a low number of outliers. Con-
sequently, the novel sense detector predicts less
than 1% of usages to be outliers in the Finnish
test set, compared to 42% of usages predicted as
outliers for the Russian test dataset.

We can observe that according to the F1 score,
the NSD oracle performs better than the pure WSD
method, especially on the Russian development set.
The reason lies in the words with disjointed senses.
Since there are no new usages of old senses for such
words, the ordinary F1 score and it is arbitrarily
defined as 1 if all usages are recognized as usages
of gained senses, i.e. put into new clusters, and 0
otherwise. Thus, the ideal processing of these edge
cases is crucial for the F1 score, but can hardly be
achieved unless the NSD oracle is employed. For
other words it does not help. Considering ARI,
the NSD oracle performs much better than w/WSI
on the Russian dataset. It means that better NSD
models may help greatly improve clustering.

According to the results of w/ WSI oracle on
the Finnish development set, it is impossible to
increase ARI with better WSI method without a
huge drop in the F1 score. For the Russian dataset
situation is the opposite. The main reason is likely
the average number of gained senses per word in
these datasets as described in Section 4.2. Only 7%
of words in the Finnish dataset have gained two or
more senses, therefore the perfect clustering of the
gained senses does not increase the results signifi-
cantly compared to merging all gained senses into
a single cluster. On the contrary, 97% of the word
in the Russian have two or more gained senses,
making WSI necessary.

6 Conclusion

We have proposed three new methods that solve
the SCM task. Our solution achieves SOTA re-
sults among all participants of the first subtask of
the AXOLOTL-24 shared task. Additional experi-
ments propose directions of further improvement
of the developed models, NSD being potentially
the most promising one.

7 Limitations

While our methods can in theory be applied to any
SCM dataset, we acknowledge that they may be
overspecified for the first subtask of AXOLOTL-24.
Notably, we extensively use the train sets provided
for the competition in Finnish and Russian to train
the embedding model and to optimize the hyperpa-
rameters. While we also evaluate on the German
dataset in a zero-shot fashion, the results may be
unreliable due to relatively small size of the dataset.

Semantic change modeling may be of particular
interest in studies of older time periods, where the
language is quite different from its modern state.
The underlying model, GlossReader, is a finetuned
version of XLM-R, which was not specifically de-
signed to handle old languages. In this case dataset-
specific finetuning of the base GlossReader may
become even more relevant.
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dev fi AP dev ru AP
Model GR GR FiEnRu GR GR FiEnRu
single features
cosine 0.106 0.110 0.685 0.695
euclid. 0.106 0.110 0.684 0.694
l2/euclid. 0.106 0.110 0.685 0.695
manh. 0.106 0.113 0.685 0.690
l1/manh. 0.154 0.242 0.816 0.822
full classifiers
classifier w/ extra 0.378 0.840
classifier w/o extra 0.305 0.833
best pairs of features w/o extra features
l1/manh. + euclid. 0.194 0.284 0.818 0.823
l1/manh. + l2/euclid. 0.195 0.284 0.818 0.823
l1/manh. + manh. 0.192 0.277 0.819 0.823
best pairs of features w/ extra features
l1/manh. + #old usages 0.190 0.291 0.820 0.827
l1/manh. + #new usages 0.153 0.249 0.821 0.829
#new usages + #old senses 0.266 0.266 0.643 0.643

Table 5: Average precision of novel sense detection models on the dev sets. Except for the block with full classifiers,
models use distance-based features either from GlossReader or GlossReader FiEnRu. The best results in each group
are in bold font. The overall best results are underlined.

features consistently help on the Finnish dev set,
but are almost useless on the Russian dev set.

In Table 5 we compare different NSD models
using the average precision on the dev sets. To
understand which quality can be achieved using
the minimal number of features, we evaluate all
single distance-based features. Furthermore, we
train classifiers on all possible pairs of features,
where each pair contains distances only from the
same GlossReader. Also we compare classifiers
with or without extra features.

We observe that the manhattan distance with
l1 normalization, which is the best single feature,
works poorly on the Finnish dataset, especially for
the embeddings from GlossReader that was not
fine-tuned on the Finnish train set. However, on the
Russian dev set it closely follows the best classifier.
As for the classifiers, we found that including non-
distance features is important for Finnish. What
is more interesting, when using the original Gloss-
Reader model among all pairs of features the best
one does not contain embedding-based features at
all, only the number of old senses and the num-
ber of new usages. This signals that for the Fin-
ish dataset GlossReader provides poor embeddings
without fine-tuning.
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Figure 5: Precision-recall curves of novel sense de-
tection models. Non classifier models are distances
between usages and chosen glosses from GlossReader
FiEnRu. Classifier w/ extra stands for classifier trained
on distance-based and non distance-based features in-
troduced in sub subsection 3.4.3. Classifier w/o extra
stands for classifier trained only on distance-based fea-
tures.
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