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Abstract

Computational and human perception are of-
ten considered separate approaches for study-
ing sound changes over time; few works have
touched on the intersection of both. To fill
this research gap, we provide a pioneering re-
view contrasting computational with human
perception from the perspectives of methods
and tasks. Overall, computational approaches
rely on computer-driven models to perceive his-
torical sound changes on etymological datasets,
while human approaches use listener-driven
models to perceive ongoing sound changes on
recording corpora. Despite their differences,
both approaches complement each other on
phonetic and acoustic levels, showing the po-
tential to achieve a more comprehensive per-
ception of sound change. Moreover, we call
for a comparative study on the datasets used by
both approaches to investigate the influence of
historical sound changes on ongoing changes.
Lastly, we discuss the applications of sound
change in computational linguistics, and point
out that perceiving sound change alone is insuf-
ficient, as many processes of language change
are complex, with entangled changes at syntac-
tic, semantic, and phonetic levels.

1 Background

There has been ongoing scholarly interest in sound
change over time for decades. A popular histori-
cal sound change is the Great Vowel Shift (Lass,
1992), where the long vowel [i:] in Middle English
shifted to a diphthong /aI/ in Modern English for
example. It took place over time from the 15th
to 18th centuries, and greatly changed the English
vowel system. Other examples include the loss of
voiceless velars like [ç] in Modern English (Dob-
son, 1968), reduction of consonant clusters like
[kn] → [n] (Turville-Petre and Burrow, 2020), and
vowel reduction in unstressed syllables (Minkova,
2013). Many ongoing sound changes took place
in the 20th century. For instance, in American

regional dialects, a notable shift such as [2] →
[E] in the vowel system occurred in the Northern
Cities around the mid-20th century (Wolfram and
Schilling, 2016).

While many works proposed computational ap-
proaches to perceive historical sound changes
(Mielke, 2008; Dekker, 2018; Boldsen and Pag-
gio, 2022) and others suggested using the listener-
driven model to perceive ongoing sound changes
(Janson, 1983; Sanker, 2018a; Quam and Creel,
2021), few works explored the intersection of both
computational and human perception. The benefits
of doing so can be substantial. Firstly, computa-
tional approaches perceive historical sound change
by analyzing IPA transcriptions in etymological
datasets, but these datasets lack acoustic features
that human listeners/speakers can produce and per-
ceive. Secondly, human perception observes on-
going changes through participation surveys over
recording corpora, which lacks the considerations
of acoustic and phonetic alignments between speak-
ers that computational approaches can produce
and perceive. Lastly, connections between ety-
mological datasets and recording corpora are lit-
tle explored; by combining both, one could con-
duct a comparative analysis of historical and ongo-
ing sound changes, e.g., examining how historical
changes impact ongoing changes. Thus, there is
a need for a comparative review of computational
and human perception.

In this work, we aim to fill the gap between two
distant perception of sound change over time, with
computational models on one hand and human ob-
servation on the other. To achieve this, we first
review the tasks and methods from each perspec-
tive, and then present a unified view that combines
both perception to explore sound change. More-
over, we discuss the connections of sound change
to semantic and syntactic change, as well as the
applications of sound change in computational lin-
guistics.
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2 Computational Perception

Sound change detection. Boldsen and Pag-
gio (2022) connected semantic change detection
with sound change detection and argued that di-
achronic distributional embeddings used for se-
mantic change detection can track historical sound
change. For lexical semantic change, diachronic
word embeddings are guided by the distributional
hypothesis suggesting that words that occur in sim-
ilar contexts appear to have similar meanings. In-
terestingly, this idea also applies to phonology. Pre-
vious works showed that phonemes occurring in
similar phonetic contexts likely belong to the same
phonological class, demonstrating the applicability
of the distributional hypothesis to phoneme embed-
dings (Mielke, 2008; Silfverberg et al., 2018).

Boldsen and Paggio (2022) proposed using
phoneme embeddings trained on a historical Dan-
ish corpus to track sound changes over time. Their
approach compared the embeddings of a phoneme
pair across different periods to observe sound
changes. For instance, [p] → [b] is observed when
the distance between the phoneme embeddings of
[p] and [b] becomes smaller over time. The re-
sults showed a decrease in distance between three
phoneme embedding pairs: [p] and [b], [t] and [d],
[k] and [g] over time, meaning that their approach
recognized the phonetic changes from voiceless
plosives to their voiced counterparts in Danish.

Phonetic alignment between cognate words.
Phonetized cognate words consist of paired IPA
transcriptions in two languages: either a proto-
language and its descendant language or two de-
scendant languages. Each transcription represents
a sequence of phonemes. Translating a sequence
of phonemes from one language to another can
be framed as a machine translation task, as both
execute a cross-lingual sequence-to-sequence task
(Dekker, 2018; Fourrier and Sagot, 2020a).

For instance, Fourrier and Sagot (2020a) pro-
posed using both statistical and neural machine
translation models to perform phoneme-level trans-
lations between cognate words. The models in-
vestigated include Moses (Koehn et al., 2007) and
MEDeA (Luong et al., 2015). The languages con-
sidered include Latin, Italian, and Spanish. For
evaluation, the generated translations were com-
pared to the ground-truths through BLEU (Pap-
ineni et al., 2002)—which calculates the overlap
of n-grams phonemes between translations and the
ground-truths. The results showed that the pho-

netic translations between cognate words from the
proto-language to a descendant language (or from
a descendant language to another) are much better
than those from a descendant language to the proto-
language. Moreover, the results demonstrated the
superiority of the statistical model over the neural
MT model on small datasets, whereas the neural
model showed a greater ability to handle many-
to-one mappings from various proto-forms to the
same descendant form. It is important to note that
the ground-truth translations were collected by au-
tomatically phonetizing cognate word pairs via Es-
peak (Duddington, 2007), and the automatic phone-
tization process is prone to errors, meaning that
comparing generated translations with the ground
truths may lead to inaccurate model assessment.

Markedness of phonemes. Markedness is a lin-
guistic label separating common from less common
phonemes in a phonological system. In English,
the voiceless consonants [p], [t], and [k] are un-
marked as they are more common compared to
their voiced, marked counterparts [b], [d], and [g].
For vowels, peripheral high vowels such as [i] and
[u] are marked while mid-central vowels like [@]
are unmarked (Jakobson, 1968; Haspelmath, 2006).

Ceolin and Sayeed (2019) proposed a probabilis-
tic approach to model sound change by estimating
the frequency of phonemes over time. Interestingly,
they found that their approach could also recog-
nize the markedness of a phoneme. Their approach
was to estimate the frequency of each phoneme
at a later time based on the frequencies of other
phonemes observed at an earlier time through the
split-merger process. The results showed that the
unmarked phonemes at a later time appear to have
higher frequencies compared to marked counter-
parts as postulated, meaning that their approach
could separate unmarked from marked phonemes.
We note that their approach considered neither pho-
netic nor acoustic features and was only evaluated
on three phonemes in an artificial setup.

Sound convergence. Unlike historical sound
change, which takes place gradually over centuries,
sound convergence is a process of ongoing sound
change through which speakers adjust their speech
to align acoustically and phonetically with other
speakers (Natale, 1975). Research showed that
native speakers often phonetically converge to non-
native speakers in interactive environments (Giles,
1973; Pardo, 2006; Babel, 2010; Yu et al., 2013).
Recently, works by Lewandowski and Nygaard
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(2018); Wagner et al. (2021) showed that sound
convergence can also occur in non-interactive set-
tings. For instance, Wagner et al. (2021) recruited
76 native Dutch speakers and a non-native speaker
to read aloud a careful selection of words, and their
speech was recorded. Importantly, although the
native and non-native speakers have no interaction,
the speech of non-native speakers was made avail-
able to the native speakers. This allows the native
speakers to potentially adjust their speech. All the
speech was transformed into acoustic features by
using Praat (Boersma, 2011). Acoustic features
(e.g., vowel and fricative duration) of the native
speakers are compared to the non-native speaker
by calculating the difference-in-distance score over
these acoustic features. The positive score indi-
cates convergence, otherwise divergence. The re-
sults showed that (a) the Dutch native speakers
show sound convergence to the non-native speaker
in the scenario where interaction is minimal and
(b) the degree of sound convergence is affected by
how much native speakers think the speech by the
non-native speaker is native-like.

Despite being useful, relying on acoustic fea-
tures to observe sound convergence has at least
two limitations: Firstly, the convergence on the
phonetic level is overlooked; for example, speak-
ers who adjust their speech in terms of place and
manner of articulation are not recognized as sound
adaptation. Secondly, the outcome of sound con-
vergence is affected by the quality of acoustic fea-
tures—which relies on the recording quality and
the efficacy of computer tools to extract these fea-
tures from speech.

3 Human Perception

Perceptual similarity. The work by Goldinger
(1998) introduced the perceptual similarity task
that is concerned with how phonetic changes are
received, processed and interpreted by listeners
(Martin and Bunnell, 1981; Sanker, 2018b). This
approach is known as the listener-driven model
of sound change, where a group of listeners heard
recordings of a speaker’s initial speech and the later
speech (after the speaker listened to a target speech
by another speaker). The listeners were then asked
to determine which of the two recordings sounded
closer to the target speech the speaker was exposed
to.

Sound convergence. Wagner et al. (2021) em-
ployed the perceptual similarity task to study sound

convergence from native speech to non-native
speech in Dutch. They recruited 16 listeners native
in Dutch and asked them to perform the perceptual
similarity task where the listeners heard partici-
pants’ initial and later speech and had to choose
which production sounded more similar to that of
the model speaker non-native in Dutch. More-
over, the listeners were asked to rate the model
speaker’s speech in terms of how accented, com-
prehensible, and familiar it sounded. These rat-
ings were included in the analyses to determine
how they affected the degree of observed conver-
gence. The results showed that the overall sound
convergence score was slightly above the random
chance, indicating a weakly perceived convergence
in participants’ speech after the target speech was
exposed to them. Secondly, they found that sev-
eral speech samples showed more sound conver-
gence than others. Moreover, they noted that per-
ceived convergence was affected by how strongly
the model speaker’s foreign accent was perceived.

Although human perception can observe ongo-
ing sound changes, listeners may misperceive the
acoustic and phonetic features of a speaker, result-
ing in incorrect judgments of sound changes (Babel
and Johnson, 2010; Ohala, 2017; Sanker, 2018b).

4 A Unified Perspective

Computer-aided human perception. Using
computational methods can partly automate and
possibly refine the human perception process of
sound changes. This is because doing so allows for
observing subtle changes on phonetic and acoustic
levels, such as vowel duration shift and nasal place
assimilation that are sometimes not obvious to per-
ceive by listeners. Additionally, combining compu-
tational and listener-driven methods would create a
feedback loop where computational results could
refine the human perception process and insights
from listeners could be used to improve computa-
tional models.

Cross-studying etymological datasets and
recording corpora. Etymological datasets
contain phonetic transcriptions that reflect histor-
ical sound changes, which are commonly used
for computational models to observe changes
over centuries. In contrast, recording corpora
are a database for listeners to perceive ongoing
sound changes. Despite their different aims, it is
intriguing to know the influence of historical sound
changes on ongoing changes. A potential idea is to
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start with collecting shared words in etymological
datasets and recording corpora, and then inspect
their phonetic similarity and difference. Note that
unlike recording corpora, phonetic transcriptions
do not include acoustic features; therefore, a
comparative study of historical and ongoing sound
changes at the acoustic level is not possible.

5 Discussions

5.1 Connections to Other Changes

While there have been many works on computa-
tional modeling of semantic and syntactic change
(Hamilton et al., 2016; Schlechtweg et al., 2020;
Ma et al., 2024a,b; Merrill et al., 2019; Krielke
et al., 2022; Chen et al., 2024), they often lack
connections to sound change. Such connections
are crucial because many changes simultaneously
affect multiple linguistic levels. A notable case
is homograph where two words share the same
spelling but have different meanings and pronunci-
ations. Examples include “present” (["prEz@nt] vs.
[prI"zEnt]) and “bow” ([baU] vs. [boU]). Another
case is grammaticalization—a process that incurs
semantic, syntactic and phonetic changes. For ex-
ample, “going to” grammaticalizes into “gonna”,
shifting from a verb to a future marker. This
process changes the original meaning, impacts
syntactic structure, and incurs phonetic reduction.
To identify homographs and grammaticalization,
it might be necessary to develop computational
and human approaches to model/observe changes
across multiple linguistic levels at once.

5.2 Applications in Computational Linguistics

Phylogenetic Inference. This task aims to re-
construct the evolutionary relationships among lan-
guages based on their shared linguistic features.
For example, Proto-Indo-European, as the ancestral
language, gives rise to many descendant languages
within the Indo-European language groups such
as Indo-Iranian, Germanic, and Celtic. Linguists
construct a phylogenetic language tree by taking
the ancestor language as the root and connecting
it to descendant languages, based on the laws of
sound changes over time (Hoenigswald, 1965). For
instance, there exists a phoneme correspondence
between High German [ts], Dutch [t], English [t],
Swedish [t], and Icelandic [t], all of which are inher-
ited from the proto-phoneme [*t] in their ancestry
Proto-Germanic language group (where [*t] → [t]
in High German). This phoneme correspondence

is one of many reasons that these languages are the
descendants of Proto-Germanic.

However, computer-based language phyloge-
nies for major language groups like Dravidian
(Kolipakam et al., 2018), Sino-Tibetan (Sagart
et al., 2019), and Indo-European (Heggarty et al.,
2023) often rely on cognate sets from semantically
aligned word lists across languages. Campbell and
Poser (2008) questioned the use of cognate sets
for phylogenetic inference, as meanings in cognate
words might undergo changes over time, result-
ing in the instability of a phylogenetic tree. Other
works proposed reconstructing phylogenetic lan-
guage trees using sound correspondences between
cognate words instead of lexical cognates (Cha-
con and List, 2016; Cathcart, 2019; Chang et al.,
2023; Häuser et al., 2024). For instance, Häuser
et al. (2024) presented a framework that first iden-
tifies phonetic alignment between cognate words
using LingPy and then uses BMrBayes (Ronquist
and Huelsenbeck, 2003) and RAxML-NG (Kozlov
et al., 2019) to reconstruct phylogenetic trees. For
evaluation, the generated phylogenetic trees are
compared to the ground-truth Glottolog tree (Ham-
marström et al., 2019) by computing their topolog-
ical distance via generalized quartet distance (Pom-
pei et al., 2011). The results showed that sound-
based phylogenetic trees underperform cognate-
based counterparts, i.e., that cognate-based trees
are topologically closer to the gold Glottolog tree.
This might be attributed to the lack of consideration
for borrowing. For instance, two languages might
not be related, although the phoneme sequences of
their cognate words could be similar. Loanword is
the example, where phonemes are borrowed from
a third, unrelated language, rather than inherited
from the proto-phoneme.

Quality assessment of etymological datasets.
Etymological datasets are a crucial resource for
phylogenetic inference, low-resource machine
translation, and historical linguistic tasks. Many
such datasets have been made available and are
automatically generated from various data sources.
For instance, EtymWordNet (De Melo, 2014) and
CogNet (Batsuren et al., 2019) are derived from
WordNet across hundreds of languages, while Et-
ymDB 1.0 (Sagot, 2017) and 2.0 (Fourrier and
Sagot, 2020b) are sourced from Wiktionary across
over two thousand languages. However, the qual-
ity of these datasets remains unclear. Firstly, many
datasets use a loose definition of cognacy to enlarge
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data coverage. Secondly, the automatic processes
used to generate these datasets are prone to errors.
Therefore, there is a need to estimate the quality of
these etymological datasets.

Wettig et al. (2012) proposed using the degree
of phonetic alignment between cognate words as a
measure of the internal consistency of an etymolog-
ical dataset. They postulated that the more phoneti-
cally similar cognates words are, the better quality
a dataset would be. For instance, the English word
‘house’ and the German word ‘Haus’ are phoneti-
cally equivalent [haUz], implying that this cognate
word pair is likely correct. To achieve this idea,
they use the Minimum Description Length, a dy-
namic programming algorithm, to calculate the cost
of an optimal phoneme-level alignment between
cognate word pairs for the Uralic language group.
The alignment operates on phonetic features such
as plosive/fricative and labial/dental. The challenge
arises from the fact that phonemes inherited from
the proto-phoneme may undergo sound changes
over time, resulting in phonemes in one language
potentially different from another. For evaluation,
the generated alignments were not compared to
the ground-truths due to the lack of gold phoneme-
level alignments. Instead, their approach was eval-
uated in three scenarios: compression rates, rules
of correspondence and imputation.

Note that phoneme-level alignments were not
compared against the ground-truths. Thus, the ef-
ficacy of the measure based on these alignments
in estimating the quality of etymological datasets
remains unclear. Moreover, their approach only
considers one-to-one phoneme-level alignment and
ignores one-to-many. In doing so, their approach
could wrongly penalize correct cognate word pairs
with one-to-many alignments, such as [kæt] in ‘cat’
and [kats@] in the German word ‘Katze’.

6 Conclusions

As two rarely connected disciplines, computational
and human perception have their own interests,
tasks and methods. However, we showed that these
two perception benefit each other from the perspec-
tive of methods and datasets. Additionally, we
showed that the applications of sound change are
manifold in computational linguistics, including
phylogenetic inference and quality assessment of
datasets. Despite these positive aspects, we argue
that a unified perception of multi-faceted change
is crucial, as many changes are entangled across

phonetics, syntax and semantics.

Acknowledgements

We thank the anonymous reviewers for their
thoughtful feedback that greatly improved the texts.

References
Molly Babel. 2010. Dialect divergence and conver-

gence in new zealand english. Language in Society,
39(4):437–456.

Molly Babel and Keith Johnson. 2010. Accessing
psycho-acoustic perception and language-specific
perception with speech sounds. Laboratory phonol-
ogy, 1(1):179–205.

Khuyagbaatar Batsuren, Gábor Bella, Fausto
Giunchiglia, et al. 2019. Cognet: A large-scale
cognate database. In ACL 2019 The 57th Annual
Meeting of the Association for Computational
Linguistics: Proceedings of the Conference,
pages 3136–3145. Association for Computational
Linguistics.

Paul Boersma. 2011. Praat: doing phonetics by com-
puter [computer program]. http://www. praat. org/.

Sidsel Boldsen and Patrizia Paggio. 2022. Letters from
the past: Modeling historical sound change through
diachronic character embeddings. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6713–6722, Dublin, Ireland. Association for
Computational Linguistics.

Lyle Campbell and William J Poser. 2008. Language
classification. (No Title).

Chundra Cathcart. 2019. Gaussian process models
of sound change in Indo-Aryan dialectology. In
Proceedings of the 1st International Workshop on
Computational Approaches to Historical Language
Change, pages 254–264, Florence, Italy. Association
for Computational Linguistics.

Andrea Ceolin and Ollie Sayeed. 2019. Modeling
markedness with a split-and-merger model of sound
change. In Proceedings of the 1st International Work-
shop on Computational Approaches to Historical
Language Change, pages 67–70.

Thiago Costa Chacon and Johann-Mattis List. 2016.
Improved computational models of sound change
shed light on the history of the tukanoan languages.
Journal of Language Relationship, 13(3-4):177–204.

Kalvin Chang, Nathaniel Robinson, Anna Cai, Ting
Chen, Annie Zhang, and David Mortensen. 2023. Au-
tomating sound change prediction for phylogenetic
inference: A tukanoan case study. In Proceedings of
the 4th Workshop on Computational Approaches to
Historical Language Change, pages 129–142, Singa-
pore. Association for Computational Linguistics.

184

https://doi.org/10.18653/v1/2022.acl-long.463
https://doi.org/10.18653/v1/2022.acl-long.463
https://doi.org/10.18653/v1/2022.acl-long.463
https://doi.org/10.18653/v1/W19-4732
https://doi.org/10.18653/v1/W19-4732
https://doi.org/10.18653/v1/2023.lchange-1.14
https://doi.org/10.18653/v1/2023.lchange-1.14
https://doi.org/10.18653/v1/2023.lchange-1.14


Yanran Chen, Wei Zhao, Anne Breitbarth, Manuel
Stoeckel, Alexander Mehler, and Steffen Eger. 2024.
Syntactic language change in english and german:
Metrics, parsers, and convergences. arXiv preprint
arXiv:2402.11549.

Gerard De Melo. 2014. Etymological wordnet: Tracing
the history of words. In LREC, pages 1148–1154.

Peter Dekker. 2018. Reconstructing language ancestry
by performing word prediction with neural networks.
Master. Amsterdam: University of Amsterdam.

Eric John Dobson. 1968. English pronunciation, 1500-
1700. (No Title).

Jonathan Duddington. 2007. 2015. espeak text to
speech.

Clémentine Fourrier and Benoît Sagot. 2020a. Compar-
ing statistical and neural models for learning sound
correspondences. In LT4HALA 2020-First Workshop
on Language Technologies for Historical and Ancient
Languages.

Clémentine Fourrier and Benoît Sagot. 2020b. Method-
ological aspects of developing and managing an ety-
mological lexical resource: Introducing etymdb 2.0.
In LREC 2020-12th Language Resources and Evalu-
ation Conference.

Howard Giles. 1973. Accent mobility: A model and
some data. Anthropological linguistics, pages 87–
105.

Stephen D Goldinger. 1998. Echoes of echoes? an
episodic theory of lexical access. Psychological re-
view, 105(2):251.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky.
2016. Diachronic word embeddings reveal statisti-
cal laws of semantic change. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1489–1501, Berlin, Germany. Association for Com-
putational Linguistics.

Harald Hammarström, Martin Haspelmath, Robert
Forkel, and Sebastiaon Bank. 2019. Glottolog. ver-
sion 4.0. Max Planck Institute for the Science of
Human History, Jena.

Martin Haspelmath. 2006. Against markedness (and
what to replace it with). Journal of linguistics,
42(1):25–70.

Luise Häuser, Gerhard Jäger, Johann-Mattis List, Taraka
Rama, and Alexandros Stamatakis. 2024. Are sounds
sound for phylogenetic reconstruction? In Proceed-
ings of the 6th Workshop on Research in Compu-
tational Linguistic Typology and Multilingual NLP,
pages 78–87, St. Julian’s, Malta. Association for
Computational Linguistics.

Paul Heggarty, Cormac Anderson, Matthew Scarbor-
ough, Benedict King, Remco Bouckaert, Lechosław
Jocz, Martin Joachim Kümmel, Thomas Jügel, Britta
Irslinger, Roland Pooth, et al. 2023. Language trees
with sampled ancestors support a hybrid model for
the origin of indo-european languages. Science,
381(6656):eabg0818.

Henry M Hoenigswald. 1965. Language change and
linguistic reconstruction.

Roman Jakobson. 1968. Child language: aphasia and
phonological universals. 72. Walter de Gruyter.

Tore Janson. 1983. Sound change in perception and
production. Language, 59:18.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th annual meeting of the associa-
tion for computational linguistics companion volume
proceedings of the demo and poster sessions, pages
177–180. Association for Computational Linguistics.

Vishnupriya Kolipakam, Fiona M Jordan, Michael
Dunn, Simon J Greenhill, Remco Bouckaert,
Russell D Gray, and Annemarie Verkerk. 2018.
A bayesian phylogenetic study of the dravidian
language family. Royal Society open science,
5(3):171504.

Alexey M Kozlov, Diego Darriba, Tomáš Flouri, Benoit
Morel, and Alexandros Stamatakis. 2019. Raxml-ng:
a fast, scalable and user-friendly tool for maximum
likelihood phylogenetic inference. Bioinformatics,
35(21):4453–4455.

Marie-Pauline Krielke, Luigi Talamo, Mahmoud Fawzi,
and Jörg Knappen. 2022. Tracing syntactic change
in the scientific genre: Two Universal Dependency-
parsed diachronic corpora of scientific English and
German. In Proceedings of the Thirteenth Language
Resources and Evaluation Conference, pages 4808–
4816, Marseille, France. European Language Re-
sources Association.

Roger Lass. 1992. Phonology and morphology. The
Cambridge history of the English language, 2:1066–
1476.

Eva M Lewandowski and Lynne C Nygaard. 2018. Vo-
cal alignment to native and non-native speakers of
english. The Journal of the Acoustical Society of
America, 144(2):620–633.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015. Effective approaches to attention-based neural
machine translation. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1412–1421, Lisbon, Portugal. As-
sociation for Computational Linguistics.

185

https://doi.org/10.18653/v1/P16-1141
https://doi.org/10.18653/v1/P16-1141
https://aclanthology.org/2024.sigtyp-1.11
https://aclanthology.org/2024.sigtyp-1.11
https://api.semanticscholar.org/CorpusID:146900155
https://api.semanticscholar.org/CorpusID:146900155
https://aclanthology.org/2022.lrec-1.514
https://aclanthology.org/2022.lrec-1.514
https://aclanthology.org/2022.lrec-1.514
https://aclanthology.org/2022.lrec-1.514
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166


Xianghe Ma, Dominik Schlechtweg, and Wei Zhao.
2024a. Presence or absence: Are unknown word
usages in dictionaries? In Proceedings of the 5th
Workshop on Computational Approaches to Histor-
ical Language Change, Bangkok. Association for
Computational Linguistics.

Xianghe Ma, Michael Strube, and Wei Zhao. 2024b.
Graph-based clustering for detecting semantic
change across time and languages. In Proceedings of
the 18th Conference of the European Chapter of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 1542–1561, St. Julian’s, Malta.
Association for Computational Linguistics.

James G Martin and H Timothy Bunnell. 1981. Percep-
tion of anticipatory coarticulation effects. The Jour-
nal of the Acoustical Society of America, 69(2):559–
567.

William Merrill, Gigi Stark, and Robert Frank. 2019.
Detecting syntactic change using a neural part-of-
speech tagger. In Proceedings of the 1st Interna-
tional Workshop on Computational Approaches to
Historical Language Change, pages 167–174, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Jeff Mielke. 2008. The emergence of distinctive features.
Oxford University Press.

Donka Minkova. 2013. Historical phonology of English.
Edinburgh University Press.

Michael Natale. 1975. Social desirability as related to
convergence of temporal speech patterns. Perceptual
and Motor Skills, 40(3):827–830.

John J Ohala. 2017. Phonetics and historical phonology.
The handbook of historical linguistics, pages 667–
686.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Jennifer S Pardo. 2006. On phonetic convergence dur-
ing conversational interaction. The Journal of the
Acoustical Society of America, 119(4):2382–2393.

Simone Pompei, Vittorio Loreto, and Francesca Tria.
2011. On the accuracy of language trees. PloS one,
6(6):e20109.

Carolyn Quam and Sarah C. Creel. 2021. Impacts of
acoustic-phonetic variability on perceptual develop-
ment for spoken language: A review. Wiley interdis-
ciplinary reviews. Cognitive science, page e1558.

Fredrik Ronquist and John P Huelsenbeck. 2003. Mr-
bayes 3: Bayesian phylogenetic inference under
mixed models. Bioinformatics, 19(12):1572–1574.

Laurent Sagart, Guillaume Jacques, Yunfan Lai, Robin J
Ryder, Valentin Thouzeau, Simon J Greenhill, and
Johann-Mattis List. 2019. Dated language phylo-
genies shed light on the ancestry of sino-tibetan.
Proceedings of the National Academy of Sciences,
116(21):10317–10322.

Benoît Sagot. 2017. Extracting an etymological
database from wiktionary. In Electronic Lexicogra-
phy in the 21st century (eLex 2017), pages 716–728.

Chelsea Sanker. 2018a. A survey of experimental evi-
dence for diachronic change. Linguistics Vanguard,
4.

Chelsea Sanker. 2018b. A survey of experimental evi-
dence for diachronic change. Linguistics Vanguard,
4(1):20170039.

Dominik Schlechtweg, Barbara McGillivray, Simon
Hengchen, Haim Dubossarsky, and Nina Tahmasebi.
2020. SemEval-2020 task 1: Unsupervised lexical
semantic change detection. In Proceedings of the
Fourteenth Workshop on Semantic Evaluation, pages
1–23, Barcelona (online). International Committee
for Computational Linguistics.

Miikka P Silfverberg, Lingshuang Mao, and Mans
Hulden. 2018. Sound analogies with phoneme em-
beddings. Society for Computation in Linguistics,
1(1).

Thorlac Turville-Petre and John Anthony Burrow. 2020.
A book of Middle English. John Wiley & Sons.

Mónica A Wagner, Mirjam Broersma, James M Mc-
Queen, Sara Dhaene, and Kristin Lemhöfer. 2021.
Phonetic convergence to non-native speech: Acous-
tic and perceptual evidence. Journal of Phonetics,
88:101076.

Hannes Wettig, Kirill Reshetnikov, and Roman Yangar-
ber. 2012. Using context and phonetic features in
models of etymological sound change. In Proceed-
ings of the EACL 2012 Joint Workshop of LINGVIS
& UNCLH, pages 108–116.

Walt Wolfram and Natalie Schilling. 2016. American
English: Dialects and variation, 3 edition. Num-
ber 25 in Language in Society. Wiley Blackwell,
Chichester, UK.

Alan CL Yu, Carissa Abrego-Collier, and Morgan
Sonderegger. 2013. Phonetic imitation from an
individual-difference perspective: Subjective atti-
tude, personality and “autistic” traits. PloS one,
8(9):e74746.

186

https://aclanthology.org/2024.eacl-long.93
https://aclanthology.org/2024.eacl-long.93
https://doi.org/10.18653/v1/W19-4721
https://doi.org/10.18653/v1/W19-4721
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://api.semanticscholar.org/CorpusID:232113842
https://api.semanticscholar.org/CorpusID:232113842
https://api.semanticscholar.org/CorpusID:232113842
https://api.semanticscholar.org/CorpusID:149933612
https://api.semanticscholar.org/CorpusID:149933612
https://doi.org/10.18653/v1/2020.semeval-1.1
https://doi.org/10.18653/v1/2020.semeval-1.1

