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Abstract

There has been a surge of interest in computa-
tional modeling of semantic change. The foci
of previous works are on detecting and inter-
preting word senses gained over time; however,
it remains unclear whether the gained senses
are covered by dictionaries. In this work, we
aim to fill this research gap by comparing de-
tected word senses with dictionary sense inven-
tories in order to bridge between the commu-
nities of lexical semantic change detection and
lexicography. We evaluate our system in the
AXOLOTL-24 shared task for Finnish, Rus-
sian and German languages (Fedorova et al.,
2024b). Our system is fully unsupervised. It
leverages a graph-based clustering approach to
predict mappings between unknown word us-
ages and dictionary entries for Subtask 1, and
generates dictionary-like definitions for those
novel word usages through the state-of-the-art
Large Language Models such as GPT-4 and
LLaMA-3 for Subtask 2. In Subtask 1, our
system outperforms the baseline system by a
large margin, and it offers interpretability for
the mapping results by distinguishing between
matched and unmatched (novel) word usages
through our graph-based clustering approach.
Our system ranks first in Finnish and German,
and ranks second in Russian on the Subtask 2
test-phase leaderboard. These results show the
potential of our system in managing dictionary
entries, particularly for updating dictionaries to
include novel sense entries. Our code and data
are made publicly available1.

1 Introduction

Meaning changes over time have been a subject of
research for many years in historical linguistics (e.g.
Blank, 1997; Geeraerts, 2020). Researchers use
linguistic tools and methods to identify gained and
lost meanings of headwords, and more importantly
to interpret these changes by categorizing the types

1https://github.com/xiaohemaikoo/
axolotl24-ABDN-NLP

of changes and detecting social and cultural forces
driving the changes.
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Figure 1: An illustration of the workflow for the two
AXOLOTL-24 subtasks. Unknown word usages refer to
usages found at a later time period, and their mappings
with dictionary sense entries are unknown.

Recently, there has been scholarly interest in
computational modeling of meaning changes as
cost-efficient alternatives to labor-intensive linguis-
tic tools and methods. As a result, a plateau of
research outputs has been made, including shared
tasks and datasets (e.g. Schlechtweg et al., 2020;
Kutuzov and Pivovarova, 2021; Zamora-Reina
et al., 2022; Chen et al., 2023; Schlechtweg et al.,
2024a), models (Eger and Mehler, 2016; Hamil-
ton et al., 2016a,b; Martinc et al., 2020; Kaiser
et al., 2021; Montariol et al., 2021a; Teodorescu
et al., 2022; Cassotti et al., 2023; Ma et al., 2024),
tools (Schlechtweg et al., 2024b), and relevant
workshops2. For instance, SemEval2020 Task 1
(Schlechtweg et al., 2020), a seminal work on this
topic, introduces the first task and datasets on un-
supervised lexical semantic change detection in
English, German, Swedish and Latin languages.
Further extensions include DIACR-Ita for Italian

2https://www.changeiskey.org/event/
2024-acl-lchange/
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(Basile et al., 2020), RuShiftEval for Russian (Ku-
tuzov and Pivovarova, 2021), and LSCDiscovery
for Spanish (Zamora-Reina et al., 2022).

The immediate impact of these research outputs
might be on the lexicography industry. Lexicogra-
phers rely on collocations and grammatical patterns
to identify novel meanings that are not included in
dictionaries, and add these identified meanings into
the next iteration of dictionary updates (Kilgarriff
et al., 2010). However, the process of doing so is
costly and time-consuming. For instance, in 2023,
the Oxford English Dictionary created about 1,700
new meanings3, with the help of hundreds of lan-
guage specialists for English alone. Recently, the
AXOLOTL-24 shared task has connected lexical se-
mantic change detection with dictionary entries. In-
stead of just detecting meaning change, the shared
task aims to align dictionary sense entries with each
word usage. This is particularly useful for manag-
ing dictionary entries, e.g., to identify and collect
novel meanings not covered by dictionaries (Erk,
2006; Lautenschlager et al., 2024).

In this work, we participate in two AXOLOTL-
24 subtasks for Finnish, Russian and German lan-
guages. The tasks include (a) bridging diachronic
word uses and a synchronic dictionary and (b) defi-
nition generation for novel word senses. The first
subtask aims to predict mappings between dictio-
nary meaning entries and word usages while the
second task plans to produce dictionary-like defini-
tions for those unmatched usages with novel word
meanings not covered by dictionaries. In the fol-
lowing, we outline the components of our system:

• For Subtask 1, we keep the workflow of the
AXOLOTL-24 baseline system unchanged,
which includes three components: produc-
ing embeddings for word usages, clustering
these embeddings, and mapping between dic-
tionary meaning entries and the resulting clus-
ters. However, we make modifications to
each component. The component-wise sys-
tem comparison is presented in Table 1.

• For Subtask 2, unlike the baseline system,
which requires costly model training for
generating dictionary-like definitions for un-
matched word usages, our system is training-
free and does so by just prompting Large Lan-
guage Models such as GPT-4 (Achiam et al.,

3https://www.oed.com/information/
updates

2023) and LLaMA-34. We provide the system
comparison in Table 2.

2 Related Work

This section reviews semantic change detection and
discuss its potential connections with dictionaries.

Lexical Semantic Change Detection (LSCD)
focuses on the automatic identification of shifts in
word meanings over time. For instance, the word
‘chill’ used to mean ‘cold’ for individuals growing
up in the 60s, but for those in the 90s, it means
‘relaxed’. Many works proposed to detect meaning
shifts by using static or contextualized embeddings
(Eger and Mehler, 2016; Hamilton et al., 2016a,b;
Martinc et al., 2020; Gonen et al., 2020; Kaiser
et al., 2021; Montariol et al., 2021a; Teodorescu
et al., 2022; Homskiy and Arefyev, 2022). Most
work in LSCD has been done on an unsupervised
task formulation (Schlechtweg et al., 2020) which
neither involved a dictionary, nor providing inter-
pretation or qualification of detected sense changes.
While early work on static embeddings (Kim et al.,
2014; Hamilton et al., 2016c) could qualify changes
to a certain extent through nearest neighbors, it usu-
ally did not provide sense clusters in a dictionary-
like manner. More recent work straightforwardly
enables the induction of sense clusters through clus-
tering of contextualized embeddings (Giulianelli
et al., 2020; Kudisov and Arefyev, 2022; Montariol
et al., 2021b; Arefyev and Bykov, 2021). More
recently, Ma et al. (2024) presented a graph-based
clustering approach to detect gained word senses
with low frequency, and offered interpretability by
visualizing cross-language semantic changes. The
works by Giulianelli et al. (2023); Fedorova et al.
(2024a) offer new ways of interpretability such
as automatically generating sense definitions for
usages from clusters. For an overview of recent
model architectures incl. clustering approaches,
see Zamora-Reina et al. (2022).

LSCD and dictionaries. The above-described
approaches all have in common that they do not
involve a dictionary in their task formulation. How-
ever, a variety of dictionaries is available for dif-
ferent languages and time periods (e.g. Dal, 1955;
Paul, 2002; OED, 2009) providing valuable infor-
mation characterizing a language stage on the lexi-
cal level. Thus, a possible alternative task formula-
tion for LSCD is to start from an existing dictionary

4https://llama.meta.com/llama3/
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and compare corpus usages against the dictionary
entries in order to find usages not covered by the
dictionary (Erk, 2006; Lautenschlager et al., 2024).

3 AXOLOTL-24 Shared Task

Participants are asked to solve the two subtasks:

• Subtask 1 - bridging diachronic word uses
and a synchronic dictionary: This task is to
identify mappings between dictionary entries
and the word usages of each target word, i.e.,
that the task asks to detect whether each word
usage has a novel sense or not, meaning that
it is not (or is) recorded in dictionaries.

• Subtask 2 - definition generation for novel
word senses: This task builds upon the map-
ping results of Subtask 1. It aims to generate
dictionary-like definitions for the unmatched
word usages discovered in Subtask 1, i.e., that
these usages contain novel senses not covered
by dictionaries.

An example for the Finnish target word ‘palaus’ is
illustrated in Figure 2. Participants are provided
with the mappings of usages at an earlier time pe-
riod to dictionary entries (sense glosses) while the
mappings for a later time period is unknown. Sub-
task 1 asks participants to predict which sense gloss
Usage 3 belongs to. If a system predicts Usage 3
to have a novel sense not covered by existing sense
glosses, then Subtask 2 asks to generate the gloss
for the novel sense.

[Gloss 1]: kääntymys, hengellinen kääntyminen

[Gloss 2]: kuumuus

[Word Usage 1] (<1700): anna minulle yxi oikea
catumus ia synnistä palaus.

[Word Usage 2] (<1700): Coska nyt Pauali cocosi
ydhen coghon Risuija ia pani ne Tulen päle, edesmateli
yxi Kyykerme palaudhesta.

[Word Usage 3] (>1700): Jumala on itze joca meisä sen
suuren Palauxen ja muutoxen toimitta

[Mapping]: (Usage 1, Gloss 1),
(Usage 2, Gloss 2),
(Usage 3, [Gloss 1, Gloss 2, Unknown])

Figure 2: A running example for the target word ‘palaus’
from the Finnish test set. The first two usages (before
1700) belong to the earlier time period while the last
one belongs to the later.

4 Our Systems

4.1 Subtask 1

Workflow. We reuse the workflow of the
AXOLOTL-24 baseline system, which includes
the following three components that are executed
sequentially:

• Producing embeddings of word usages:
This component aims to encode the usages
of a target word.

• Clustering embeddings: This component is
to partition the resulting embeddings of a tar-
get word into clusters. Each cluster contains
embeddings with similar meanings.

• Mapping between dictionary sense entries
and clusters: This component is to align dic-
tionary sense entries with the resulting clus-
ters. If the semantic meaning represented by
a cluster is present in dictionaries, then we
assign the dictionary entry to that cluster. Oth-
erwise, a novel meaning is said to be identified.
This implies the need for dictionary updates
to include new sense entries.

Baseline. The baseline system proposes an un-
supervised approach that does not rely on training
data, i.e., the lack of mappings between word us-
ages at an earlier time period and dictionary sense
entries, to predict mappings for unknown word us-
ages at a later period. The idea for the baseline
system to implement the workflow is the following:
For each target word, the baseline system begins
with collecting all the relevant corpus usages avail-
able at an earlier time period. If corpus usages are
unavailable5, the system resorts to using dictionary
definitions of the target word as substitutes. Sec-
ondly, the system aims to encode the meanings of
the target word in various corpus usages. However,
doing so is not trivial, as the positions of the tar-
get word in corpus usages are not always given in
the AXOLOTL-24 datasets. Moreover, for mor-
phologically rich languages, the automatic process
of locating the target word in word usages is inac-
curate. Thus, the baseline system approaches the
meaning of a target word by using the sentence
encoder LEALLA (Mao and Nakagawa, 2023) to
produce the embedding for the entire word usage.

5For the Russian datasets in the AXOLOTL-24 shared task,
some corpus usages in the 19th century are missing.
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Components Baseline Our System

Embedding word usages word usages and words

Clustering Affinity Prop. Neighbor-based clustering

Mapping first-indexed emb. average emb.

Table 1: Component-wise comparison between the base-
line and our system in Subtask 1.

After collecting word usage embeddings, the
baseline system leverages a popular clustering ap-
proach known as Affinity Propagation (Frey and
Dueck, 2007) to group word usage embeddings
into several clusters. Each cluster contains multiple
embeddings with similar meanings.

Lastly, to map between dictionary sense entries
with unknown usages of a target word at a later time
period, the baseline system proposes to align dic-
tionary entries with the collective meaning of each
cluster. In particular, for each cluster, the system
chooses the embedding of the first-indexed usage
of the target word in the AXOLOTL-24 datasets as
the collective meaning represented by that cluster.
It then computes the cosine similarity between that
word usage embedding and the embedding of each
dictionary entry (i.e., sense gloss). If the similar-
ity score surpasses a predefined threshold, then all
the word usages within that cluster are said to be
matching that dictionary entry.

Our submitted system. Just like the baseline sys-
tem, our system also does not rely on training data
to predict mappings between unknown usages at a
later time period and dictionary entries. However,
we make substantial changes to each component of
the workflow.

For each target word, we produce word usage
embeddings6 by using m-BERT (Devlin et al.,
2019) to encode various corpus usages of the target
word. Moreover, we create a vocabulary containing
all the words available in the entire corpus, together
with their average BERT-based word embeddings
over their occurrences in the corpus. We take all
the word usage embeddings of a target word and
the vocabulary as input to derive a 3-layer semantic
graph for each target word through our clustering
method. Each semantic graph contains the follow-
ing elements:

• Root node represents the average word usage
embedding over all the usages of a target word

6For our system, a word usage embedding is defined as the
average of all m-BERT word embeddings in a corpus usage.

kupari

id:1208,1209,1210, ...

opettaja

sulaunutta
Emäkirkon

taitan

id:1215,1216,1217

Puusta

metallia

hopiaa

Tinasta

Figure 3: An illustration of our semantic graph for the
Finnish target word ‘kupari’ (root node in the graph),
together with two subtrees separating two meaning clus-
ters. One cluster represents the meaning related to a
metal (in black) that is covered by dictionaries while
the other represents the novel meaning ‘the recipient
of metals as currency’ (in blue) that is not. Each clus-
ter contains 4-nearest neighboring words, together with
their corpus usage IDs, to interpret the collective mean-
ing of the cluster.

in the corpus.

• Nodes on the second layer are centroids of
each sense cluster, i.e., the average of word
usage embeddings within each cluster.

• Nodes on the third layer are k-nearest neigh-
bors to each cluster centroid.

Note that our clustering only operates on embed-
dings, and the nodes on the second layer are built
upon the clustering result. We introduce such
a graph as a visualization tool after clustering
to separate sense clusters and the corresponding
word usages. See a two-dimensional illustration
in Figure 3—where the graph separates a recorded
word sense from an unrecorded (novel) sense, to-
gether with their word usages from the Finnish
AXOLOTL-24 dev set.

Lastly, to map dictionary entries to clusters, our
system differs from the baseline: Instead of choos-
ing the first-indexed word usage embedding as the
collective meaning of a cluster, our system does
so by using the average word usage embedding.
Here, we briefly outline our clustering approach.
For further details, we refer to Ma et al. (2024).

Clustering. For each target word w, we denote
Cw = {c1, c2, . . . , cn} as a word cloud consisting
of a set of d-dimensional embeddings. Each embed-
ding represents a corpus usage of the target word,

45



and n denotes the number of word usages available
in a given corpus that contain that target word. We
aim to partition Cw into m clusters. Each cluster
contains a subset of Cw representing embeddings of
word usages with similar meanings. Our clustering
method is illustrated in Algorithm 1. We choose
our clustering over the baseline Affinity Propaga-
tion (Frey and Dueck, 2007) because target words
in the AXOLOTL-24 datasets have 2-23 usages
on average (c.f. Table 3), i.e., they only have low-
frequency senses; in such a setup, our clustering
largely outperforms Affinity Propagation (see Table
11 in Ma et al. (2024)). We present our clustering
details in the following:

Algorithm 1 Our clustering method

Require: Cw = {ci}ni=1 as a set of word usage
embeddings representing various usages of a
target word w, tsc as the maximum distance
between similar clusters.

1: Initial centroids of clusters: Pw = {pi|pi =
ci}ni=1

2: while minpi∈Pw,pj∈Pw,i ̸=j d(pi, pj) < tsc do
3: Pw = (Pw \ {pi, pj}) ∪ {pi+pj

2 }
4: end while
5: return Pw

Our clustering method is similar to the bottom-
up agglomerative clustering (Sibson, 1973) but dif-
fers in that we use a neighbor-based metric7 to
handle low-frequency clusters. The idea is the
following: We start by treating each embedding
as a separate cluster, and then iteratively merge
two clusters when their centroids are of a distance
smaller than the distance threshold tsc until no fur-
ther pairs of such similar clusters can be found. Fol-
lowing Ma et al. (2024), we use a neighbor-based
distance metric in the clustering process to com-
pute distances between clusters. Both the distance
threshold and the number of nearest neighbors are
hyperparameters, which we tune on dev sets.

Importantly, using a neighbor-based distance
metric in the clustering process is crucial for han-
dling many low-frequency word senses in the
AXOLOTL-24 datasets. Ma et al. (2024) showed
that using such a metric to compute distances be-
tween clusters is a contributing factor to identify

7For agglomerative clustering, the distance between two
clusters is calculated as the average pairwise distance between
usage pairs based on their embeddings. For us, each pairwise
distance is calculated as the bipartite matching score over
k-nearest neighbors of a word usage and those of another.

Components Baseline Our System

Collection collect the mapping results of Subtask 1

Generation finetune XGLM prompte LLMs

Table 2: Component-wise comparison between the base-
line and our system in Subtask 2.

low-frequency sense clusters. The reason for this
is the following: for a low-frequency sense with
few word usages, relying on those usages to de-
cide whether they should form a standalone low-
frequency cluster or be merged into another cluster
can be unreliable. However, with k-nearest neigh-
bors of those usages participating (i.e., additional
information provided) in the decision making, the
decision becomes more reliable.

Lastly, for mapping, we select the average usage
embedding (i.e., cluster centroid) as the collective
meaning of a cluster, and compare that embedding
with dictionary entries. We choose the average
embedding over the embedding of the first-indexed
usage of a target word (see Table 1) because the
first-indexed choice is almost random. We use the
average embedding to eliminate such randomness.

4.2 Subtask 2
Workflow. Our submitted system follows the
workflow of the AXOLOTL-24 baseline that in-
cludes the two sequential components below:

• Collecting unmatched word usages. This
component aims to collect word usages with
novel senses not found in dictionaries. Do-
ing so is straightforward: The mapping re-
sults from Subtask 1 include word usages that
match dictionary entries, as well as unmatched
(novel) usages. Here, we only collect those
unmatched usages. We note that the system
performance in Subtask 1 immediately im-
pacts the quality of this component.

• Generating definitions. This component
takes unmatched word usages as input and
generates their dictionary-like definitions.

Baseline. The baseline system proposes a super-
vised approach that trains a generative model on
train sets, i.e., the mappings between dictionary en-
tries and matched word usages, in order to generate
definitions for unmatched word usages. In particu-
lar, the system takes a target word and its matched
word usages as input, and dictionary definitions of
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these word usages as the ground-truth output. The
system uses the generative model XGLM (Lin et al.,
2022) to encode the input and fine-tunes its model
parameters by minimizing the cross-entropy loss
in a way to make the generated definitions as close
as possible to the ground-truth counterparts. Note
that the fine-tuning process of the baseline is costly
as it is executed separately for each language.

Our submitted system. Unlike the baseline sys-
tem, our system is fully unsupervised8. After col-
lecting unmatched word usages we prompt Large
Language Models (LLMs) to generate definitions
for these word usages. We experiment with sev-
eral LLMs including open-source and commercial
models (LLaMA and GPT). Figure 6 (appendix)
illustrates the prompt to instruct GPT-3.5-turbo9 to
generate English definitions.

5 Experiments

Datasets. The shared task provides datasets for
the two subtasks for Finnish, Russian and German
languages. These datasets contain dictionary en-
tries such as headwords (target words), the defini-
tions of their meanings, word usages, the positions
of the headwords within word usages, and time
period (indicating whether word usages belong to
an earlier or later time period).

For Finnish, the dataset is curated from Vanhan
kirjasuomen sanakirja (Dictionary of Old Literary
Finnish)10 and is split into train, dev and test sets.
It includes word usages from earlier and later time
periods (before 1700 and after 1700). For Russian,
the dataset from an earlier time period is sourced
from Explanatory Dictionary of the Living Great
Russian Language (Dal, 1955) while the dataset
from a later period is from CODWOE (Mickus
et al., 2022). Again, the dataset is divided into
train, dev and test sets. For German, the dataset
is collected from DWUG DE Sense (Schlechtweg,
2023). The German dataset is only available in the
test phase, meaning that no train and dev sets are
provided. This setup is to put submitted systems to
test in handling an unseen language. We provide
data statistics for the AXOLOTL24 shared task in
Table 3, where the data from earlier and later time
periods are treated as two separate corpora.

8Our system based on LLMs is unsupervised in that it
does not rely on training data; however, the training data for
pre-training LLMs include many human-annotated data.

9https://platform.openai.com/docs/
models/gpt-3-5-turbo

10https://kaino.kotus.fi/vks/

Implementation details in Subtask 1. The base-
line system is unsupervised, although it still re-
quires a number of hyperparameters. These hyper-
parameters include a threshold for the minimum
similarity between a word usage and a dictionary
definition based on their embeddings, as well as pa-
rameters required by Affinity Propagation, such as
the choice of distance metrics to compute distances
between clusters and the number of clustering it-
erations. The baseline system sets the similarity
threshold to 0.3 and keeps the default parameters of
Affinity Propagation unchanged for all languages.
For our submitted system, two predefined hyper-
parameters are needed: the similarity threshold as
for the baseline system, and the number of nearest
neighbors required for generating a semantic graph
and computing distances between clusters. After
tuning on the development sets, we set the simi-
larity threshold to 0.5 and the number of nearest
neighbors to 5 for all languages. On a side note,
the baseline system uses the sentence-level encoder
LEALLA (Mao and Nakagawa, 2023) to produce
word usage embeddings while our system uses the
word-level encoder m-BERT (Devlin et al., 2019)
to produce both word and word usage embeddings.

Implementation details in Subtask 2. The base-
line system is supervised and finetunes the model
parameters of XGLM (Lin et al., 2022) in the task
of generating definitions for word usages. Doing so
requires several hyperparameters, including learn-
ing rate and weight decay for the Adam optimizer
(Kingma and Ba, 2014), and the number of epochs
for training. The baseline system uses the default
parameters of the Adam optimizer and sets the
number of epochs to 1. Our submitted system,
on the contrary, is fully unsupervised. For each
target word, we take a set of word usages identi-
fied by our clustering approach in Subtask 1 and
prompt LLMs to generate a collective definition
for the usages of the target word. A predefined
prompt is needed and we provide it in Figure 6.
For LLMs, we experiment with GPT-3.5-turbo and
GPT-4-turbo, LLaMA-2-7B and LLaMA-3-8B.

Prompt engineering. Note that our prompt is
created from scratch and refined on a small selec-
tion of random instances in the development sets,
meaning that our prompt is not optimal for the en-
tire sets in any language. Our refinement process
starts with an English prompt to instruct LLMs
to generate Finnish, Russian and German defini-
tions; however, LLMs often generate English def-
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Corpus #1 Corpus #2

Languages Period (t− 1) #usages avg/u max/u min/u Period (t) #usages avg/u max/u min/u #targets

Finnish (train) 1543-1650 45897 10 272 1 1700-1750 47242 11 214 2 4289
Finnish (dev) 1543-1650 3203 12 338 1 1700-1750 3351 12 266 2 254
Finnish (test) 1543-1650 3461 12 137 1 1700-1750 3264 11 114 2 275
Russian (train) 1800-1900 1912 2 12 1 1950-present 4581 5 19 1 924
Russian (dev) 1800-1900 421 2 11 1 1950-present 1605 8 30 1 201
Russian (test) 1800-1900 424 2 10 1 1950-present 1702 8 32 2 211
German (test) 1800–1899 584 24 25 20 1946–1990 568 23 25 14 24

Table 3: Statistics of the AXOLOTL-24 datasets. ‘#targets’ denotes the number of target words; ‘#usages’ means the
total usage count of target words; ‘avg/u’ indicates the average usage count of each target word; ‘max/u’ indicates
the maximum usage count per target word; ‘min/u’ indicates the minimum usage count per target word.

Finnish Russian German

Systems #Entries ARI macro-F1 ARI macro-F1 ARI macro-F1

deep-change(1) 17 0.649 0.760 0.247 0.640 0.322 0.510
deep-change(2) 16 0.649 0.760 0.048 0.750 0.521 0.740
Holotniekat 4 0.596 0.630 0.043 0.660 0.298 0.610
ABDN-NLP (Ours) 2 0.553 0.590 0.009 0.570 0.102 0.300

Baseline 5 0.023 0.230 0.079 0.260 0.022 0.130

Table 4: Results on the test-phase leaderboard for AXOLOTL-24 Subtask 1.

initions for non-English word usages; we address
this by translating the English prompt into Finnish,
Russian and German via Google Translate. Other
factors for refinement include (a) the length of a
definition, (b) determining when to stop generation
in order to ensure that generated definitions are
comparable in length to the ground-truth counter-
parts, and (c) the number of word usages for LLMs
to generate a collective definition.

Evaluation. For Subtask 1, the Adjusted Rand In-
dex (ARI) (Hubert and Arabie, 1985) and macro-F1
score are the two evaluation metrics for reporting
and comparing system performances. ARI calcu-
lates how much a pair of word usages from the
predictions belong to the same sense ID (or differ-
ent sense IDs) as they should, while the macro-F1
score computes the precision and recall of word
usages for each sense ID and then averages these
scores across all sense IDs. Note that F1 only con-
siders old senses in the “new” time period, meaning
that mappings of word usages to novel senses are
not evaluated. ARI considers both novel and old
senses in the “new” time period.

For Subtask 2, generated definitions for those
usages with novel senses are compared to their
ground-truth counterparts by computing similari-
ties between definition pairs. The AXOLOTL-24
shared task uses both lexical-based and embedding-
based metrics to compute definition pair similari-

ties. The metrics considered are BLEU (Papineni
et al., 2002) and BERTScore (Zhang* et al., 2020).
Other metrics appropriate for doing so include
MoverScore (Zhao et al., 2019), BlonDe (Jiang
et al., 2022) and DiscoScore (Zhao et al., 2023).
The latter two metrics have shown to be well-suited
for computing long-text pair similarities, particu-
larly useful when dealing with lengthy definitions.

6 Results

We present the results of our systems and analyses
on LLMs. Case studies are shown in Appendix A.

Subtask 1. We made two submissions for Sub-
task 1, with minor difference between them. The
only difference is that the second submission in-
cludes additional predictions for the unseen Ger-
man language. Table 4 compares the results of our
system and other teams. We see that our system,
based on the unsupervised graph-based clustering
approach, outperforms the unsupervised baseline
system by a large margin in all the languages. We
observe a big performance drop for the German lan-
guage compared to other two languages. One of the
reasons for this is due to historical data issues. Un-
like the Russian and Finnish corpus usages—which
have been carefully preprocessed by AXOLOTL-
24 organizers, German usages are not cleaned up
and contain spelling variations (e.g., nöthig instead
of nötig), OCR errors, escaping double quotes and
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Finnish Russian German

Systems #Entries BLEU BERTScore BLEU BERTScore BLEU BERTScore

ABDN-NLP (Ours) 3 0.107 0.706 0.027 0.677 0.000 0.714
TartuNLP 1 0.028 0.679 0.587 0.869 0.010 0.630
t-montes 7 0.023 0.675 0.027 0.656 0.010 0.650

Baseline 6 0.033 0.403 0.005 0.377 0.000 0.490

Table 5: Results on the test-phase leaderboard for Subtask 2. Our post-evaluation results are underlined.

others. These issues would incur out-of-vocabulary
tokens, potentially resulting in poor performance.

Lastly, our system performs poorly in terms of
ARI on both Russian and German test sets, despite
having better scores in macro-F1. The performance
gap between F1 and ARI attributes to the scope mis-
match between the two metrics: new sense IDs are
excluded when computing F1, whereas both old
and novel sense IDs are considered when comput-
ing ARI. This means unlike ARI, F1 would not pe-
nalize wrong prediction of novel sense IDs. As a re-
sult, although our system performs poorly for novel
sense predictions in Russian (see the ARI_new re-
sult in Table 6), the F1 result (F1=0.570) is still
quite high.

Metrics Finnish Russian German

macro-F1 0.590 0.570 0.300

ARI 0.596 0.043 0.298
ARI_new 0.633 0.039 0.524
ARI_old 0.619 0.754 0.260

Table 6: Post-evaluation results of our system on the
test-phase leaderboard for AXOLOTL-24 Subtask 1.
ARI_new considers new sense IDs only, while ARI_old
focuses on old sense IDs.

Note that the results from our system and other
teams are not directly comparable as the system
details of other teams are missing. For instance,
it remains unclear whether their systems are unsu-
pervised or not. Overall, we see the deep-change
system achieves the best performance in all the
three languages (including the unseen German lan-
guage where train and dev sets are unavailable);
however, their achievement is made through a total
of 33 submissions and the leaderboard only reports
their best performance; this indicates overfitting.

Subtask 2. We refined our prompts for instruct-
ing GPT-3.5-turbo. This results in three submis-
sions we made for Subtask 2, where the prompts in
our final submission yield the best performance on
the randomly selected instances from the Finnish

Finnish Russian

LLMs BLEU BERTScore BLEU BERTScore

Baseline 0.248 0.607 0.886 0.595

GPT-3.5-turbo 0.022 0.640 0.035 0.676
GPT-4-turbo 0.025 0.658 0.036 0.678
LLaMA-2-7B 0.013 0.611 0.024 0.604
LLaMA-3-8B 0.013 0.603 0.021 0.601

Table 7: Comparing LLMs on the dev set in Subtask 2.

and Russian dev sets. Note that the final prompts
are the Finnish, Russian and German translations
from the English version (see Figure 6).

Despite not using train sets, our unsupervised
system, based on GPT-3.5-turbo, considerably out-
performs the supervised baseline system in all se-
tups (see Table 5). This might be because the train
sets are not large enough for fine-tuning XGLM
(Lin et al., 2022). When compared with other
teams, our system ranks first for Finnish and Ger-
man, and ranks second for Russian. Again, it is
unclear whether other teams take advantage of the
train sets, and thus the direct comparison with other
systems is not meaningful.

Comparison of LLMs. Figure 7 compares the re-
sults of several LLMs. Overall, we observe that our
unsupervised system based on LLMs greatly out-
performs the supervised baseline system in terms
of BERTScore. However, our system performs
worse than the baseline in BLEU. This is because
our generated definitions are not lexically but se-
mantically similar to their ground-truth counter-
parts. The reason for this is the following: BLEU
cannot recognize text pair similarity when there
is no lexical overlap between them (Reiter, 2018).
This is particularly problematic when dealing with
morphologically rich languages like Russian and
Finnish. In such languages, high-quality generated
definitions might differ greatly from ground-truth
definitions in morphological forms; in this case,
BLEU would wrongly assign low scores to high-
quality definitions due to the absence of lexical
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overlap. This is demonstrated by our results, where
BLEU scores (0.02-0.03) mean very few lexical
overlaps between the generated and ground-truth
definitions while BERTScore (0.65-0.67) suggest
that definition pairs are indeed semantically similar.

Additionally, we observe the supervised base-
line system performs best in terms of BLEU, par-
ticularly for Russian. This means the generated
definitions are lexically similar to the ground-truth.
This might be attributed to the memorization of
training sets. We see that many ground-truth defi-
nitions contain words from corpus usages. During
training, the baseline system might have learned
to prioritize the use of words from corpus usages
when generating definitions. Lastly, although GPT-
4-turbo has shown to greatly outperform GPT-3.5-
turbo in many NLP tasks, we demonstrate that the
superiority of GPT-4-turbo is not considerable in
Subtask 2, especially for Russian, so is the case for
LLaMA-2-7B and LLaMA-3-8B.

7 Limitations

Dataset size. The datasets provided in the shared
task are quite small and contain very few word us-
ages for each headword on average. This is indeed
expected as the datasets are sourced from hand-
crafted dictionaries where lexicographers only col-
lect a small number of word usages for each dictio-
nary sense entry due to the costly mapping process.
Here we argue that it would be better to use such
datasets only for evaluation purposes, rather than
for dividing them into train sets. Furthermore, we
call for an additional database containing a large
amount of word usages for each headword to sup-
port the development of unsupervised systems, as
we see their potential demonstrated by our unsu-
pervised system, which greatly outperformed the
supervised baseline system in Subtask 2.

Text encoder. Our system relies on m-BERT (De-
vlin et al., 2019), a text encoder invented five years
ago, to produce embeddings for both word usages
and words in Subtask 1. In recent years, many
text encoders (Ni et al., 2022; Neelakantan et al.,
2022) have been introduced and shown to perform
much better than m-BERT in various NLP tasks.
Other encoders such as XL-LEXEME (Cassotti
et al., 2023) specialized in capturing lexical seman-
tic changes also meet our needs.

Data contamination. The works by Balloccu
et al. (2024); Ravaut et al. (2024) show that the

results of LLMs can be misleading due to the data
contamination issue, i.e., that test sets are included
in the training data of LLMs. This issue might
be present in the AXOLOTL-24 test sets for the
two reasons: (a) the source base of the test sets is
publicly accessible and (b) LLMs do not document
their training data at all. Thus, it is unclear whether
the headwords, word usages, and definitions in
the test sets have been exposed to LLMs. Future
work should design a measure to calculate data con-
tamination rates of LLMs on the AXOLOTL-24
datasets.

8 Conclusions

In this work, we presented our system that auto-
mates the process of identifying novel word mean-
ings not covered in dictionaries and generating
their definitions. We evaluated our system in the
AXOLOTL-24 shared task. Our results show that
supervision is not always useful: Without access to
train sets, our unsupervised system still greatly out-
performs the supervised baseline system, as well
as other team submissions in Subtask 2—which
demonstrates the potential of LLMs in generating
definitions for novel word usages; however, the un-
certainty as to whether the AXOLOTL-24 test sets
are included in the training data for pre-training
LLMs calls for careful investigation in the future.
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A Appendix

Case studies. Figures 4 and 5 compare gener-
ated and ground-truth definitions for the two tar-
get words sampled from the Russian dev set. For
the first target word, the generated definition by
GPT-3.5-turbo is quite similar to the ground-truth
definition. We suspect that the word ‘radioactive’
in the corpus usage suggests that the location is
likely to be a burial ground. We test this hypothesis
by removing the word ‘radioactive’ and prompting
GPT-3.5-turbo again: the generation definition then
becomes “a burial ground or cemetery” (English
translation)—which is too general and refers to a
non-metaphorical scenario where people are buried
underground, whereas “radioactive burial ground”
could mean metaphorically a site for disposing of
radioactive waste.

Consider the second word, which is computer
slang meaning “to make something inaccessible”.
Interestingly, GPT-3.5-turbo did not provide any
guess on the definition of the word usage, and just
acknowledged that this is a Russian word with-
out giving further details. This could be because
GPT-3.5-turbo lacks knowledge of the cybersecu-
rity term ‘DDoS’ (it means a denial-of-service at-
tack), and thus it did not provide any guess for the
definition. This analysis, however, is only based
on two cases. Future work could include a due
diligence investigation of wrongly generated defi-
nitions, such as categorizing incorrect definitions.

#A usage for the word: [могильник]

Якобы тут, возле Черниховки, находится
радиоактивный могильник.

(English Translation): Allegedly here, near Chernik-
hovka, there is radioactive burial ground.

[Generated Definition by GPT-3.5-turbo]:
Могильник - место захоронения радиоактивных
отходов или погибших.

(English Translation): Burial ground - a burial place
for radioactive waste or dead.

[Ground-truth Definition]:
спец. место захоронения радиоактивных отходов;
специальное сооружение для такого захоронения.

(English Translation): Special burial site for radio-
active waste; special structure for such burial.

[Evaluation]: BLEU: 21.2 BERTScore: 0.79

Figure 4: A well-generated definition in Russian.

# A usage for the headword: [положить]

Также впустую ушли две недели ддоса главной
страницы пикаперов, хотя форум положить удалось.

(English Translation): Also, two weeks of DDoSing the
main page were wasted pick-up artists' pages, although
they managed to put down the forum.

[Generated Definition by GPT-3.5-turbo]:
язык, используемый в России и других странах.

(English Translation): A language used in Russia and
other countries.

[Ground-truth Definition]:
комп. жарг. привести в нерабочее состояние,
«уронить», сделать недоступным что-либо.

(English Translation): A computer slang referring to
something inoperative and inaccessible.

[Evaluation]: BLEU: 3.38 BERTScore: 0.59

Figure 5: A poorly-generated definition in Russian.

Our prompt. Figure 6 illustrates the prompt used
to instruct GPT-3.5-turbo to generate definitions in
English.

[Instruction]:
Imagine that you are a lexicographer, given a headword
{target_word} in {lang}, write the dictionary definition
of its usage in the following quotations:

1. First quotation
2. Second quotation

[Requirements]:
The definition you create should be brief. A maximum
of ten words is allowed. The definition ends at the
first period.

[Response]:
Definition (string): {definition}

Figure 6: An illustration of our prompt used to instruct
GPT-3.5-turbo to generate dictionary-like definitions,
where ‘quotation’ is synonymous of ‘word usage’.
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