
LChange 2024

5th International Workshop on Computational Approaches to
Historical Language Change 2024

Proceedings of the Workshop

August 15, 2024



©2024 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 979-8-89176-138-4

i



Preface by the General Chair

Welcome to the 5th International Workshop on Computational Approaches to Historical Language Chan-
ge (LChange’24) co-located with ACL 2024. LChange is held on August 15th, 2024, as a hybrid event
with participation possible both virtually and on-site in Thailand.
Characterizing the time-varying nature of language will have broad implications and applications in mul-
tiple fields including linguistics, artificial intelligence, digital humanities, computational cognitive and
social sciences. In this workshop, we bring together the world’s pioneers and experts in computational
approaches to historical language change with a focus on digital text corpora. In doing so, this wo-
rkshop carries out the triple goals of disseminating state-of-the-art research on diachronic modeling of
language change, fostering cross-disciplinary collaborations, and exploring the fundamental theoretical
and methodological challenges in this growing niche of computational linguistic research.
In response to the call, we received 24 submissions. Each of them was carefully evaluated by at least two
members of the Program Committee, whom we believed to be most appropriate for each paper. Based
on the reviewers’ feedback we accepted 17 full and short papers as oral or poster presentations. We had
two distinguished keynote presentations: the first by Antske Fokkens (Professor at the Computational
Linguistics and Text Mining Lab at the Vrije Universiteit Amsterdam, Netherlands) who presented a talk
entitled “What Changes in Language Modeling mean for Modeling Language Change”, and the second
by Johann-Mattis List (Professor and Chair of Multilingual Computational Linguistics at the University
of Passau, Germany) with the talk “New Approaches in Computer-Assisted Language Comparison”.
Finally, we invited two ACL’24 Findings papers to be presented at the workshop, which are not included
in the workshop proceedings.
We hope that you will find the workshop papers insightful and inspiring. We would like to thank the
keynote speakers for their stimulating talks, the authors of all papers for their interesting contributions,
and the members of the Program Committee for their insightful reviews. Our special thanks go to the
emergency reviewers who stepped in to provide their expertise. We also express our gratitude to the ACL
2024 workshop chairs for their kind assistance during the organization process. Finally, our thanks go to
our sponsors, the research program “Change is Key!” (Riksbankens Jubileumsfond, contract M21-0021).

Nina Tahmasebi, chair, University of Gothenburg (Sweden)
Syrielle Montariol, EPFL (Switzerland)
Andrey Kutuzov, University of Oslo (Norway)
David Alfter, University of Gothenburg (Sweden)
Francesco Periti, University of Milan (Italy)
Pierluigi Cassotti, University of Gothenburg (Sweden)
Netta Huebscher, University of Gothenburg (Sweden)
LChange’24 Workshop Chairs
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Martin Pömsl, School of Computer Science, McGill University
Ella Rabinovich, International Business Machines
Martin Ruskov, University of Milan
Dominik Schlechtweg, Institute for Natural Language Processing, University of Stuttgart
Taichi Aida, Tokyo Metropolitan University
Ludovic Tanguy, University of Toulouse
Stephen Eugene Taylor, University of West Bohemia

iv



Keynote Talk: What Changes in Language Modeling mean
for Modeling Language Change

Antske Fokkens
Vrije Universiteit Amsterdam

Abstract: Language change detection has emerged as a subdomain that has caught the interest (com-
putational) linguistics, historians, social scientists and computer scientists. Despite this enthusiasm and
stable attention from the NLP community over multiple years, our methods keep on having difficulties in
distinguishing valid signals of change from noise. This holds both for methods using static word embed-
dings as well as for more recent explorations with methods that make use of contextual embeddings. The
question of how to distinguish true signal from noise has received substantial attention from the field, wi-
th the design of benchmarks, control tests and artificially created samples and data. An aspect that has, to
my knowledge, received less attention is the fundamental differences between most methods using static
on the one hand, and most methods using contextualized embeddings on the other hand. Mainly, me-
thods that make use of static embeddings involve creating new embeddings for the full vocabular creating
general shifts in space.
Methods using contextualized embeddings on the other hand mostly make use of pretrained language
models, either as is or with some continual training on the target corpus. Change is then studied by
comparing instances including target terms from different corpora. In this talk, I will explore what these
fundamental differences mean when carrying out methodological checks and balances for studying lan-
guage change with the aim of answering the question: how can we find meaningful change and know that
is meaningful.

Bio: Antske Fokkens is a researcher at the Computational Lexicology and Terminology Lab and a visi-
ting researcher at the Web and Media group at VU University Amsterdam, where she is also part of the
Network Institute. Her main interest lies in the methodological aspects of Computational Linguistics,
particularly how computational models of language work and which methods are suitable for modeling
or analyzing linguistic phenomena. Her recent work focuses on applying NLP to digital humanities,
enhancing historical research through the BiographyNet project. Additionally, she addresses methodolo-
gical issues in system architecture and large-scale news processing through projects like NewsReader and
Can we Handle the News. Her PhD thesis proposed a methodology for developing linguistic precision
grammars, applicable across various theories.
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Keynote Talk: New Approaches in Computer-Assisted
Language Comparison

Johan-Mattis List
University of Passau

Abstract: The field of computer-assisted language comparison seeks to develop interactive computa-
tional workflows that facilitate those tasks that linguists working in the field of historical or typological
language comparison usually carry out manually. While the field has substantially grown over the past
decade, with new tools and new workflows that support computer-assisted analyses, there remain many
challenges that have so far not yet been addressed in computer-assisted approaches. In this study, three
new approaches that facilitate detailed comparative analysis will be presented. The first approach allows
for an efficient manual labeling of correspondence patterns in comparative wordlists, the second approa-
ch allows to group sounds in phonetically transcribed wordlists and to segment words into morphemes.
The third approach allows to correct individual word forms in comparative wordlists, by contrasting the
reflexes of a proto-form that one would expect under the assumption of regular sound change with the
reflexes that are attested in the data. All approaches are implemented in an interactive web-based tool
that is freely available and integrated with previous computer-assisted tools and workflows.

Bio: Johan-Mattis List is a comparative linguist and Chair for Multilingual Computational Linguistics
since January 2023, leading the ERC-funded ProduSemyresearch group. Previously, he was a stand-in
professor at Bielefeld University and a senior researcher at the Max Planck Institutes in Leipzig and Jena.
He earned his doctorate at Heinrich Heine University in Düsseldorf and completed his habilitation at
Friedrich Schiller University in Jena. His research focuses on the evolution of human language lexicons
and language change, with particular interest in Southeast Asian and South American languages. He
advocates for open research and draws inspiration from bioinformatics to improve language comparison
methods.
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Computer-Assisted Language Comparison with EDICTOR 3

Johann-Mattis List and Kellen Parker van Dam
Chair for Multilingual Computational Linguistics

University of Passau
Passau, Germany

Abstract

Computer-assisted approaches to historical and
typological language comparison have made
great progress over the past two decades.
Specifically for the classical tasks of histori-
cal language comparison, many computational
methods have been published that mimic cer-
tain steps of the traditional workflow of the
comparative method. In contrast to the diver-
sity of new computational methods, there is
only a limited number of interactive tools and
interfaces that help scholars to curate and re-
fine their data both before and after the ap-
plication of computational methods. One of
the few publicly available interfaces is EDIC-
TOR (https://edictor.org), an interactive tool
for computer-assisted language comparison.
EDICTOR has been around for some time, and
allows scholars to annotate and align cognate
sets in various ways. With EDICTOR 3, the
original tool has been enhanced, offering not
only new features for data annotation, but also
providing the possibility to use purely auto-
matic methods for initial cognate detection,
phonetic alignment, and correspondence pat-
tern inference in an integrated workflow.

1 Introduction

The traditional comparative method in historical
linguistics relies on a multitude of techniques for
historical language comparison that have been es-
tablished to compare languages systematically in
order to shed light on their internal and external his-
tory (Ross and Durie, 1996). While having been tra-
ditionally carried out manually for more than 200
years (see Atkinson 1875 for an early and detailed
description of the method), the last two decades
have seen many attempts to provide automatic ap-
proaches for various individual steps of the com-
parative method and beyond (List, forthcoming(a)),
reflecting some kind of a quantitative turn in his-
torical linguistics (Geisler and List, 2022). Among
the automated approaches most directly addressing

the individual steps underlying the traditional work-
flow of the comparative method, we find methods
for the detection of cognate words (List, 2012a;
Jäger et al., 2017; Dellert, 2018), methods for pair-
wise and multiple phonetic alignment (Prokić et al.,
2009; List, 2012b; Kilani, 2020), and methods for
the identification of regular sound correspondence
patterns (List, 2019).

While these methods have been shown to work
rather well for language families with a shallow
time depth (List et al., 2017), with phylogenetic
trees inferred from automatically annotated cog-
nate sets showing only minor differences to phy-
logenetic trees inferred from manually annotated
cognate sets (Rama et al., 2018), the black box
character by which these automatic methods arrive
at their results, along with their failure to find deep
etymological relations (Greenhill et al., 2023), has
prevented scholars from switching to completely
automated workflows. At the same time, however,
the manual compilation of etymological datasets,
where scholars compare thousands of words across
dozens and at times even hundreds of languages,
has reached its practical limits.

In a situation where computational methods can-
not be used to replace humans and humans can-
not cope with increasing amounts of digital data,
computer-assisted solutions – as opposed to fully
computer-based or fully manual – may offer an
alternative in combining the best of both worlds
by uniting the efficiency of computers with the
accuracy of human annotation. In 2017, it was
tried to put this idea into praxis by proposing a
new framework for Computer-Assisted Language
Comparison (CALC) that would not only try to
enhance existing methods for computational histor-
ical language comparison, but also seek to develop
web-based tools that could serve as an interface
between computational and manual approaches, al-
lowing for an interactive workflow in which data
– which must be provided in human- and machine-
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readable form – would be constantly passed back
and forth between computers and machines (List,
2017b). Instead of identifying cognate sets from
scratch in larger datasets, the idea was to employ
automated methods for the pre-processing of lin-
guistic data and then have human experts correct
these initial analyses. Given that the correction of
pre-processed data would be done in a dedicated
web-based tool, it would also be possible to test
the consistency of human annotation and offer an-
notators additional possibilities to explore cross-
linguistic data in order to improve their analysis.

With the introduction of the EDICTOR tool (see
Version 1.0, https://one.edictor.org, List 2017a), a
first step in this direction was carried out. EDIC-
TOR offered a web-based interface to annotated
cognates in multilingual wordlists and align them at
the same time. Via its simplified data structure (us-
ing a single TSV file to represent words, cognates,
and alignments in multilingual wordlists), EDIC-
TOR was also integrated with the LingPy library
(List and Moran, 2013) that provided access to auto-
matic methods for cognate detection and phonetic
alignments. Later enhancements of EDICTOR (see
Version 2.0 at https://two.edictor.org, Version 2.1
at https://two-1.edictor.org) have offered more fea-
tures for annotation, but the basic character of the
tool as a purely web-based application that could
be used for annotation but not for the conduction
of automatic methods has not changed since then.

With EDICTOR 3, not only new features, but
also some substantial modifications are introduced
to the tool. As of Version 3, EDICTOR will not
only be distributed as a web-based tool that can be
accessed via its URL (https://edictor.org), but also
in the form of a software package written in Python
that can be locally installed and does not require
internet access to run. The advantage of this new
architecture is that EDICTOR can also integrate
with external software packages and thus allow for
a true exchange with external software packages
that provide enhanced methods for basic steps of
the comparative method.

2 Background

Although tools and interfaces that would assist lin-
guists in the annotation of etymological data have
been around for several decades now, the number
of linguists who would make active use of these
tools is rather small. One of the first software pack-
ages that offered full support for various impor-

tant tasks in historical language comparison is the
STARLING database program, originally designed
and created by Sergey Starostin (1953-2005). The
origins of the software go back to the early 1990s
(Starostin, 2000b). In its core, STARLING is a
database system that offers users the possibility to
create small databases consisting of multiple ta-
bles linked with each other. The software offers
dedicated functionality to annotate cognates, to
check for the individual sounds in a given wordlist,
and to carry out distance-based phylogenetic re-
construction analyses based on the implementation
of several ideas proposed by Starostin (Starostin,
2000a).

A second interactive tool for computer-assisted
language comparison that is important to mention
in this context is RefLex (Segerer and Flavier,
2015). Unlike STARLING, which comes as a soft-
ware package that has to be installed on the users
computers, RefLex is entirely web-based, written
mostly in PHP, and accessed by connecting to the
server maintained by the RefLex authors. Using
RefLex requires a user account, and data must be
imported and exported from the internal database.
Originally designed to analyze data from African
languages, RefLex offers many general functionali-
ties that are very useful for etymological analysis
in historical linguistics, including an alignment edi-
tor by which cognate sets can be aligned manually,
methods to match elicitation glosses for concepts
across different sources, and the possibility to an-
notate cognates in multilingual wordlists.

As impressive and useful as STARLING and
RefLex are on their own, both tools have major
drawbacks that prompted the development of an al-
ternative interface for computer-assisted language
comparison, taking nevertheless a lot of inspira-
tion from the other tools. A major drawback of
STARLING is that it does not work well on Unix
systems, given that it is based on the now outdated
dBase database management system that only runs
on Windows operation systems. The major disad-
vantage of RefLex is that it requires a server with
users having to log into the system when using it.
This means that the tool can only be used with an
active internet connection. In addition, import and
export options have always been limited in RefLex
and it was – for example – never clear how align-
ments could be exported to text files in order to use
them in combination with other software tools.

As a result of these drawbacks, work began
already in 2014 to work on my own interactive
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tool for computer-assisted language comparison.
The goal was to design a tool that would offer
functionality similar to those features that were
considered most useful in STARLING and Re-
fLex, while at the same time offering a closer
integration with automatic methods, most impor-
tantly those offered by the LingPy software pack-
age for quantitative tasks in historical linguistics
(https://lingpy.org, List and Moran 2013).

The first version of this tool (that would later
become the core of the CALC framework) was
published in 2017 under the title EDICTOR (short
for Etymological Dictionary Editor, List 2017a)
and successfully employed to annotate the data
underlying a larger phylogenetic analysis of Sino-
Tibetan languages (Sagart et al., 2019). The first
version of EDICTOR was written in JavaScript and
was made accessible in the form of a website that
users could access by opening the URL. Since the
tool was entirely client-based, users could inde-
pendently load their files to the JavaScript sand-
box and later save them after editing. Data was
never sent to any server, but was only edited inside
the users browsers on their client systems. EDIC-
TOR offered basic modules to annotate cognate
sets (both full and partial cognates, see List et al.
2016), these cognate sets could be aligned with
the help of a specific alignment editor, and rudi-
mentary methods were available in order to check
sound correspondences for language pairs. With
EDICTOR 2 (List, 2021a), this functionality was
further expanded by adding methods for the explo-
ration and annotation of morpheme glosses (Hill
and List, 2017; Schweikhard and List, 2020), ex-
tended exploration and export options for cognate
sets (including direct export to the NEXUS format
used in many phylogenetic applications, see Mad-
dison et al. 1997 and Forkel 2023 for details on the
format), and an initial interactive correspondence
pattern browser that would display correspondence
patterns inferred with the help of the method by
List (2019).

EDICTOR has played a crucial role in the further
development of computer-assisted techniques on
historical language comparison. The tool proved
not only important in the creation of reliable
datasets (of which quite a few were later included in
the Lexibank repository, List et al. 2022). It turned
out that the tool was also crucial for the develop-
ment of new computer-based methods, where it
was used to visualize findings in order to check pre-
liminary results and to create high-quality data for

testing of new methods for which test and training
data were usually lacking. Thus, in the retrospec-
tive, it would not have been possible to develop the
method for partial cognate detection presented in
List et al. (2016) without EDICTOR, since it would
not have been possible to create the data that was
later used to test the method. Similarly, the algo-
rithm for the inference of sound correspondence
patterns presented in List (2019) would not have
been possible without the interactive sound corre-
spondence pattern browser, which was crucial for
the development of the new method, allowing to
inspect findings immediately.

However, with time, EDICTOR also accumu-
lated a considerable number of bugs and strange
behaviors. Certain design problems that were not
identified as such in the beginning later turned out
to be problematic, and users’ design suggestions or
bug reports could often not be addressed immedi-
ately.

There were different reasons for the slow process
with respect to the development of the tool. On the
one hand, for scientists who develop tools and soft-
ware packages, there is always a tension between
the time they spend on development and the time
they spend on proper research, since development
is not necessarily seen as truly scientific work. On
the other hand, many problems that the tool was
supposed to handle turned out to be much harder
than expected. As a result, solutions often were
not available, and it was instead necessary to enter
very detailed discussions on the proper modeling
of particular problems before any changes to the
tool could be made.

Not all of these problems can be solved with
EDICTOR 3, but in contrast to previous releases
of EDICTOR, EDICTOR 3 tries to set several new
standards for the future development of the tool.
As a result, the list of features was for the first time
not only expanded, but certain features that had
never proven to be useful for historical language
comparison, were also discarded.

3 A New EDICTOR Version

3.1 Overview

EDICTOR 3 is a web-based tool that allows its
users to carry out several steps of the comparative
method interactively, producing data that can be di-
gested by computer programs. EDICTOR 3 comes
in two forms. Users can access the tool via its URL
at https://edictor.org or download the source code
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and create another instance of the tool on a local or
public server. Additionally, users can also install a
local version of EDICTOR 3 on their own computer
and access EDICTOR 3 locally, with no active in-
ternet connection being required. Both the public
and the local version of EDICTOR 3 basically sup-
port the same functionalities, but the local version
allows to save and access files stored locally (as
pure files or with the help of an SQLite database)
without having to go through the upload procedure
that passes local data to the JavaScript sandbox. In
addition, only the local version allows to obtain
high quality cognate judgments, phonetic align-
ments, and sound correspondence patterns from
dedicated Python packages (see § 3.3).

Like previous versions of the EDICTOR, EDIC-
TOR 3 is organized in panels that allow to initiate
actions or provide additional views on the data.
The core is a multilingual wordlist that stores data
in tabular form in a TSV file (see List et al. 2018
for an overview on the basic format). Panels are
currently grouped into three basic modules. The
Edit module offers basic functionality to edit data
in various forms (see § 3.2), the Compute mod-
ule offers methods for cognate detection, phonetic
alignments, and correspondence pattern inference
(see § 3.3), and the Analyze module offers addi-
tional tools by which the data can be analyzed and
inspected (see 3.4).

3.2 Editing Data

In EDICTOR 3, data can be edited in five different
ways. The most basic way to edit the data is to
use the Wordlist panel that allows to edit data in a
way similar to a spreadsheet editor but with some
additional functionalities that facilitate the annota-
tion of cognates and phonetic transcriptions. New
functionality has been added that allows users to
group segment data morphologically and to modify
the representation of sounds by grouping distinct
sounds into evolutionary units (List et al., 2024).
The Cognate Sets and Partial Cognate Sets panels
allow to edit cognate sets in a principled way. he
Morpheme Glosses panel, introduced with EDIC-
TOR 2 (see List 2021b), offers enhanced function-
ality for the annotation of morphological data with
the help of morpheme glosses (Hill and List, 2017;
Schweikhard and List, 2020). Finally, the Cor-
respondence Patterns panel, which had been in-
troduced earlier, now offers the possibility to edit
correspondence patterns actively and to identify

and mark exceptions in the reflexes of individual
cognate sets (List, forthcoming(b)).

3.3 Computing Data
So far EDICTOR has not allowed users to com-
pute data. The only exception was the alignment
of individual of cognate sets, where EDICTOR of-
fered the possibility to align words in the interactive
window prior to carrying out manual refinements.
With EDICTOR 3, basic methods for cognate detec-
tion, phonetic alignment (multiple sequence align-
ment), and correspondence pattern detection are
now available as part of the newly introduced Com-
puting module of the tool.

For each of the three tasks, two basic solutions
are offered to the users. When running with Python
internally and having installed the required soft-
ware packages, the data is passed to Python and the
dedicated methods are used to carry out the task. If
EDICTOR 3 is accessed via the website, simplified
implementations of the three methods in JavaScript
are being used.

The basic approach for cognate detection is the
LexStat method for full cognates (List, 2012a) or its
counterpart for partial cognates (List et al., 2016).
Implementations for both methods are available
from LingPy (https://pypi.org/project/lingpy, List
and Forkel 2023a, Version 2.6.13). The fallback
function is based on matching consonant classes,
as originally introduced by Dolgopolsky (1964)
and then popularly employed in the STARLING
package (see Turchin et al. 2010 for a detailed de-
scription and List 2014 for details on the imple-
mentation). For partial cognates, the approach is
adjusted in order to be applied to individual mor-
phemes rather than full words.

The basic approach for phonetic alignments of
multiple sound sequences is based on the Sound-
Class based Alignment method (List, 2012b). The
method itself breaks down the complexity in lin-
guistic sequences by converting phonetic transcrip-
tions to sound classes and then conducts tradi-
tional multiple sequence alignment analyses us-
ing an adjusted version of the T-Coffee algorithm
(Notredame et al., 2000). The method is also
implemented in LingPy. As a fallback method,
EDICTOR 3 employs a very simple and very fast
method for multiple alignments that runs in lin-
ear time. This method first selects the longest se-
quence among the candidate sound sequences and
then aligns all remaining sequences one by one
with this longest sequence. The individual align-
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ments are stored and later combined in such a way
that all individual gaps introduced in the longest
sequence are preserved. Despite the simplicity of
the approach, it yields useful results in the majority
of cases. When being confronted with complex
alignment tasks, it clearly lags behind the SCA ap-
proach. However, since the method was created
to speed up manual alignments, it is always easier
to align sound sequences automatically in a first
step and then refine them in a second step manually
than starting the alignment manually from scratch.

The basic approach for correspondence pattern
detection follows the method proposed in List
(2019), which makes use of a greedy approach
to solve the minimum clique cover problem in
undirected networks (Bhasker and Samad, 1991)
to group alignment sites (individual columns of
a multiple alignment) into clusters from which
correspondence patterns can be inferred. This
method is implemented in the LingRex package
(https://pypi.org/project/lingrex, List and Forkel
2023b, Version 1.4.2). The fallback method offered
by EDICTOR 3 is based on a much simpler strat-
egy that uses the sorting method QuickSort (Hoare,
1962) to arrange compatible alignment sites next
to each other in a table and then groups those align-
ment sites that are compatible to each other into
correspondence patterns. In contrast to the method
by List (2019), this approach does not guarantee
to find an exhaustive clique cover of the alignment
site network. For the practical purpose of getting
a first grouping of alignment sites into correspon-
dence patterns, however, it has turned out to be
very useful to speed up the process of manually
annotating correspondence patterns.

The three methods in combination equip users
with a workflow that starts from a raw wordlist
in phonetic transcription, then identifies cognates,
aligns them, and finally infers correspondence pat-
terns from the data. In this form, the workflow
accounts for the majority of the individual steps of
the classical comparative method (Ross and Durie,
1996). What it leaves out are methods for phono-
logical reconstruction and phylogenetic reconstruc-
tion. Since classical phonological reconstruction,
however, builds on previously identified correspon-
dence patterns (Anttila, 1972), EDICTOR 3 offers
a very solid basis to build phonological reconstruc-
tions on top of explicitly annotated sound corre-
spondence patterns. For phylogenetic reconstruc-
tion, the aforementioned option to export data to
the NEXUS format comes in handy.

3.4 Analyzing Data

EDICTOR 3 not only supports editing and comput-
ing of multilingual wordlist data but also allows to
inspect the data in different ways through the Ana-
lyze module of the tool. With the help of the Sounds
panel, users can inspect the individual sounds in
individual language varieties, by comparing how
frequently and in which words they occur and how
they fit into classical phoneme inventory tables.
The Colexifications panel allows for a quick investi-
gation of full and partial colexifications, the former
referring to cases of polysemy or homophony, in
which a word form expresses two or more concepts
in a wordlist (François, 2008), and the latter refer-
ring to those cases where morphemes with identi-
cal forms recur across different words (List, 2023).
The panel offers additional functionality to visu-
alize full and partial colexifications with the help
of bipartite networks (Hill and List, 2017). The
Correspondences panel allows users to compare
the sound correspondences inferred from the pair-
wise alignments of two language varieties. While
this functionality may seem much less useful and
important, it may prove useful in those cases where
one the focus lies on specific relations between two
language varieties, such as – for example – in the
case of two alternative proposals for phonological
reconstruction (Pulini and List, 2024). The Cog-
nates panel allows for a detailed inspection o the
distribution of cognate sets across a multilingual
wordlist, providing a tabular view in which each
column is reserved for one language and each row
represents one cognate set. Through this specific
panel, users can also export their cognate sets to
the above-mentioned NEXUS format, which can
then be fed to dedicated software packages for phy-
logenetic reconstruction.

3.5 Implementation

EDICTOR 3 is implemented as a web-based
application written in JavaScript. The newly
introduced local server functionality that al-
lows users to employ the tool locally is imple-
mented in Python. The code base is curated
on GitHub (https://github.com/digling/edictor, and
archived as part of the Python Package Index
(https://pypi.org/project/edictor). For users who
prefer to use the tool without installing it, the most
recent version of EDICTOR can be accessed from
https://edictor.org, a development version is usually
accessible from https://dev.edictor.org, and earlier
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(a) data in preliminary state (b) data after cognate detection

(c) data in aligned form (d) data with inferred patterns

Figure 1: Integrated computer-assisted workflow in EDICTOR 3. The screenshots represent the different stages by
which analyses with LingPy and LingRex applied to the Germanic wordlist data are carried out in the interactive
mode.

versions are accessible from https://one.edictor.org
(Version 1.0), https://two.edictor.org (Version 2.0),
and https://two-1.edictor.org (Version 2.1). Issues
in the code as well as discussions about particular
features are typically handled via GitHub’s issue
tracker (https://github.com/digling/edictor/issues).

4 Examples

In the following, we will try to illustrate the new
features and ideas that made it into EDICTOR 3
with the help of three examples. These consist of
(1) an integrated computer-assisted workflow that
can be used to compute cognates, alignment, and
correspondence patterns from scratch, (2) an illus-
tration of the new functionalities for the annotation
of correspondence patterns, and (3) a discussion
of the new approaches that allow to speed up the
process of manipulating data provided in phonetic
transcription.

4.1 Integrated Computer-Assisted Workflow
To illustrate how an integrated computer-assisted
workflow can be carried out with the help of EDIC-
TOR 3, we make use of a small dataset of 110 basic
concepts translated into seven Germanic languages.
This dataset was originally compiled by Starostin
(2005) and later adjusted later adjusted to the for-
mat required by EDICTOR and LingPy for testing
purposes (List, 2014). The dataset itself can be
accessed directly from EDICTOR 3, by opening
the landing page (https://edictor.org) and then navi-
gating to the tab Examples, where it can be selected
under the title Germanic Wordlist (List 2014).

Screenshots that illustrate the different stages of
the workflow are shown in Figure 1 (a-d).

The analysis itself shown in this example fails to
identify the Icelandic wordform as being cognate
with the forms in the other languages, which is most
likely due to the specific phonetic transcriptions
chosen. For computer-assisted purposes, however,
the ultimate accuracy of any algorithm is much
less important than the general reliability and – as
neatly illustrated in this example – the integration
with interactive tools that allow scholars to quickly
preprocess a given dataset automatically in order
to refine the individual findings in a second stage.

4.2 Inspecting and Editing Correspondences

Correspondence patterns inferred by the automatic
workflow shown in the previous section can be
further edited and modified by the user. Patterns
are reflected in the form commonly employed by
EDICTOR and LingRex. Patterns are defined with
respect to the phonetic alignment. Sites in an align-
ment are grouped into patterns by assigning them
common integers that serve as identifiers and must
be greater than zero. The value 0 itself is reserved
for those cases in which an alignment site is not
assigned to any pattern in the data. This holds
for cases of singletons (words that are not cognate
with any other words in a given dataset) or where
the method for correspondence pattern detection
cannot find enough evidence to group the data fur-
ther (e.g. for cognate sets that do not have enough
reflexes in the data).
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right click: 
ignore sound

left click: 
toggle word

left click: 
pop up 

alignment
window

Figure 2: Correspondence patterns inferred by the computational workflow. Additional editing of corresponcence
patterns is possible by clicking into the pattern identifiers in the column PATTERN and editing values there directly.

Figure 2 shows how correspondence patterns are
visualized in EDICTOR 3. Each alignmen site is
listed in one row of a table, preceded by the cog-
nate set identifiers, followed by the position of the
site in the alignment, followed by the pattern iden-
tifier and the concepts reflected by the cognate sets.
For each language, the alignment site value is then
listed in fixed order. This order itself can be edited
by the user in order to put related language vari-
eties together or to put proto-languages in front.
Clicking on a particular sound will show the full
word, allowing users to toggle between different
views, highlighting particular sounds or individual
words in which the sounds occur. With the help
of a right mouse click, the pattern can be toggled
in such a way that the particular sound is ignored
when assembling the pattern, using inline align-
ments for the representation (List, forthcoming(b)).
This allows users to explicitly ignore certain reflex
sounds from correspondence patterns that might
show unexpected results. Ultimately, this comes
close to a formal version of Grimm’s handling of
Germanic data, when he noted exceptions from
the consonant shift that he had observed (Grimm,
1822). By putting exceptions at the side, one can
collect them to try and resolve them later.

As can be seen from the example illustration, the
automated workflow has no problem in detecting
the classical correspondence of the affricate ini-
tials in German corresponding to alveolar stops in
the other Germanic languages. This proves again
the usefulness of computer-assisted approaches in
increasing the efficiency of linguistic annotation.

4.3 Segmenting and Grouping

The wordlist panel in EDICTOR 3 comes with a
new feature that allows for an improved editing

of sound sequences. Already in the first version,
it was possible to insert phonetic transcriptions in
SAMPA / X-Sampa (see Gibbon et al. 1997, 60-108
for a specification of SAMPA), which would then
automatically be converted to the International Pho-
netic Alphabet in plain Unicode (IPA, 1999) and
automatically segmented into individual sounds,
following the standards proposed by the Cross-
Linguistic Data Formats initiative for the handling
of phonetic transcriptions (Forkel et al., 2018). In
EDICTOR 3, these editing functionalities were
streamlined and extended by adding additional pos-
sibilities to segment words into morphemes and to
group individual sounds into evolving units.

The extended sequence editing features are il-
lustrated in Figure 3, where some German words
are provided as sample sequences along with their
morpheme structure, annotated with the help of
morpheme glosses. While the conversion from
input in SAMPA/X-SAMPA is automatically trig-
gered when selected by the user (conversion can
also be turned of if phonetic transcriptions are pro-
vided from the original data or if users prefer to
user their own IPA keyboard), the segmentation of
individual characters into speech sounds in pho-
netic transcription is carried out when inserting a
sequence with a preceding space. Since trailing
spaces are disallowed in the standard format of the
column storing sound sequence data in EDICTOR
(typically called TOKENS), this does not conflict
with alternative annotations or other forms of user
input. Once sound sequences are inserted into the
text fields, EDICTOR automatically colors them,
using a color schema that distinguishes 10 different
sound classes, as originally proposed by Dolgopol-
sky (1964). These sequences can then be edited
in consecutive steps. First, by right-mouseclicking
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right-click to segment

shift/ctrl-click to group
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Figure 3: Sequence editing in EDICTOR 3. In addition to the conversion from SAMPA to IPA, EDICTOR 3 also
supports the convenient segmentation of sound sequences into morphemes and the grouping of sounds into evolving
units.

on individual sound segments, a morpheme bound-
ary marker (the +) is inserted before the segment
that was clicked, thus allowing users to quickly
segment their words into morphemes. Second, by
pressing the SHIFT or the CTRL button and right-
mouse-clicking a segment, it will be grouped with
the segment following it, using the specific anno-
tation for grouped sounds developed in List et al.
(2024).

In combination with additional panels, such as
the dedicated panel for the handling of Morpheme
Glosses that was introduced with an earlier version
of EDICTOR, the tool now equips users with mul-
tiple possibilities to efficiently annotate language-
internal cognates by segmenting words into mor-
phemes and handling co-evolving sounds as single
units. Our hope is that these additional methods
will soon allow us to create a larger collection of
morpheme-segmented wordlists that could later be
used to test automatic approaches to the task of
morpheme segmentation in computational histor-
ical linguistics, for which by now no satisfying
solution exists (List, 2024).

5 Outlook

With EDICTOR 3, we hope to enter a new stage
of computer-assisted language comparison, by pro-
viding a tool that is increasingly robust, allowing
for multiple ways of access, and offering sophis-
ticated methods for data annotation and analysis
that are more and more fine-grained and adapted to
the complex task of etymological analysis in his-
torical linguistics. For the future, we plan not only
to improve the integration with existing tools (for

example by providing enhanced export functionali-
ties to major phylogenetic software packages), but
also to consolidate the current code base. While
unit tests for the Python code running the local
server application have now been set up, with the
tool being tested on all major operation systems,
the JavaScript code base was written over a long
time frame, containing numerous lines of code that
should be refactored. In order to improve the acces-
sibility of the tool further, we also plan to conduct
more explicit trainings by offering webinars and by
sharing tutorials in video form where we run users
through major annotation stages and workflows.

Although not perfect yet, however, we think that
EDICTOR 3 already now provides a greatly im-
proved user experience with new functionalities,
and we hope that the tool will prove useful for those
who want to work with computer-assisted work-
flows instead of conducting purely quantitative or
purely qualitative analyses. The tool is intended
to help linguists in their etymological work, not to
replace them by switching to exclusively automatic
approaches that discard 200 years of scholarship.
This general spirit of computer-assisted language
comparison has not changed with EDICTOR 3, and
we hope that the tool will prove actually useful for
comparative work in historical linguistics.

Supplementary Material

EDICTOR 3 has been archived with
PyPi at https://pypi.org/project/edictor
(Version 3.0), is curated on GitHub at
https://github.com/digling/edictor, and can
be accessed online from https://edictor.org.
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Limitations

Computer-assisted approaches to historical lan-
guage comparison still face many limitations that
cannot be overcome by one single tool. The ma-
jority of the limitations we face in building tools
that assist linguists conducting computer-assisted
as opposed to purely classical studies consist in the
modeling of etymological relations between words
(both when comparing words inside one and the
same language and across multiple languages). Re-
garding EDICTOR 3, three very urgent limitations
can be found in the lack of a principled handling of
complex paradigms in multilingual wordlists (1),
the limitation of the models used to handle partial
cognates to account for non-concatenative morphol-
ogy (2), and the absence of general procedures to
check or annotate conditioning context that would
explain multiple sound reflexes in individual lan-
guages for the same proto sound (3). We do not
have any concrete ideas to solve any of these three
problems at the moment, but we discuss them often
and hope to be able to improve our work on these
open problems at some point in the future.
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Abstract

Everlasting contact between language commu-
nities leads to constant changes in languages
over time, and gives rise to language varieties
and dialects. However, the communities speak-
ing non-standard language are often overlooked
by non-inclusive NLP technologies. Recently,
there has been a surge of interest in study-
ing diatopic and diachronic changes in dialect
NLP, but there is currently no research explor-
ing the intersection of both. Our work aims
to fill this gap by systematically reviewing di-
achronic and diatopic papers from a unified
perspective. In this work, we critically assess
nine tasks and datasets across five dialects from
three language families (Slavic, Romance, and
Germanic) in both spoken and written modali-
ties. The tasks covered are diverse, including
corpus construction, dialect distance estima-
tion, and dialect geolocation prediction, among
others. Moreover, we outline five open chal-
lenges regarding changes in dialect use over
time, the reliability of dialect datasets, the im-
portance of speaker characteristics, limited cov-
erage of dialects, and ethical considerations in
data collection. We hope that our work sheds
light on future research towards inclusive com-
putational methods and datasets for language
varieties and dialects.

1 Introduction

Language continuously changes, varies and trans-
forms on all levels of linguistics. Research in soci-
olinguistics assumes five dimensions of language
variation, the so-called diasystem, that are mu-
tually influential: diaphasic (situation), diamesic
(medium), diastratic (social group), diachronic
(time), and diatopic (space), as shown in Figure
1 (Zampieri et al., 2020).

*These authors contributed equally to this work.
1Inspired by: http://phylonetworks.blogspot.

com/2015/06/the-diasystematic-structure-of.html,
accessed on 11.03.2024.
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Figure 1: Language variation and the diasystem.1

Diaphasic, diamesic, diastratic and diatopic vari-
ation can be grouped to synchronic variation, as
opposed to diachronic variation which spans sev-
eral points in time. Diachronic variation is not
limited to decades and centuries, but may already
be observed within years, months, and even weeks
or days. Especially with computer-mediated com-
munication and social media platforms, language
change appears to spread at a faster pace (Eisen-
stein et al., 2014). This exposes a challenge in
NLP applications, as models remain static after
training and struggle to understand the evolving
nature of language2. As a result, model perfor-
mance decreases over time. For instance, head-
line generation models decrease in performance
after a few years, while emoji prediction mod-
els do so even within a month (Søgaard et al.,
2021). As shown in the (socio-)linguistic work
(Beeching, 2006), diachronic and synchronic vari-
ation are closely linked in the sense that language
change often manifests first in synchronic variation

2Although there are methods to keep models up-to-
date, such as re-training, fine-tuning, and RAG (Retrieval-
Augmented Generation) leveraging up-to-date information
sources at inference, the process is time-consuming and costly.
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before entering a diachronic level. Additionally,
there is a strong spatial component in language
change, as language change is caused by contact
between people and speech communities (lately by
online interactions too), which gives rise to dialects
(Jeszenszky et al., 2018). While isoglosses sepa-
rate dialects by drawing the geographic boundaries,
the consensus among dialectologists and sociolin-
guists today is to speak of dialect continua, which
assume gradual transitions between central areas
of different dialects over time (Jeszenszky et al.,
2018). In these continua, as proposed by the wave
model (Wolfram and Schilling-Estes, 2017), lan-
guage change is propagated from a certain locus
at a certain point in time and spread layer-wise,
radiating from the central point of contact. This
is indeed a result of both spatial (diatopic) and
temporal (diachronic) interactions within dialect
continua.

An example of diatopic variation over time can
be seen in Figure 2: the usage of the German di-
alect word bissel (a bit). A query in the ZDL-
Regionalkorpus (Nolda et al., 2021, 2023), a col-
lection of regional newspaper texts from Germany,
Austria, and Switzerland, reveals its constant us-
age in Austria (A), and an increased usage in other,
more northern regions over time, first in Bavaria
(D-Südost) possibly due to geographic proximity,
and a more recent rise in Central Eastern Germany
(D-Mittelost).

In this work, we explore the intersection of di-
achronic and diatopic changes in language variants
and dialects within the NLP community. To do so,
we investigate nine tasks and datasets across five
dialects from three language families to address the
following research questions:

• What are the characteristics of dialect datasets
across different time periods and geographic
areas, and what NLP tasks have been estab-
lished based on these datasets (§3)?

• What is the current state of computational
methods and their results in these dialect-
related NLP tasks (§4)?

• What are the challenges in dialect NLP re-
search that have not been addressed in previ-
ous works (§5.1)?

3Usage graph for bissel, created with Digitales Wörterbuch
der deutschen Sprache (DWDS, Digital Dictionary of the Ger-
man Language), https://shorturl.at/9XVwt, accessed on
04.07.2024.
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Figure 2: Diachronic usage of bissel in the years 2005-
2023 in a regional newspaper corpus of German across
dialect areas in frequency per 1M tokens.3

In this work, we aim at exploring the intersec-
tion of diachronic and diatopic variation in dialect
NLP research. Research questions on this topic
include (a) how to detect and quantify language
change in dialect continua over time, and (b) how
to build and process diachronic-diatopic datasets.
Previous approaches leveraged machine learning
methods to compute the distance and similarity of
different varieties on various linguistic levels such
as graphemics (Waldenberger et al., 2021), syntax
(Jeszenszky et al., 2018; Chen et al., 2024), phonet-
ics (Boldsen and Paggio, 2022; He and Zhao, 2024),
semantics (Montanelli and Periti, 2023; Ma et al.,
2024b,a), and built diachronic-diatopic datasets
in both written and spoken modalities (Kopřivová
et al., 2014; Komrskova et al., 2017).

Here, we critically review nine tasks and
datasets, highlighting their strengths and limita-
tions, as well as identifying challenges that have
not been previously addressed. We discuss seminal
works in Indo-European languages and their vari-
eties, as well as recent works on this topic. The
dialect continua covered here include the Slavic
family with the Czech dialect landscape (Kopřivová
et al., 2014; Komrskova et al., 2017), the Romance
language family with Italian (Ramponi and Casula,
2023) and Portuguese (Pichel Campos et al., 2018;
Zampieri et al., 2016), as well as the Germanic lan-
guage family with Swiss German (Jeszenszky et al.,
2018, 2019) and historical German varieties (Dip-
per and Waldenberger, 2017; Waldenberger et al.,
2021).

2 Related work

To our knowledge, there is no survey examining
the intersection of diachronic and diatopic variation
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in dialect NLP so far. However, there are survey
papers examining the diachronic and diatopic com-
ponents separately, which will be briefly presented
here. Diachronic language modeling has been sur-
veyed with regard to embeddings (Kutuzov et al.,
2018) and semantic shift detection (Montanelli and
Periti, 2023).

The comprehensive survey on diatopic language
modelling by Zampieri et al. (2020) evaluates
computational methods for processing similar lan-
guages, language varieties, and dialects, with a
focus on diatopic language variation and integra-
tion in NLP applications. The work identifies the
availability of suitable data as a key challenge, as
the classical NLP data sources like newspaper text
and Wikipedia do not cover dialectal data. Instead,
social media posts and speech transcripts can be
used. More recently, an evaluation benchmark
for different NLP tasks in dialects, varieties and
closely-related languages, DIALECTBENCH, was
published (Faisal et al., 2024), proving that varia-
tion is of current interest in the research commu-
nity. Joshi et al. (2024) survey Natural Language
Understanding and Generation in dialects, with-
out taking other axes of the variation diasystem
into account. There exists a designated series of
workshops on NLP for Similar Languages, Lan-
guage Varieties, and Dialects (VarDial)4, which
also proposes several NLP shared tasks in dialects
and other varieties, such as dialect classification
and identification itself. Even though the work-
shop has featured a number of publications and
talks dealing with the intersection of diachronic
and diatopic variation over the years (Sukhareva
and Chiarcos, 2014; Baldwin, 2018; Vidal-Gorène
et al., 2020), this has not been a separate workshop
or shared task topic up until now.

3 Tasks and Datasets

In this section, we review the dialect-related tasks
and datasets from a unified perspective consider-
ing both diachronic and diatopic aspects, and orga-
nize them by languages (See Table 1 for tasks and
datasets, and Table 2 for data statistics).

3.1 Czech

A very interesting albeit not very recent paper by
Kopřivová et al. (2014) explains the building pro-
cess of their later released ORTOFON and DI-

4cf. 2024 edition https://sites.google.com/view/
vardial-2024/home, accessed on 11.03.2024.

ALEKT corpora (Komrskova et al., 2017). Al-
though both papers are mention-worthy, we focus
on Kopřivová et al. (2014) due to the presentation
and depth of explanation for the data collection
processes.

The ORTOFON corpus relies on spontaneous
conversations recorded between 2012-2017, where
nobody was aware that the conversations were
recorded except for the person who made the
recording. The non-scripted interactions recorded
this way are then separated into the closest one of
12 situation categories which were created with the
topics of Czech daily-life in mind. What makes
this corpus really strong is that Kopřivová et al.
(2014) consider several missing elements in other
corpora all at once: relationship between speakers
is noted alongside the total number of generations
present in each conversation, as well as the speaker
characteristics, such as education, occupation, re-
gion of residence (with subtypes such as longest,
childhood and current residence) and speech de-
fects. After factoring these elements into the data
collection process, the corpus is balanced accord-
ing to the speaker’s gender, education (binary as
tertiary/non-tertiary), age (binary as >35 or <35),
and childhood region of residence. As promising
as Kopřivová et al. (2014)’s collection methods
are to provide natural results, the approach is not
discussed in terms of ethics in their presentation.

DIALEKT on the other hand presents a collec-
tion of regional dialects from the 1960s-1980s. The
DIALEKT corpus includes dialects, some of which
are even extinct now. The DIALEKT monologues
are all by people who have always lived in rural
areas and are all natives to their regions. One can
argue that DIALEKT also considers generational
difference, as the birth years of speakers range from
the end of 19th century to the start of 20th century,
although may not be to the extent of ORTOFON in
some cases. Another feature of DIALEKT worth
mentioning is that it allows users to search for di-
alect features captured with regards to all levels of
linguistic analysis.

Both corpora utilize ELAN linguistic transcrip-
tion software (Sloetjes and Wittenburg, 2008), go-
ing through annotation in two tiers. For ORTO-
FON, the first layer is close to Czech orthogra-
phy while the second adapts phonetic transcription.
The latter enables collecting features such as stress
groups, vowel reductions and cliticization which
might have been lost otherwise. For DIALEKT,
the first layer is dialectological, and the second
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Languages Tasks Datasets

Czech Corpus Construction (Kopřivová et al., 2014; Komrskova et al., 2017) ORTOFON, DIALEKT

Italian Geolocation Prediction (Ramponi and Casula, 2023) DIATOPIT

Portuguese Language Distance Estimation (Pichel Campos et al., 2018) DiaPT

Portuguese Century Classification (Zampieri et al., 2016) Colonia

Swiss German Modeling of Dialectal Variant Transition (Jeszenszky et al., 2018) SADS

Swiss German Predicting Which Regions Use Which Dialectal Variants (Jeszenszky et al., 2019) SADS

German Investigating Diachronic Changes in Dialects (Dipper and Waldenberger, 2017) Anselm

German Investigating Graphemic Variation in Dialects (Waldenberger et al., 2021) ReM

English, French Semantic Change Detection (Montariol and Allauzen, 2021) Le Monde, NY Times5

Table 1: An overview of the presented papers in Section 3.

is the ortographic one same as ORTOFON. In this
case, the dialectological layer allows distinguishing
speech sounds which are special to non-standard
varieties of Czech via the use of a set of symbols.
These qualities make the corpora later presented by
Komrskova et al. (2017) worth of note.

3.2 Italian

Recently, Ramponi and Casula (2023) present DI-
ATOPIT, a corpus built by analyzing Twitter posts
of non-Standard Italian use. They use Twitter APIs
to locate non-standard use of language across Ital-
ian borders. Moreover, they collect data that comes
from accurate coordinates throughout two years to
ensure no occasional visitors will disturb the data.
They also consider a variety of “out of vocabulary”
(OOV) tokens that they use to deduct which of
the Twitter posts collected may be from a regional
language user. OOV tokens contain tokens which
may not be special tokens (i.e. hashtag) and also
may not exist in the Aspel dictionary for Italian,
but do not include common interjections, elongated
words, slangs, wrong diacritics or foreign language
tokens, as well as named entity tokens. In doing
so, the coordinates from Twitter API and the OOV
tokens can be matched to create a map of data by
the administrative region.

They also include experiments for evaluating the
DIATOPIT’s representativeness of real varieties of
Italian, which is shown to yield satisfying results
in their metrics. While they list a variety of goals
for their corpus, what we can say truthfully is that
the main contribution is to enable a starting point
for those interested in applying NLP methods to
research varieties of dialects spoken within Italy.
It also serves as first example focusing Italian di-

atopic variation.

3.3 Portuguese

A different approach works with historical Por-
tuguese to identify different time periods within
the historical evolution of a language. Pichel Cam-
pos et al. (2018) use a perplexity based measure for
this task. Perplexity is a metric indicating how well
a system fits a text sample, with a lower score being
the better score. It is commonly used as a measure
to evaluate the quality of a system, Pichel Campos
et al. (2018) note that this is the first attempt uti-
lizing perplexity to calculate diachronic language
distance between different periods of historical Por-
tuguese. Their corpus includes six time periods of
European Portuguese ranging from the 12th cen-
tury to the 20th century. They collect their data
from various open historical text repositories and
historical corpora, and keep the original spelling
whenever possible. The perplexity-based approach
is noted to successfully identify three main periods
for European Portuguese, and should be applicable
with other languages as well.

There is another study that works with Por-
tuguese: Zampieri et al. (2016) build upon the
Colonia corpus that is an already existing historical
Portuguese corpus with texts from the 16th century
to the early 20th century. Additionally, they include
Part-of-Speech tags for the corpus.

3.4 Swiss German

An interesting approach of modeling transition ar-
eas between different dialectal variants using lo-
gistic functions is proposed by Jeszenszky et al.
(2018): The idea is to model geographic areas,

5These corpora are not listed in Table 2, as they are not
described in detail.
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where one dialectal variant transitions into another,
i.e. where language change is taking place. They
base their analyses on the SADS dataset (Glaser
and Bart, 2015), a linguistic survey with questions
on different dialectal phenomena in Swiss German
which provides detailed geolocations. Even though
the method is very elaborate on a geo-linguistic
level, a major drawback is that it can only model
the transition of two variants, whereas in real-world
scenarios, variation patterns are much more com-
plex and numerous variants are assumed to coexist
and influence one another. In a subsequent study
on the same dataset, the authors focused further on
the temporal aspect (Jeszenszky et al., 2019), and
also took the age of respondents into account, an
approach similar to Kopřivová et al. (2014). With
the sociolinguistic diasystem of language variation,
these studies model not only two, but three dimen-
sions: diachronic, diatopic, and diastratic by taking
the social variable of age into account.

3.5 German

There are two noteworthy diachronic-diatopic stud-
ies on historical corpora of German: Dipper and
Waldenberger (2017) examine language change
across dialects on a graphemic level. They use
aligned equivalent word forms (i.e. word forms that
have the same normalization to Standard German)
from different German regions to derive rewrite
rules with insertions, replacements and identity and
create mappings based on weighted Levenshtein
Distances. The results show differences across
linguistic levels including morphology, phonol-
ogy and graphemics. The results align with find-
ings from historical linguistics on specific phenom-
ena, such as the High German consonant shift. A
follow-up work by (Waldenberger et al., 2021) uses
a different dataset, Reference Corpus of Middle
High German (Referenzkorpus Mittelhochdeutsch,
ReM) (Petran et al., 2016), and generate differ-
ence profiles based on weighted Levenshtein dis-
tance. The work includes word boundaries as well
which allows for capturing further linguistic phe-
nomena. The created mappings from one historical
and dialectal variety to another are then compared
on a graphemic and graphophonemic level. On a
broader level, they conduct further statistical anal-
yses by comparing the intersection of shared map-
pings between texts in a diatopic subcorpus, and
find that this measure indeed reflects the similarity
of neighboring dialects.

3.6 English and French

An example of using diachronic word embed-
dings to model semantic change in the English
and French languages is the work by Montariol
and Allauzen (2021). Although this work does
not work with dialectal data, we still decided to
include it, as the approach is interesting and could
be applied to (non-continuous) dialect data, e.g.
Standard German and Swiss German. Since the
datasets are not described in detail, we decided to
not include them in Table 2. Overall, the work pro-
poses learning word embeddings from a synthetic
corpus with the CBOW (continuous bag-of-words)
approach and M-BERT (Devlin et al., 2019), and
experiments with different training and aggrega-
tion techniques. Computing the divergence of word
senses in the two languages, they analyze different
language change patterns such as stability in both
languages, drift in the same direction, and diver-
gence in word senses with culture-specific contexts.
Cathcart and Wandl (2020) propose a related ap-
proach experimenting with word embeddings to
model phonological change in related varieties of
historical Slavic languages in a continuous and dis-
crete way. These approaches are quite interesting
and could be applicable to dialect data as well,
given the availability of a large amount of training
data for dialect embeddings and an evaluation cor-
pus that includes sense and phonetic information.

3.7 Data Characteristics

Data Sources. Different text sources have been
used for collecting diatopic datasets: While some
approaches work with social media data from Twit-
ter (Dunn and Wong, 2022; Ramponi and Casula,
2023), historical corpora mainly contain religious
text or official documents (Dipper and Walden-
berger, 2017; Waldenberger et al., 2021) and are
usually not suited for a geographical analysis on
a fine-grained level. The approaches working on
Swiss German (Jeszenszky et al., 2018, 2019) do
not base their analyses on natural language data, but
on a linguistic multiple-choice survey, the Syntac-
tic Atlas of German-speaking Switzerland (SADS).
This kind of data can still be very useful, as it pro-
vides direct information about specific language
phenomena paired with a very fine-grained, reli-
able geolocation.

Modality. Most of the corpora rely on written
language, only Kopřivová et al. (2014) create two
spoken language corpora. From a linguistic point
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Languages Datasets Tokens Source/Register Time Span Modality

Czech ORTOFON (Komrskova et al., 2017) 1.24 M dialogue 2012-2017 spoken
Czech DIALEKT (Komrskova et al., 2017) 126,131 monologue 1960s-1980s spoken
Italian DIATOPIT (Ramponi and Casula, 2023) 388,069 Twitter 2020-2022 written
Portuguese DiaPT (Pichel Campos et al., 2018) - historical text 1100-2000 written
Portuguese Colonia (Zampieri and Becker, 2013) 5.1 M media, historical text 1500-2000 written
Swiss German SADS (Glaser and Bart, 2015) - linguistic survey 2000-2002 written
German Anselm (Dipper and Schultz-Balluff, 2013) 30,000 religious text 1350-1600 written
German ReM (Petran et al., 2016) 2.5 M historical text 1050-1350 written
German ZDL-Reg. (Nolda et al., 2021) 11.78 B regional newspaper 1993-2024 written

Table 2: An overview of the dialect-related datasets discussed in Section 3. ZDL-Reg. is dynamically enlarged; the
number of tokens is taken from https://www.dwds.de/d/korpora/regional, accessed on 05.03.2024. SADS
does not contain natural language data, but 118 multiple-choice questions about 54 (morpho-)syntactic phenomena.
Additionally, we include another corpus of regional newspaper data in German, the ZDL-Regionalkorpus (Nolda
et al., 2021, 2023)—which has not been explored for diachronic-diatopic studies yet.

of view, this is very effective, since variation usu-
ally is much stronger in spoken compared to written
language, as most dialects do not deviate markedly
from Standard languages in the written modality.

Time Span. The diachronic spans of the datasets
also vary strongly: While some historical corpora
cover very long periods of time, e.g. the Diachronic
Portuguese Corpus (DiaPT) (Pichel Campos et al.,
2018) spans almost one millennium, social media-
based corpora like DIATOPIT or linguistic survey
data like SADS only span two years.

Data Imbalance. It must be noted that the Colo-
nia corpus used by Zampieri et al. (2016) does not
contain the same amount of text from each period
it covers. For instance, there are 38 documents
available from the 19th century, while there are
only 13 available from the 16th century. Due to
this, Zampieri et al. (2016) generate artificial texts
with around 330 tokens for their train and test sets
in order to conduct their main experiments.

4 Experiments

Experimental setups and results of the presented
studies are difficult to compare, as the tasks and
datasets presented in Section 3 are very different.
Some of the papers focus on corpus construction
(Kopřivová et al., 2014) or qualitative analysis (Dip-
per and Waldenberger, 2017), while some present
quantitative results in the tasks of measuring lan-
guage distance, predicting geolocation or dialect
variant usage, will briefly be compared here.

Czech. Since Kopřivová et al. (2014) aims to
build/present corpora, there are no experiments to
mention. But one can argue that when ORTOFON
and DIALEKT are used interconnectedly, they will

present a good outlook on diachronic and diatopic
variation in Czech. The work by Kopřivová et al.
(2014) is to set apart with their detailed annotation
system separated with several parallel layers to ac-
commodate speakers individually. In the follow-up
work by Komrskova et al. (2017), the advantages
are evident thanks to the use of this multi-tier tran-
scription.

Italian. Ramponi and Casula (2023) evaluate ge-
olocation predictions on two levels: coarse-grained
geolocation (CG, i.e. region classification), and
fine-grained geolocation (FG, double-regression
i.e. for latitude/longitude coordinates). They mea-
sure the accuracy of the prediction results in the
macro-averaged Precision, Recall, and F1 score.
Baseline models are mostly built upon BERT (De-
vlin et al., 2019). Both monolingual (Italian-only)
and multilingual models are investigated, includ-
ing AlBERTo (Polignano et al., 2019), UmBERTo
(Parisi et al., 2020) and mBERT (Devlin et al.,
2019), XLM-R (Conneau et al., 2020). Addition-
ally, for CG they use Logistic Regression (LR) and
SVM classifiers, and for FG they use a centroid
baseline and a regression model based on k-nearest
neighbors alongside a decision tree regressor. Re-
sults averaged across five runs with random seeds
for shuffling the data and initializing model parame-
ters are presented. For CG, AlBERTo achieves best
results, and LR performs the worst. SVM proves to
be competitive for the task. In FG’s case, AlBERTo
achieves the best scores again. Interestingly, the
decision tree performs competitively despite being
a much more cost-efficient system.

Portuguese. Pichel Campos et al. (2018) aims
to compare six time periods of historical Euro-
pean Portuguese. They implement a perplexity-
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based language distance (PLD) measure with 7-
gram models alongside a linear interpolation based
smoothing technique. They conduct experiments
on two levels: PLD with original spelling, and PLD
with transcribed spelling. For the first instance,
they compute PLD for each possible train-test pair.
For the latter instance, they adjust the Diachronic
Portuguese Corpus to have all periods share the
same spelling. This is achieved by transliterating
all historical periods into Latin scripts and then
normalizing it with a generic orthography similar
to phonological style. The resulting encoding of
spelling normalization consists of 34 symbols, in-
cluding 10 vowels and 24 consonants.

Overall, the results in both experiments observe
a similar pattern. It is shown that language dis-
tances between different time periods are corre-
lated with chronology. Moreover, there is not a
huge divergence within the different periods in-
vestigated. The longest difference between peri-
ods scores roughly 6.19 with original spelling and
5.92 with transcribed spelling, which is still lower
than the distance between closely related languages,
such as Spanish-Portuguese’s score of 7.74. The
results suggest that, at least for the case of Brasilian-
Portuguese, the language has remained similar over
time.

For the other study that works with Portuguese,
Zampieri et al. (2016) conduct experiments in three
steps. They first have a preliminary session where
they test a small sample with 87 documents from
their corpus. They train SVM alongside Multinom-
inal Naive Bayes (MNB) to predict which century
a text belongs to, using both words and Part-of-
Speech (POS) tags.

Secondly, they start their main experiments
where they use 1500 artificially generated docu-
ments, and use the SVM classifier to execute pre-
dictions. They observe a performance increase due
to the implementation of POS tags or words rep-
resented as uni-, bi-, and trigrams. Results show
that POS trigrams yield the 90.7% accuracy when
tested with century classification of the presented
documents. Zampieri et al. (2016) note that this
emphasises the existence of difference in structural
properties in each time span by an important level;
this means changes in structural properties take
place at both the word level and beyond, and these
changes can be captured through uni-, bi-, and tri-
grams.

Lastly, they conduct experiments across a
smaller time span of 50 years. Their findings show

that many time periods exhibit high similarity in
grammatical structure. This presents a challenge
for century classification of documents. It is noted
that POS tags perform the best with trigrams.

Swiss German. Jeszenszky et al. (2018) concep-
tionalize transitions between dialectal variant areas
via logistic regression and intensity maps in an at-
tempt to present spatial distribution of syntactic
variants in Swiss. The results show gradual and
sharp transitions between variants alongside dis-
tinct spatial patterns. Subdivision analyses further
elucidated the characteristics of dominance zones
and transition areas. Overall, the findings shed light
on the spatial distribution and dynamics of linguis-
tic features. A drawback of the methodology is
that only 40% of the variables in the SADS dataset
(Glaser and Bart, 2015) can be modeled. An im-
portant take-away is that the transition of dialectal
variants is a highly complex phenomenon, which
cannot be fully modeled by only taking the spatial
dimension into account.

Jeszenszky et al. (2019) use logistic regression
on a global level to model the association of linguis-
tic variation and age with 10-fold cross-validation.
The AUC scores (area under the curve) reveal that
for more than half of the variants considered, age
is not a significant predictor. On a local level, they
classify whether a specific linguistic variant is used
at a survey site given the respondent age. The sur-
vey site is chosen from the k-nearest neighbors
based on Euclidean distance, k ranging from 5 to
50. They conclude that the significance of age as
predictor variable is correlated with space: When
a specific age group within a region is significant,
the prediction of which dialect that region speaks
is more accurate. However, the prediction becomes
less accurate when a region associates with mul-
tiple age groups. They attribute this finding to a
sociolinguistic fact that lexicon in dialects is more
prone to change with respect to speaker age than
syntax.

German. Dipper and Waldenberger (2017) and
Waldenberger et al. (2021) combine quantitative
with an in-depth qualitative analysis. Both do not
experiment with complex methods, but conduct a
simple frequency-based, statistical analysis. Dipper
and Waldenberger (2017) find quantitative proof
for morphological, phonological, and graphemic
phenomena by deriving replacement rules. They
show insightful results into nuances of linguistic
change across different regions and periods from
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a historical linguistic perspective: finding quan-
titative prove for theories like the High German
consonant shift. The second study by Walden-
berger et al. (2021) employs slightly more elab-
orate statistical measures to quantify differences
between texts and subcorpora. The results confirm
the diatopic and diachronic variation: By analyz-
ing Levenshtein mappings and computing similar-
ity scores, the study demonstrated that texts from
closely related dialects exhibited higher similarity
scores compared to those from more distant regions.
Overall, Upper German texts are found to be more
similar to each other than Middle German texts.

English and French. Montariol and Allauzen
(2021) experiment with two kinds of embeddings,
continuous bag-of-words (CBOW) and BERT (De-
vlin et al., 2019), to detect whether meaning
changes of a word and its translation in English
and French are consistent or divergent over time.
They show a trade-off between performance and
efficiency: While BERT with k-means clustering
achieves the best performance, the CBOW model
with incremental training is computationally the
most efficient and offers very competitive results.

Their findings are summarized as follows: Se-
mantic meanings drifting in the same direction
across languages mainly occurs with words related
to technology and society. On the other hand, mean-
ings diverging in different directions implies that
the meaning of a word might remain unchanged
over time in one language, but drift in the other.
This is mostly seen for words related to culture-
specific concepts or controversial topics. It would
be interesting to apply this approach not only to re-
lated languages, but to an actual dialect continuum
to investigate whether these findings are confirmed
in closer related language varieties as well.

5 Discussion

Almost all languages in the world have distinct di-
alects varying by location that change quickly due
to complex factors related to contact. Taking these
two dimensions of language variation, diachronic
and diatopic, into account can improve the diversity
and representativeness of languages covered in this
field , and benefit the communities of non-standard
language users. Our research shows that the in-
tersection of diachronic and diatopic variation is
an under-studied topic in dialect NLP. Although
there are some approaches experimenting with di-
achronic word embeddings on a multilingual level

(Montariol and Allauzen, 2021), there is currently
a lack of state-of-the-art machine learning and NLP
approaches.

This is a challenging topic to work with, con-
sidering its interdisciplinary nature combining his-
torical linguistics, dialectology, machine learning
and NLP. Perhaps this is a factor contributing to the
status of deep learning based NLP methods having
not yet been applied to studying language change
in dialect continua.

5.1 Open Challenges

Do language variants and dialects change over
time? While Pichel Campos et al. (2018) show
that the difference in perplexity-based language dis-
tances between different time periods of European
Portuguese is not substantial, Zampieri et al. (2016)
suggest that grammatical structure can be substan-
tially different in some time periods of Portuguese;
however, their study was conducted on artificial
documents. This means that either perplexity-based
language distance fails to capture the differences in
grammatical structures of different time periods, or
such differences are not present in the real-world
historical Portuguese documents investigated. We
leave this question to future work.

Is the construction of dialect-related datasets
reliable? The reliability of Ramponi and Casula
(2023) is also worth mentioning: They rely on the
belief that the locals may write things that deviate
from Standard Italian just because they speak it so,
but they also rely on Twitter language identifiers to
deduct whether a tweet is in Italian or not. This, of
course, is a double-edged sword and may cut back
on data reliability. If their assumption is correct,
in extreme cases some societies whose language
use deviate from the standard may remain com-
pletely under-represented and their twitters might
be misclassified as Standard Italian. However, if
it is incorrect (i.e., the language use of the locals
follows the standard), the tweets written by the
locals and those in standard Italian become indis-
tinguishable. Considering their access to speakers
of regional Italian varieties (curators), Kopřivová
et al. (2014) set a good example they could follow
to ensure more varieties are correctly represented.
However, one can argue that if someone was to use
VPN for any reason, the coordinates would also be
set for the entire time of use. Thus, Twitter APIs
may not provide completely accurate data either,
though this may be minimal to consider in most
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cases.

Are speaker characteristics important? Addi-
tionally, although Kopřivová et al. (2014) show
that tracking the number of generations present in
a conversation is beneficial for building speaker-
characters, Jeszenszky et al. (2019) suggest that
age is not a definitive for prediction. This means
the usefulness of age information is quite task-
dependent. An interesting follow-up work would
be to incorporate other speaker characteristics, such
as gender and education, into the analysis.

Limited coverage of dialects. There are numer-
ous dialects spoken in the world. For instance, En-
glish alone has approximately 160 dialects (Aeni
et al., 2021). However, only a small number of
dialects have been researched in the NLP and ma-
chine learning communities. Future work could
establish a data center to manage and update world-
existing dialect corpora. Indeed, many corpora
are publicly available but are little explored. For
instance, the German regional newspaper corpus
ZDL-Regionalkorpus (Nolda et al., 2021) has not
been used for diachronic analysis so far, despite
its size of more than 11 B tokens covering a time
span 1993-2024 with regular updates which could
enable use for data-intensive machine learning and
word embedding approaches.

Ethical considerations in the collection of dialec-
tal data. Although the data collection methods of
Kopřivová et al. (2014) promise to provide near au-
thentic results, no ethical issues are mentioned. As
the conversations are recorded without the knowl-
edge of the participants to ensure natural quality,
it would not have been possible to get individual
consent from the participants, although the person
recording may have agreed otherwise. This, there-
fore, shows risk of privacy breach, and may not
be an acceptable approach in a lot of data collec-
tion cases. Whether this would be acceptable if the
speakers are informed after the data is collected
may still be questionable to some people’s discre-
tion, however, this doesn’t change the fact that
despite being a breach, Kopřivová et al. (2014)’s
approach does provide data as close to real-life
situations as possible. This is of value in itself.

6 Conclusion

While there is a rising interest in modeling di-
achronic and diatopic variation in the NLP commu-
nity, the intersection of both, i.e. language change

in dialect continua, remains an under-studied topic.
Even though findings from linguistics and soci-
olinguistics stress the importance of the diatopic
dimension when modeling language change, the
topic has not yet received as much attention in com-
putational linguistics and not many methodological
advancements have been made. Our work has been
a first step in closing this research gap, and we hope
to give inspiration to future research.
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Abstract

This paper describes our contribution to Sub-
task 1 of the AXOLOTL-24 Shared Task on un-
supervised lexical semantic change modeling.
In a joint task of word sense disambiguation
and word sense induction on diachronic cor-
pora, we significantly outperform the baseline
by merging clusters of modern usage examples
based on their similarities with the same his-
torical word sense as well as their mutual simi-
larities. We observe that multilingual sentence
embeddings outperform language-specific ones
in this task.

1 Introduction

Semantic change modeling is the task of computa-
tionally determining how the meanings of words
change over time. This semantic shift can be ob-
served in the change of contexts in which the words
appear (Kutuzov et al., 2018).

Given a diachronic corpus of old and new word
usage examples and an inventory of old word
senses with their dictionary definitions, the model-
ing task can be split further into the disambiguation
and the induction of word senses: New usage exam-
ples are aligned with old usage examples and sense
definitions. If an appropriate old sense does not ex-
ist in the sense inventory and an alignment is thus
impossible, a novel word sense is induced instead,
indicating that the word gained a new meaning.

This joint task has been defined by Subtask 1 of
the AXOLOTL-24 Shared Task (Fedorova et al.,
2024), our contribution to which we describe in
the following sections. Like the baseline proposed
by the shared task organizers, we approach the
challenge by measuring the similarity of modern
usage example clusters and old sense definitions.
We further explore impacts on the performance by
merging clusters based on a similarity criterion and
by ensembling different embedding models and
different clusterings.

Our implementation is available on GitHub.1

2 Related Work

The idea of unsupervised clustering to discriminate
word senses goes back at least to using Gaussian
Mixture models on a synchronic corpus (Schütze,
1998). More recently, neural approaches have been
applied to diachronic corpora to detect and quantify
semantic change (Kutuzov et al., 2018).

SemEval-2020 Task 1 produced several ap-
proaches for lexical semantic change detection
between two time-specific corpora (Schlechtweg
et al., 2020). The task was split into the binary clas-
sification of whether words lost or gained senses,
and the ranking of words according to their degree
of change. These sub-tasks were solved, e.g., by
clustering contextual word embeddings and com-
paring their cluster assignments (Karnysheva and
Schwarz, 2020), or by measuring the average co-
sine distances between contextual embeddings of
the same word (Kutuzov and Giulianelli, 2020). In
contrast with AXOLOTL-24, this task considers
whether an old word sense is still present in the
new time period.

Another task more similar to AXOLOTL-24
was defined by the Reverse Dictonary track of
SemEval-2022 Task 1 (Mickus et al., 2022): Given
a dictionary consisting of words, their definitions,
and definition embeddings, user-written definitions
are to be mapped to the correct word by reconstruct-
ing the reference embedding. As these embeddings
were pre-computed, submitted systems were lim-
ited to three specific models. While participating
teams achieved reasonable average cosine similar-
ities using token-level transformers, this was not
evaluated as a classification task.

The Sentence-BERT architecture promises bet-
ter performance than token-level transformers on
sentence-level downstream tasks such as paraphras-

1https://github.com/chbridges/axolotl24
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ing and the measurement of sentence similarities
(Reimers and Gurevych, 2019). While the orig-
inal publication proposes a model for paraphras-
ing in over 50 languages based on MPNet (Song
et al., 2020), the general-purpose LaBSE doubles
the size of the language inventory and suggests cur-
rent state-of-the-art performance in cross-lingual
settings (Feng et al., 2022).

3 Datasets and Task Definition

The AXOLOTL-24 Shared Task provides training
corpora in Finnish and Russian. The Finnish cor-
pus covers the years 1543 to 1650 in its old time
period and the years 1700 to 1750 in its new period,
whereas the Russian corpus covers approximately
the 19th century and the years after 1950. Both
datasets consist of different target words with mul-
tiple word senses, and each sense comprises a sense
ID, a definition, and a usage example. In the case
of Russian, usage examples of old words are often
noisy or missing.

The goal of Subtask 1 is to determine the cor-
rect sense IDs of word usage examples in the new
period. Thus, the corresponding test datasets only
contain sense IDs and definitions in the old period.
Subtask 2, the generation of novel sense definitions,
is out of the scope of this paper. In addition to the
Finnish and Russian test datasets, a third, German
test set based on the DWUG dataset (Schlechtweg,
2023) is provided to quantify the developed sys-
tems’ multilingual performance.

Systems are evaluated with respect to word sense
disambiguation and the joint task including the in-
duction of novel word senses. System performance
on the disambiguation task is measured with the
macro F1 score of sense classifications only of
sense IDs present in the old sense inventory. Addi-
tionally, the overall performance is measured with
the adjusted Rand index, thus ignoring specific
sense assignments but validating whether modern
usage examples of old and novel word senses are
correctly grouped together.

4 Methodology

In this section, we briefly summarize the baseline
algorithm before describing our improvements.

4.1 Baseline

The general approach can be divided into two steps:
the embedding of old word sense definitions and
modern usage examples, and the alignment of the

Figure 1: A conceptual cluster merging. Clusters A and
B get merged, as the angles of their centers with the
old sense vector are small. Novel senses are generated
for clusters C and D. In the second pass, novel sense
vectors are fitted through C and D, merging them if the
angle between these vectors is sufficiently small.

respective embeddings to assign word senses to the
examples. These steps are computed target word
by target word, i.e., no defined sense of a different
word can leak into the assignment.

In the first step, the sense definitions and usage
examples from the old time period are concatenated.
These concatenations and all usage examples from
the new time period are then embedded in a shared
vector space by a transformer model.

In the second step, the new usage examples are
clustered. For each cluster C, an old word sense
sold is assigned to all corresponding usage exam-
ples if the cosine similarity cos(sold, c) between
the old sense embedding sold and a cluster embed-
ding c is greater than a threshold τ ∈ [0, 1]. If no
old sense satisfies this condition, a new sense snovel
is assigned to all usage examples in the cluster.

This final step is solved in a greedy manner:
Once an old sense is assigned to a cluster Ci, it
is removed from a list of candidate senses S and
cannot be assigned to any other cluster Cj , even if
cos(si, cj) > cos(si, ci). This poses a problem if
word senses are split into multiple clusters.

The following subsections propose methods to
alleviate this weakness of the baseline approach.
The impact of each described method on the system
performance is summarized in Section 5.

4.2 Cluster Merging

A straightforward technique to improve the align-
ment of old senses and new usage examples is to
keep the set of candidate senses S fixed and assign
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Finnish Russian
Model ARI F1 ARI F1

Baseline 0.022 0.222 0.098 0.274
Merge-1 0.420 0.557 0.052 0.428
Merge-5 0.420 0.557 0.058 0.428
Merge-1c 0.437 0.570 0.071 0.447
Merge-5c 0.437 0.570 0.077 0.449

Table 1: Development scores at a fixed similarity thresh-
old τ = 0.3. Where Affinity Propagation is used, the
model name indicates the number of ensembled cluster-
ings and the usage of cosine similarity affinity. Highest
scores are indicated in bold, lowest scores in italics.

each cluster C to the sense with the greatest sim-
ilarity, provided that the similarity is greater than
the previously chosen threshold τ . The similarity
is computed between the sense embedding s and
the cluster mean c̄ to capture the overall semantics
of C. Thus, the sense alignment step is defined as:

sC =




argmax

s∈S
cos(s, c̄), cos(·) ≥ τ

snovel, otherwise
(1)

As each old sense can now be mapped to mul-
tiple clusters, this alignment is equivalent to the
merging of clusters when their similarities with the
same old sense are sufficiently large. This reduces
the granularity of old sense clusters. In a second
pass, each novel sense cluster center is considered
a novel sense embedding and novel sense clusters
are merged by the same criterion based on pairwise
cosine similarities. A conceptual such merging in
two dimensions is depicted in Figure 1.

4.3 Two-Stage Ensembling

In addition to merging clusters with respect to the
similarity with the same old sense, we propose
two methods to ensemble results at different stages
of the algorithm: The ensembling of embedding
models and the ensembling of clusterings.

The ensembling of n models is straightforward
and can be solved via the concatenation

e = e1 ⊕ . . .⊕ en (2)

of each model output ei which is then used as the
input to the alignment step of the algorithm.

A crucial part of the alignment step is the clus-
tering of modern usage examples. Some clustering
algorithms such as K-means (Lloyd, 1982) and
Affinity Propagation (Frey and Dueck, 2007) are
initialized using a random seed r based on which
they can converge to different local minima. We

Finnish Russian
Embedding ARI F1 ARI F1

LEALLA-large 0.437 0.570 0.077 0.449
LaBSE 0.277 0.462 0.081 0.572
Finnish-Paraphrase 0.561 0.676 — —
Sentence RuBERT — — 0.056 0.608
Multi-Paraphrase 0.554 0.661 0.118 0.612
Multi ⊕ LaBSE 0.572 0.669 0.120 0.603

Table 2: Development scores at a fixed similarity thresh-
old τ = 0.3 for different sentence embeddings, based
on the best models in Table 1. Highest scores are indi-
cated in bold, lowest scores in italics.

mitigate resulting errors by clustering the input
embeddings multiple times using different random
seeds ri and selecting the final cluster assignments
via a majority vote. Reproducibility is ensured by
fixing the initial random seed r0 and incrementing
it for the subsequent clusterings, i.e., ri = r0 + i.

5 Results and Discussion

The AXOLOTL-24 baseline uses LEALLA-large
(Mao and Nakagawa, 2023) in the embedding step,
a lightweight language-agnostic sentence trans-
former distilled from LaBSE (Feng et al., 2022),
and clusters these embeddings with Affinity Propa-
gation (Frey and Dueck, 2007) using the negative
Euclidean distance as the cluster affinity. We begin
our study by comparing the baseline with our ap-
proach based on LaBSE embeddings on the Finnish
and Russian development sets in Table 1. We gener-
ally prioritize the ARI since the F1 score only quan-
tifies the classification of old word senses. While
the cluster merging significantly improves the ARI
and F1 score for Finnish, there is a slight trade-
off between them in the Russian dataset where a
greatly increased F1 score comes at the cost of a
decreased ARI. The ensembling of clusterings does
not affect Finnish but leads to better results for Rus-
sian. The scores further increase when using the
cosine similarity as the cluster affinity.

We further evaluate additional language-specific
and language-agnostic sentence embeddings from
the Hugging Face Hub in Table 2: a Finnish
paraphrasing model2 (Kanerva et al., 2021), Sen-
tence RuBERT3 (Kuratov and Arkhipov, 2019),
and a multilingual paraphrasing model4 (Reimers
and Gurevych, 2019). Interestingly, we observe
that multilingual models can outperform language-

2TurkuNLP/sbert-cased-finnish-paraphrase
3DeepPavlov/rubert-base-cased-sentence
4sentence-transformers/paraphrase-multilingual-mpnet-

base-v2
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Figure 2: Threshold analysis on the development sets of
both languages. ARI and F1 on the y-axis are mapped
against different similarity thresholds τ on the x-axis.

specific ones, in particular, a concatenation of the
multilingual paraphrasing model and LaBSE. Thus,
we consider this embedding to generalize best and
choose it for further experiments. We do not ob-
serve any improvement when concatenating a third
model.

Next, we analyze how well the system performs
for different similarity thresholds τ in Figure 2.
It shows different behavior for the two datasets:
Increasing τ leads to a decreasing F1 in both lan-
guages but to a decreasing ARI for Finnish and
an increasing ARI for Russian. This indicates that
initial old sense clusters are too granular in both
languages, whereas old and novel sense clusters
are less discriminative in Russian as novel senses
tend to get merged into old ones, reducing the over-
all clustering quality when the similarity thresh-
old is set too small. Thus, increasing τ increases
the proportion of granular novel sense clusters to
coarse-grained old sense clusters. We find that the
preset threshold τ = 0.3 used by the baseline and
our previous experiments is a reasonable choice, as
the Finnish scores are stable up to this value. For
Russian, a slightly higher threshold of τ = 0.4 or
τ = 0.5 might be preferred to account for a greater
ARI without sacrificing too much F1. We choose
τ for Finnish and Russian based on this graph but
suggest cross-validation as a more robust method
to choose the parameter for unseen data. For Ger-
man, which has no development set, we select the
same parameter as for Finnish since the different
performance on Russian can possibly be attributed
to its often noisy or missing word usage examples
in the old period.

Finally, for further analysis, we skip the clus-

ARI
System Finnish Russian German
Baseline 0.023 0.079 0.022
deep-change 0.638 0.059 0.543
Ours (old) 0.596 0.043 0.298
Ours (new) 0.578 0.130 0.298

F1

System Finnish Russian German
Baseline 0.230 0.260 0.130
deep-change 0.756 0.750 0.745
Ours (old) 0.655 0.661 0.608
Ours (new) 0.655 0.563 0.608

Table 3: ARI and F1 scores of the baseline, the winning
team deep-change, our submission to the shared task,
and our updated system on the three test datasets.

tering step and assign a single most probable old
sense to each target word. The result is surprising:
While we achieve an ARI of merely 0.015 on Rus-
sian, we outperform our method on Finnish with
an ARI of 0.614 and an F1 score of 0.680. We
attribute this anomaly to the quality of the dataset,
as the numbers of senses per target word and usage
examples per word sense are imbalanced, includ-
ing several words with only one sense. However,
this characteristic also reveals a weakness in our
algorithm: Clusters are often aligned with an old
sense in the first pass even though the word has no
documented old sense. Possible improvements are
a combination of both passes into one or the usage
of two different similarity thresholds for old and
novel senses.

Our final results are summarized in Table 3. In
our submission to the shared task, we tuned the
similarity thresholds less carefully, used τ = 0.1
for all three test sets, and did not cluster the Finnish
dataset. The new system uses τ = 0.2 for Finnish
and German, and τ = 0.45 for Russian. It does not
affect our ranking on the leaderboards.

6 Conclusion

We presented a simple method to discriminate word
senses on diachronic corpora by clustering usage
examples and merging the resulting clusters if ei-
ther their similarity with a known word sense or
their mutual similarities are sufficiently large. It de-
pends on a similarity threshold τ that can be tuned
on annotated data. The resulting system performs
best when embedding usage examples and word
sense definitions with two different multilingual
models and thus adapts well to different languages.

However, there is room for improvement. For
the proposed algorithm, we suggest the usage of
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two different similarity thresholds for old and novel
sense cluster merging. We further see a weakness in
prioritizing the disambiguation of old word senses
while solving the induction of novel word senses
as a subsequent step.

We support the publication of a similar, better-
normalized dataset for improved comparability be-
tween languages.

Limitations

The AXOLOTL-24 Shared Task takes a step from
the pure quantification of semantic change to more
interpretable results by assigning concrete word
senses to groups of word usage examples and simul-
taneously identifying word usages with no recorded
definition. The presented results do not go beyond
the scope of this shared task. There may be lim-
itations in the comparability between languages
due to significant amounts of noise and imbalance
in the provided dataset. Furthermore, the evalua-
tion does not take the absence of recorded word
senses in the new period into account and thus does
not consider the full spectrum of semantic change
observable in the data. These aspects should be
investigated further in future research.
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Abstract

This paper explores the evolution of word
meanings in 19th-century Spanish texts, with
an emphasis on Latin American Spanish, us-
ing computational linguistics techniques. It
addresses the Semantic Shift Detection (SSD)
task, which is crucial for understanding linguis-
tic evolution, particularly in historical contexts.
The study focuses on analyzing a set of Spanish
target words. To achieve this, a 19th-century
Spanish corpus is constructed, and a customiz-
able pipeline for SSD tasks is developed. This
pipeline helps find the senses of a word and
measure their semantic change between two
corpora using fine-tuned BERT-like models
with old Spanish texts for both Latin American
and general Spanish cases. The results provide
valuable insights into the cultural and societal
shifts reflected in language changes over time1.

1 Introduction

The study of how word meanings evolve over time,
influenced by social, historical, and political fac-
tors, is a fundamental pursuit within linguistics and
natural language processing. This evolution poses
challenges in detection and interpretation, often ad-
dressed through Semantic Shift Detection (SSD)
task, also known as Lexical Semantic Change De-
tection task (LSCD) (Montanelli and Periti, 2023;
Hu et al., 2021). Traditionally reliant on manual
methods such as discourse analysis, recent compu-
tational linguistics advancements have revolution-
ized this field. These approaches streamline anal-
ysis and open doors to interdisciplinary research
applications spanning sociology, history, and be-
yond, offering invaluable insights into cultural and
societal shifts using digitized corpora.

In 2013, static word embeddings, also known as
word vector representations, were first introduced
by Mikolov et al. (2013) using the bag-of-words

1The pipeline and code can be found at https://github.
com/historicalink/SSD-Old-Spanish

and skip-gram architectures. These embeddings
represent words as static vectors that remain un-
changed and are based on their surrounding words.
Hamilton et al. (2016) first proposed using these
embeddings for the SSD task by employing di-
achronic word2vec static embeddings to measure
word meaning changes across consecutive decades.
Various approaches have been explored to auto-
mate this task effectively. Montanelli and Periti
(2023) proposed using contextual embeddings in-
stead to capture multiple meanings assigned to the
same word due to polysemy and homonymy, which
static embeddings cannot achieve. This was ac-
complished by comparing multiple BERT-like Lan-
guage Models (Devlin et al., 2018) such as XLM-
RoBERTa.

In this paper, we focus on two things: crafting
a 19th-century Spanish corpus (Cold) from sources
spanning 1800 to 1914 and creating a customiz-
able pipeline for assessing the SSD task. Utilizing
this pipeline, we analyze the semantic changes of
a set of target words, for both the global context
and the specific Latin-American context. We ex-
plore a variety of known and novel solutions for the
SSD task by comparing the 19th-century Spanish
corpus with the Spanish portion of the "EUBook-
Shop" corpus as the modern corpus (Cnew) (Cañete,
2019)2.

2 Related Work

Recent advances in Semantic Shift Detection have
leveraged many computational approaches based
on natural language processing techniques. Con-
textual embeddings, capable of capturing multiple-
word usages and meanings, have been used in most
of the state-of-the-art solutions, summarized by
Montanelli and Periti (2023) who defines a clas-
sification framework based on three dimensions

2This portion was taken from the large Spanish
corpus available at https://huggingface.co/datasets/
josecannete/large_spanish_corpus
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of analysis: meaning representation (form- and
sense-oriented approaches), time awareness (time-
oblivious and -aware) and learning modality (super-
vised and unsupervised, referencing to the injection
of external knowledge support like a dictionary),
useful for Contextualized Semantic Shif Detection.

Martinc et al. (2020) and Giulianelli et al. (2020)
explore transformer-based BERT models for de-
tecting semantic change. Martinc et al. use con-
textualized embeddings to capture shifts in word
usage over time, outperforming traditional tech-
niques like Word2Vec and Glove by leveraging
BERT’s dynamic word representations. Giulianelli
et al. (2020) adopt an unsupervised approach, ob-
taining and clustering word representations to mea-
sure change over time, aligning with human judg-
ments. Both studies underscore the effectiveness of
BERT-based models in identifying and analyzing
diachronic linguistic changes.

Although most of the research in the field of
semantic change has been done on a wide scope
of languages, Spanish hasn’t played such an im-
portant role in this field, except for some research,
like LSCDiscovery in Spanish, a task presented
by Zamora-Reina et al. (2022). This task has fa-
cilitated the development and evaluation of SSD
systems in this language, accompanied by an unan-
notated Spanish corpus for both modern and old
texts, which has a size of 22M and 13M tokens
respectively. Additionally, the task paper high-
lighted effective techniques and approaches within
the solutions. The most successful solution for the
LCSDiscovery task was GlossReader, developed
by Rachinskiy and Arefyev (2022), which involved
fine-tuning XLM-RoBERTa, a Language Model
trained on more than 100 languages, with old En-
glish datasets and employing the model zero-shot
cross-lingual transferability of the model to build
contextualized embeddings for Spanish, and using
this fine-tuned model for SSD tasks. This approach
has demonstrated good performance, especially in
avoiding issues associated with word form bias and
labor-intensive annotation requirements. These ad-
vancements underscore the increasing significance
and potential of computational methodologies in
enhancing our comprehension and automation of
semantic shifts in multiple languages.

Also, Hu et al. (2021) present a set of method-
ological considerations for low-resource languages
such as 15th-century Spanish, where a lower
amount of data is available, and the data is not
as clean as in other high-resource languages such

as English and Mandarin Chinese, stating that com-
mon SSD techniques are also useful for these cases,
but must be used carefully, under a set of consider-
ations.

3 Data

Selecting the data is a crucial step for the relia-
bility of the results. The LSCDiscovery shared
task provides a useful corpus for old Spanish texts
within the years 1810-1906, with a size of 13M
tokens (Zamora-Reina et al., 2022). However, this
paper aims to construct a larger old Spanish corpus,
also adding more presence from Latin-American
countries. The main sources selected and filtered
for this corpus were Project Gutenberg3 which
was filtered by language and by the given date
ranges (1800-1914), The British Library books4

(portion from 1800-1899) which was also filtered
by language (British Library Labs, 2021), and the
LatamXIX5 dataset from the Historical Ink project
which contains Latin American texts from news-
papers within years 1845-1899 (Manrique-Gómez
et al., 2024).

3.1 Cleaning

The cleaning step is essential for The British Li-
brary and Project Gutenberg datasets since some
texts from these sources consisted solely of chap-
ter, book, or newspaper titles, or were filled with
numbers and other characters that added noise to
the dataset. In the case of the LatamXIX dataset,
these noisy rows were already filtered and com-
plemented with an LLM OCR correction process
that corrected many OCR errors within the corpus,
making it cleaner and more fittable for the SSD
task, as it preserves better semantic meaning for
words and less noise.

For The British Library books, an initial filter
was applied using word confidence information to
retain only those books with a mean OCR word con-
fidence higher than 0.5. This experimental thresh-
old was set to balance data loss (2.26% of rows)
and text quality. After conducting several revisions
with different examples, it was observed that this
threshold maintained a high standard of text quality.
Therefore, it was selected as the optimal balance

3Available at https://www.gutenberg.org/browse/
languages/es

4Available at https://huggingface.co/datasets/
TheBritishLibrary/blbooks

5Available at https://huggingface.co/datasets/
Flaglab/latam-xix
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Figure 1: Final corpus distribution by source. The per-
centage is computed over the total number of rows of
the whole Cold chunked corpus

Feature Value
Size ∼ 865MB

Rows 1, 141, 490
Words ∼ 125M
Tokens ∼ 160M

Years Range 1800 - 1914

Table 1: Final Cold chunked corpus information

between data retention and textual accuracy.
Same as in Manrique-Gómez et al. (2024), the

cleaning steps to perform were:

1. Remove duplicates and empty rows within the
whole dataset. 6.94% of rows were removed.

2. Filter out rows where over 50% of the char-
acters are non-alphabetic, including spaces.
0.92% of rows were removed.

3. Remove the rows with 4 or fewer tokens.
Samely, a new tokenizer was trained with a
vocabulary size of 52,000, trained from the
BETO pre-trained tokenizer (Cañete et al.,
2020). 0.50% of rows were removed.

These filters were applied to minimize the risk
of compromising the results due to noise in the
dataset.

3.2 Chunking

As the historical texts from the corpus come from
books and newspapers, many are very large, or
some are very short with an average of ∼ 110 words
and ∼ 140 tokens per text. For BERT-like models,
the maximum sequence length consists of 512 to-
kens, which is not enough for very large texts like
the current corpus texts.

Figure 2: Final corpus distribution by decade. The
percentage is computed over the total number of rows
of the whole Cold chunked corpus

Feature Value
Size ∼ 27MB

Rows 29.972
Words ∼ 4.5M
Tokens ∼ 5.7M

Years Range 1845 - 1899

Table 2: Final Cold Latin-American portion chunked
corpus information

Because of this, it’s necessary to chunk the large
texts within the dataset in a number shorter than
512 tokens. A much lower number was selected to
make the chunked corpus fit for many different Lan-
guage Models (LMs), for instance, a maximum of
256 tokens per text chunk, where a token was mea-
sured by training a new tokenizer over the cleaned
version of the corpus6.

During this step, over 67.6% of the rows were
chunked, adding 460,543 new rows. Each row
was transformed into a part of a paragraph or left
as a whole paragraph (no chunking) with no more
than 256 tokens while preserving as much semantic
meaning as possible. The preservation of semantic
meaning in the chunked segments was achieved by
splitting through punctuation marks and common
paragraph-sentence separators. The rows distribu-
tion and corpus information can be found in Figures
1, 2, and Table 1 respectively. Also, the informa-
tion on the Latin-American portion of the corpus
can be found in Table 2.
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Figure 3: Historical Ink SSD Pipeline Architecture

4 Methodology

To achieve effectively the desired task, and be able
to perform a quality analysis of the results, we have
defined the pipeline observed in Figure 3, with the
following steps:

1. Find the occurrences of a given word w in Cold

and Cnew corpora.

2. Retrieve the word embeddings in the found oc-
currences, using a BERT-like language model.

3. Cluster the word usage by its meaning (sense),
and average to get the centroids of the clusters.

4. Perform the SSD task to identify lost/gained
senses and measure the semantic change of
the word (sw).

It’s important to note that the pipeline was de-
signed as a flexible and reusable solution for vari-
ous contexts and configurable stages. Beyond an-
alyzing the specific case of 19th-century Spanish,
we propose a modular, plug-and-play pipeline with
numerous adjustable stages. Each component of
the pipeline can be used independently and config-
ured for different use cases, ensuring versatility and
adaptability for further research or applications.

4.1 Find the Occurrences
Given corpora Cold and Cnew, finding all texts
where a word w is used is straightforward when
looking for exact occurrences. However, this task
becomes more complex with inflectional variations
typical of languages like Spanish. For example, the
word "crear" (to create) may appear as "creaste"
(you created) or "creado" (created). Stemming can
help by extracting the base form of the word, but it
may lose some contextual meanings.

6The final corpus can be found at https://huggingface.
co/datasets/Flaglab/spanish-corpus-xix in all its
three versions: "original", "cleaned", and "chunked"

Also, in old Spanish, language rules have
changed significantly, as noted by Montgomery
(1966). These changes are detectable using the
semi-automated framework presented as part of
the Historical Ink project (Manrique-Gómez et al.,
2024), which extracts useful lists of surface forms
(i.e. specific appearance of a word in a given
context) for words that underwent orthographic
changes in 19th-century Latin-American Spanish
(e.g., "luces" historically written as "luzes").

To address these challenges, we propose a
method to find occurrences of a given word w in
diachronic corpora Cold and Cnew. This method
organizes all word’s expected usages and tokenizes
both the word and the searching text, searching for
each subword within a list of different orthographic
forms of writing a given word.

For example, the word "gente" would be
searched in Cold as "gente", "jente" (surface form),
"gent", or "jent" in that order. This method relies
heavily on the tokenizer, so using one trained in
the specific language is recommended for better
performance.

4.2 Word Embeddings

For the SSD task, contextual embeddings are very
useful as they can capture the evolving meaning of
words over time. By considering the surrounding
context of a word within a sentence or document,
contextual embeddings can provide an enhanced
representation of its semantics, enabling the detec-
tion of particular shifts in meaning. In particular,
there are some BERT-like LMs trained on Span-
ish corpora. Some of the most representative are
BETO: Spanish Bert7 in both uncased and cased
versions (Cañete et al., 2020), Multilingual BERT8

in both uncased and cased versions, which has an

7Available at https://huggingface.co/dccuchile/
bert-base-spanish-wwm-cased

8Available at https://huggingface.co/google-bert/
bert-base-multilingual-cased

32

https://huggingface.co/datasets/Flaglab/spanish-corpus-xix
https://huggingface.co/datasets/Flaglab/spanish-corpus-xix
https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased
https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased
https://huggingface.co/google-bert/bert-base-multilingual-cased
https://huggingface.co/google-bert/bert-base-multilingual-cased


Figure 4: DWUG of the word "mujeres" (women), using the whole corpus fine-tuned model embeddings, the T-SNE
dimensionality reduction algorithm, and the KMeans clustering algorithm (with the silhouette metric). Each color
represents a meaning (cluster) of the word. The color changes between the left (old corpus) and center (modern
corpus) images illustrate the overall semantic change between the two diachronic corpora.

important portion of training in Spanish (Devlin
et al., 2018), and AlBERT Spanish version9. All
these models are BERT-based and have the same
maximum sequence length of 512 tokens, BERT
has an embedding size of 768, while ALBERT has
a more compact embedding size of 128.

For this paper, we performed the SSD task using
the mentioned LMs. Some were trained with the
whole 19th-century Spanish corpus, while others
were trained only with the Latin-American por-
tion of the dataset. We fine-tuned these models
using the specific corpus for each case, employ-
ing the Masked Language Modeling (MLM) task.
In this task, 15% of the corpus tokens were ran-
domly masked, and the model learned to predict
the masked tokens based on their context. This ap-
proach ensured that the model learned the unique
linguistic style of each corpus, enabling it to gen-
erate word embeddings that accurately reflect the
corpus’ linguistic patterns, which is essential for
detecting semantic shifts.

During the training phase, an Adam optimizer
with a learning rate of 2 × 10−5 was employed,
and the training proceeded with a batch size of
32, during a total of 5 epochs. Due to the low
number of epochs, no Early Stopping was required,
and the chosen parameters led to good resource
utilization. The training time with the given batch
size depended on the model but was on average 47
hours for the whole Cold corpus, and 1 hour and
20 minutes for the Latin-American portion. The
training was performed on an A40 GPU.

9Available at https://huggingface.co/dccuchile/
albert-base-spanish

4.3 Clustering

We applied a joint clustering approach, combining
both corpora within the same set of embeddings
before clustering. Given two corpus Cold and Cnew,
and a particular word w, the sets Ωw,old and Ωw,new

are defined as the set of word embeddings gener-
ated in each corpus respectively, for the word w.

The clustering algorithm is meant to find the
different meanings of a word within a given pe-
riod, and overall the whole timespan of both Cold

and Cnew periods. This generates a well-known
Diachronic Word Usage Graph (DWUG) for the
word in both periods (Schlechtweg et al., 2021), al-
lowing to perform the semantic shift detection and
change measurement between old and new periods,
as seen in Figure 4, where each color refers to a
word meaning.

The particular algorithms used were Affinity
Propagation and KMeans with an automatic K
finder under a certain score function such as sil-
houette score or inertia. The main problem with
KMeans are words with a single meaning across
the whole timespan. As common KMeans K-
evaluation metrics are not fittable for one-cluster
evaluation, so it wouldn’t be possible to validate
if the best number of clusters should be just one.
As this occurs for many of the target words se-
lected for analysis, a very good alternative for it is
the Affinity Propagation (AP) clustering algorithm
with a damping parameter of 0.975; this parameter
was selected through a test with different values
and a manually-driven evaluation of the number
of clusters automatically selected by the algorithm.
Selecting a high damping value for the AP algo-
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rithm leads to a more stable selection of the number
of clusters as the requirements for new cluster cre-
ation are more strict, which is expected for this
case.

The T-SNE dimensionality reduction algorithm
was used to plot the DWUGs shown in this paper,
with a perplexity of 50, which proved the best for
better cluster space separation. For words with a
lower number of found occurrences in the dataset,
a lower perplexity was employed for its representa-
tion.

4.4 Semantic Shift Measurement
Once clustering is performed, the measurement for
Semantic Shift is straightforward. There are two
main divisions of the SSD task which are Binary
Change Detection (BCD) and Graded Change De-
tection (GCD) (Zamora-Reina et al., 2022), where
Graded Change Detection is the most common
and useful, but also the most challenging task for
change classification, which consists of ranking a
list of target words based on their degree of change
(Periti and Tahmasebi, 2024).

The consolidation of techniques for measuring
semantic shift detection has been a high-growth
area, with the proposal of many different tech-
niques, some of them comparing sets of embed-
dings (e.g. the clusters), and others comparing indi-
vidual embeddings (e.g. the centroids). Montanelli
and Periti (2023) present a survey that compiles
many of the most used state-of-the-art techniques
for grading the semantic shift of a word between
two temporal-different corpora, classifying them
between form- and sense-based approaches.

Given m number of clusters (senses) for the word
w, returned by the clustering algorithm, we define
Ψw,s,t as the cluster with the sense s for the word w
in the period t, such that all the senses compound
the whole set of embeddings.

Ωw,t =

m⋃

s=1

Ψw,s,t ∀t = {new, old} (1)

For these clusters, a centroid embedding is com-
puted as the average:

ψw,s,t = avg(Ψw,s,t) ∀t = {new, old} (2)

Finally, two different formulas were taken
from Montanelli and Periti (2023) to measure the
semantic shift f , based on the cosine similarity
function (CS). With this shift, for each word,

we would have as many semantic shifts f as the
number of clusters given by the algorithm (m),
so we could determine which senses have had
a diachronic shift and which haven’t, for each word.

Cosine Distance (CD):

fCD(w, s) = 1 −CS (ψw,s,old, ψw,s,new) (3)

Inverted similarity over Word Prototype
(PRT):

fPRT (w, s) =
1

CS (ψw,s,old, ψw,s,new)
(4)

It should be noted that if a sense is not present
within a period, whether old or new period, fCD

should be 1.0, meaning a complete change of the
given sense. If the sense is absent from the embed-
dings of the old period (Ψw,s,old = ∅), it means that
the sense was gained in modern Spanish; otherwise,
if the sense only exists in the embeddings of the
old period (Ψw,s,new = ∅), it means that the sense
was lost in modern Spanish, as seen in Figure 4
where the sense 1 (orange color) is not present in
the modern WUG.

For this task, it is crucial to consider the fre-
quency of points per cluster within each period. If
a cluster has significantly fewer points in a period,
specifically less than 10% of the total, we classify
these points as either misclassifications or obso-
lete words. This allows us to treat the cluster as a
gained or lost sense. We chose this threshold based
on testing with few known examples, where it pro-
vided the best performance in detecting gained and
lost senses.

5 Evaluation and Model Selection

As mentioned, several pre-trained Language Mod-
els (LMs) are available for large Spanish corpora.
We needed an evaluation method to select the
best model for our analysis. The LSCDiscovery
shared task (Zamora-Reina et al., 2022) provides
over 65,000 annotated examples for 100 target
words using the DURel framework proposed by
Schlechtweg et al. (2018). This annotated corpus
is highly useful for evaluating the LMs, as its time
period is within the 19th century. Even though
the LSCDiscovery task differs from the one in this
paper, it offers a valuable benchmark. Our task
focuses on detecting the different meanings of a
word in a diachronic corpora and measuring their
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LM Average Clustering Non-Clustering

# Name Clustering All AP
KM

inertia
KM

silhouette
CD PRT

1 BETO cased FT 0.5799 0.6017 0.6124 0.5598 0.5676 0.6285 0.6402
2 BETO cased LFT 0.5872 (1) 0.6064 0.5853 0.5815 0.5947 0.6307 0.6396
3 BETO cased 0.5832 0.6041 0.5600 0.5790 0.6107 0.6302 0.6405
4 BETO uncased FT 0.5578 0.5837 0.5442 0.5579 0.5714 0.6224 0.6227
5 BETO uncased LFT 0.5658 0.5890 0.5594 0.5676 0.5703 0.6223 0.6255
6 BETO uncased 0.5862 (3) 0.6043 0.5916 0.5819 0.5850 0.6167 0.6463
7 mBERT cased LFT 0.5806 0.5951 0.5692 0.5788 0.5939 0.6163 0.6172
8 mBERT cased 0.5782 0.5949 0.5675 0.5808 0.5863 0.6100 0.6297
9 mBERT uncased LFT 0.5593 0.5929 0.553 0.5633 0.5615 0.6405 0.6464

10 mBERT uncased 0.5762 0.6065 0.5523 0.5924 0.5839 0.6457 0.6581
11 AlBERT LFT 0.5717 0.5928 0.5731 0.5796 0.5624 0.6160 0.6328
12 AlBERT 0.5869 (2) 0.6132 0.5758 0.5992 0.5857 0.6373 0.6682

Table 3: LM benchmark through the LSCDiscovery (Zamora-Reina et al., 2022) F1 of the Binary Change Detection
task. Each model was fine-tuned for the Latin-American corpus (LFT) and both BETO-cased and uncased models
were also fine-tuned for the whole corpus (FT), comparing also with non-fine-tuned versions.

semantic shift over time. By comparing with the
LSCDiscovery task, we ensure a rigorous evalu-
ation, confirming that the models are robust and
effective across various contexts and not overly
tailored to a single specific task.

The task’s corpus includes pairs of sentences
rated from 1 to 4, where 1 indicates identical word
usage and 4 indicates completely different usage
(Schlechtweg et al., 2018). To evaluate the mod-
els, we converted this numerical assessment into a
binary evaluation: ratings 1-2 indicated no seman-
tic change, while ratings 3-4 indicated a semantic
change. We then defined five specific methods
to classify a pair of word uses as either semantic
change (1) or no change (0). Among these, two
methods — cosine distance (CD) and inverted sim-
ilarity over word prototype (PRT) — were tested
purely for task purposes. However, the methods of
primary importance for this paper are those related
to sense clustering.

The three clustering-based evaluation methods
consist of grouping all the embeddings of the oc-
currences of a word, as mentioned in the SSD sec-
tion. Then, given two uses, if they do not belong
to the same cluster, a semantic change is indicated
(1); otherwise, no semantic change is indicated (0).
This was evaluated using Affinity Propagation and
KMeans (with silhouette and inertia metrics) meth-
ods. Finally, the model with the best average results
across the three clustering methods was selected.
The benchmark results can be seen in Table 3.

While the results provide valuable insights into

the models’ capabilities, they should not be di-
rectly compared to those from the LSCDiscovery
leaderboard (Zamora-Reina et al., 2022). Instead,
they serve as an effective benchmark for assessing
how well the LMs perform in detecting semantic
changes within our specific historical context. The
differences in tasks and the method approaches
for our study reflect that direct comparisons with
LSCDiscovery scores are not applicable.

Given the results, the best-performing model was
BETO fine-tuned on the Latin American dataset10.
A possible explanation for this is that the Latin
American portion of the corpus underwent an ad-
ditional step of LLM OCR correction, which re-
moved OCR-related errors and produced cleaner
text. This likely reduced noise and improved
the quality of fine-tuning. Additionally, BETO
was trained solely in Spanish, unlike multilingual
BERT, which was trained in many different lan-
guages. According to (Cañete et al., 2020), this
single-language focus tends to result in better per-
formance compared to multilingual models. This
model was the one used for evaluating the target
words and creating the DWUGs presented in ap-
pendix C.

10Fine-tuned model was uploaded to HuggingFace
and is available at https://huggingface.co/Flaglab/
beto-cased-finetuned-xix-latam
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6 Results

The results of the trained model focus on a spe-
cific group of 255 target words11 selected for their
historical significance and relevance to generate hy-
potheses about potential semantic shifts over time,
confirming the consistency of the results. Some ex-
amples of the DWUGs analyzed in this section are
available in Appendix C for both AP and KMeans.

One of the main results of this research was to
highlight the success and failure cases for both AP
and KMeans clustering algorithms, as both were
used to compute the senses of all 255 words. Affin-
ity Propagation (AP) performed poorly in many
cases where it couldn’t detect multiple usages of
a word, such as "grave" (serious/bass), or detected
many different senses for other words, such as
"honor" (honour), as shown in Figure C2. How-
ever, it effectively detected single-sense words, a
task that KMeans wasn’t capable of due to met-
rics used to choose the best K. However, KMeans
performed very well in most cases, effectively de-
tecting and clustering the senses of multi-meaning
words over time.

As displayed in Figure C2, some words like “rey”
(king) and “usurer” (usurer) present neither poly-
semy nor notable historical changes. However, the
term “mujeres” (women), as shown in Figure 4,
shows a change in modern usage. This finding
is particularly interesting in the context of both
historical discourse analysis in gender studies and
historical linguistics studies, as it is an example of
computational verification.

The semantic transformation of the word women,
as plotted in Figure 4 and in Appendix B, pri-
marily pertains to the antiquated use of “mujeres”
designating a particular group of female individu-
als. In 19th-century Spanish, lexical tradition man-
dated the rigorous use of masculine forms of nouns
and adjectives as the universal form, encompass-
ing both genders (feminine and masculine) (Porto-
Dapena, 1975). Thus, the word “hombres” (men)
could be used as a synonym for humanity, while the
use of “mujeres” (women) was more likely to be
reserved for describing a private group of women.
Twentieth-century gender studies introduced a uni-
fied meaning to the word “mujeres”. Joan W. Scott
famously stated that "-Women’s experience- or -

11From all 255 words, only 233 had enough occur-
rences in the modern corpus. The DWUGs and SSD
for both AP and KMeans algorithms are available in the
notebook https://colab.research.google.com/drive/
1eaULQocxyuCNX0ftBvDJwe8nfpEi5s6i

women’s culture- exists only as the expression of
female particularity in contrast to male universal-
ity" (Scott, 1988). This idea explains the rupture
in the modern usage of the word women towards
the relational concept of gender in the 20th century
(Lux and Pérez, 2020).

Consequently, the term “mujeres” evolved from
a specific designation to a broader and more in-
clusive reference, reflecting significant social and
cultural shifts in gender discourse. As we have ob-
served, the contemporary usage of “mujeres” tends
to encompass all women more generically, since it
was not until the 20th century that historical consid-
eration began to differentiate "women" as a collec-
tive separate from "men". In the past, the term was
used to refer to a distinct group of women, thereby
distinguishing women from other plural nouns such
as men, children, or even animals. Modern usage of
"women" almost exclusively serves to differentiate
women from men.

Other insightful results demonstrate both how
the polysemy of words changes over time, as seen
in examples in Appendix A, and the particulari-
ties of word semantics diachronically used in Latin
American Spanish. Historical linguistics studies
acknowledge "El español de América" as a main
Spanish variant, for which corpus studies are yet
to be conducted. Newspapers are recognized as a
legitimate source for exploring the particularities
of linguistic variants (Gutiérrez Maté and Diez del
Corral Areta, 2023). Hence, the LatamXIX dataset
we used to model the quantitative experiments
might initiate a triangulation with new regional
research. For example, we have observed how the
term “infancia” (infancy/childhood), as depicted in
Figure C1, was predominantly used in the 19th
century as an abstract reference to the nascent
phase of objects, entities, or people. This sug-
gests a metaphorical use of the word, indicative
of a broader, symbolic interpretation of "infancy"
or "early development" during this era.

Newly formed Latin American nations in the
19th century viewed themselves as children re-
cently independent from their mother, metropoli-
tan Spain. Consequently, the term "infancia de la
patria" (infancy of the nation) described the con-
tradictory and highly unstable political and social
times experienced in Latin America during that
era. These old meanings have largely been sup-
planted by the modern understanding of "child-
hood", which specifically refers to the population
segment of children. These results align with the
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Figure 5: Diachronic comparison of word "revolución"
(revolution) and its related words, between the old and
the modern period using PCA dimensionality reduction
algorithm.

second wave of human rights in the 20th century,
which expanded the 19th century’s initial civil
rights to include specific rights for various western
population groups, such as children and women.

Words like "sentimiento" (sentiment) have lost
one of their historical meanings, as illustrated in
Figure C1. In contemporary usage, "sentimiento"
serves as a synonym for the feelings experienced by
an individual or group of people. However, one of
its older meanings has almost disappeared. In the
19th century, "sentimiento" was used to describe
the expression of a person’s correctness, effectively
acting as a synonym for morality, or even referring
to someone’s elevated religious or artistic spirit. On
the other hand, the term "sublime" (sublime or ele-
vated) has largely fallen out of use and is scarcely
found in the modern dataset, as depicted in Fig-
ure C1. Appendix B contains examples of the 255
words’ semantic shift detection outputs, including
other examples such as "luces" (ideas/lights) and
"servidores" (servants/servers).

Finally, word comparison also proves highly
valuable for numerous diachronic analyses. In each
period, the most representative sense of a word
is determined based on its frequency dominance
among other senses. Then, its sense cluster centroid
is computed to allow comparison between words.
Within the set of 255 words, the 5 words exhibiting
the highest cosine similarity to this centroid are se-
lected, indicating their related usage contexts. For
example, as observed in Figure 5, the word "rev-
olución" (revolution) historically exhibited close
associations with the words blood, richness, feeling,
wise, and red. In contemporary contexts, however,

the term "revolución" is linked to terms like king,
reason, and savage, and it remains related to blood
and richness in different proportions, with blood
now more distant and richness closer.

This study provides significant insights into the
SSD of 19th-century Spanish words, utilizing com-
putational linguistics to uncover shifts in word
meanings relevant to both global and Latin Ameri-
can contexts. By developing a specialized corpus
and employing methods such as fine-tuning BERT-
like models and diachronic word embeddings, we
achieved a nuanced analysis of historical seman-
tic changes. Our examination of selected words
reveals the relation between societal, cultural, and
political events and the shift of words’ semantic
meaning over time.

The application of SSD and modern computa-
tional techniques highlights the evolution of linguis-
tic analysis from manual to systematic approaches,
enhancing the accuracy of semantic shift detection
and deepening our understanding of language as a
dynamic entity. This study’s interdisciplinary im-
plications are notable, offering potential benefits to
fields like history, sociology, and digital humanities,
where these insights can provide deeper context to
historical cultural shifts.

Looking ahead, the methodologies and findings
of this project can serve as a framework for future
research in other languages and periods, suggesting
a scalable approach to historical linguistics and se-
mantic analysis. The flexible and reusable pipeline
developed here can be adapted for various con-
texts and stages. Future research could apply this
pipeline with modified parameters or data for differ-
ent use cases or languages, to prove its performance
on different contexts.

However, an evaluation of the selected models
for the Latin-American corpus, particularly for
clustering, is still needed. An annotated dataset
similar to the given in the AXOLOTL-24 shared
task (Fedorova et al., 2024), but for Latin-American
Spanish, would be highly beneficial. Such a dataset,
with examples of specific word usages, their peri-
ods, and a gold standard for word senses, would
enable a more focused assessment of the models
beyond the task evaluation presented in Table 3.
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A Usage Examples per Sense

Infancia: The word has presented a semantic shift
as shown in Figure C1

Sense 0 in New-"Adopción derechos del niño,
protección de la infancia, tráfico de personas".

Sense 1 in Old-"Los pueblos, como los hombres,
tienen su infancia, embrion todavía entre nosotros,
período delicado y peligroso, en el que todo exceso
é indiscreción trastorna el organismo é impide el de-
sarrollo, si es que no lo destruye." "Escamilla, por
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ejemplo, se casó desde la infancia con una matrona
llamada Portería del Congreso de Escamilla: lleva
dos apellidos, esta señora, no porque sea bigama,
(pues no ha tenido mas que un solo marido) sino
porque su papà es el señor Congreso, un viejo, mui
necio."

Sentimiento: The word has presented a semantic
shift as shown in Figure C1

Sense 0 in New- "65% de la personas que ex-
presan un sentimiento personal de temor o esper-
anza". "Reforzar entre los europeos el sentimiento
de pertenencia a una misma Comunidad".

Sense 1 in Old- "Será un gran artista de mu-
cho sentimiento, posee una rica voz, si la educa,
y tiene mucho aplomo en las tablas, es feo, pero
simpático". "Una forma de expresión nueva, en
la que brillaban un profundo sentimiento poético
y una suerte de ingenuidad". "Que el divino arte
de la música, lenguaje de la inteligencia y del sen-
timiento, ejerce sobre todos los hombres una in-
fluencia poderosa, que al mismo tiempo que atem-
pera las pasiones, despierta las ideas de moralidad
y de sociabilidad". "Republicano de ideas y de
sentimiento, ha sabido armonizar sus opiniones
políticas con sus creencias".

Sublime: The word presented polysemy in the past
but is no longer in use as shown in Figure C1

Sense 0 in Old-"Hé aquí un epitafio sublime;
la madre que busca al hijo bajo la sombra de los
laureles, en la soledad de la muerte como dos almas
inseparables, siempre unidas, siempre amantes".

Sense 1 in Old- "Bolívar, el del genio sublime
que todo lo abarcó, que todo lo comprendió, y á
quien debieron su existencia y su gloria, en menos
de un cuarto de siglo, la mayor parte de las na-
cionalidades del Nuevo Mundo".

Sense 2 in Old- "á veces las leyes naturales-
puede sí ejercer el sublime ministerio de aliviar
(obra divina, según Hipócrates) y consolar á los
que sufren."

Servidores: The word gained a new sense as
shown in Figure C1

Sense 0 in Old-"Era allí donde se alojaba el
Cacique, su familia y sus principales servidores".
"a depositar- sus votos en favor de los buenos y
leales servidores de la causa".

Sense 0 in New- "si la joven no está en un con-
vento, rodearla de servidores que la acompañen por
todas partes". "La Comisión y nosotros somos los
servidores de los ciudadanos de nuestros Estados
miembros".

Sense 1 in New- "la adquisición o el alquiler de
ordenadores personales, servidores y microorde-
nadores". "operación de los sistemas y de la red, y
servidores para bases de datos, la Web, el FTP".

B SSD Examples

Some of the SSD results chosen were selected from
Affinity Propagation algorithm clusterization, par-
ticularly those with only one sense such as "rey"
and "usurero".

Word Sense CD PRT
gained/lost

Sense

A
P Rey 0 0.005 1.005

Usurero 0 1.0 ∞ lost

K
M

ea
ns

Luces 0 0.012 1.012
Luces 1 0.012 1.013

Infancia 0 0.017 1.017
Infancia 1 1.0 ∞ gained

Sentimiento 0 1.0 ∞ gained
Sentimiento 1 0.003 1.003

Sublime 0 1.0 ∞ lost
Sublime 1 1.0 ∞ lost
Sublime 2 1.0 ∞ lost

Servidores 0 0.043 1.045
Servidores 1 1.0 ∞ gained

Table B1: SSD for some of the 255 target words; the
ones mentioned in the paper, and others added in the
appendix DWUGs.

C DWUGs Examples
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Figure C1: DWUG using the Latin American portion of the corpus fine-tuned model embeddings, the T-SNE
dimensionality reduction algorithm, and the KMeans clustering algorithm (with the silhouette metric). All words
are correctly clustered.
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Figure C2: DWUG using the Latin American portion of the corpus fine-tuned model embeddings, the T-SNE
dimensionality reduction algorithm, and the Affinity Propagation clustering algorithm. Words "grave" and "honor"
are wrong clustered, and words "rey" and "usurero" are correctly clustered.
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Abstract

There has been a surge of interest in computa-
tional modeling of semantic change. The foci
of previous works are on detecting and inter-
preting word senses gained over time; however,
it remains unclear whether the gained senses
are covered by dictionaries. In this work, we
aim to fill this research gap by comparing de-
tected word senses with dictionary sense inven-
tories in order to bridge between the commu-
nities of lexical semantic change detection and
lexicography. We evaluate our system in the
AXOLOTL-24 shared task for Finnish, Rus-
sian and German languages (Fedorova et al.,
2024b). Our system is fully unsupervised. It
leverages a graph-based clustering approach to
predict mappings between unknown word us-
ages and dictionary entries for Subtask 1, and
generates dictionary-like definitions for those
novel word usages through the state-of-the-art
Large Language Models such as GPT-4 and
LLaMA-3 for Subtask 2. In Subtask 1, our
system outperforms the baseline system by a
large margin, and it offers interpretability for
the mapping results by distinguishing between
matched and unmatched (novel) word usages
through our graph-based clustering approach.
Our system ranks first in Finnish and German,
and ranks second in Russian on the Subtask 2
test-phase leaderboard. These results show the
potential of our system in managing dictionary
entries, particularly for updating dictionaries to
include novel sense entries. Our code and data
are made publicly available1.

1 Introduction

Meaning changes over time have been a subject of
research for many years in historical linguistics (e.g.
Blank, 1997; Geeraerts, 2020). Researchers use
linguistic tools and methods to identify gained and
lost meanings of headwords, and more importantly
to interpret these changes by categorizing the types

1https://github.com/xiaohemaikoo/
axolotl24-ABDN-NLP

of changes and detecting social and cultural forces
driving the changes.

Embeddings of word 
usages

Embeddings of 
dictionary entries

Collect unmatched 
word usages

Subtask 1 Subtask 2

Unknown word usages

Cluster #1: 
embeddings

Cluster #N: 
embeddings

YES

NO

ENDMatching

Generating dictionary-
like definitions

For each target word

…

Figure 1: An illustration of the workflow for the two
AXOLOTL-24 subtasks. Unknown word usages refer to
usages found at a later time period, and their mappings
with dictionary sense entries are unknown.

Recently, there has been scholarly interest in
computational modeling of meaning changes as
cost-efficient alternatives to labor-intensive linguis-
tic tools and methods. As a result, a plateau of
research outputs has been made, including shared
tasks and datasets (e.g. Schlechtweg et al., 2020;
Kutuzov and Pivovarova, 2021; Zamora-Reina
et al., 2022; Chen et al., 2023; Schlechtweg et al.,
2024a), models (Eger and Mehler, 2016; Hamil-
ton et al., 2016a,b; Martinc et al., 2020; Kaiser
et al., 2021; Montariol et al., 2021a; Teodorescu
et al., 2022; Cassotti et al., 2023; Ma et al., 2024),
tools (Schlechtweg et al., 2024b), and relevant
workshops2. For instance, SemEval2020 Task 1
(Schlechtweg et al., 2020), a seminal work on this
topic, introduces the first task and datasets on un-
supervised lexical semantic change detection in
English, German, Swedish and Latin languages.
Further extensions include DIACR-Ita for Italian

2https://www.changeiskey.org/event/
2024-acl-lchange/
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(Basile et al., 2020), RuShiftEval for Russian (Ku-
tuzov and Pivovarova, 2021), and LSCDiscovery
for Spanish (Zamora-Reina et al., 2022).

The immediate impact of these research outputs
might be on the lexicography industry. Lexicogra-
phers rely on collocations and grammatical patterns
to identify novel meanings that are not included in
dictionaries, and add these identified meanings into
the next iteration of dictionary updates (Kilgarriff
et al., 2010). However, the process of doing so is
costly and time-consuming. For instance, in 2023,
the Oxford English Dictionary created about 1,700
new meanings3, with the help of hundreds of lan-
guage specialists for English alone. Recently, the
AXOLOTL-24 shared task has connected lexical se-
mantic change detection with dictionary entries. In-
stead of just detecting meaning change, the shared
task aims to align dictionary sense entries with each
word usage. This is particularly useful for manag-
ing dictionary entries, e.g., to identify and collect
novel meanings not covered by dictionaries (Erk,
2006; Lautenschlager et al., 2024).

In this work, we participate in two AXOLOTL-
24 subtasks for Finnish, Russian and German lan-
guages. The tasks include (a) bridging diachronic
word uses and a synchronic dictionary and (b) defi-
nition generation for novel word senses. The first
subtask aims to predict mappings between dictio-
nary meaning entries and word usages while the
second task plans to produce dictionary-like defini-
tions for those unmatched usages with novel word
meanings not covered by dictionaries. In the fol-
lowing, we outline the components of our system:

• For Subtask 1, we keep the workflow of the
AXOLOTL-24 baseline system unchanged,
which includes three components: produc-
ing embeddings for word usages, clustering
these embeddings, and mapping between dic-
tionary meaning entries and the resulting clus-
ters. However, we make modifications to
each component. The component-wise sys-
tem comparison is presented in Table 1.

• For Subtask 2, unlike the baseline system,
which requires costly model training for
generating dictionary-like definitions for un-
matched word usages, our system is training-
free and does so by just prompting Large Lan-
guage Models such as GPT-4 (Achiam et al.,

3https://www.oed.com/information/
updates

2023) and LLaMA-34. We provide the system
comparison in Table 2.

2 Related Work

This section reviews semantic change detection and
discuss its potential connections with dictionaries.

Lexical Semantic Change Detection (LSCD)
focuses on the automatic identification of shifts in
word meanings over time. For instance, the word
‘chill’ used to mean ‘cold’ for individuals growing
up in the 60s, but for those in the 90s, it means
‘relaxed’. Many works proposed to detect meaning
shifts by using static or contextualized embeddings
(Eger and Mehler, 2016; Hamilton et al., 2016a,b;
Martinc et al., 2020; Gonen et al., 2020; Kaiser
et al., 2021; Montariol et al., 2021a; Teodorescu
et al., 2022; Homskiy and Arefyev, 2022). Most
work in LSCD has been done on an unsupervised
task formulation (Schlechtweg et al., 2020) which
neither involved a dictionary, nor providing inter-
pretation or qualification of detected sense changes.
While early work on static embeddings (Kim et al.,
2014; Hamilton et al., 2016c) could qualify changes
to a certain extent through nearest neighbors, it usu-
ally did not provide sense clusters in a dictionary-
like manner. More recent work straightforwardly
enables the induction of sense clusters through clus-
tering of contextualized embeddings (Giulianelli
et al., 2020; Kudisov and Arefyev, 2022; Montariol
et al., 2021b; Arefyev and Bykov, 2021). More
recently, Ma et al. (2024) presented a graph-based
clustering approach to detect gained word senses
with low frequency, and offered interpretability by
visualizing cross-language semantic changes. The
works by Giulianelli et al. (2023); Fedorova et al.
(2024a) offer new ways of interpretability such
as automatically generating sense definitions for
usages from clusters. For an overview of recent
model architectures incl. clustering approaches,
see Zamora-Reina et al. (2022).

LSCD and dictionaries. The above-described
approaches all have in common that they do not
involve a dictionary in their task formulation. How-
ever, a variety of dictionaries is available for dif-
ferent languages and time periods (e.g. Dal, 1955;
Paul, 2002; OED, 2009) providing valuable infor-
mation characterizing a language stage on the lexi-
cal level. Thus, a possible alternative task formula-
tion for LSCD is to start from an existing dictionary

4https://llama.meta.com/llama3/
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and compare corpus usages against the dictionary
entries in order to find usages not covered by the
dictionary (Erk, 2006; Lautenschlager et al., 2024).

3 AXOLOTL-24 Shared Task

Participants are asked to solve the two subtasks:

• Subtask 1 - bridging diachronic word uses
and a synchronic dictionary: This task is to
identify mappings between dictionary entries
and the word usages of each target word, i.e.,
that the task asks to detect whether each word
usage has a novel sense or not, meaning that
it is not (or is) recorded in dictionaries.

• Subtask 2 - definition generation for novel
word senses: This task builds upon the map-
ping results of Subtask 1. It aims to generate
dictionary-like definitions for the unmatched
word usages discovered in Subtask 1, i.e., that
these usages contain novel senses not covered
by dictionaries.

An example for the Finnish target word ‘palaus’ is
illustrated in Figure 2. Participants are provided
with the mappings of usages at an earlier time pe-
riod to dictionary entries (sense glosses) while the
mappings for a later time period is unknown. Sub-
task 1 asks participants to predict which sense gloss
Usage 3 belongs to. If a system predicts Usage 3
to have a novel sense not covered by existing sense
glosses, then Subtask 2 asks to generate the gloss
for the novel sense.

[Gloss 1]: kääntymys, hengellinen kääntyminen

[Gloss 2]: kuumuus

[Word Usage 1] (<1700): anna minulle yxi oikea
catumus ia synnistä palaus.

[Word Usage 2] (<1700): Coska nyt Pauali cocosi
ydhen coghon Risuija ia pani ne Tulen päle, edesmateli
yxi Kyykerme palaudhesta.

[Word Usage 3] (>1700): Jumala on itze joca meisä sen
suuren Palauxen ja muutoxen toimitta

[Mapping]: (Usage 1, Gloss 1),
(Usage 2, Gloss 2),
(Usage 3, [Gloss 1, Gloss 2, Unknown])

Figure 2: A running example for the target word ‘palaus’
from the Finnish test set. The first two usages (before
1700) belong to the earlier time period while the last
one belongs to the later.

4 Our Systems

4.1 Subtask 1

Workflow. We reuse the workflow of the
AXOLOTL-24 baseline system, which includes
the following three components that are executed
sequentially:

• Producing embeddings of word usages:
This component aims to encode the usages
of a target word.

• Clustering embeddings: This component is
to partition the resulting embeddings of a tar-
get word into clusters. Each cluster contains
embeddings with similar meanings.

• Mapping between dictionary sense entries
and clusters: This component is to align dic-
tionary sense entries with the resulting clus-
ters. If the semantic meaning represented by
a cluster is present in dictionaries, then we
assign the dictionary entry to that cluster. Oth-
erwise, a novel meaning is said to be identified.
This implies the need for dictionary updates
to include new sense entries.

Baseline. The baseline system proposes an un-
supervised approach that does not rely on training
data, i.e., the lack of mappings between word us-
ages at an earlier time period and dictionary sense
entries, to predict mappings for unknown word us-
ages at a later period. The idea for the baseline
system to implement the workflow is the following:
For each target word, the baseline system begins
with collecting all the relevant corpus usages avail-
able at an earlier time period. If corpus usages are
unavailable5, the system resorts to using dictionary
definitions of the target word as substitutes. Sec-
ondly, the system aims to encode the meanings of
the target word in various corpus usages. However,
doing so is not trivial, as the positions of the tar-
get word in corpus usages are not always given in
the AXOLOTL-24 datasets. Moreover, for mor-
phologically rich languages, the automatic process
of locating the target word in word usages is inac-
curate. Thus, the baseline system approaches the
meaning of a target word by using the sentence
encoder LEALLA (Mao and Nakagawa, 2023) to
produce the embedding for the entire word usage.

5For the Russian datasets in the AXOLOTL-24 shared task,
some corpus usages in the 19th century are missing.
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Components Baseline Our System

Embedding word usages word usages and words

Clustering Affinity Prop. Neighbor-based clustering

Mapping first-indexed emb. average emb.

Table 1: Component-wise comparison between the base-
line and our system in Subtask 1.

After collecting word usage embeddings, the
baseline system leverages a popular clustering ap-
proach known as Affinity Propagation (Frey and
Dueck, 2007) to group word usage embeddings
into several clusters. Each cluster contains multiple
embeddings with similar meanings.

Lastly, to map between dictionary sense entries
with unknown usages of a target word at a later time
period, the baseline system proposes to align dic-
tionary entries with the collective meaning of each
cluster. In particular, for each cluster, the system
chooses the embedding of the first-indexed usage
of the target word in the AXOLOTL-24 datasets as
the collective meaning represented by that cluster.
It then computes the cosine similarity between that
word usage embedding and the embedding of each
dictionary entry (i.e., sense gloss). If the similar-
ity score surpasses a predefined threshold, then all
the word usages within that cluster are said to be
matching that dictionary entry.

Our submitted system. Just like the baseline sys-
tem, our system also does not rely on training data
to predict mappings between unknown usages at a
later time period and dictionary entries. However,
we make substantial changes to each component of
the workflow.

For each target word, we produce word usage
embeddings6 by using m-BERT (Devlin et al.,
2019) to encode various corpus usages of the target
word. Moreover, we create a vocabulary containing
all the words available in the entire corpus, together
with their average BERT-based word embeddings
over their occurrences in the corpus. We take all
the word usage embeddings of a target word and
the vocabulary as input to derive a 3-layer semantic
graph for each target word through our clustering
method. Each semantic graph contains the follow-
ing elements:

• Root node represents the average word usage
embedding over all the usages of a target word

6For our system, a word usage embedding is defined as the
average of all m-BERT word embeddings in a corpus usage.

kupari

id:1208,1209,1210, ...

opettaja

sulaunutta
Emäkirkon

taitan

id:1215,1216,1217

Puusta

metallia

hopiaa

Tinasta

Figure 3: An illustration of our semantic graph for the
Finnish target word ‘kupari’ (root node in the graph),
together with two subtrees separating two meaning clus-
ters. One cluster represents the meaning related to a
metal (in black) that is covered by dictionaries while
the other represents the novel meaning ‘the recipient
of metals as currency’ (in blue) that is not. Each clus-
ter contains 4-nearest neighboring words, together with
their corpus usage IDs, to interpret the collective mean-
ing of the cluster.

in the corpus.

• Nodes on the second layer are centroids of
each sense cluster, i.e., the average of word
usage embeddings within each cluster.

• Nodes on the third layer are k-nearest neigh-
bors to each cluster centroid.

Note that our clustering only operates on embed-
dings, and the nodes on the second layer are built
upon the clustering result. We introduce such
a graph as a visualization tool after clustering
to separate sense clusters and the corresponding
word usages. See a two-dimensional illustration
in Figure 3—where the graph separates a recorded
word sense from an unrecorded (novel) sense, to-
gether with their word usages from the Finnish
AXOLOTL-24 dev set.

Lastly, to map dictionary entries to clusters, our
system differs from the baseline: Instead of choos-
ing the first-indexed word usage embedding as the
collective meaning of a cluster, our system does
so by using the average word usage embedding.
Here, we briefly outline our clustering approach.
For further details, we refer to Ma et al. (2024).

Clustering. For each target word w, we denote
Cw = {c1, c2, . . . , cn} as a word cloud consisting
of a set of d-dimensional embeddings. Each embed-
ding represents a corpus usage of the target word,
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and n denotes the number of word usages available
in a given corpus that contain that target word. We
aim to partition Cw into m clusters. Each cluster
contains a subset of Cw representing embeddings of
word usages with similar meanings. Our clustering
method is illustrated in Algorithm 1. We choose
our clustering over the baseline Affinity Propaga-
tion (Frey and Dueck, 2007) because target words
in the AXOLOTL-24 datasets have 2-23 usages
on average (c.f. Table 3), i.e., they only have low-
frequency senses; in such a setup, our clustering
largely outperforms Affinity Propagation (see Table
11 in Ma et al. (2024)). We present our clustering
details in the following:

Algorithm 1 Our clustering method

Require: Cw = {ci}ni=1 as a set of word usage
embeddings representing various usages of a
target word w, tsc as the maximum distance
between similar clusters.

1: Initial centroids of clusters: Pw = {pi|pi =
ci}ni=1

2: while minpi∈Pw,pj∈Pw,i ̸=j d(pi, pj) < tsc do
3: Pw = (Pw \ {pi, pj}) ∪ {pi+pj

2 }
4: end while
5: return Pw

Our clustering method is similar to the bottom-
up agglomerative clustering (Sibson, 1973) but dif-
fers in that we use a neighbor-based metric7 to
handle low-frequency clusters. The idea is the
following: We start by treating each embedding
as a separate cluster, and then iteratively merge
two clusters when their centroids are of a distance
smaller than the distance threshold tsc until no fur-
ther pairs of such similar clusters can be found. Fol-
lowing Ma et al. (2024), we use a neighbor-based
distance metric in the clustering process to com-
pute distances between clusters. Both the distance
threshold and the number of nearest neighbors are
hyperparameters, which we tune on dev sets.

Importantly, using a neighbor-based distance
metric in the clustering process is crucial for han-
dling many low-frequency word senses in the
AXOLOTL-24 datasets. Ma et al. (2024) showed
that using such a metric to compute distances be-
tween clusters is a contributing factor to identify

7For agglomerative clustering, the distance between two
clusters is calculated as the average pairwise distance between
usage pairs based on their embeddings. For us, each pairwise
distance is calculated as the bipartite matching score over
k-nearest neighbors of a word usage and those of another.

Components Baseline Our System

Collection collect the mapping results of Subtask 1

Generation finetune XGLM prompte LLMs

Table 2: Component-wise comparison between the base-
line and our system in Subtask 2.

low-frequency sense clusters. The reason for this
is the following: for a low-frequency sense with
few word usages, relying on those usages to de-
cide whether they should form a standalone low-
frequency cluster or be merged into another cluster
can be unreliable. However, with k-nearest neigh-
bors of those usages participating (i.e., additional
information provided) in the decision making, the
decision becomes more reliable.

Lastly, for mapping, we select the average usage
embedding (i.e., cluster centroid) as the collective
meaning of a cluster, and compare that embedding
with dictionary entries. We choose the average
embedding over the embedding of the first-indexed
usage of a target word (see Table 1) because the
first-indexed choice is almost random. We use the
average embedding to eliminate such randomness.

4.2 Subtask 2
Workflow. Our submitted system follows the
workflow of the AXOLOTL-24 baseline that in-
cludes the two sequential components below:

• Collecting unmatched word usages. This
component aims to collect word usages with
novel senses not found in dictionaries. Do-
ing so is straightforward: The mapping re-
sults from Subtask 1 include word usages that
match dictionary entries, as well as unmatched
(novel) usages. Here, we only collect those
unmatched usages. We note that the system
performance in Subtask 1 immediately im-
pacts the quality of this component.

• Generating definitions. This component
takes unmatched word usages as input and
generates their dictionary-like definitions.

Baseline. The baseline system proposes a super-
vised approach that trains a generative model on
train sets, i.e., the mappings between dictionary en-
tries and matched word usages, in order to generate
definitions for unmatched word usages. In particu-
lar, the system takes a target word and its matched
word usages as input, and dictionary definitions of
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these word usages as the ground-truth output. The
system uses the generative model XGLM (Lin et al.,
2022) to encode the input and fine-tunes its model
parameters by minimizing the cross-entropy loss
in a way to make the generated definitions as close
as possible to the ground-truth counterparts. Note
that the fine-tuning process of the baseline is costly
as it is executed separately for each language.

Our submitted system. Unlike the baseline sys-
tem, our system is fully unsupervised8. After col-
lecting unmatched word usages we prompt Large
Language Models (LLMs) to generate definitions
for these word usages. We experiment with sev-
eral LLMs including open-source and commercial
models (LLaMA and GPT). Figure 6 (appendix)
illustrates the prompt to instruct GPT-3.5-turbo9 to
generate English definitions.

5 Experiments

Datasets. The shared task provides datasets for
the two subtasks for Finnish, Russian and German
languages. These datasets contain dictionary en-
tries such as headwords (target words), the defini-
tions of their meanings, word usages, the positions
of the headwords within word usages, and time
period (indicating whether word usages belong to
an earlier or later time period).

For Finnish, the dataset is curated from Vanhan
kirjasuomen sanakirja (Dictionary of Old Literary
Finnish)10 and is split into train, dev and test sets.
It includes word usages from earlier and later time
periods (before 1700 and after 1700). For Russian,
the dataset from an earlier time period is sourced
from Explanatory Dictionary of the Living Great
Russian Language (Dal, 1955) while the dataset
from a later period is from CODWOE (Mickus
et al., 2022). Again, the dataset is divided into
train, dev and test sets. For German, the dataset
is collected from DWUG DE Sense (Schlechtweg,
2023). The German dataset is only available in the
test phase, meaning that no train and dev sets are
provided. This setup is to put submitted systems to
test in handling an unseen language. We provide
data statistics for the AXOLOTL24 shared task in
Table 3, where the data from earlier and later time
periods are treated as two separate corpora.

8Our system based on LLMs is unsupervised in that it
does not rely on training data; however, the training data for
pre-training LLMs include many human-annotated data.

9https://platform.openai.com/docs/
models/gpt-3-5-turbo

10https://kaino.kotus.fi/vks/

Implementation details in Subtask 1. The base-
line system is unsupervised, although it still re-
quires a number of hyperparameters. These hyper-
parameters include a threshold for the minimum
similarity between a word usage and a dictionary
definition based on their embeddings, as well as pa-
rameters required by Affinity Propagation, such as
the choice of distance metrics to compute distances
between clusters and the number of clustering it-
erations. The baseline system sets the similarity
threshold to 0.3 and keeps the default parameters of
Affinity Propagation unchanged for all languages.
For our submitted system, two predefined hyper-
parameters are needed: the similarity threshold as
for the baseline system, and the number of nearest
neighbors required for generating a semantic graph
and computing distances between clusters. After
tuning on the development sets, we set the simi-
larity threshold to 0.5 and the number of nearest
neighbors to 5 for all languages. On a side note,
the baseline system uses the sentence-level encoder
LEALLA (Mao and Nakagawa, 2023) to produce
word usage embeddings while our system uses the
word-level encoder m-BERT (Devlin et al., 2019)
to produce both word and word usage embeddings.

Implementation details in Subtask 2. The base-
line system is supervised and finetunes the model
parameters of XGLM (Lin et al., 2022) in the task
of generating definitions for word usages. Doing so
requires several hyperparameters, including learn-
ing rate and weight decay for the Adam optimizer
(Kingma and Ba, 2014), and the number of epochs
for training. The baseline system uses the default
parameters of the Adam optimizer and sets the
number of epochs to 1. Our submitted system,
on the contrary, is fully unsupervised. For each
target word, we take a set of word usages identi-
fied by our clustering approach in Subtask 1 and
prompt LLMs to generate a collective definition
for the usages of the target word. A predefined
prompt is needed and we provide it in Figure 6.
For LLMs, we experiment with GPT-3.5-turbo and
GPT-4-turbo, LLaMA-2-7B and LLaMA-3-8B.

Prompt engineering. Note that our prompt is
created from scratch and refined on a small selec-
tion of random instances in the development sets,
meaning that our prompt is not optimal for the en-
tire sets in any language. Our refinement process
starts with an English prompt to instruct LLMs
to generate Finnish, Russian and German defini-
tions; however, LLMs often generate English def-
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Corpus #1 Corpus #2

Languages Period (t− 1) #usages avg/u max/u min/u Period (t) #usages avg/u max/u min/u #targets

Finnish (train) 1543-1650 45897 10 272 1 1700-1750 47242 11 214 2 4289
Finnish (dev) 1543-1650 3203 12 338 1 1700-1750 3351 12 266 2 254
Finnish (test) 1543-1650 3461 12 137 1 1700-1750 3264 11 114 2 275
Russian (train) 1800-1900 1912 2 12 1 1950-present 4581 5 19 1 924
Russian (dev) 1800-1900 421 2 11 1 1950-present 1605 8 30 1 201
Russian (test) 1800-1900 424 2 10 1 1950-present 1702 8 32 2 211
German (test) 1800–1899 584 24 25 20 1946–1990 568 23 25 14 24

Table 3: Statistics of the AXOLOTL-24 datasets. ‘#targets’ denotes the number of target words; ‘#usages’ means the
total usage count of target words; ‘avg/u’ indicates the average usage count of each target word; ‘max/u’ indicates
the maximum usage count per target word; ‘min/u’ indicates the minimum usage count per target word.

Finnish Russian German

Systems #Entries ARI macro-F1 ARI macro-F1 ARI macro-F1

deep-change(1) 17 0.649 0.760 0.247 0.640 0.322 0.510
deep-change(2) 16 0.649 0.760 0.048 0.750 0.521 0.740
Holotniekat 4 0.596 0.630 0.043 0.660 0.298 0.610
ABDN-NLP (Ours) 2 0.553 0.590 0.009 0.570 0.102 0.300

Baseline 5 0.023 0.230 0.079 0.260 0.022 0.130

Table 4: Results on the test-phase leaderboard for AXOLOTL-24 Subtask 1.

initions for non-English word usages; we address
this by translating the English prompt into Finnish,
Russian and German via Google Translate. Other
factors for refinement include (a) the length of a
definition, (b) determining when to stop generation
in order to ensure that generated definitions are
comparable in length to the ground-truth counter-
parts, and (c) the number of word usages for LLMs
to generate a collective definition.

Evaluation. For Subtask 1, the Adjusted Rand In-
dex (ARI) (Hubert and Arabie, 1985) and macro-F1
score are the two evaluation metrics for reporting
and comparing system performances. ARI calcu-
lates how much a pair of word usages from the
predictions belong to the same sense ID (or differ-
ent sense IDs) as they should, while the macro-F1
score computes the precision and recall of word
usages for each sense ID and then averages these
scores across all sense IDs. Note that F1 only con-
siders old senses in the “new” time period, meaning
that mappings of word usages to novel senses are
not evaluated. ARI considers both novel and old
senses in the “new” time period.

For Subtask 2, generated definitions for those
usages with novel senses are compared to their
ground-truth counterparts by computing similari-
ties between definition pairs. The AXOLOTL-24
shared task uses both lexical-based and embedding-
based metrics to compute definition pair similari-

ties. The metrics considered are BLEU (Papineni
et al., 2002) and BERTScore (Zhang* et al., 2020).
Other metrics appropriate for doing so include
MoverScore (Zhao et al., 2019), BlonDe (Jiang
et al., 2022) and DiscoScore (Zhao et al., 2023).
The latter two metrics have shown to be well-suited
for computing long-text pair similarities, particu-
larly useful when dealing with lengthy definitions.

6 Results

We present the results of our systems and analyses
on LLMs. Case studies are shown in Appendix A.

Subtask 1. We made two submissions for Sub-
task 1, with minor difference between them. The
only difference is that the second submission in-
cludes additional predictions for the unseen Ger-
man language. Table 4 compares the results of our
system and other teams. We see that our system,
based on the unsupervised graph-based clustering
approach, outperforms the unsupervised baseline
system by a large margin in all the languages. We
observe a big performance drop for the German lan-
guage compared to other two languages. One of the
reasons for this is due to historical data issues. Un-
like the Russian and Finnish corpus usages—which
have been carefully preprocessed by AXOLOTL-
24 organizers, German usages are not cleaned up
and contain spelling variations (e.g., nöthig instead
of nötig), OCR errors, escaping double quotes and
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Finnish Russian German

Systems #Entries BLEU BERTScore BLEU BERTScore BLEU BERTScore

ABDN-NLP (Ours) 3 0.107 0.706 0.027 0.677 0.000 0.714
TartuNLP 1 0.028 0.679 0.587 0.869 0.010 0.630
t-montes 7 0.023 0.675 0.027 0.656 0.010 0.650

Baseline 6 0.033 0.403 0.005 0.377 0.000 0.490

Table 5: Results on the test-phase leaderboard for Subtask 2. Our post-evaluation results are underlined.

others. These issues would incur out-of-vocabulary
tokens, potentially resulting in poor performance.

Lastly, our system performs poorly in terms of
ARI on both Russian and German test sets, despite
having better scores in macro-F1. The performance
gap between F1 and ARI attributes to the scope mis-
match between the two metrics: new sense IDs are
excluded when computing F1, whereas both old
and novel sense IDs are considered when comput-
ing ARI. This means unlike ARI, F1 would not pe-
nalize wrong prediction of novel sense IDs. As a re-
sult, although our system performs poorly for novel
sense predictions in Russian (see the ARI_new re-
sult in Table 6), the F1 result (F1=0.570) is still
quite high.

Metrics Finnish Russian German

macro-F1 0.590 0.570 0.300

ARI 0.596 0.043 0.298
ARI_new 0.633 0.039 0.524
ARI_old 0.619 0.754 0.260

Table 6: Post-evaluation results of our system on the
test-phase leaderboard for AXOLOTL-24 Subtask 1.
ARI_new considers new sense IDs only, while ARI_old
focuses on old sense IDs.

Note that the results from our system and other
teams are not directly comparable as the system
details of other teams are missing. For instance,
it remains unclear whether their systems are unsu-
pervised or not. Overall, we see the deep-change
system achieves the best performance in all the
three languages (including the unseen German lan-
guage where train and dev sets are unavailable);
however, their achievement is made through a total
of 33 submissions and the leaderboard only reports
their best performance; this indicates overfitting.

Subtask 2. We refined our prompts for instruct-
ing GPT-3.5-turbo. This results in three submis-
sions we made for Subtask 2, where the prompts in
our final submission yield the best performance on
the randomly selected instances from the Finnish

Finnish Russian

LLMs BLEU BERTScore BLEU BERTScore

Baseline 0.248 0.607 0.886 0.595

GPT-3.5-turbo 0.022 0.640 0.035 0.676
GPT-4-turbo 0.025 0.658 0.036 0.678
LLaMA-2-7B 0.013 0.611 0.024 0.604
LLaMA-3-8B 0.013 0.603 0.021 0.601

Table 7: Comparing LLMs on the dev set in Subtask 2.

and Russian dev sets. Note that the final prompts
are the Finnish, Russian and German translations
from the English version (see Figure 6).

Despite not using train sets, our unsupervised
system, based on GPT-3.5-turbo, considerably out-
performs the supervised baseline system in all se-
tups (see Table 5). This might be because the train
sets are not large enough for fine-tuning XGLM
(Lin et al., 2022). When compared with other
teams, our system ranks first for Finnish and Ger-
man, and ranks second for Russian. Again, it is
unclear whether other teams take advantage of the
train sets, and thus the direct comparison with other
systems is not meaningful.

Comparison of LLMs. Figure 7 compares the re-
sults of several LLMs. Overall, we observe that our
unsupervised system based on LLMs greatly out-
performs the supervised baseline system in terms
of BERTScore. However, our system performs
worse than the baseline in BLEU. This is because
our generated definitions are not lexically but se-
mantically similar to their ground-truth counter-
parts. The reason for this is the following: BLEU
cannot recognize text pair similarity when there
is no lexical overlap between them (Reiter, 2018).
This is particularly problematic when dealing with
morphologically rich languages like Russian and
Finnish. In such languages, high-quality generated
definitions might differ greatly from ground-truth
definitions in morphological forms; in this case,
BLEU would wrongly assign low scores to high-
quality definitions due to the absence of lexical
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overlap. This is demonstrated by our results, where
BLEU scores (0.02-0.03) mean very few lexical
overlaps between the generated and ground-truth
definitions while BERTScore (0.65-0.67) suggest
that definition pairs are indeed semantically similar.

Additionally, we observe the supervised base-
line system performs best in terms of BLEU, par-
ticularly for Russian. This means the generated
definitions are lexically similar to the ground-truth.
This might be attributed to the memorization of
training sets. We see that many ground-truth defi-
nitions contain words from corpus usages. During
training, the baseline system might have learned
to prioritize the use of words from corpus usages
when generating definitions. Lastly, although GPT-
4-turbo has shown to greatly outperform GPT-3.5-
turbo in many NLP tasks, we demonstrate that the
superiority of GPT-4-turbo is not considerable in
Subtask 2, especially for Russian, so is the case for
LLaMA-2-7B and LLaMA-3-8B.

7 Limitations

Dataset size. The datasets provided in the shared
task are quite small and contain very few word us-
ages for each headword on average. This is indeed
expected as the datasets are sourced from hand-
crafted dictionaries where lexicographers only col-
lect a small number of word usages for each dictio-
nary sense entry due to the costly mapping process.
Here we argue that it would be better to use such
datasets only for evaluation purposes, rather than
for dividing them into train sets. Furthermore, we
call for an additional database containing a large
amount of word usages for each headword to sup-
port the development of unsupervised systems, as
we see their potential demonstrated by our unsu-
pervised system, which greatly outperformed the
supervised baseline system in Subtask 2.

Text encoder. Our system relies on m-BERT (De-
vlin et al., 2019), a text encoder invented five years
ago, to produce embeddings for both word usages
and words in Subtask 1. In recent years, many
text encoders (Ni et al., 2022; Neelakantan et al.,
2022) have been introduced and shown to perform
much better than m-BERT in various NLP tasks.
Other encoders such as XL-LEXEME (Cassotti
et al., 2023) specialized in capturing lexical seman-
tic changes also meet our needs.

Data contamination. The works by Balloccu
et al. (2024); Ravaut et al. (2024) show that the

results of LLMs can be misleading due to the data
contamination issue, i.e., that test sets are included
in the training data of LLMs. This issue might
be present in the AXOLOTL-24 test sets for the
two reasons: (a) the source base of the test sets is
publicly accessible and (b) LLMs do not document
their training data at all. Thus, it is unclear whether
the headwords, word usages, and definitions in
the test sets have been exposed to LLMs. Future
work should design a measure to calculate data con-
tamination rates of LLMs on the AXOLOTL-24
datasets.

8 Conclusions

In this work, we presented our system that auto-
mates the process of identifying novel word mean-
ings not covered in dictionaries and generating
their definitions. We evaluated our system in the
AXOLOTL-24 shared task. Our results show that
supervision is not always useful: Without access to
train sets, our unsupervised system still greatly out-
performs the supervised baseline system, as well
as other team submissions in Subtask 2—which
demonstrates the potential of LLMs in generating
definitions for novel word usages; however, the un-
certainty as to whether the AXOLOTL-24 test sets
are included in the training data for pre-training
LLMs calls for careful investigation in the future.

Acknowledgements

We thank the anonymous reviewers for their
thoughtful feedback that greatly improved the texts.
Dominik Schlechtweg has been funded by the re-
search program ‘Change is Key!’ supported by
Riksbankens Jubileumsfond (under reference num-
ber M21-0021).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Nikolay Arefyev and Dmitrii Bykov. 2021. An inter-
pretable approach to lexical semantic change detec-
tion with lexical substitution. volume 2021-June,
pages 31–46.

Simone Balloccu, Patrícia Schmidtová, Mateusz Lango,
and Ondrej Dusek. 2024. Leak, cheat, repeat: Data
contamination and evaluation malpractices in closed-
source LLMs. In Proceedings of the 18th Confer-
ence of the European Chapter of the Association

50

https://doi.org/10.28995/2075-7182-2021-20-31-46
https://doi.org/10.28995/2075-7182-2021-20-31-46
https://doi.org/10.28995/2075-7182-2021-20-31-46
https://aclanthology.org/2024.eacl-long.5
https://aclanthology.org/2024.eacl-long.5
https://aclanthology.org/2024.eacl-long.5


for Computational Linguistics (Volume 1: Long Pa-
pers), pages 67–93, St. Julian’s, Malta. Association
for Computational Linguistics.

Pierpaolo Basile, Annalina Caputo, Tommaso Caselli,
Pierluigi Cassotti, and Rossella Varvara. 2020.
Overview of the EVALITA 2020 Diachronic Lex-
ical Semantics (DIACR-Ita) Task. In Proceedings
of the 7th evaluation campaign of Natural Language
Processing and Speech tools for Italian (EVALITA
2020), Online. CEUR.org.

Andreas Blank. 1997. Prinzipien des lexikalischen
Bedeutungswandels am Beispiel der romanischen
Sprachen. Niemeyer, Tübingen.

Pierluigi Cassotti, Lucia Siciliani, Marco DeGemmis,
Giovanni Semeraro, and Pierpaolo Basile. 2023. XL-
LEXEME: WiC pretrained model for cross-lingual
LEXical sEMantic changE. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
1577–1585, Toronto, Canada. Association for Com-
putational Linguistics.

Jing Chen, Emmanuele Chersoni, Dominik
Schlechtweg, Jelena Prokic, and Chu-Ren Huang.
2023. ChiWUG: A graph-based evaluation dataset
for Chinese lexical semantic change detection. In
Proceedings of the 4th Workshop on Computational
Approaches to Historical Language Change, pages
93–99, Singapore. Association for Computational
Linguistics.

VI Dal. 1955. Explanatory dictionary of the living great
russian language.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Steffen Eger and Alexander Mehler. 2016. On the lin-
earity of semantic change: Investigating meaning
variation via dynamic graph models. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 52–58, Berlin, Germany. Association for Com-
putational Linguistics.

Katrin Erk. 2006. Unknown word sense detection as
outlier detection. In Proceedings of the Human Lan-
guage Technology Conference of the NAACL, Main
Conference, pages 128–135, New York City, USA.
Association for Computational Linguistics.

Mariia Fedorova, Andrey Kutuzov, Nikolay Arefyev,
and Dominik Schlechtweg. 2024a. Enriching word
usage graphs with cluster definitions. In The 2024
Joint International Conference on Computational
Linguistics, Language Resources and Evaluation.

Mariia Fedorova, Timothee Mickus, Niko Tapio Parta-
nen, Janine Siewert, Elena Spaziani, and Andrey Ku-
tuzov. 2024b. AXOLOTL’24 shared task on multilin-
gual explainable semantic change modeling. In Pro-
ceedings of the 5th Workshop on Computational Ap-
proaches to Historical Language Change, Bangkok.
Association for Computational Linguistics.

Brendan J Frey and Delbert Dueck. 2007. Clustering
by passing messages between data points. science,
315(5814):972–976.

Dirk Geeraerts. 2020. Semantic Change, chapter 1.
American Cancer Society.

Mario Giulianelli, Marco Del Tredici, and Raquel Fer-
nández. 2020. Analysing lexical semantic change
with contextualised word representations. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3960–
3973, Online. Association for Computational Lin-
guistics.

Mario Giulianelli, Iris Luden, Raquel Fernandez, and
Andrey Kutuzov. 2023. Interpretable word sense
representations via definition generation: The case
of semantic change analysis. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
3130–3148, Toronto, Canada. Association for Com-
putational Linguistics.

Hila Gonen, Ganesh Jawahar, Djamé Seddah, and Yoav
Goldberg. 2020. Simple, interpretable and stable
method for detecting words with usage change across
corpora. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 538–555, Online. Association for Computa-
tional Linguistics.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky.
2016a. Cultural shift or linguistic drift? compar-
ing two computational measures of semantic change.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2116–2121, Austin, Texas. Association for Computa-
tional Linguistics.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky.
2016b. Diachronic word embeddings reveal statisti-
cal laws of semantic change. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1489–1501, Berlin, Germany. Association for Com-
putational Linguistics.

William L Hamilton, Jure Leskovec, and Dan Juraf-
sky. 2016c. Diachronic word embeddings reveal
statistical laws of semantic change. arXiv preprint
arXiv:1605.09096.

Daniil Homskiy and Nikolay Arefyev. 2022. Deep-
Mistake at LSCDiscovery: Can a multilingual word-
in-context model replace human annotators? In
Proceedings of the 3rd International Workshop on
Computational Approaches to Historical Language

51

https://doi.org/10.18653/v1/2023.acl-short.135
https://doi.org/10.18653/v1/2023.acl-short.135
https://doi.org/10.18653/v1/2023.acl-short.135
https://doi.org/10.18653/v1/2023.lchange-1.10
https://doi.org/10.18653/v1/2023.lchange-1.10
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P16-2009
https://doi.org/10.18653/v1/P16-2009
https://doi.org/10.18653/v1/P16-2009
https://aclanthology.org/N06-1017
https://aclanthology.org/N06-1017
https://arxiv.org/abs/2403.18024v1
https://arxiv.org/abs/2403.18024v1
https://doi.org/10.1002/9781118788516.sem042
https://doi.org/10.18653/v1/2020.acl-main.365
https://doi.org/10.18653/v1/2020.acl-main.365
https://doi.org/10.18653/v1/2023.acl-long.176
https://doi.org/10.18653/v1/2023.acl-long.176
https://doi.org/10.18653/v1/2023.acl-long.176
https://doi.org/10.18653/v1/2020.acl-main.51
https://doi.org/10.18653/v1/2020.acl-main.51
https://doi.org/10.18653/v1/2020.acl-main.51
https://doi.org/10.18653/v1/D16-1229
https://doi.org/10.18653/v1/D16-1229
https://doi.org/10.18653/v1/P16-1141
https://doi.org/10.18653/v1/P16-1141


Change, Dublin, Ireland. Association for Computa-
tional Linguistics.

Lawrence Hubert and Phipps Arabie. 1985. Comparing
partitions. Journal of classification, 2:193–218.

Yuchen Jiang, Tianyu Liu, Shuming Ma, Dongdong
Zhang, Jian Yang, Haoyang Huang, Rico Sennrich,
Ryan Cotterell, Mrinmaya Sachan, and Ming Zhou.
2022. BlonDe: An automatic evaluation metric for
document-level machine translation. In Proceedings
of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1550–1565,
Seattle, United States. Association for Computational
Linguistics.

Jens Kaiser, Sinan Kurtyigit, Serge Kotchourko, and
Dominik Schlechtweg. 2021. Effects of pre- and
post-processing on type-based embeddings in lexi-
cal semantic change detection. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 125–137, Online. Association for Computa-
tional Linguistics.

Adam Kilgarriff, Pavel Rychlỳ, et al. 2010. Semi-
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A Appendix

Case studies. Figures 4 and 5 compare gener-
ated and ground-truth definitions for the two tar-
get words sampled from the Russian dev set. For
the first target word, the generated definition by
GPT-3.5-turbo is quite similar to the ground-truth
definition. We suspect that the word ‘radioactive’
in the corpus usage suggests that the location is
likely to be a burial ground. We test this hypothesis
by removing the word ‘radioactive’ and prompting
GPT-3.5-turbo again: the generation definition then
becomes “a burial ground or cemetery” (English
translation)—which is too general and refers to a
non-metaphorical scenario where people are buried
underground, whereas “radioactive burial ground”
could mean metaphorically a site for disposing of
radioactive waste.

Consider the second word, which is computer
slang meaning “to make something inaccessible”.
Interestingly, GPT-3.5-turbo did not provide any
guess on the definition of the word usage, and just
acknowledged that this is a Russian word with-
out giving further details. This could be because
GPT-3.5-turbo lacks knowledge of the cybersecu-
rity term ‘DDoS’ (it means a denial-of-service at-
tack), and thus it did not provide any guess for the
definition. This analysis, however, is only based
on two cases. Future work could include a due
diligence investigation of wrongly generated defi-
nitions, such as categorizing incorrect definitions.

#A usage for the word: [могильник]

Якобы тут, возле Черниховки, находится
радиоактивный могильник.

(English Translation): Allegedly here, near Chernik-
hovka, there is radioactive burial ground.

[Generated Definition by GPT-3.5-turbo]:
Могильник - место захоронения радиоактивных
отходов или погибших.

(English Translation): Burial ground - a burial place
for radioactive waste or dead.

[Ground-truth Definition]:
спец. место захоронения радиоактивных отходов;
специальное сооружение для такого захоронения.

(English Translation): Special burial site for radio-
active waste; special structure for such burial.

[Evaluation]: BLEU: 21.2 BERTScore: 0.79

Figure 4: A well-generated definition in Russian.

# A usage for the headword: [положить]

Также впустую ушли две недели ддоса главной
страницы пикаперов, хотя форум положить удалось.

(English Translation): Also, two weeks of DDoSing the
main page were wasted pick-up artists' pages, although
they managed to put down the forum.

[Generated Definition by GPT-3.5-turbo]:
язык, используемый в России и других странах.

(English Translation): A language used in Russia and
other countries.

[Ground-truth Definition]:
комп. жарг. привести в нерабочее состояние,
«уронить», сделать недоступным что-либо.

(English Translation): A computer slang referring to
something inoperative and inaccessible.

[Evaluation]: BLEU: 3.38 BERTScore: 0.59

Figure 5: A poorly-generated definition in Russian.

Our prompt. Figure 6 illustrates the prompt used
to instruct GPT-3.5-turbo to generate definitions in
English.

[Instruction]:
Imagine that you are a lexicographer, given a headword
{target_word} in {lang}, write the dictionary definition
of its usage in the following quotations:

1. First quotation
2. Second quotation

[Requirements]:
The definition you create should be brief. A maximum
of ten words is allowed. The definition ends at the
first period.

[Response]:
Definition (string): {definition}

Figure 6: An illustration of our prompt used to instruct
GPT-3.5-turbo to generate dictionary-like definitions,
where ‘quotation’ is synonymous of ‘word usage’.
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Abstract

Religious hymns represent a particularly com-
plex literary domain, due to their specialized
registry and context, which remain understud-
ied in computational linguistics, especially in
less-resourced languages. We introduce Gold-
enHymns(S), a novel dataset of Danish histor-
ical religious hymns (1798–1873). To allow
for a comparison with existing NLP tools’ per-
formances, the GoldenHymns(S) dataset is en-
riched with modernized Danish versions as well
as English translations of the hymns. To fur-
ther the study of sentiment changes in Danish
religious texts - a particularly relevant aspect
of their development - we also provide verse-
level valence annotations by human experts,
and we examine the effect of language change
and specificity on the performance of contem-
porary Danish sentiment analysis tools. The
dataset is the first resource for evaluating and
enhancing the performance of sentiment analy-
sis within the realm of historical religious po-
etry in the Danish language.

1 Introduction

Historical texts present a challenge for the per-
formance of computational models, especially in
under-resourced languages (Schmidt et al., 2021;
Zilio et al., 2024). Danish religious hymns repre-
sent just such a challenge for computational tools.
The hymnal tradition has a central place in Dan-
ish culture (Nielsen, 2020), and the official hymn
books, which disseminates and curates the hym-
nal heritage, is the most widely distributed book
in the poetry genre in Denmark (Sandstrøm, 2007).
Communal singing (“fællessang”) remains popular,
continually drawing on and revitalizing the hym-
nal heritage (Baunvig, 2020), especially the pro-
duction of central hymnists of the late 18th and

19th century. It is a common interpretation that
older hymns depict a dualistic view of the world,
where a dominant eschatological understanding
highlights earthly instances more negatively and
religious instances more positively than in newer
hymns. A hymn dataset provided with valence
scores makes investigations in such polarity shifts
possibly both regarding certain religious concepts
within the hymns as well as general sentiment struc-
tures in the chronology of the hymns. During the
19th century, a historically critical period for Dan-
ish society (Glenthøj and Ottosen, 2021) and cul-
ture alike (Mortensen et al., 2006),1 a long line of
hymnists and poets took up the endeavor to boost
Danish literature and contribute to official church
hymn books,2 which theologians and civil servants
wished to “express happy feelings” (Kjærgaard,
2003). Hymnists brought deism and Enlighten-
ment ideals into a new Christian outlook (Baunvig
and Nielbo, 2023; Nielsen, 2020), which echoes in
the continued publication of official hymn books
to this day. This change in mood in 19th century
hymns remains relatively unexplored, with stud-
ies focusing on individual authors over historical
trends (Baunvig, 2023), especially in traditional
humanities research (Elbek, 1959).

In this paper, we present two main contributions
to the quantitative exploration of historical senti-
ment changes in religious hymns:

1) We present a new dataset – the Golden-
Hymns(S)3 – of Danish historical religious hymns

1The period is known as the Danish Golden Age for its
cultural and political productivity.

2Official church hymn books were released in Denmark in
1569.

3The “Small” (S) designation reflects its current composi-
tion of 65 hymns, with plans for expansion in the future.
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with human-annotated valence scores. 4

2) We evaluate different sentiment analysis (SA)
tools on the dataset. To distinguish the effects of
language change on the systems’ performance, we
repeat our experiments on a version translated into
modern Danish.

2 Related Works

2.1 Available resources

There are currently three datasets for Danish hymns
available. The first is the work of one author, N.F.S.
Grundtvig (CGR, 2019), where the hymnal col-
lection is only a subset of the full authorship of
Grundtvig. The second dataset indexes hymnal
books and bibles related to the reformation era
(DSLDK, 2021), spanning from 1529 to 1569 –
where only the latter collection, from 1569, is an
authorized hymnal book.5 A third dataset consists
of the hymns from the most recent authorized Dan-
ish hymnal book of 2002 (By-, Land- og Kirkem-
inisteriet and Vajsenhus, 2002). Beyond the most
modern one, the existing datasets treat one author-
ship or specific period. As such, there is to the
best of our knowledge no dataset that facilitates the
study of diachronic change in the genre.

The second (Reformation) dataset does enable
study of the development of a (limited) period, as
well as comparative analysis of historical character-
istics and registry of religious Danish in the genre.
Yet, the hymns included in the dataset feature com-
prehensive orthographic deviations (compared to
modern Danish), posing a challenge to human anno-
tators with its 16th century Danish, possibly result-
ing in low levels of agreement between annotators.

With the GoldenHymns(S) dataset, we thus sup-
plement available Danish resources, facilitating
both diachronic study and supplying texts that have
been modernized and annotated by scholars experi-
enced with the linguistic registry.

2.2 Sentiment Analysis of historical texts

While the study of sentiment has come to be a
central approach in computational literary studies
(Rebora, 2023), its applications to Danish literature
– especially historical – are relatively rare. Though
significantly less resourced than English, there is

4The dataset is available at: https://github.com/
EaLindhardt/GoldenHymns-S-

5In Denmark, authorized hymnal books have been pub-
lished since 1569, meaning they are approved by the Danish
Crown, and should by law be used in the Danish National
Church.

No. Vs Words x̄ Vs Period

Hymns 65 1,914 10,303 32.9 1798-1873

Table 1: Presenting the dataset: The total number of
verses (Vs) and words, mean (x̄) number of verses per
hymn, and timeframe.

no obvious issue halting the use of SA tools in the
Danish language and literature: Danish dictionary-
based tools show comparable performance (Schnei-
dermann and Pedersen, 2022), and a tool like Sen-
tida has been validated against human scores of
text (chunks) across domains, showing a robust
performance for fiction (Lauridsen et al., 2019).
Still, there is no comprehensive Danish SA bench-
mark, and the performance is generally evaluated
on modern Danish across (few) domains. Assess-
ing the performance of SA models on historical
Danish and Norwegian literary texts, Allaith et al.
(2023) found that multilingual transformer models
outperformed models trained on modern Danish
as well as classifiers based on Danish lexical re-
sources. Schmidt et al. (2021) similarly found that
transformers did best on historical German drama.
Testing dictionary-based methods on historical Ger-
man plays, Schmidt and Burghardt (2018) found
that dictionaries did well when extending their lex-
ica with historical variants. They also found an
issue with low levels of agreement between anno-
tators who were not used to the historical register
– foregrounding the importance of using annota-
tors experienced with the register of the period and
domain. Toft (2023) addressed how modernizing
historical Danish hymns improved the performance
of Danish NLP tools achieving significant improve-
ments in the accuracy of automatic annotating of
POS-tags using models like DaCy and SpaCy, ud-
nerscoring the importance of either normalizing
historical language or adapting NLP techniques
when working with historical texts.

3 Dataset

The dataset consists of 65 Danish hymns collected
at random from three different official hymnal
books from the years 1798 (n=35), 1857 (n=17),
and 1873 (n=13) (psa, 1798, 1857, 1873). Popular
hymns from earlier periods might be included in
these collections, but following Danish tradition,
hymns in the hymnals were edited from their au-
thentic version into a version that fitted the church
at the time. Each hymn is then edition-specific and
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represents the associated hymnal. The hymns are
characterized by their metrical structure (verses,
rhymes, etc.), their poetic language style (exclama-
tions, figurative language), and their archaic and
formal language - e.g., the use of Latinized “est”
for “is” (“er”). Each hymn is coupled with its
modernized version and English translation (which
maintain the original verse style and syntactical
structure), as well as a sentiment score per verse.

Hymns are challenging for SA due to their reg-
ister. Their poetic and figurative language, often
embodies subtle emotional tones, as well as the cul-
tural and religious contexts they refer to (Skovsted
et al.; Nielsen, 2020). Due to the poetic style, the
sentiment analysis is based on dividing the hymns
into verses (Table 1). Our unit of analysis was
verses since the fundamental unit of poetry is the
verse, rather than the sentence. A syntactically
sound sentence might thus not be present in every
verse, which further challenges sentimental inter-
pretations.

By including both original and modernized ver-
sions of the hymns in the dataset we allow observa-
tions on how modernizing the hymns affects Dan-
ish sentiment analysis. Furthermore, by including
validated English translations, we provide accessi-
bility for English-speaking researchers and cross-
linguistic comparability (e.g. comparing English
SA model performance). Examples of verses from
the dataset is shown in Table 2, with examples of
the original verse, its modernization and its English
translation.

Sentence Score
J Mistvivl, Angest, Smerte 2.0
(M) I mistvivl, angst og smerte
(En) In doubt, anxiety, and pain

Ungdomsliv i Morgenrøden 7.0
(M) Ungdomsliv i morgenrøden
(En) Youthful life in the morning’s red glow

Table 2: Example of a positive and negative sentence
(original, modernized and English translation) with the
human mean score.

4 Methods

We provide an overview of how the dataset was
supplemented and annotated for valence (by hu-
man annotators and automatic systems). We then
show a use-case of the valence annotation, compar-
ing human to automatic scores – both overall for
original and modernized versions of the hymns and

for each of the hymn book collections separately –
to examine systems’ performance and how it may
vary throughout the period covered by our data.

4.1 Modernization and translation
Beyond the original hymn texts, the dataset in-
cludes modernized versions and English transla-
tions of each verse following the original verse and
syntactical structure. The verses were modernized
by two scholars, who prompted ChatGPT 3.5,6 and
subsequently validated each output verse manu-
ally against the original to ensure that spelling and
vocabulary were updated, keeping semantic and
syntactical changes to a minimum. English transla-
tions were created by using Google Translate, and
then again manually revised and validated by two
bilingual experts.

4.2 Human Sentiment Annotation
Danish language and literature scholars (n=2)7 read
and scored all 1,914 verses – defined by line breaks
– on a 0 to 10 valence scale: 0 signifying the lowest,
and 10 the highest valence (for example sentences
see Table 2). Here, valence was intended as the
sentiment expressed by the verse. Annotators were
instructed to try reporting on the sentiments embed-
ded in the verse, i.e., to think about the valence of
each verse individually, not overthinking context.

We report a relatively high inter-rater correlation,
with a Spearman’s r between their scores of 0.726
– high considering the fragmentary nature of the
text rated (verses, not sentences) and considering
that humans rarely have an agreement higher than
80% for tasks like positive/neutral/negative tagging
(Wilson et al., 2005) or 0.80 Krippendorff’s α for
continuous scale polarity annotation of non-fiction
texts (Batanović et al., 2020).8

4.3 Automatic Annotation
We used several models on Danish sentiment anal-
ysis, both transformer- and dictionary-based (the
latter of which are usually also rule-based), to score
the verses in the hymns for valence. Dictionary-
based methods remain popular due to their trans-
parency and versatility, and appear to perform well

6The prompt was: “Oversæt til moderne dansk retstavn-
ing”, i.e. “translate to modern Danish spelling”.

7The annotators (MA and PhD in literature) were native
Danish speakers and had domain knowledge in 19th century
Scandinavian literature and historical religious hymns.

8For a discrete sentiment annotation task similar to the
one presented here – albeit on modern fiction – Bizzoni and
Feldkamp (2023) report a Spearman correlation between an-
notators (n=2) of 0.624.
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Alex.inst. Senda RoBERTa Asent Afinn Sentida

Hymns original 0.39 0.32 0.39 0.40 0.39 0.49

Hymns modernized 0.42 0.35 0.46 0.41 0.40 0.53

Table 3: Sentiment analysis of hymns: Spearman correlation between scores on the original (above) and modernized
lines (below) to the human mean scores (annnotated on the original lines). Transfomer-based systems are on the
left, and dictionary and rule-based systems are on the right. For the correlations, all pvalues are <0.01.

Alex.inst. Senda RoBERTa Asent Afinn Sentida

1798 0.29 (0.36) 0.30 (0.36) 0.36 (0.40) 0.35 (0.33) 0.36 (0.34) 0.43 (0.44)

1857 0.39 (0.36) 0.36 ( 0.38) 0.43 (0.51) 0.41 (0.42) 0.38 (0.39) 0.49 (0.53)

1873 0.43 (0.48) 0.30 (0.33) 0.37 (0.46) 0.40 (0.44) 0.40 (0.44) 0.51 (0.56)

Table 4: Sentiment analysis over time: Spearman correlation between scores on the original and modernized
lines (in parentheses) to the human mean scores for each hymn-collection individually (1798, 1857, and 1873).
Transfomer-based systems on the left, dictionary and rule-based systems on the right. For the correlations, all
pvalues are <0.01.

on literary texts (Bizzoni and Feldkamp, 2023). We
test sentiment dictionaries that have had a wide ap-
plication in Danish. Our chosen dictionary-based
tools were:
Afinn: A valence dictionary without rules, created
from Twitter data and various open sources.9 The
dictionary includes many inflections of the same
lemma. Valence scores range from -5 to +5.
Sentida: A rule-based system inspired by the En-
glish VADER, considering negations, adverb mod-
ifiers, and more.10 Sentida integrates the Afinn
dictionary with the 10,000 most frequent Danish
lemmas, which were manually annotated by the au-
thors (Lauridsen et al., 2019). It relies on stemming
to find matching dictionary entries during inference.
Valence scores range from -5 to +5.
Asent: A rule-based system that is part of the DaCy
suite (asent_da_v1), a comprehensive NLP toolkit
for Danish.11 It uses the Afinn dictionary by default
and adds rules for handling negations, modifiers,
intensifiers, etc. Scores range from -1 to +1.
Moreover, we use more recent Transformer-based
models, which are becoming popular and show po-
tential applied to literary texts (Elkins, 2022) and
historical literary texts (Allaith et al., 2023). We
chose to use two off-the-shelf models currently
developed for Danish SA, as well as one widely
used multilingual model, RoBERTa xlm, which has
shown a good performance on literary prose (Biz-

9https://github.com/fnielsen/afinn
10https://github.com/Guscode/Sentida
11https://centre-for-humanities-computing.

github.io/DaCy

zoni and Feldkamp, 2023):12

Senda:13 was specifically created for Danish. It is
based on the Roberta architecture and pretrained
on an extensive collection of Danish texts.
Alexandra Institute sentiment base:14 represents
another Danish-oriented transformer model fine-
tuned for sentiment analysis tasks. This model is
provided by the Alexandra Institute.
RoBERTa xlm multilingual base sentiment:15 uses
cross-lingual training techniques, designed to en-
hance its capacity for understanding and process-
ing multiple languages by transferring knowledge.
This method allows the model to apply skills from
one language to another, which can improve its
generalization in sentiment analysis. However, this
may limit its effectiveness with language-specific
nuances, particularly in specialized domains.

We opted to exclude GPT models or new gener-
ation LLMs at this stage. Generative models like
GPT suffer from increased opacity even with re-
spect to traditional transformers and, in the case of
the largest models, are trained on unknown data.
Most importantly, GPTs’ generative nature makes
any application dependent on prompting, which
introduces a level of variability and inconsistency
that would complicate our results. While this was

12We maintained all presets as the default when applying
these models, so that the hyperparameters are as specified
in the documentation of the individual model (see the model
hyperlinks).

13https://huggingface.co/larskjeldgaard/senda
14https://huggingface.co/alexandrainst/

da-sentiment-base
15https://huggingface.co/cardiffnlp/

twitter-xlm-roberta-base-sentiment
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not a problem in the text modernization phase, as
it made sense to review and correct the result, we
opted to stick to tools specifically trained to return
an SA output from a text, leaving the introduction
of generative models to a later phase.

5 Results

We report the performance (Spearman’s rho) of sys-
tem sentiment scores compared to human scores
in Table 3. It appears that dictionary-based tools
(Afinn, Sentida and Asent) perform comparable to
or – in the case of Sentida – better than transformer-
based methods. Moreover, all methods improve
when applied to modernized texts, against the orig-
inal text, with the biggest improvements observed
for Sentida (+0.04) and RoBERTa (+0.07). Across
the collections, published in 1798, 1857, and 1873,
models generally improve over time. Notably this
trend is weakened – though not gone – when ap-
plied to the modernized versions of the text (Ta-
ble 4). Irrespective of the year of publication, Sen-
tida continues to perform the best in this genre.

Among transformer-based models, the Alexan-
dra Institute and RoBERTa xlm models appear to
perform best, and the consistency of their perfor-
mance over time appears only slightly worse than
dictionary-based models (e.g., a 0.12 point differ-
ence for the Alexandra Institute model, and an 0.8
point difference for Sentida when contrasting coef-
ficients of the earliest and the latest collection).

6 Discussion and Conclusions

Contrary to previous findings on modern narrative
(Bizzoni and Feldkamp, 2023) and historical drama
and narrative texts (Allaith et al., 2023; Schmidt
et al., 2021), where multilingual transformer-based
models appeared to perform best, we find that
dictionary-based methods outperform transformer-
based models in this domain. Transformer-based
models may depend more heavily on the presence
of syntactically sound phrases (which are not al-
ways extant in hymn verses), and be impaired by a
verse-level tokenization of the hymns, worsening
their performance. It is interesting to note that sys-
tems that put particular emphasis on the valence
of individual words appear to perform better in
contexts – such as a single poetic verse – where
semantic blow of single words is more central. An
intriguing observation of this study is the overall
improvement of models through time, which also
holds true when applying the models to modernized

verses. It is possible that hymns evoke sentiment
differently through time, with hymnists changing
their affective strategies, so that factors like the
level of language concreteness, which has been
shown to elude SA models and impact perceived
sentiment in literary texts (Bizzoni and Feldkamp,
2024), might change through time.

Studies on sentiment analysis (SA) within the
domain of historical hymns can contribute to the
broader field of SA in literary genres. Hymns, with
their consistent and limited themes, use of topics
and metaphors, serve as a good starting point for
exploring SA in poetry in general. This consis-
tency provides a controlled environment to refine
and test SA methodologies, as the genre is quite
accessible to machine processing, which can then
be applied to more complex and varied literary
forms. Insights gained from SA in hymn litera-
ture not only enhance our understanding of emo-
tional expression in religious and historical texts
but also offer valuable methodologies that can be
adapted for other literary genres. For instance, the
success of dictionary-based models in outperform-
ing transformer-based models within the context
of hymn analysis suggests that traditional, lexicon-
driven approaches may have advantages in certain
types of literary analysis such as poetis genres. This
could be due to the repetitive and formulaic na-
ture of hymns, which might be better captured by
dictionary-based models. By starting with hymns,
researchers can develop robust techniques that ad-
dress the unique challenges of poetic texts, such
as figurative language and complex emotional ex-
pressions. These techniques can then be extended
to analyze sentiment in a wide range of literary
genres, from classical poetry to modern prose, thus
enriching the field of SA in literature as a whole.

Overall, insights from the current study show am-
ple reason to work towards expanding this dataset
in the future, both in terms of size and temporal
range. Future work might test the improvement
of SA tools’ performance when supplying lexica
of historical language variants, and examine the
development in hymnal sentiment across time gen-
erally or in connection with certain concepts. We
also plan to work on larger datasets and to fine-tune
models on this kind of sentiment annotations. Fi-
nally, an undoubtedly interesting next step would
be that of testing the behaviour of generative large
language models on the task, both in terms of
similarity with human judgments and in terms of
prompt-dependent variability.
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Abstract

This paper is concerned with annotating the
syntax of ancient Chinese, which is a series
of languages in the same development process.
The major challenge is to ensure the annota-
tions of languages at different stages are com-
parable. To this end, we propose a feature-
based approach that integrates the deductive
feature design from the Chomskyan school and
the inductive feature design from traditional
philological studies. We demonstrate the effec-
tiveness of our approach by annotating a col-
lection of representative sentences that cover
various linguistic phenomena that are exten-
sively discussed in the literature. As a result,
we establish a corpus of 673 (for now) ancient
Chinese sentences paired with syntactic analy-
ses, covering from 700s B.C.E. to 1900s C.E.
The corpus can be utilised as a guideline for
future large-scale TreeBanking.

1 Introduction

This paper proposes a feature-based method for
annotation that makes the evolution of functional
categories and structures in different language sys-
tems comparable. A fundamental methodology
for diachronic linguistics, the comparative method
(Meillet, 1925; Hoenigswald, 1950, 1965; Harris
and Campbell, 1995) that identifies and explains
form-meaning pairs (i.e., phonological and seman-
tic correspondences) mainly in phonology and mor-
phology among languages from different places or
eras, encounters challenges in the field of syntax at
the very beginning step of establishing correspond-
ing sets. Various attempts have been made to iden-
tify relatively fixed comparable components within
the evolving and generative (and therefore infinite)
set of sentences (Winter, 1984; Rankin, 2017). One
approach considers categories as fundamental, but
lexical categorization and the functions of cate-
gories vary across languages or in different lan-
guage periods. Another influential approach is the

Parameter Comparative Method (PCM; Guardiano
et al., 2016; Longobardi, 2014, 2017; Crisma et al.,
2020) that splits the parts of speech (POS; Lyons,
1968) i.e., word categories into syntactic features.
It offers a more nuanced comparative framework
for understanding syntactic functions across di-
verse languages based on streamlined parameters
in phylogenetic comparisons, but it falls short on
languages without morphological markers, such as
Chinese.

A distinct perspective on features is needed to
address the deficiency. In addition to formal fea-
tures encoded by morphology (Chomsky, 1995;
Adger and Svenonius, 2011), the categorial fea-
tures (Chomsky, 1970) encompass information of
syntactic position, which serves as a crucial foun-
dation for the syntax of languages without formal
markers. Another feature, individuation (Bisang,
1999, 2002; Imai and Mazuka, 2003) characterises
syntactic functional components, which may be in-
tegrated with lexical formally in these languages.
Moreover, the particularities of syntactic represen-
tation in specific languages are deeply considered.
Drawing on Chinese as an example, we annotate
features for structures and functional components
that underwent significant changes during the lan-
guage’s evolution over two millennia. Our pro-
posed features can represent and effectively differ-
entiate typical instances across different stages.

As we further develop this annotation approach
into a large-scale endeavour, we could model lan-
guage systems across different eras and extract pat-
terns in functional features, revealing deeper rules
of language development beyond traditional studies
focused on individual structures.

2 Feature Design

Our proposed features aim to rectify the com-
mon oversight of languages lacking morphological
markers. This in turn facilitates the comparative
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analysis of syntactic evolution across different pe-
riods for such languages.

2.1 From Categories to Features
The cornerstone of language syntactic modelling
lies in annotated databases, where syntactic infor-
mation such as POS tags, categories, and syntac-
tic functions are marked. Drawing on theoretical
research and linguistic practice, we propose that
features can serve as the foundation for such anno-
tations, striking a balance between inductive and
deductive approaches while also accounting for the
influence of both syntax and lexicon on grammar
rules.

Annotation of POS is challenging for languages
like Chinese due to their flexibility. According
to (Rijkhoff and van Lier, 2013), FLEXIBLE LAN-
GUAGES have word classes covering functions as-
sociated with multiple traditional categories (verbs,
nouns, and adjectives). “Traditional word classes”,
also known as “semantic categories”, as suggested
by (Rauh, 2010), vary in distribution across lan-
guages. In actual analysis, “word classes” are often
distinguished semantically, while syntactic classes
focus on functions and positions. It is tricky to es-
tablish a satisfactory category system following the
principle of syntactic categories due to the "flexi-
ble" nature of languages like Chinese, where words
can appear in various positions without markers.

In response to challenges in categories, linguis-
tic theories have shifted towards lexicalized ap-
proaches, seen in frameworks like LFG (Kaplan
et al., 1981; Bresnan et al., 2015) and HPSG (Pol-
lard and Sag, 1988, 1994). The Borer–Chomsky
Conjecture (BCC; Borer, 1984) pursued the pos-
sibility that the syntactic functions of vocabulary
are carried by the lexical themselves in the form of
features. The feature system and its values not only
avoid the problem of classification while describing
the syntactic function of the lexicon but also present
a more systematic picture of syntactic evolution by
means of the temporal change of feature values.
However, the interpretable and uninterpretable fea-
ture structure in the minimalist program associated
with lexical entries (Baker, 2008) barely suits isolat-
ing languages like Chinese; neither do the features
or parameters have been highly developed in histor-
ical linguistics like PCM, for the widely accepted
feature system is based on inflectional languages,
while Chinese lacks formal inflexion. Therefore,
we propose a feature system that mainly contains
[±N], [±V] and [±IND(ividuation)] that concerns

whether words can be anchored to the real world
when used grammatically (represented by the fea-
ture of individuation). When features are correlated
with functional components (Borer, 1984; Fukui,
1988), this method enables comparisons not only
across different stages of the same language but
also across different languages. This section will
provide details on the feature system.

2.2 Features: [±N], [±V] and [±IND]

Flexible languages—take Chinese, especially an-
cient Chinese, as an example—have rather vague
boundaries between nouns, verbs, and adjectives.
Here is a typical example1:

(1) ěr (尔)
2PRON

yù (欲)
want

Wú wáng (吴王)
king of Wú

wǒ (我)
1PRON

hū (乎) ?
Q?
“Do you want to make me be (like) the king
of Wu?”

The categorical features [±N] and [±V], pro-
posed by (Chomsky, 1970), delineating categories
based on feature restrictions, address the problem.
Despite the lack of morphological inflexion for ϕ
features in Chinese, the relatively strict word order
(Sun and Givón, 1985; Sun, 1996; Rijkhoff and
van Lier, 2013; Van Lier et al., 2013) of Chinese
sentences, typically following the SVO sequence,
allows for determinations of [±N] and [±V]. For
instance, in Example (1), 吴王 (Wú wáng) pre-
cedes the pronoun 我 (wǒ) indicating it was used
as a verb2.

The combination of [±N], [±V] and [±F] (func-
tional) distinguishes thematic categories from func-
tional categories3 (Chomsky, 1970; Grimshaw,
2000). However, in ancient Chinese, where func-
tional categories were less developed, many func-

1In this sentence, 吴王 (Wú wáng) is a proper noun (refers
to the certain king of 吴 (Wú) who was assassinated), yet
could still take an object and express causative meaning. The
shift of semantics (if there is one) without any morpholog-
ical representation is periphrastic for containing a complex
argument structure of “make (into)”.

2In our annotation, 吴王 (Wú wáng) is tagged as [+N],
[+V], [-IND], [+VBLZ], where [+N] and [+V] aligns with
the adjectives in Chomsky (1970), while [+VBLZ] represents
“verbalisation”, indicating the noun here means to make some-
body be 吴王 (Wú wáng). [-VBLZ] is used to express the
opposite of verbalisation – nominalisation. These usages are
common in ancient Chinese.

3Every thematic category would exhibit the [–F] feature,
while every functional category would exhibit the [+F] fea-
ture. Thematic categories include verbs, nouns, adjectives
and prepositions. Functional categories include inflexions,
determiners, degree adverbs, and complementizers.
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tional features, like ϕ features and TAM (tense, as-
pect, and mood), were carried by lexical items. The
process of grammaticalization involves the emer-
gence of these functional features as independent
from lexical items, resulting in the formation of
functional categories.

The mixed state of functional and thematic cat-
egories can be described from the point of view
of INDIVIDUATION. Specifically, when a thematic
category enters a sentence, it has to be individuated
in some manner. Individuation (Imai and Mazuka,
2003) serves to anchor objects or events, indicat-
ing grammatical information regarding whether an
object is identifiable and a motion is anchored4.
While nouns are generally individuated by the de-
terminer (or classifiers in certain languages) (Chier-
chia, 1998; Davidse, 2004; Zhang, 2013), the in-
dividuation of verbs includes all the components
that wrap around the outside of the verb to make it
legitimately used, like TAM, little v, etc.. We can
draw the mapping relations of categories and the
three features [±N], [±V], [±IND], with an addi-
tional [±VBLZ] in table 1. The feature [+VBLZ]
represents “verbalised actuation” that refers to the
action of making the object to be a particular role
or status, and “verbalised conation” refers to the
action of regarding the object as treating someone.
[-VBLZ] mainly denotes the nominalizers in an-
cient Chinese.

Categories Features
N V IND VBLZ

CommonNoun + - - /
Copula + - - /
Pronoun, ProperNoun + - + /
NominalClassifier, Quantifier + - + /
Adjective + + - /
MotionVerb - + - /
Preposition - + - /
ModalVerb - + + /
VerbalClassifier, Disposal, Passive,
Tense/Aspect, v(所 suǒ)

- + + /

Sentence-finalParticle (SFP) - - + /
CoordinateMarker - - - /
Modifier-introducingParticle + ± - /
VerbalisedActuation + + - +
VerbalisedConation + - - +
Nominaliser (者 zhě, 之 zhī) + - - -

Table 1: Features of common categories in Chinese at
different times

4The feature is effective, especially in languages lacking in-
flexion, but it could also be used on morphological languages,
for it is based on cognitive theory (c.f. Langacker (1991))

2.3 [±IND]: Case Study on Nominal Features

The [±IND] feature will be further illustrated
through changes in the annotation of quantifiers
within the domain of nouns.

In Mandarin Chinese, there are primarily two
major categories of noun forms. One type requires
a classifier when modified by a numeral, while the
other functions directly as an argument without
requiring a classifier. As shown in example (7) and
(3).

(2) sān (三)
three

(běn (本)
CL

shū (书)
books

“three books”

(3) bān (搬)
move

zhuō zi (桌子)
table

“move the table (at the corner)/moving ta-
bles (is a simple job)”

In the nominal domain, the most significant
change is the emergence of classifiers (Wei, 2000).
Therefore, to depict the diachronic evolution of
noun representations in Chinese, it is necessary to
account for the function of classifiers. As is shown
above, classifiers are obligatory when nouns are
quantified by numbers, therefore they are numeral
classifiers as Allan (1977) proposed and followed
by others (Croft, 1994; Craig, 1994; Grinevald,
2000; Aikhenvald, 2000). Classifiers bear the fea-
tures [+N, -V, +IND], where the [+N] and [-V] are
projected from N. In sentence (7), the noun takes
the features [+N, -V, -IND], while the combination
of the [-IND] feature and the [+IND] feature of the
classifier 本 (běn) results in the entire expression
being marked as [+IND], meaning that the noun
书 (shū) is instantiated of the concept of book, and
is individuated from other books.

Following the principles of generative linguis-
tics, determining the syntactic position of classi-
fiers is necessary. Under the influence of the DP
(Determiner Phrase) hypothesis (Abney, 1987), a
prevailing view among scholars suggests a develop-
mental tendency of classifiers in Chinese to adopt
the functional role of the determiner (D), as evi-
denced by specific instances of classifier usage in
certain dialects (Cheng and Sybesma, 1999, 2005;
C-TJ et al., 2009; Gebhardt, 2011; Li, 2013). For
example, the classifier 只 (ts@P) in sentence (4) (Li
and Bisang, 2012) does not appear with numbers
and indicates definiteness. There are also numerous
opponents to this viewpoint, with the majority argu-
ing that such usage is constrained by other factors.
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For instance, Wu and Bodomo (2009) suggests that
definiteness is not an inherent attribute of Chinese
classifiers. The definite reading in examples like
(4) is provided by the context.

(4) ts@P (只)
CL

kiu (狗)
dog

Can kan (像看)
look-like

san (生)
have

mao biN (毛病)
sickness

die (喋)
PFV

“This dog looks ill.” Fuyang (Wu dialect)

Due to the relatively weak syntactic constraints
on nominal expressions in Chinese, we argue that
feature selection should be guided by communica-
tive needs. The concept of communicative needs
reminds us to prioritise aspects in Chinese speak-
ers’ cognition that are more readily conceptualised,
thus exhibiting greater universality and systematic-
ity. From the functional perspective, individuation,
the pragmatic function of numeral classifiers, is
defined as “to establish a sensory perception as
an individual by actualizing the inherent proper-
ties which constitute its conceptual unity” (Bisang,
1999, 2002), contrasting with “identification”. The
concept of “identification” here, which differs from
the function of DP (determiner phrase), does not
explicitly treat an object as an individual. For
instance, it’s conceivable to associate a sensory
perception with the concept of, for example, an
"apple" without explicitly delineating its inherent
boundaries (Bisang, 2002).

The function of individuation, expressed through
classifiers, emerged only after Middle Chinese. Be-
fore the appearance of individual classifiers, nu-
merals directly modified nouns in Archaic Chinese,
similar to English. According to Huang (1964);
Li (2000) and others, it is commonly accepted
that the evolution of classifiers progressed through
four stages: from “noun + numeral” or “numeral +
noun”5, to “noun + numeral + noun”, further evolv-
ing into “noun + numeral + classifier”, and ulti-
mately forming structures like “numeral + classifier
+ noun”. The forms in the second and third stages
serve as transitional forms, leading to the emer-
gence of classifiers in Modern Chinese, where clas-
sifiers originated from nouns occupying the same
position. As for the structure of “numeral + clas-
sifier + noun” phrases in Mandarin Chinese, some
scholars propose that it stems from the reposition-

5In Archaic Chinese, both forms existed: the former was
primarily used for counting, while the latter tended to convey
predication (Cheng, 2015). These meanings were inherently
inclined, as Yao (2008) pointed out.

ing of “numeral + classifier” from “noun + numeral
+ classifier” structures (Wang, 1957), as shown in
(5), while others argue that after the formation of
classifiers, “numeral + classifier + noun” structures
directly replaced “numeral + noun” (Yang, 1993;
Zhang, 2010).

(5) [NumP numeral classifier]i noun ti

To describe the noun forms in different periods
of Chinese, it is crucial to address the question:
did individuation exist in Archaic Chinese before
the emergence of individual classifiers? If so, how
was this function realised grammatically? If in
Mandarin Chinese, common nouns behave akin to
mass nouns in English, such as “water”, requir-
ing individuation through classifiers to serve as
arguments, then common nouns in Archaic Chi-
nese exhibited characteristics of count nouns. With
the emergence and development of classifiers, bare
nouns and numeral-noun structures tended to con-
vey generic reference (He et al., 2011; Krifka et al.,
1995) and individuated reference, respectively. In
other words, before the emergence of classifiers,
Chinese nouns lacked gender, number, and case
markings, with generic and individuated references
both conveyed by bare nouns without formal dis-
tinction. We argue that in Archaic Chinese, the
grammaticalization level of the noun domain was
low, and the individuation function was not yet
fully isolated from count nouns. The distinction
between the nominal domain and the verbal do-
main was also not clear. At this stage, it is chal-
lenging to assign specific word-class labels with
external distinctiveness and internal consistency,
let alone functional categories. This is why we
propose the use of feature marking. In the fea-
ture system we proposed, nouns in numeral-noun
and noun-numeral structures in Archaic Chinese
possess the feature [+IND], inherited from count
nouns. Before the emergence of individual classi-
fiers, countable nouns, proper nouns, demonstra-
tive pronouns, and personal pronouns all bore the
[+IND] feature. However, with the development
of quantifiers, this feature shifted to functional ele-
ments like classifiers and pronouns, while lexical
elements such as common nouns and proper nouns
became [-IND]. For instance, in Mandarin Chinese,
classifiers are now obligatory before proper nouns,
as illustrated in example (8).

(6) sān[+N, -V, +NUM] (三)
three
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rén[+N, -V, +IND] (人)
person
“three persons” Archaic Chinese

(7) sān[+N, -V, +NUM] (三)
three
gè[+N, -V, +IND] (个)
CL

rén[+N, -V, -IND] (人)
person
“three persons” Mandarin Chinese

(8) yī (一)
one

gè (个)
CL

yuè liang (月亮)
moon

“one moon/the moon”

These features are deductively constructed to
represent lexical and functional categories while
inductively drawing from linguistic insights, thus
covering a wider range of interconnected phenom-
ena and a flexible, appropriate representation of
syntactic information.

3 Test Suite

The three-feature annotation can be applied to a rep-
resentative test suite that covers typical changing
structures in Chinese based on Wei (2000), ensur-
ing the feasibility of the annotation method with
minimal annotation required.

Utilising prior research on classical Chinese syn-
tax, we have created a test suite of 673 sentences
spanning three major historical periods, annotated
with syntactic structures and features from 82 lit-
erary sources. The research-oriented dataset spans
from the East-Zhou dynasty (which began in the
700s B.C.E.) to the Qing dynasty (which ended
in the 1900s C.E.), encompassing influential docu-
ments and Chinese classics widely referenced by
scholars and native speakers. According to the
periodization of Chinese historical syntax by Pan
(1982), these materials can be categorised into three
stages, as shown in Table 2.

Stage #Book #Sent

Archaic Chinese
(700s B.C.E.–1 C.E.)

10 33

Middle Chinese
(200s C.E.–900s C.E.)

19 87

Early Mandarin
(1000s C.E.–1900s C.E.)

53 553

Total 82 673

Table 2: Distribution of test suite sentences.

These linguistic phenomena signify significant
grammatical shifts in ancient Chinese over time,
extensively explored in traditional research. Wei
(2000) evaluates the frequency of certain typical
phenomena at different times to determine the exact
period when the reanalysis and analogy happened.
The phenomena examined by Wei (2000) cover
changes related to nominal and verbal domains.
Nominal expressions include the development of
suffixes, plural markers, 3rd personal pronouns,
classifiers and quantifiers that modify N. Verbal ex-
pressions include the changes of actualisation, per-
fective marker, passive structure, disposal marker,
etc.. The test suite encompasses crucial processes
of reanalysis wherein these items (including lexical
and functional) and structures undergo transforma-
tion.

In the nominal domain, aside from the grammat-
icalization of pronouns and classifiers, noun affixes
in word formation ( 子 (zi), 儿 (er), 头 (you),
etc.) and morphology (们 (men)) formed. Specifi-
cally, the test suite covers pronouns that have been
largely simplified since Middle Chinese compared
with those in Archaic Chinese (Wei, [1990] 2004),
as well as the third-person pronouns that formed in
Middle Chinese (Wang, 1945; Wei, [1990] 2004).
The emergence of individual classifiers and plural
affix 们 (men) are included in the test suite as well.

The aforementioned functional categories orig-
inate from the development of nouns, while other
functional categories stem from the evolution of
verbs. For instance, 了 (le) (perfective marker)
evolves from verbs denoting completion, 着 (zhe)
(durative marker) evolves from verbs indicating
attachment, and 过 (guo) (past tense marker) de-
rives from verbs conveying experiential meanings.
Another typical change, complex predicates that ex-
press action results or depict the degree of a state,
originates from the development of coordinated
verbs. The special sentence structures, such as 把
(bǎ), 被 (bèi), and 比 (bǐ), all function as action
verbs capable of taking objects in Archaic Chinese.

Furthermore, the grammaticalization of the par-
ticles 的/地/得 (de) indicating modification rela-
tionships, prepositions, and conjunctions has inten-
sified.

These selected representative instances of struc-
tures have reflected the significant changes across
different periods in the Chinese language system.
This ensures the accuracy and professionalism of
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manual annotations and enables the extraction of
units that effectively characterise Chinese syntac-
tic structures. In the following sections, we will
present our data annotated by the features.

4 Related Works

The previously annotated corpora included partial
syntactic information that mainly relied on POS
tags, which are not comparable for diachronic vari-
ations. Moreover, there is a lack of detailed syn-
tactic relations among components across different
periods.

Due to the extensive timespan of Chinese, it’s
challenging to employ unified annotation rules, yet
inconsistent rules hinder comparisons across dif-
ferent periods of the language system. For ex-
ample, the biggest annotated corpus, Academia
Sinica tagged corpus adopts the second strategy
to pursue annotation accuracy, while the POS tags
designed for early languages may not be suitable
for languages that have changed in later periods.
Moreover, the flexibility of word classes in Chi-
nese (Rijkhoff and van Lier, 2013)—where nouns,
verbs, and adjectives lack clear boundaries—poses
challenges in establishing a theoretical basis for
categorization when tagging POS. In contrast, fea-
tures are more suitable than POS tags for compar-
ing syntactic systems across languages, which had
been successfully put into practice by the PCM.
However, the PCM primarily focuses on verify-
ing and quantifying phylogenetic relations among
languages, and the features proposed by the PCM
are not precise enough to describe the historical
evolution in languages outside the Indo-European
language family.

The scarcity of functional markers in Chinese,
particularly evident in ancient times compared to
languages with rich morphological markings, fur-
ther increases the difficulty of syntactic analysis
and annotation. For inflected languages, lexical cat-
egories and functional information can be validated
through morphological markings, making it easier
to correspond to diachronic changes in morpholog-
ical markers. For instance, syntactic information in
Middle Portuguese(Rocio et al., 2003)6 is mapped
based on Modern Portuguese.

While addressing the above issues with the three-
feature annotation, we also annotate syntactic struc-
tures, supplementing syntactic information beyond

6MPPT (Mediaeval Portuguese Partial Treebank) uses the
tagging resources of modern Portuguese as part of the training
materials for automatic tagging of mediaeval Portuguese.

lexicons. In languages like English with mature
annotation standards such as Taylor et al. (2003),
historical data annotated with syntactic treebanks
have seen significant development, for instance,
the Penn-Helsinki Parsed Corpus of Middle En-
glish (PPCME; Taylor and Kroch, 1994). However,
there is still a lack of comprehensive development
in non-inflectional languages like Chinese.

An annotated corpus that facilitates comparisons
of syntactic changes across different periods and
reflects the development process of functional cate-
gories is required for depicting diachronic syntax.

5 Annotation examples

Syntax information is conveyed through both lexi-
con and structure. In this regard, we are employing
the three-feature standard to annotate vocabulary
while referencing the phrase structure grammar
(Gazdar, 1985) to annotate syntactic trees. This
approach represents our endeavour to further con-
struct a large-scale diachronic treebank training set.
We will illustrate our annotation method through
the development of resultative predicates and pas-
sive constructions, demonstrating that the data col-
lected in the test set encompasses typical instances
of structural changes in Chinese across various pe-
riods.

One of the most noticeable structural changes
in VP is the development of complex predicates.
The structure contains a verb and a postverbal con-
stituent that modifies the verb, expressing the result,
manner, or degree. The structure of VP changed
from figure 1 and 2 (Archaic Chinese) to figure 3
(Middle Chinese 7).

VP

VP

NPV′

V[+V,-N,-IND]

VP

V[+V,-N,-IND]

Figure 1: Coordination of VPs

7The period depicted in the illustration signifies the theo-
retical emergence of resultative complements, a topic that has
sparked debate among scholars regarding its specific historical
emergence. In this context, we refer to the perspectives of
scholars such as (Wang, 1957; Ota, [1958] 1987; Mei, 1991;
Wei, 2000).
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VP

NPV′

V′

V[+V,-N,-IND]

V′

V[+V,-N,-IND]

Figure 2: Coordination of V′s

VP

NPV′

V[-V,-N,+IND]V[+V,-N,-IND]

Figure 3: Complex predicate structure (Coordination of
Vs)

The patterns demonstrate the development of
complex predicate structures. During this process,
the ability of the second verb to take a complement
gradually diminishes until it merges with the first
verb in the third stage. For instance, the shā in
(9) and (10) is an action verb indicating killing,
while that in (11) is a degree adverb representing
the degree of the predicate. This process involves
the merging of two VPs, i.e. two predicates. When
two verbs are adjacent, the second verb gradually
loses its function as a verb, therefore, the feature
becomes [-V]. Adjacent to the first verb in the lin-
ear sequence, the second verb undergoes structural
reanalysis, merging into a single VP with the first
verb. Consequently, the original second verb ex-
presses either the degree of the first verb or the
resulting status, indicating a perfective predicate
with a positive value for the [IND] feature.

(9) jī (击)
hit

ér (而)
COORD

shā (杀)
kill

zhī (之) .
3PRON

“Attact and kill him.” Archaic Chinese

(10) dǎ (打)
hit

shā (杀)
kill

qián (前)
former

jiā (家)
household

gē zi (哥子) .
boy
“Beat the boy of former family to death.”
Middle Chinese

(11) é méi (娥眉)
pretty eyebrows

wù (误)
impede

shā (杀)
largely

rén (人)
people

“The pretty eyebrows (representing beauty)
impeded her (entire life) to a large extent.”

Middle Chinese

Generally, in the process of linguistic evolution,
new linguistic forms must coexist with old forms
for a certain period until they are widely accepted
by the linguistic community, thus replacing the
older forms. The study of the syntactic evolution of
ancient Chinese is particularly concerned with this
transition from the old to the new. Take the example
of passive sentences and their structural analyses,
bèi in sentence (12) is an action verb expressing to
receive. In contrast, bèi has lost its lexical meaning
and introduces the agent and indicates the passive
voice in typical passive constructions like example
4. The feature [+IND] is attributed to bèi due to the
passive voice, which also shows that the action is
completed. The usage of bèi presented in example
(14) further demonstrates its grammaticalization.
Some scholars argue that this usage implies a pas-
sive subject (Jiang, 1994). In this construction, the
predicate can take an object, distinguishing it from
the typical passive usage described in example 4.
Specifically, the subject of the expression nà rén
(“that person”, mentioned in preceding texts) un-
dergoes an event involving the action by the agent
and is directly affected by this associated event.
The structures are illustrated in 4 and 5.

(12) yòu (幼)
child

bèi (被)
receive

cí (慈)
beloved

mǔ (母)
mother

sān (三)
three

qiān (迁)
move

zhī (之)
NMLZ

jiào (教)
education

“When I was a child, (I) received the educa-
tion from (my) beloved mother by moving
three times.” Archaic Chinese

(13) lǎo (老)
old

sēng (僧)
monk

bèi (被)
PASS

rǔ (汝)
2PRON

qí (骑)
ride

“(I,) Old monk, was ride by you.” Middle
Chinese

(14) bèi (被)
PREP

Wǔsōng (武松)
PN

bù (不)
NEG

guǎn (管)
take-care

tā (他)
3PRON

“Wǔsōng does not take care of him.”
被武松不管他。 Early Mandarin
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IP

BeiP

V′

V

NPbei

[-N,+V,+IND,+PAS]

NP

Figure 4: Passive constructions: “bèi” as a passive
marker

VP

VP

NPV′

V

BeiP

NPbei[-N,+V,+IND,+PAS]

Figure 5: Passive constructions: “bèi” as a preposition

6 Conclusion

The feature annotation system is based on intuitions
from a philological study of ancient Chinese syntax
evolution, as well as features from both formal and
functional grammar. The materials annotated are
typical examples representing the process of Chi-
nese syntactic evolution. This approach ensures an-
notation effectiveness and feasibility when data vol-
ume is limited. Our proposed three-feature system
aligns well with the flexible characteristics of Chi-
nese parts of speech, minimising researcher bias
while expressing all known syntactic and semantic
information. The simplicity and cross-temporal,
cross-linguistic comparability of our feature labels
make them suitable for languages like Chinese lack-
ing morphological markers and adaptable for in-
flected languages as well.
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Abstract
This paper describes the organization and find-
ings of AXOLOTL’24, the first multilingual
explainable semantic change modeling shared
task. We present new sense-annotated di-
achronic semantic change datasets for Finnish
and Russian which were employed in the
shared task, along with a surprise test-only
German dataset borrowed from an existing
source. The setup of AXOLOTL’24 is new
to the semantic change modeling field, and in-
volves subtasks of identifying unknown (novel)
senses and providing dictionary-like definitions
to these senses. The methods of the winning
teams are described and compared, thus paving
a path towards explainability in computational
approaches to historical change of meaning.

1 Introduction

One area of linguistic inquiry that has tradition-
ally been very challenging is the study of linguistic
change: documenting how languages evolve and
how meaning can shift requires fine-grained judg-
ments, careful design of sense inventories and the
exhaustive survey of all existing historical material.
The novel possibilities that technological break-
throughs open up should also lead us to develop
more ambitious research goals and projects: one
such prospect is the automation of diachronic word
sense annotation and explanation, a task we dub
explainable semantic change modeling.

Explainable semantic change modeling can be
broken down into two sub-tasks:

(i) Finding target word usages corresponding to
newly gained senses;

(ii) Providing human-readable descriptions (such
as definitions) of the gained senses.

In this paper, we summarize the organization and
findings of the LChange’24 shared task, dubbed
AXOLOTL’24, (‘Ascertain and eXplain Overhauls
of the Lexicon Over Time at LChange’24’).1 The

1https://github.com/ltgoslo/axolotl24_shared_task

AXOLOTL’24 shared task constitutes the first for-
malization and evaluation of explainable semantic
change modeling systems. It focused on three lan-
guages: Old Literary Finnish (‘Finnish’ below),
Russian, and German, with this third language be-
ing provided as a test-only surprise language. Lan-
guages in AXOLOTL’24 were selected so as to
evaluate systems across varying conditions and to
avoid excessive emphasis on English which one
can often observe in semantic change research.

The AXOLOTL’24 shared task, by testing and
evaluating explainable semantic change modeling
systems, allows us to push the state of the art in
challenging scenarios involving novel tasks, rang-
ing from semantic change detection to definition
modeling, and extreme data scarcity.

AXOLOTL’24 involved participants across 6
teams, and their results show that explainable se-
mantic change modeling is far from being solved
– be it in terms of detecting novel senses of highly
polysemous words or generating glosses for novel
senses from scratch;2 see Section 5 for detailed
results of the shared task. Still, we expect that AX-
OLOTL’24 findings will pave the way for devel-
oping more robust computational systems dealing
with diachronic semantic change. We also hope
it will serve as a step towards building bridges be-
tween NLP and historical linguistics communities.

2 Prior work and state of the field

Diachronic semantic change modeling (Kutuzov
et al., 2018; Tahmasebi et al., 2021), sometimes
also called ‘lexical semantic change detection’
(LSCD) can be described as an NLP field which
attempts to develop computational approaches to
historical semantics and to operationalize the no-
tion of ‘semantic shifts’. As an empirical field, it
regularly sanity checks itself by organizing shared
tasks aimed at objective comparing of approaches

2We use the terms ‘gloss’ and ‘definition’ interchangeably.
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to various problems within semantic change mod-
eling. One can mention SemEval 2020 Task 1
(Schlechtweg et al., 2020) for English, German,
Latin and Swedish; DIACR-Ita for Italian (Basile
et al., 2020); RuShiftEval for Russian (Kutuzov
and Pivovarova, 2021); LSCDiscovery for Spanish
(Zamora-Reina et al., 2022), etc.

But up to now, semantic change related shared
tasks focused on evaluating the systems regarding
their ability to detect the mere fact of change or
its degree (by classifying or ranking target words).
They did not challenge the participants to provide
explanations on what exactly has changed in the
semantics of the target words. It actually has been
acknowledged for several years already as one of
the ‘gaps’ in the field (Hengchen et al., 2021). The
AXOLOTL’24 shared task aims at filling this gap.

Obviously, ‘explanations’ of semantic change
can take different forms. One option is to automat-
ically detect types of change; see one of possible
categorizations in Blank and Koch (1999) and a
recent computational approach in Cassotti et al.
(2024). However, we choose another type of ex-
planations, based on senses as discrete units of
meaning. AXOLOTL’24 is focused on identifying
and describing newly gained senses of the target
words with human-interpretable definitions. Af-
ter the first attempts on computational diachronic
sense tracing in Mitra et al. (2014), the notion of
senses has somewhat disappeared from the focus of
the field. Very recently, the unknown sense detec-
tion task has again showed up in the attention of the
LSCD community (Lautenschlager et al., 2024), in
line with our shared task.

AXOLOTL’24 focus on explaining novel senses
links it to the contextualized definition genera-
tion field (Noraset et al., 2017; Mickus et al., 2022;
Gardner et al., 2022) and its LSCD applications
(Giulianelli et al., 2023; Fedorova et al., 2024).

3 Data

The AXOLOTL’24 shared task challenged the par-
ticipants with usage collections in three languages:
Finnish, Russian and German. Each usage (sample)
is a sentence containing a target word and belong-
ing to one of two time periods, dubbed ‘old’ and
‘new‘ (for different languages, the actual time peri-
ods were different). Importantly, each usage is also
annotated with the sense of the target word, sense
identifiers standardized across the time periods.

Finnish and Russian datasets came with the train-

Language Period Train Dev Test

Finnish
New 47 242 3 351 3 264
Old 45 897 3 203 3 461
Total 93 139 6 554 6 725

Russian
New 4 581 1 605 1 702
Old 1 912 421 424
Total 6 493 2 026 2 126

German
New — — 568
Old — — 584
Total — — 1 152

Table 1: Number of samples in AXOLOTL’24 splits.

Language Train Dev Test

Finnish 4 289 254 275
Russian 924 201 211
German — — 24

Table 2: Number of target words in AXOLOTL’24
splits.

ing and development data splits which were made
available to the participants from the very begin-
ning of the shared task. German dataset featured
only the test split, and this ‘surprise language data’
was made available to the participants only at the
AXOLOTL’24 test phase.

Table 1 shows the general statistics of the AX-
OLOTL’24 datasets in terms of the number of us-
ages (samples), while Table 2 shows the number of
target words for each language and data splits. A
brief description of the structure of the data files is
provided in Appendix A.1.

3.1 Finnish

Data sources. The Dictionary of Old Literary
Finnish (henceforth DOLF; Institute for the Lan-
guages of Finland, 2023) was used as the data
source for Finnish. This dictionary has been in
construction for several decades already and is one
of the major Finnish dictionary projects of national
importance, alongside the Dictionary of Finnish
Dialects. The DOLF is currently progressing in the
letter P, and new versions with extended coverage
are released annually. Each headword in the dic-
tionary can contain multiple senses and sub-senses
(we systematically selected the most specific sub-
sense as the gloss). They are illustrated with exam-
ples, which contain source information, including
a coarse publication date, author and publishing
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place, among others. The sentences taken as ex-
amples stem from an extensive bibliography3 of
source materials in Old Literary Finnish (Institute
for the Languages of Finland, 2013).

Along the website interface of the DOLF web-
site, the lexicographic data are also available as a
CC-BY licensed XML data package. The latter
was used in our data preparation; we consulted the
online version to ensure the structure was parsed
correctly. We extracted a total of 150 867 items
(unique combinations of words, glosses and usage
examples), across 33 826 senses (unique combina-
tions of headwords and glosses) and 22 917 head-
words. The structure of the XML file is closely
connected to the online version of the dictionary,
with emphasis on visual layout of the dictionary.
In the README file of the XML data package
it is specified that the two versions are identical.
The XML data was parsed at the example sentence
level and each example was associated with meta-
data of the current word article. Most important for
our purposes was the publishing year, which was
used to divide the examples into different periods.
The original data is divided into five time periods
(1543–1599, 1600–1649, 1650–1699, 1700–1749,
and 1750–1810), which we have merged into two,
corresponding to the ‘old’ and ‘new’ time periods
(1543–1699 and 1700–1810).

The headwords as well as the definitions are
given in the modern standard language, while ex-
amples of usage are provided in original spelling.
Especially in the older data, this can differ substan-
tially from the current standard, as illustrated by
the following example, where a) shows the original
example and b) the normalized modern spelling:

a) waicka wiele kymmenen Mieste ydhes Hones
ylitzieisit, pite heiden quitengin cooleman

b) Vaikka vielä kymmenen miestä yhdessä
huoneessa ylitsejäisi(vä)t, pitää heidän
kuitenkin kuoleman. (“Even if ten men
remained in one room, they would still have to
die.”)

Data annotation. The dataset used in the shared
task was extracted from the DOLF XML data pack-
age in as complete form as possible. It was not
marked in the DOLF which word in the example
sentence the entry was concerning. We tried to
detect the correct word in the sentence automati-
cally using Levenshtein distance. The result was

3https://kaino.kotus.fi/vks/?p=references

relatively clean, especially for the newer parts of
the data, but it was obvious that further verification
was needed. The position of the correct word was
verified manually for all sentences in the validation
and test splits of the dataset. The final dataset con-
tained the lemma, its realization in the sentence in
a given word form and the position of that form in
the sentence. The manual annotation was done by
two individuals who coordinated together the an-
notation conventions. Conventions were developed
to mark words that were adjacent to punctuation
or otherwise not continuous, i.e. when parts of a
compound word were split apart from one another.

3.2 Russian

Data sources. The Russian data sources were
Dal’s Explanatory Dictionary of the Living Great
Russian Language (Dal, 1909) for the ‘old’ time
period (roughly XIX century) and Wiktionary-
based CoDWoE (Mickus et al., 2022) for the ‘new’
time period (roughly modern Russian). We used
the TEI-encoded version of the Dal’s Dictionary
(Mikhaylov and Shershneva, 2018). Our criteria for
selecting target words were that (i) they be present
in both Dal and CoDWoE; (ii) they be defined and
polysemous in Dal; and (iii) at least one of their
senses had at least two examples in CoDWoE. We
further ensured that the final set of examples was
at least twice as large as the final set of senses.

Dal did not always provide examples for every
sense, and even when it did, all examples were
merged into one line per sense. This and higher
granularity of senses in CoDWoE (which is dis-
cussed in the next paragraph) caused data imbal-
ance between old and new time periods and could
be the reason for the higher share of novel senses
in the Russian dataset than e.g. in German (which
covers approximately the same centuries, so dis-
tance between time periods is unlikely to cause the
difference in the number of novel senses). This
imbalance has made it difficult to solve the task for
systems that heavily relied onto WSD and tended
to assign old senses to most usages. We discuss it
in more details in Section 5.

Data annotation. Since there existed no map-
ping between Dal senses and CoDWoE senses, we
had to create such a mapping manually.

We needed an automatic alignment of the sense
definitions from the two datasets to ease the map-
ping task. In order to develop a method for such an
alignment, we manually annotated a subset of ran-
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domly sampled target words. We sampled 50 words
and selected those with≥ 2 old senses, which gave
us 228 pairs of definitions of the same or differ-
ent senses from the two datasets. The annotation
task was to yield a binary judgment about whether
the two definitions mean the same. The inter-rater
agreement between the two annotators according
to Krippendorff’s α was 0.74 which is substantial
(Artstein and Poesio, 2008).

Then we encoded all definitions by sentence-
transformers (Reimers and Gurevych, 2020)4 and
calculated cosine similarity for each pair of Dal’s
and CoDWoE definitions. These similarities were
used as an input feature to train a decision tree clas-
sifier predicting one of two classes (‘same sense’
and ‘not the same sense’). The trained classifier
was employed to predict mappings between Dal
and CoDWoE sense definitions for all Russian tar-
get words. But its quality was by no means suffi-
cient to produce gold data; thus, all the mappings
were manually checked in the following procedure.

For each target word, a human annotator was
shown all its sense definitions from Dal. For each
of these senses, the annotator had to choose all
CoDWoE definitions with the same meaning (from
the list of all CoDWoE senses for this target word).
The sense pairs predicted by the classifier as ‘same
sense’ were pre-selected, and the annotator could
leave them as is or change at will. The annotation
was conducted by three native Russian speakers,
with each instance annotated by only one of them,
due to the size and time constraints.

Since CoDWoE senses are usually more granular
than those in Dal, it was allowed to map more than
one CoDWoE definition to a Dal definition, but not
vice versa. For example, words denoting plants usu-
ally have one sense in Dal, which is separated into
two senses (a plant itself and its seeds) in CoDWoE.
The annotators had to map both CoDWoE senses
to the Dal sense in this case. However, in the cases
where a Dal’s sense definition was broader than
all CoDWoE definitions, the meanings missing in
CoDWoE were ignored and the Dal’s definition
was still mapped to the CoDWoE definitions. Thus,
the mapping was always one-to-many in the direc-
tion from Dal to CoDWoE. It could have been done
in many other ways, but in AXOLOTL’24, we as-
sumed that the ‘old’ Dal’s dictionary is a trusted
source and focused on cases of words acquiring

4https://huggingface.co/sentence-transformers/
distiluse-base-multilingual-cased-v1

novel senses.
During the manual mapping of senses, some

words were dismissed, if it was not possible to un-
derstand their meaning because of parsing errors in
the TEI-encoded Dal. The most common parsing
error was incorrect split of the article into a def-
inition and examples. What’s more, the original
articles were often organized in such a way that it
would be difficult or impossible to split them auto-
matically (no definition, but example only instead
of it; difference between an example and a defini-
tion denoted only by a formatting style which could
be broken when digitizing etc.); some of such in-
stances were fixed manually in the post-processing
stage, see the details in the next section.

Data post-processing. Both automated and man-
ual data processing were deemed necessary to im-
prove the overall quality of the Russian dataset.
First, in accordance with the overarching interest
of this task in semantic change rather than mere
formal change, all the examples were automatically
converted from the XIX century spelling to modern
standard Russian orthography. Furthermore, quo-
tation marks were standardized and stress marks
were removed. Since the CoDWoE dataset had
been pretokenized and punctuation symbols were
separate tokens, the white spaces introduced by this
tokenization were removed.

All Dal’s definitions were replaced with the CoD-
WoE definitions, if they existed for a specific sense.
We discussed the possibility of using Dal’s def-
initions in cases when there were several CoD-
WoE senses for one overarching Dal sense, but
this would unfairly penalize the participants in Sub-
task 2, so we used the first CoDWoE definition in
such cases. Although some of these usages got too
narrow definitions with a slightly different mean-
ing, we assume that it affects participants less than
if they had to create systems that would be able to
produce correct definitions both in the XIX century
Russian and modern Russian.

The cases of obviously wrong annotations
(where an annotator erroneously selected the same
CoDWoE sense for multiple Dal senses) were re-
moved, and the target words with no old usages left
after that were dropped.

Finally, parsing errors, mostly found in the def-
initions from the old time period, and other irreg-
ularities (e.g., redundant or erroneous instances;
redundant punctuation; metadata) were addressed
manually, when possible. A more comprehensive
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description of the irregularities is provided in Ap-
pendix A.2. Sizes of the resulting dataset splits
after all fixes and removals are shown in Tables 1
and 2. See Appendix A.3 for additional statistics.

3.3 German
German was a surprise language introduced in the
test phase only in order to evaluate the systems’
ability to handle a language unseen before.

Data source. The German test split is a version of
the DWUG DE Sense dataset (Schlechtweg, 2023).
It already contained all the information of interest
to AXOLOTL’24; the ‘old’ time period included
usages from the XIX century, while the ‘new’ time
period included usages from 1946-1990. We did
not use the cleaned majority voting sense labels
provided within the dataset, but instead inferred
the senses ourselves from raw annotations, using
less strict filtering. The only post-processing step
was removing senses for which definitions were
missing or contained only ‘others’5.

4 AXOLOTL’24 organization

So as to provide participants with a manageable
workload, we elected to frame the task as two com-
plementary sub-tasks or tracks: the first focused
on identifying old and gained senses, whereas the
second pertained to elucidating the gained senses.
See Appendix B for illustrative examples.

4.1 Subtask 1. Bridging diachronic word uses
and a synchronic dictionary

In this first subtask, the participants were offered
two sets of word usages belonging to different time
periods. In addition to this, they were provided
with a set of dictionary entries (sense inventory)
for the target words describing their senses in the
old time period (accompanied by definitions). The
task consisted in finding usages of the target words
belonging to newly gained senses, i.e., senses not
covered by the provided sense inventory, as well as
usages belonging to the previously existing senses.

The underlying assumption is that sense defi-
nitions from the dictionary, even though not al-
ways covering all word senses even from the same
time period, may still be a useful additional source
of information. Since a part of this subtask is to
map word usages to the dictionary senses, it is
very much related to Word Sense Disambiguation

5https://github.com/ltgoslo/axolotl24_shared_
task/tree/main/data/german

(WSD). But in addition, the usages in word senses
absent from the dictionary should be grouped into
novel sense clusters. This makes this subtask also
similar to Word Sense Induction (WSI).

Evaluation. The participants’ test data looked
like a set of target words with two sets of per-
word entries, from the ‘old’ and ‘new’ time periods,
where each entry was a target word usage, the target
word itself and the time period label. The entries
from the ‘old’ time period also contained sense
identifiers (with definitions). Participants were ex-
pected to predict a sense identifier for every entry
of the ‘new’ time period (either re-using an iden-
tifier from the ‘old’ time period or adding a novel
one). Systems’ performance was measured by 1)
Adjusted Rand Index (ARI) (Steinley, 2004) for all
‘new’ entries, and 2) macro-F1 for ‘new’ entries
with previously existing senses. The choice of the
metrics is explained by the necessity to evaluate the
ability of the systems to both 1) correctly cluster a
set of usages into senses, independent of whether
these senses are old or novel (evaluated by ARI)
and 2) correctly identify the usages belonging to
the specific old senses (measured by F1). Using
only one of these metrics would turn Subtask 1
into either a WSI or WSD task correspondingly.
Thus, we decided to use both metrics, although
it obviously leads to the absence of one defining
score (as shown in Section 5, a submission can be
top-performing when measured with F1, but not
with ARI, and vice versa). The final scores were
computed as the average across all the target words.

Baseline system. Participants were provided
with a very basic baseline system, which worked as
follows: the old glosses were merged with their ex-
amples (if any), then both the resulting old senses
and new examples were encoded with a sentence
embedding model (we used LEALLA-large (Mao
and Nakagawa, 2023)6 because we wanted to avoid
using the same model as during data processing
and because it supports all three of our languages).

The encoded new examples were clustered using
Affinity Propagation (Frey and Dueck, 2007). For
each cluster, we assumed the first example encoun-
tered in the dataset and belonging to this cluster to
be the prototypical one (although using centroids
would be possibly a safer choice) and calculated
its cosine similarity to all of the old senses (gloss
and example pairs). If the similarity was above a

6https://huggingface.co/setu4993/LEALLA-large
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pre-defined threshold of 0.3 (it was chosen man-
ually after analyzing the first 5 target words from
the Russian dataset sorted alphabetically before
train-validation-test splitting; none of those words
was present later in the test split), we mapped the
current cluster to this sense. If the similarity was
below the threshold for all the old senses, the base-
line system made a decision that the current cluster
of new examples represents a novel sense.

4.2 Subtask 2. Definition generation for novel
word senses

The second aspect that explainable semantic
change modeling encompasses is producing expla-
nations of how lexical meanings have changed: the
goal behind explainable semantic change modeling
is not only to detect semantic change, but also pro-
vide insights on what this change consists in. Re-
mark that our emphasis here is on providing expla-
nations, not necessarily creating them from scratch:
in other words, it would be equally appropriate to
generate explanations on the fly or to retrieve ex-
isting ones in the form of glosses from an external
lexical resource. Subtask 2 of AXOLOTL’24 there-
fore challenged participants to submit appropriate
descriptions (definitions) of gained senses.

In our case, as we elected to use lexicographic
data, this second subtask connects with a broader
group of NLP tasks, ranging from definition mod-
eling (the task focused on generating lexicographic
definitions; Noraset et al., 2017) to definition ex-
traction (retrieving existing text segments that can
be used as definitions; Spala et al., 2020).

Evaluation. Two organizational factors shaped
how Subtask 2 submissions would be evaluated.
The first of these, owed to our use of lexicographic
data to set up this shared task (Section 3), was that
gold sense descriptions were to be formatted as
lexicographic definitions. We therefore expected
participants to submit human readable explanations
matching these targets. A fair assessment of how
appropriate the submitted definition is would there-
fore require some semantic similarity metric be-
tween two pieces of text, which calls for the use
of NLG metrics for ranking submissions. In short,
we treat this second subtask as a variant of defi-
nition modeling. We elect as our primary metric
BERTScore (Zhang et al., 2020), as it was found
to most closely align with human judgments for
factual correctness out of an array of standard NLG
metrics (Segonne and Mickus, 2023). We also in-

cluded BLEU (Papineni et al., 2002; Post, 2018),
given its broad prevalence in NLG studies.

The second aspect that weighs on our evalua-
tion approach is that the AXOLOTL’24 focuses
on explanations for word senses, not word usages;
therefore, we expect participants to submit one ex-
planation per sense, rather than per example of us-
age. This entails that we depart from the usual defi-
nition modeling framework of evaluating context-
dependent productions (Gadetsky et al., 2018). In
practice, we adopt a framework similar to the L-
BLEU used by Mickus et al. (2022): for each target
word, each of its gold definitions is mapped one by
one in a greedy fashion to the hypothesis (a defi-
nition provided by the participant) that yields the
highest BERTScore. This approach also allows us
to ensure that participants submitting to both tracks
would not be doubly penalized for providing too
many or too few senses: the shape of the sense
inventory was assessed in Subtask 1; the evaluation
of Subtask 2 therefore limits itself to evaluating
the validity of provided glosses.7 A pseudo-code
overview of the resulting evaluation procedure is
provided in Appendix C.2.

Baseline system. To illustrate the intended use-
case, the baseline system provided to participants
focused on generating output definitions for a set
of examples of usage. In practice, we fine-tune a
multilingual causal language model (XGLM; Lin
et al., 2021) as a Siamese network. We first embed
all relevant examples of usage into sentence-level
representations, by pooling over the CLM’s output
embeddings and applying a learned linear projec-
tion. We then prompt the same CLM to generate
the lexicographic definition, using as a prefix the
sentence embeddings obtained in the previous step.

5 AXOLOTL’24 results

The shared task was organized into three stages
occurring from February till April 2024. The train-
ing phase lasted from February 4 till March 25;
participants had access to training and development
data splits for Finnish and Russian and could evalu-
ate their development set predictions by submitting
them to Codalab. The evaluation phase lasted
from March 25 till April 9; participants had access

7Note that the separation of our task in two subtasks entails
that evaluation across subtasks is not strictly consistent. A
cluster of usages can be mapped to an optimal target sense SA

for Subtask 1 while the corresponding explanation submitted
to Subtask 2 may be assigned to some other target SB .
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Team Fi-Ru-De Fi-Ru Fi Ru De

Deep-change 41.3 34.9 63.8 5.9 54.3
Holotniekat 31.2 32.0 59.6 4.3 29.8
TartuNLP 31.0 26.8 43.7 9.8 39.6
IMS_Stuttgart 28.7 27.4 54.8 0.0 31.4
ABDN-NLP 22.1 28.1 55.3 0.9 10.2
WooperNLP 18.7 28.0 42.8 13.2 0.0
Baseline 4.1 5.1 2.3 7.9 2.2

Table 3: Subtask 1 evaluation phase results (ARI ×100)

Team Fi-Ru-De Fi-Ru Fi Ru De

Deep-change 75.0 75.3 75.6 75.0 74.5
Holotniekat 64.1 65.8 65.5 66.1 60.8
TartuNLP 59.0 59.5 55.0 64.0 58.0
ABDN-NLP 48.7 58.0 59.0 57.0 30.0
IMS_Stuttgart 43.1 32.8 65.5 0.0 63.8
WooperNLP 31.6 47.5 50.3 44.6 0.0
Baseline 20.7 24.5 23.0 26.0 13.0

Table 4: Subtask 1 evaluation phase results (F1 ×100)

to the testing splits for Finnish, Russian and Ger-
man, but references were hidden and participants
had to submit predictions for these splits to Co-
dalab. The current post-evaluation phase started
on April 9; testing splits have been published in full
together with references and evaluation scores for
all submissions from the evaluation phase. The of-
ficial AXOLOTL’24 leaderboards are now frozen,
but Codalab post-evaluation tasks are available.8

In the evaluation phase, AXOLOTL’24 received
submissions from six different teams. All six partic-
ipated in Subtask 1,9 but only three also submitted
predictions for Subtask 2.10 Teams were ranked by
their highest scoring submissions averaged over all
three AXOLOTL’24 languages. For convenience,
we refer to average scores across languages as ‘Fi-
Ru-De’ (Finnish, Russian & German) and ‘Fi-Ru’
(Finnish & Russian) in what follows. See more de-
tails about the teams’ approaches in Appendix C.

5.1 Subtask 1.

For the Subtask 1, we keep separate leaderboards
for ARI (Table 3) and F1 (Table 4), since these
metrics focus on very different aspects of the task,
and it does not make sense to average across them.

One can observe an interesting discrepancy in
the Subtask 1 evaluation results when measured by
ARI and macro-F1. In the WSI part (evaluated by
ARI), Deep-change (Kokosinskii et al., 2024) is the

8codalab.lisn.upsaclay.fr/competitions/18570,
codalab.lisn.upsaclay.fr/competitions/18572

9codalab.lisn.upsaclay.fr/competitions/18009
10codalab.lisn.upsaclay.fr/competitions/18008

best on average, but is outperformed on the Russian
data by three other teams, including the baseline
system. The best ARI score for Russian (13.2) is
achieved by the WooperNLP team. However, the
Deep-change team is a winner across all languages
in the WSD part (evaluated by F1).

Deep-change seems to be a pure WSD system
(it has detected no novel senses at all for all three
languages) and nothing in its method description
explains how it could detect novel senses; in fact,
its high result may be explained by a lower share of
novel senses in Finnish (14%) and German (21%),
compared to Russian (57%). Thus, if a system
classified correctly only the samples belonging to
old senses across three languages, it was still able to
outperform (by F1) the systems that tried to predict
novel senses (and had a harder task, since they had
to choose among larger number of classes). Among
the teams which did predict novel senses, the one
ranked highest both by ARI and F1 is Holotniekat
(Brückner et al., 2024). Note that we considered
for the leaderboards only one best submission from
each team, ranked highest by the sum of all metrics;
thus, if an approach identified more novel senses,
but produced more sense classification errors, it
could have been ranked lower (if a system chooses
among much more classes than were present in the
gold data, the probability of a mistake is higher than
for a system choosing among less classes, even in
the case of random choice) .

Another reason for differences in ARI between
Deep-change and WooperNLP on the Russian
data may be different assumptions made by the two
teams about the distribution of unique senses per
word. For more than half of the target words, Deep-
change infers one sense only, while the dataset
was constructed in such a way that all target words
are polysemous; the maximum number of Deep-
change’s senses is 10, which is almost two times
less than in the gold data. Although WooperNLP’s
numbers of senses per word are also different from
the gold ones, and the cases with one sense per
word also occur, they differ less (more details in
Appendix C.5). Both systems produced at least one
wrong prediction for all target words.

The WooperNLP’s system is able to estimate the
degree of polysemy in Russian words: 15% of the
target words got the correct number of clusters and
89% of the target words got≤ 3 redundant or miss-
ing senses. For example, the target word ‘драить’
correctly got 4 senses, but some samples with 3 dif-
ferent senses (‘to scrub’, ‘to criticize severely’, ‘to
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inflate sails’) were merged into one. Deep-change
incorrectly predicted one sense for this target word
(which was wrong for all usages, since all of them
had novel senses).

However, the WooperNLP’s system may fail
to distinguish between separate senses correctly,
which results in lower F1 score. An example where
Deep-change got higher F1 score despite incor-
rectly predicting one sense only is the word ‘мёд’
(‘honey’). The gold data contained two new usages
with the sense ‘sweet sirup-like liquid produced by
bees from nectar of flowers of melliferous plants’
(this was also the only old sense), two new usages
with the sense ‘metaphorical: about something
pleasant, causing pleasure’ and one new usage
with the sense ‘archaic: an alcoholic drink, pro-
duced by fermentation from honey, water and fruit
juice’. The Deep-change’s system assigned the
first sense to all new usages, which is correct in
two cases. The Wooper-NLP’s system correctly
detected that the new usages have three different
senses, but incorrectly assigned novel senses to the
usages with the old one.

Taking classification of new examples with old
senses into account made Subtask 1 more similar
to pure WSD than LSCD, and this may be disap-
pointing, since we did not aim to create yet an-
other shared task on WSD; the approach used by
Deep-change has already proved its efficiency on
it (Blevins and Zettlemoyer, 2020). But in the real-
world task of updating a dictionary, the system
would be required to do WSD as well (predicting
many novel senses without being able to spot and
differentiate old senses is not very useful practi-
cally). It is not yet completely clear what metrics
could be used in the future to avoid this pitfall, but
we believe that in the end using two independent
metrics helped us to at least spot the problem.

5.2 Subtask 2.
For Subtask 2, we average across BLEU and
BERTScore (Table 5), since they aim at measur-
ing the same aspects of the task. BLEU scores are
very low (≤ 0.11) for all systems and languages,
except in one case: TartuNLP (Dorkin and Sirts,
2024) for Russian (BLEU = 0.587). BERTScores
range from 0.630 to 0.869. See the full results in
Appendix C.4.

There are several reasons why the two metrics
appear to have different behaviors, despite being
designed to evaluate the same aspect of the sub-
missions – namely the adequacy of the submitted

Team Fi-Ru-De Fi-Ru Fi Ru De

TartuNLP 46.7 54.1 35.4 72.8 32.0
WooperNLP 34.0 34.6 34.9 34.2 33.0
ABDN-NLP 25.3 37.9 40.7 35.2 0.0
Baseline 21.8 20.5 21.8 19.1 24.5

Table 5: Subtask 2 results (average of BLEU and
BERTScore, ×100).

outputs as textual replacements for the gold expla-
nations. First, as per Algorithm 1, we align tar-
gets and hypotheses based on BERTScores, rather
than BLEUs, which is beneficial to BERTScores
but detrimental to BLEUs. Second, BLEU and
BERTScore are computed in very distinct ways:
the former is based on n-gram overlaps whereas
the latter is derived from cosine similarity scores
between hypothesis and target contextual embed-
dings. Given the languages of interest include mor-
phologically rich languages with varying degrees
of support from the NLP community, it makes
sense to expect divergences between BLEU and
BERTScore assessments. Third, automatic NLG
metrics exhibit various degrees of correlation with
human judgments (Freitag et al., 2021; Segonne
and Mickus, 2023); empirically establishing which
metric is most appropriate for explainable semantic
change modeling was not feasible, given the nov-
elty of the task. It is crucial to investigate this point
further in future studies.

In Subtask 2, the TartuNLP team topped the
leaderboard on average, but mostly because of its
very high results on Russian. For Finnish, it was
outperformed by ABDN-NLP (Ma et al., 2024a),
and for German by WooperNLP. An important
caveat is due here: the AXOLOTL’24 evaluation
script for Subtask 2 does not penalize the partici-
pants for skipping some of the target words, even
if the gold data lists them as gaining senses in the
‘new’ time period. BLEU and BERTScore are com-
puted as an average across all the target words with
gained senses which are present in both reference
data and the system’s submission (‘redundant’ tar-
get words in the submission are ignored). Thus, a
system’s coverage of Subtask 2 target words can be
different. And it was: although most systems did
submit gained sense definitions for (almost) all gold
target words, the ABDN-NLP team is a notable ex-
ception. Its Subtask 2 best submission covered
only 1% of the gold target words for Finnish and
3% for Russian. In practice, it means the evaluation
metrics for this team were computed on one and
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six words correspondingly, so these results should
be taken cautiously.11 Table 6 shows the coverage
percentages for all teams and languages.

The extremely high performance of the Tar-
tuNLP solution for Subtask 2 in Russian is ex-
plained by its use of a GlossBERT (Huang et al.,
2019) model, fine-tuned with adapters to match us-
age examples to definitions from Wiktionary. Since
the majority of the gold Russian definitions from
the AXOLOTL’24 ‘new’ time period had the same
source, the TartuNLP system was choosing from
a limited set of definitions for every target word.
This also allowed it to submit predicted definitions
very similar to the gold ones on the surface level
(as measured by BLEU), unlike other systems.

On the other hand, gold definitions for Finnish
and German did not come from Wiktionary. As
such, many of the mistakes in German and Finnish
submissions by TartuNLP appear to be mis-
matches between the lexicographic resources em-
ployed by them and the ones we used to create
AXOLOTL’24 data. One clear example is that
our German dataset marks senses of words used
in idiomatic expression. The target word Fuß
(‘foot’) being glossed as Angst bekommen (‘be-
come afraid’) owing to the context kalte Füße
bekommen (‘to get cold feet’) does not match
the Wiktionary standards, and TartuNLP’s sys-
tem therefore retrieves glosses matching the lit-
eral sense of Fuß. Another case concerns mor-
phologically close words, such as the two de-
verbals Schmiere (‘grease, cream’, feminine) and
Schmieren (‘lubrication, greasing’, and figuratively
‘bribe’, neuter) are grouped as a single entry in
the AXOLOTL’24 dataset but map to different
headwords in Wiktionary. As a result, the ABDN-
NLP and WooperNLP teams topped the Subtask 2
leaderboard for Finnish and German, by prompting
GPT 3.5 for definitions. In fact, ignoring Russian
results would lead to ranking WooperNLP and
TartuNLP equally.

A manual inspection of ABDN-NLP and
WooperNLP’s Russian GPT3.5 answers suggests
they suffer from various grammatical errors and
input copying, which may result in overly narrow
or semantically inadequate definitions and in para-
phrases instead of definitions. Selected examples
can be found in Appendix C.6. Thus, although

11This single Finnish definition is not entirely unreason-
able: the word likempää, glossed as tarkemmin, paremmin
(‘more precisely, better’) in the DOLF, is predicted to mean
lähempänä, likempänä, lähempänä (‘closer, closer, closer’).

GPT3.5’s Russian definitions can seem semanti-
cally close to references, many of them appear of
limited practical use.

To sum up, the task of providing definitions for
the gained senses turned out to be quite challenging
unless one is using a lexical database already con-
taining all possible glosses. However, even without
access to such a database, one can produce more
or less acceptable definitions with a large genera-
tive language model and a good prompt. Although
these definitions will not exactly reproduce the gold
ones, they will be similar semantically, and this is
true for all three languages under analysis. Still,
we would like to see more approaches to this task,
yielding better results across multiple languages.

6 Conclusions

We described the organization and findings of AX-
OLOTL’24, the first multilingual explainable se-
mantic change modeling shared task. The shared
task consisted of two subtasks, with the first one
focusing on spotting examples containing target
words in novel (unknown) senses, thus involving
elements from both word sense disambiguation and
word sense induction. The second subtask required
the participants to provide dictionary-like defini-
tions for these novel senses, as an attempt to ex-
plain them. Both subtasks proved to be challeng-
ing; one important finding is that systems relying
on masked language models specifically fine-tuned
on a set of curated sense definitions are most ro-
bust across languages and tasks. However, systems
which attempt to infer sense knowledge directly
from a large generative LM do not fall far behind;
this observation complements nicely the findings
of Periti et al. (2024). Also, most systems demon-
strated good cross-lingual capabilities, being able
to produce satisfactory predictions for a surprise
language (German) without any training data.

For AXOLOTL’24, we created sense-annotated
diachronic semantic change datasets for Finnish
and Russian (and a re-formatted version of an ex-
isting German dataset), using publicly available
sources. These resources can be used to evaluate
future approaches or train relevant models. Al-
though not completely free from errors, they are
still an important contribution of ours to the LSCD
research community; these datasets are now pub-
licly available in AXOLOTL’24 GitHub repository.
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Limitations

While an ideal end-to-end setup for explainable
semantic change modeling would involve start-
ing from two raw corpora embodying two spe-
cific chronological states of a given language, such
a setup would complicate the establishment of a
gold standard. As a simplifying assumption, we
therefore construct datasets around sets of usage
examples manually annotated according to an ex-
ternal sense inventory. This allows us to provide
a verified benchmark to compare systems against,
but comes at the expense of the thoroughness of
our evaluation — some semantic shifts necessar-
ily fall beyond the scope of the inventories we
consider, and our implementation of the seman-
tic change modeling task has to be understood as
a heuristic overview rather than a definitive and
thorough outlook on diachronic linguistic change.
AXOLOTL’24 is only a preliminary step towards
creating systems able to automatically explain the
nature of diachronic semantic shifts. Still, we hope
its results will be of immediate practical use.
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A Dataset details

A.1 Dataset files structure

Training and development sets are structured as
tab-separated-values (TSV) files. Every row corre-
sponds to one usage example.

The files contain 9 named columns, as follows:

• usage_id: usage IDs, unique across
all AXOLOTL’24 data, templated as
<dataset>_<language>_<row number>,
e.g. dev_ru_0

• word: target word

• orth: the target word in an old spelling (if
applicable)

• sense_id: unique ID of the sense in which
the target word is used in the current example
usage
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• gloss: definition of the sense

• example: usage example of the target word,
usually a sentence, but can also be longer or
shorter

• indices_target_token: automatically pro-
duced character offsets for the target word in
its usage example, if applicable

• date: a coarse-grained date of attestation of
the usage example (year, if applicable)

• period: indicator of the usage example be-
longing to the first (‘old’) or the second
(‘new’) time period; thus, can take either the
value of ‘old’ or the value of ‘new’.

The test splits in the test folder have sense_id
and gloss fields empty for the usages from the ‘new’
time period. The participants’ task is to fill in the
sense_id values in Subtask 1 and the definitions
for the novel senses in Subtask 2.

Note that target words are split-specific, that is, a
target word occurring in the training set will never
occur in the development and test sets, and vice
versa.

A.2 Irregularities and manual post-processing
of Russian data

An examination of the Russian development and
test sets revealed that the extracted data, partic-
ularly from Dal, exhibited certain irregularities,
which could be grouped into three main categories.

The first category pertains the definition being
merged with the example of a given target word, ap-
pearing in this combined format both in the gloss
and in the example fields. As the phenomenon was
solely related to the instances from the old time
period, it can be reasonably attributed to two key
elements in Dal’s Dictionary: its non-prescriptivist
nature and its macro-structure ordering (alphabeti-
cal and nesting, whereby related words are grouped
within the same entry. For further details on the
Dictionary’s distinctive characteristics, see Vino-
gradov (1977)). These factors give rise to the ab-
sence of clear boundaries between headwords, def-
initions and examples, which in turn may lead to
incorrect parsing. The issue was addressed by prop-
erly reconstructing both fields.

The second category relates to incorrect or in-
complete definitions. This issue was particularly
prevalent in the old time period, due to both the
aforementioned parsing errors and the occasional

lack of comprehensive information in Dal. Incor-
rect instances were either corrected, thus restor-
ing the original definition found in Dal, or elim-
inated. The latter was the case when the defini-
tions did not correspond to the target word (they
corresponded to different dictionary entries or to
different words within the same entry due to nest-
ing) or were merely erroneous (e.g., definitions
split into two instances; redundant instances, etc.).
Incomplete instances could feature either wrongly
parsed or vague definitions already present in Dal
which were attributed to various target words (e.g.
‘действие по глаголу’ ‘action according to the
verb’). In such cases, the definition was either
restored to its original condition or manually com-
pleted, adding further information. Nevertheless,
some glosses from the new time period were also
affected, presenting overly narrow definitions for
the corresponding examples. This specific issue
originated as a byproduct of the annotation process,
where a narrower definition of the new time period
corresponded to a broader definition in the old time
period. As a result, the definitions were manually
broadened.

The third category concerns the examples in the
old time period having the target word omitted or
incorrect. When the issue was caused by the lack
of information in Dal it was not addressed.

A.3 Statistics
The kernel density estimation plots in Figures 1a
to 1c show the distributions of the number of
unique senses per target word for all languages
and time periods in all data splits. A value of the
‘Density’ axis in these (and other figures in this
appendix) can be roughly understood as an approx-
imate probability of having a value given on the
x-axis, e.g. in Figure 1b the probability of having
5 unique senses per word is about 0.05 for the Rus-
sian development split, new time period. The fig-
ures were produced using the kdeplot() method
of seaborn12.

One can see the difference across the languages
and time periods. While the number of senses is
approximately the same in the new and old time
periods of Finnish, in Russian it is notably less in
the old time period. The number of new senses in
Russian is higher than in Finnish. Most words in
all three languages have less than 10 senses (which
may explain the choice of cluster number by some

12https://seaborn.pydata.org/generated/seaborn.
kdeplot.html
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participants), but extreme cases of≥ 20 senses also
occur (and should have been taken into account).

Figure 2 shows the distribution of the number
of examples per target word across the whole AX-
OLOTL’24 dataset. Again, there is less difference
between the time periods in Finnish (which is ex-
pected, since the samples come from the same dic-
tionary). Having much less examples for the old
time period in Russian may explain lower results
for it in Subtask 1, when measured by ARI.

B Subtasks illustrative outline

As mentioned above, for a given word in the test
set a sense_id, a gloss and an example were pro-
vided in the old period; while in the new period
only examples were available. The Russian word
‘экспресс’ (means of transport; combined bet; ex-
press mail) serves as an illustrative example:

a) word: экспресс; sense_id: eks-
press_IMBVcXtuQEw; gloss: транспортное
средство (поезд, судно, автобус и т. п.);
идущее с повышенной скоростью и с
остановками лишь на крупных станциях
(means of transport (train, ship, bus etc.);
traveling at an increased speed, stopping only
at major stations); example: поезд-экспресс,
особенно скорый, курьерский. (express
train, especially fast, express); period: old.

b) word: экспресс; sense_id: ? ; gloss: ? ;
example: ехал я в экспрессе, в спальном
вагоне. (I was traveling by an express train, in
a sleeping car); period: new.

c) word: экспресс; sense_id: ? ; gloss: ? ;
example: А вот другому клиенту этого
букмекера не повезло. Он отдал 700 тыс.
рублей на экспресс, в который включил
ставку на «Лион» с форой (0). Результат
для игрока печальный. (But the other client
of this bookmaker was unlucky. He placed 700
thousand rubles on a combined bet, in which
he included a bet on "Lyon" with betting odds
(0). The result for the player is unfortunate);
period: new.

d) word: экспресс; sense_id: ? ; gloss: ? ;
example: В этом ночном экспрессе, кото-
рый отличался от всех остальных поез-
дов довоенным комфортом, — в малень-
ких купе поскрипывали настоящие кожа-
ные ремни, тускло блестели медные пе-

пельницы, проводники разносили креп-
кий кофе, — в этом поезде по коридо-
ру Скандинавия-Швейцария практиче-
ски ездили теперь лишь одни диплома-
ты. (In this night train, which distinguished
itself from all other trains by its pre-war com-
fort, real leather belts creaked in small compart-
ments, copper ashtrays glistered dully, conduc-
tors carried strong coffee, - in this train, almost
only diplomats traveled along the Scandinavia-
Switzerland passage then); period: new.

e) word: экспресс; sense_id: ? ; gloss: ? ;
example: — Во-первых, как только попа-
дешь в восемьдесят второй год, так сразу
опиши подробно все, что ты здесь видел,
и пошли мне экспрессом в Отрадное. (First
of all, as soon as you get into the year 82, write
in details what you see and send it to me in
Otradnoe by express mail); period: new.

In Subtask 1 the goal was to discover new senses,
assigning to the usages in the new period a new
sense ID, or using the same sense ID if no new
senses were detected. The gold data for ‘экспресс’
indicate two novel senses, c) and e), in the new
period:

a) sense_id: ekspress_IMBVcXtuQEw

b) sense_id: ekspress_IMBVcXtuQEw

c) sense_id: ekspress_ao65pt5Rcys

d) sense_id: ekspress_IMBVcXtuQEw

e) sense_id: ekspress_u4-6oODM_fk

The predictions made by both WooperNLP and
Deepchange, for instance, entail the old sense only
(sense ID: ekspress_IMBVcXtuQEw), which is
overextended to all usages, decreasing ARI.

In subtask 2, the aim was to generate definitions
for the novel senses which were supposedly dis-
covered in subtask 1, however the two subtasks
could be solved independently. Below are shown
the gold definitions of the word ‘экспресс’ for the
five usages above:

a) gloss: транспортное средство (поезд, суд-
но, автобус и т. п.); идущее с повышенной
скоростью и с остановками лишь на круп-
ных станциях (means of transport (train, ship,
bus etc.); traveling at an increased speed, stop-
ping only at major stations)
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(c) Test splits

Figure 1: Distribution of the number of unique senses per target word in the AXOLOTL’24 datasets. Cases with
more than 25 senses clipped.
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Figure 2: Distribution of the number of examples per
target word.

b) gloss: транспортное средство (поезд, суд-
но, автобус и т. п.); идущее с повышенной
скоростью и с остановками лишь на круп-
ных станциях (means of transport (train, ship,
bus etc.); traveling at an increased speed, stop-
ping only at major stations)

c) gloss: спец. ставка на несколько незави-
симых исходов событий (spec. bet on several
independent outcomes)

d) gloss: транспортное средство (поезд, суд-
но, автобус и т. п.); идущее с повышенной
скоростью и с остановками лишь на круп-
ных станциях (means of transport (train, ship,
bus etc.); traveling at an increased speed, stop-
ping only at major stations)

e) gloss: разг. срочное почтовое отправле-
ние (coll. express mail)

The definitions could be either generated ex nihilo
or based on existing ontologies. For example, with
regard to the sense c), the definition that TartuNLP

presented is identical to the gold definition, while
WooperNLP generated a new definition: ‘Экс-
пресс - комбинированную ставку, в которой
несколько событий объединены в одну ставку.
В данном примере клиент сделал экспресс-
ставку, включив в нее ставку на футбольную
команду «Лион» с форой (0). Однако, резуль-
тат ставки оказался неудачным для игрока’

(Express - a combined bet in which several
events are combined into one bet. In this exam-
ple, the client placed a combined bet, including a
bet on the Lyon football team with betting odds (0).
However, the result of the bet was unsuccessful for
the player").

C Supplementary details on subtask
results

C.1 Methods used by participants for Subtask
1

The Deep-change (Kokosinskii et al., 2024) ap-
proach to Subtask 1 involved classification over
senses from the ‘old’ time period, using a
fine-tuned GlossReader model (Rachinskiy and
Arefyev, 2022). It was fine-tuned on the concatena-
tion of Russian and Finnish AXOLOTL’24 training
sets and the English SemCor corpus (on which the
original GlossReader was trained). In another sub-
mission, Deep-change used outlier detection to
find novel senses. For German, they used the same
system as for Russian. Although this submission
achieved lower average score, it is more interesting
scientifically, since it did predict some novel senses
and got high ARI on the Russian test dataset.

The WooperNLP approach was to 1) augment
the test data with GPT3.5; 2) produce contextual-
ized embeddings for all the instances with a BERT-
like model; 3) cluster the instance embeddings into
sense groups.
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Holotniekat (Brückner et al., 2024) described
their method as follows: ‘We extend the baseline
system by assigning senses to clusters in a non-
greedy manner and reducing the cluster granular-
ity. In a first pass, we merge multiple clusters if the
same old sense is their best candidate. In a second
pass, we repeat this procedure for the remaining
clusters and novel senses, assuming the cluster
centroids to be the embeddings of novel glosses.
Glosses and usage examples are embedded using
a concatenation of two different multilingual sen-
tence transformers.’

ABDN-NLP (Ma et al., 2024a) described their
method as follows: ‘For Subtask 1, we reuse the
workflow of the baseline system, which includes
three components: producing embeddings for word
usages, clustering these embeddings, and mapping
of dictionary meaning entries to the resulting clus-
ters. But we make modifications to each component.
For the embedding component, we use embeddings
of both words and word usages to construct a se-
mantic tree representation for each target word.
For the clustering component, we replace Affinity
Propagation with Neighbor-based clustering (Ma
et al., 2024b) to deal with low-frequency sense clus-
ters. For mapping, we map dictionary entries to
the average embedding (rather than the embedding
of the first-indexed usage) of each cluster in order
to eliminate randomness. For Subtask 2, unlike the
baseline system, which requires costly model train-
ing for generating dictionary-like definitions for
new word usages, our system is training-free and
does so by just prompting Large Language Models
such as GPT-4 and LLaMA-3’.

IMS Stuttgart described their method as fol-
lows: ‘USD to WSD, WSI. Firstly we create XL-
LEXEME (Cassotti et al., 2023) sense embeddings
based on augmented glosses. Then we classify us-
ages into unknown vs. known sense under a task
called USD, by comparing their embeddings (also
computed with XL-LEXEME) with the sense em-
beddings from step 1. We compare usage and sense
embeddings by employing Spearman Correlation
as a distance metric and by setting a similarity
threshold as a decision boundary. We also replace
orthography of the inflected target word in the us-
age with the base form of the target word (calling
this SUB method). We only compare usage em-
beddings to already known sense id embeddings.
We use WSD (word sense disambiguation) to clas-
sify the predicted from USD known senses and
WSI (word sense induction) to cluster predicted

unknown sense into new sense id clusters. For clus-
tering a hierarchical flat clustering technique is
used with cosine as a metric and clustering thresh-
old of 0.1 (we need to experiment here definitely).’

Tartu-NLP (Dorkin and Sirts, 2024) described
their method as follows: ‘GlossBERT (Huang et al.,
2019) with XLM-RoBERTa (Conneau et al., 2020)
as the base model for both subtasks. In other
words, we treat both as binary classification of
gloss/example sentence pairs. New senses are iden-
tified using an arbitrary threshold for the classifier
probability. So, if all known glosses are below the
probability threshold for a given usage example,
then this is a new sense. We fine-tune bottleneck
adapters (Houlsby et al., 2019) for each language
instead of full fine-tuning. I suppose, this doesn’t
actually play a key role in the solution, but it did
allow us to spend less time on training.’

For more details about the methods, we refer the
reader to the participants’ papers.

C.2 Subtask 2 evaluation algorithm

Algorithm 1 Subtask 2 evaluation for one target
word
Require: Y , set of target sense explanations

Ŷ , set of predicted sense explanations
1: s← 0
2: while Y ̸= ∅ and Ŷ ̸= ∅ do
3: ya, ŷb ← argmax

y∗∈Y, ŷ∗∈Ŷ
BertScore(y∗, ŷ∗)

4: s← s+BertScore(ya, ŷb)
5: Y ← Y \ {ya}
6: Ŷ ← Ŷ \ {ŷb}
7: end while
8: s← s/min(|Y |, |Ŷ |)
9: return s

The procedure for attributing the average sense-
level BERTScore for a given target word during
our evaluation procedure is outlined in Algorithm 1.
Simply put, it amounts to (i) greedily selecting the
pair of target and predicted explanations that yield
the highest BERTScore; (ii) adding that score to
a running sum s; (iii) discarding the correspond-
ing target and prediction; (iv) repeating steps i–iii
until no such pair can be formed; (v) normalizing
the running sum by the number of pairs formed.
After the targets and predictions were paired us-
ing BERTScore, they were additionally evaluated
with BLEU, likewise macro-averaged across target
words.
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C.3 Subtask 2 target word coverage

Team Finnish Russian German

TartuNLP 87 86 50
WooperNLP 100 91 100
ABDN-NLP 1 3 —
Baseline 100 100 100

Table 6: Subtask 2: systems’ coverage of target words
with newly gained senses (percents).

In Table 6, we show the coverage of subtask 2
systems (viz., the proportion of changed senses
for which a gloss was provided). In practice, our
decision to not penalize incorrect sense inventory
shape in Subtask 2 led to a wide variety in terms
of coverage, with ABDN-NLP displaying an espe-
cially poor coverage. We recommend that future
works on explainable semantic change modeling
properly penalize incorrect sense inventory shapes,
e.g. by introducing a penalty on coverage. The
scoring script used in the AXOLOTL’24 shared
task provides an implementation of an intersection-
over-union penalty designed to penalize sense in-
ventories with too few or too many senses.

C.4 Subtask 2 rankings per metric

Team Fi-Ru-De Fi-Ru Fi Ru De
TartuNLP 72.6 77.4 67.9 86.9 63.0
WooperNLP 66.0 66.6 67.5 65.6 65.0
ABDN-NLP 46.1 69.2 70.6 67.7 0.0
Baseline 42.3 39.0 40.3 37.7 49.0

Table 7: BERTScores (×100)

Team Fi-Ru-De Fi-Ru Fi Ru De
TartuNLP 20.8 30.8 2.8 58.7 1.0
WooperNLP 0.2 2.5 2.3 2.7 1.0
ABDN-NLP 4.5 6.7 10.7 2.7 0.0
Baseline 1.3 1.9 3.3 0.5 0.0

Table 8: BLEUs (×100)

In the main text, we focus only on rankings de-
rived from average BLEU and BERTScore as they
are meant to assess the same aspect of the shared
task. On the other hand, the two metrics need not
always agree, and it is therefore more prudent to
assess each separately. Tables 7 and 8 respectively
assess BERTScores and BLEUs for all best submis-
sions: we can observe how BLEUs are systemati-
cally extremely low, aside from the retrieval system

of TartuNLP for Russian; whereas the divergence
in BERTScores is less pronounced.

C.5 Deep-change and WooperNLP at Subtask
1

Figure 3 shows how the distribution of number of
unique senses per target word (in both time periods)
differs in the Deep-change’s and WooperNLP’s
submissions and in the gold data. Figures 4 to 6
show the same information, but as histograms. Ta-
ble 9 shows minimum, mean and maximum of this
distribution.
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Figure 3: Distribution of number of unique senses per
target word in the Russian gold test data, the winner
team’s prediction and the best predictions for Russian
by ARI (the WooperNLP team).

Team Min Max Mean
Gold test data 2 19 4.6
Deep-change 1 10 2
WooperNLP 1 22 3.5

Table 9: Number of unique senses per word in Russian
predictions, descriptive statistics.

C.6 Subtask 2 examples

The example below shows a definition of the
Russian verb ‘драить’ in the sense of ‘to scrub’
(used in its past simple form ‘драил’) from the
WooperNLP’s submission (ABDN-NLP did not
generate a definition for it):

a) Context: ‘Сачков драил шкуркой бензино-
провод: как у всякого механика, у него
чесались руки, когда он видел кусочек
меди или латуни.’
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Figure 4: Number of unique senses per word in Russian,
the gold test data.
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Figure 5: Number of unique senses per word in Russian,
the Deep-change team.

“Sachkov scrubbed the petrol conductor with
a sandpaper; like every mechanic, he itched,
when he saw a piece of copper or brass.”

b) Definition: ‘Драил - инструмент, исполь-
зуемый для обработки поверхностей, сня-
тия заусенцев, шлифовки и полировки ме-
таллических изделий. В данном контек-
сте, сачков драил шкуркой бензинопровод,
означает, что механик использовал дра-
ил с шкуркой для обработки поверхности
бензинопровода из меди или латуни.’

“Scrubbed is an instrument, used for refinement
of surfaces... In the given context, sachkov
scrubbed the petrol conductor with a sandpaper,
means that the mechanic used scrubbed with a
sandpaper for refinement the petrol conductor
surface of copper or brass.”

The following mistakes were made by GPT in this
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Figure 6: Number of unique senses per word in Russian,
the WooperNLP team.

short definition:
- ‘драил’ is only a past simple form of a verb

and can never be used as a noun;
- the model doesn’t stop after producing the defi-

nition, but continues with an explanation
- ‘сачков’ (‘sachkov’) starts from a lowercase

letter although it is a surname and must start with
an uppercased one

- the verb ‘означает’ (‘means’) requires a sub-
ject that is missed in the model’s answer.

The next example shows definitions of the word
‘месть’ (‘revenge’) by both systems. The ABDN-
NLP’s definition is correct, although contains an
error, most likely originating from the model’s mul-
tilinguality: in English, ‘commit’ can be used both
with ‘crime’ and ‘offense’, while in Russian it is
used with ‘crime’ only. The WooperNLP’s defini-
tion is entirely wrong because it is generated not
for the word ‘месть’, but for the word ‘вместе’
(‘together’), which also occurs in the example. A
possible reason can be that revenge is plural in this
example, which is a rare case in Russian as well as
in English.

a) Context: И в душе Лиды ответно что-то
замерло и задрожало, в желании расстать-
ся с грустной и нежной благодарностью
за пережитые вместе наслаждения, без
всяких местей, злоб и ненавистей.

‘And in response something froze and began to
tremble in Lida’s soul, in the desire to part with
sad and tender gratitude for the pleasures lived
through together, without any revenges, angers
and hatreds.’
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b) ABDN-NLP definition: Месть - возмездие
за совершенное преступление или обиду

‘Revenge is retribution for the committed crime
or offence’

c) WooperNLP definition: Совместно, вместе
с кем-то или чем-то. В данном контексте
означает пережитые совместно события,
радости или удовольствия.

‘Together with someone or something. In the
given context means events, gladnesses or plea-
sures lived through together.’

The next examples show definitions of the word
‘травля’ in the senses ‘baiting’ and ‘bullying’.
Both systems correctly separated these senses in
Subtask 1, but in Subtask 2, ABDN-NLP’s sys-
tem generated almost equal definitions for them.
Also using ‘slander’ with ‘over’ in its second def-
inition is correct in English, but not in Russian.
WooperNLP’s definitions are correct semantically,
but the first one includes unnecessary details (and
‘decreasing insects’ again looks like a loan transla-
tion from English) and the second one is too nar-
row, because bullying is not something specific for
Nekrasov only.

a) Context: Он здраво оценил собственные
перспективы и занялся старым промыс-
лом — травлей бытовых насекомых.

“He evaluated his perspectives reasonably and
engaged in old trade - baiting domestic insects.”

b) ABDN-NLP definition: Травля - уничижи-
тельное обращение, издевательство или
преследование

“Baiting is disparaging handling, humiliation or
stalking”

c) WooperNLP definition: Травля бытовых
насекомых - это процесс уничтожения или
контроля насекомых, которые могут быть
вредными или неприятными для человека
в его доме или других помещениях. Это
может включать использование химиче-
ских средств, ловушек, уловителей или
других методов для устранения или сни-
жения насекомых.

“Baiting of domestic insects is a process of de-
stroying or controlling insects which may be

harming or unpleasant for a human in their
house or other locations. This may include us-
age of chemical means, traps, catchers or other
methods for removal or decreasing insects.”

a) Context: ’Говорили о том, что началась
настоящая травля Некрасова в печати.’

“There were talks that real bullying of Nekrasov
began in press”

b) ABDN-NLP definition: Травля - системати-
ческое преследование, унижение или кле-
вета над кем-либо

“Bullying is systematic stalking, humiliation or
slander over someone”

c) WooperNLP definition: Травля - систе-
матическое и агрессивное осуждение,
оскорбления и нанесение ущерба репута-
ции Некрасова в печати.

“Bullying is systematic and aggressive condem-
nagaination, insulting and doing damage to
Nekrasov’s reputation in press.”

As far as Finnish goes, a close inspection of Tar-
tuNLP’s top scoring submission reveal a few inter-
esting trends. In particular, a manual inspection of
the top 10 and bottom 10 target words as ranked by
their BERTScores does not suggest that the metric
is primarily sensitive to semantic adequacy: 9 out
of the top 10 items correspond to submissions with
some degree of semantic inadequacy, versus 5 out
of the bottom 10 items. The metric appears more
sensitive to matters of fluency: A number of pre-
dictions among the 10 lowest scoring target words
in terms of BERTScore contain an overabundance
of parentheses, such as:

a) TartuNLP definition: ( ) (”aste”)

‘( ) (”degree”)’

We furthermore observe cases where a morpho-
logically related modern word is produced (a docu-
mented heuristic in definition modeling; Segonne
and Mickus, 2023), regardless of the meaning. For
instance, the word osoitella is defined as follows:

a) TartuNLP definition: ( ) osoittaa

‘( ) to show/point/indicate’

b) Reference definition: matkia, jäljitellä; nou-
dattaa jonkun tai jonkin esimerkkiä
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‘to mimic, imitate, follow someone’s example’

Other cases pertain to senses that are inappropri-
ate for the Old Literary Finnish data at hand, as the
entry pertains to an idiomatic or specific usage of
the word. For instance, the word korjata (‘collect,
correct’), is used in the idiomatic expression kor-
jata luunsa or korjata luitansa (lit., ‘collect one’s
bones’ ), which is glossed mennä tiehensä (‘to go
one’s way’). On the other hand, the predictions
provided by TartuNLP all pertain to the literal,
non-idiomatic usage:

a) TartuNLP definition 1: oikaista virheellisyys,
korvata virheellinen tai huono oikealla tai
paremmalla

‘correct something wromg, replace something
wrong or bad with something correct or better’

b) TartuNLP definition 2: kerätä tai ottaa talteen

‘collect or take into one’s safekeeping’

c) TartuNLP definition 3: saattaa ehyeksi, toimi-
vaksi

‘make whole, functioning’

This mismatch echoes our earlier remarks on Ger-
man; nonetheless this particular target word was
scored highly by the evaluation script of AX-
OLOTL’24.

Overall, this manual inspection reveals two
key points worth keeping in mind in future work
on explainable semantic change modeling: (i)
BERTScore seems at times more sensitive to flu-
ency characteristics than semantic aspects; and (ii)
a tighter control on the contents of resources to
weed out idiomatic expressions might bring about
a different picture than what we summarized in this
paper.

D Shared task logo

The shared task logo in Figure 7 is provided as a
recompense for the reader who did trudge through
the 9 pages of appendix material. We are proud to
indicate it received a stamp of approval from one
of our anonymous reviewers.

Figure 7: AXOLOTL’24 shared task logo

91



Proceedings of the 5th Workshop on Computational Approaches to Historical Language Change, pages 92–107
August 15, 2024 ©2024 Association for Computational Linguistics

Improving Word Usage Graphs with Edge Induction
Bill Noble

University of Gothenburg
bill.noble@gu.se

Francesco Periti
University of Milan

francesco.periti@unimi.it

Nina Tahmasebi
University of Gothenburg
nina.tahmasebi@gu.se

Abstract

This paper investigates edge induction as a
method for augmenting Word Usage Graphs,
in which word usages (nodes) are connected
through scores (edges) representing semantic
relatedness. Clustering (densely) annotated
WUGs can be used as a way to find senses
of a word without relying on traditional word
sense annotation. However, annotating all or
a majority of pairs of usages is typically in-
feasible, resulting in sparse graphs and, likely,
lower quality senses. In this paper, we ask if
filling out WUGs with edges predicted from the
human annotated edges improves the eventual
clusters. We experiment with edge induction
models that use structural features of the exist-
ing sparse graph, as well as those that exploit
textual (distributional) features of the usages.
We find that in both cases, inducing edges prior
to clustering improves correlation with human
sense-usage annotation across three different
clustering algorithms and languages.

1 Introduction

Recently, Word Usage Graphs (WUGs) have
emerged as a new paradigm in the computational
study of lexical semantic change (Schlechtweg
et al., 2021b). For a given target word (lexeme),
a word usage graph consists of a set of usages,1

along with humanly generated relatedness scores
for some subset of the pairs of usages. Together, the
usages (nodes) and relatedness scores (edges) form
a weighted graph. Graph clustering techniques can
be used to discover word senses, where each cluster
of usages is understood to be a distinct sense of the
target word.

This procedure relies on a simpler human an-
notation task than assigning a sense from a fixed
inventory to each usage, thus allowing us to obtain
more annotations with the same number of annota-
tion hours. Moreover, since no sense inventory is

1Contexts drawn from a corpus including the target word.

required, new or otherwise undocumented senses
can be discovered by the procedure. These two
factors make WUG annotation particularly useful
in applications involving Lexical Semantic Change
(LSC), since they make it more feasible to cover a
large vocabulary and consider novel or unattested
historical senses.

The SemEval-2020 task on Unsupervised Lex-
ical Semantic Change Detection used Diachronic
Word Usage Graphs (DWUGs) to develop LSC
evaluation datasets for four languages, namely En-
glish, German, Swedish, and Latin (Schlechtweg
et al., 2020). The use of DWUGs for this pur-
pose has since been adopted in LSC benchmarks
for Italian (Basile et al., 2020), Russian (Kutuzov
and Pivovarova, 2021), Spanish (Zamora-Reina
et al., 2022), Norwegian (Kutuzov et al., 2022),
Chinese (Chen et al., 2023), Japanese (Ling et al.,
2023), and most recently Slovenian (Pranjić et al.,
2024). Each benchmark consists of a diachronic
corpus and a set of target words over which human
annotation was conducted.

While WUG annotation is less burdensome than
traditional word sense annotation, the creation of re-
liable benchmarks over multiple time periods, still
requires a substantial annotation effort. A complete
graph on N usages has (N · (N − 1))/2 edges and,
since sense frequency distributions can be highly
skewed, sampling a small number of usages does
not ensure a representative sample of senses. Thus
far, this issue has been addressed by creating sim-
plified LSC benchmarks with reduced annotated
edges over two time periods (with the exception
of Kutuzov and Pivovarova (2021), who created
a benchmark over three time periods). Addition-
ally, as word senses are automatically derived from
relatedness judgments of sparse graphs, the evalua-
tion of approaches to LSC is typically conducted
through Graded Change Detection (i.e., ranking
the target words by the degree of semantic change
across the corpus) regardless of Word Sense Induc-
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Sense 1

Sense 2

Sense 3

Sense 4

(a) Sparse usage relatedness judgments
from human annotators (ARI=0.06)

Sense 1

Sense 2

Sense 3

Sense 4

(b) Missing edges inferred with graph-
structural features (ARI=0.37)

Sense 1

Sense 2

Sense 3

Sense 4

(c) Missing edges inferred with struc-
tural and textual features (ARI=0.62)

Figure 1: The WUGs for ausspannen. Only positive (weight ≥ 2.5) edges are shown. Colored regions (labeled
Sense 1–4) correspond to human usage-sense annotation, while node colors correspond to clusters found by the
SBM-binomial model using three different sets of edges: (a) only the human-annotated edges, (b) augmented
with induced edges (gray) using structural evidence, and (c) augmented edges induced with structural and textual
evidence. ARI scores indicate correlation with human usage-sense annotation. This example is drawn from
Experiment 3 which is described in Section 6.3.

tion (i.e., assessing the quality of word meaning
derived by computational models). As a result,
more and more so-called form-based approaches
to LSC have been developed to quantify change.
These models sidestep the fundamental aspect of
sense modeling that connects LSC to other relevant
NLP tasks such as Word Sense Disambiguation and
Induction (Periti and Tahmasebi, 2024; Aksenova
et al., 2022), and which would make the results of
an LSC detection model more interpretable. For
example, the SOTA approach to LSC (known as
APD) currently consists in measuring the degree
of change as average pairwise distance between
the contextualized embeddings for a given word
(Giulianelli et al., 2020).2

In this paper, we investigate edge induction as
a methodology for augmenting human relatedness
judgments in the creation of WUGs, with the goal
of reducing the annotation effort required to derive
high-quality WUGs. We investigate the following
research questions:

RQ1 Can edge induction reduce the human anno-
tation burden required to produce high-quality
WUGs?

RQ2 What are the relative contributions of graph-
based (structural) and usage-based (contex-
tual) features in WUG edge prediction?

In addition to considering the classification perfor-
mance of edge induction models, we assess the
quality of augmented WUGs in terms of how well
their node clusters correspond to human-annotated
word senses.

2We refer the reader to Periti and Montanelli (2024); Tah-
masebi et al. (2021); Kutuzov et al. (2018); Tang (2018) for
extensive overviews.

2 Related work

In the Word in-Context (WiC) task (Pilehvar and
Camacho-Collados, 2019; Loureiro et al., 2022), a
model is expected to determine, if two usages of a
target word are related or unrelated. As this is simi-
lar to WUG annotation, recent work has shown that
large language models such as GPT and BERT can
be used as computational annotators of DWUGs,
reducing the burden of annotation through WiC as-
sessments (Periti and Tahmasebi, 2024; Periti et al.,
2024).

This work is similarly motivated. However in
contrast to WiC, edge induction leverages a (partial)
WUG annotated by humans to infer missing edges,
instead of solely relying on models’ assessments of
relatedness. For example, given a WUG where us-
age pairs ⟨u, v⟩ and ⟨v,w⟩ are known to be related,
an edge induction model may infer that usages u
and w are also related, based on the information
provided by the partial graph (see Figure 2a). We
use the term structural features to denote predic-
tive features derived from the partial graph, and
contextual features to refer to textual features of
the usage applicable in the standard WiC task.

3 Edge induction models

A WUG can be regarded as a weighted graph, with
a set of nodes (usages) N, and a weight function
W : E 7→ {1, 2, 3, 4},3 where the domain of W is a
subset of pairs of nodes in N; i.e., E ⊆ E , where
E is the set of edges on the complete graph KN .

3These weights correspond to the Likert scale provided
to human annotators: unrelated, distantly related, closely
related, and identical. In some cases, we allow other values
in [1, 4], as when the graph is constructed with relatedness
scores aggregated over multiple annotator judgments.
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An edge induction model is a function that finds
a W ′ : E′ 7→ {1, 2, 3, 4} such that E′ ⊃ E, while
retaining E′ ⊆ E . The intended interpretation is
that W ′ extends W in such a way that (potentially)
uses information encoded in W to induce values
W ′(u, v) for edges missing from the domain of W.

The simplest operationalization of edge induc-
tion is as classification, such that, given ⟨u, v⟩ ∈ E ,
the classifier features can be computed from W
(structural features), and potentially some other
auxiliary information (as in the case of our textual
features). Since our experimental focus is on fea-
tures, all of the induction models we experiment
with in this paper are four-way multi-class logistic
regression models provided with different combi-
nations of structural and textual features (described
below).

xl-lexeme-cos XL-Lexeme (Cassotti et al., 2023)
is an XLM-R-based model trained on a large multi-
lingual corpus of combined WiC datasets. It uses
a Siamese architecture similar to sentence BERT
(Reimers and Gurevych, 2019), but with the target
word marked off by special tokens. The model is
trained to minimize the contrasting loss (Hadsell
et al., 2006) between pairs of usage embeddings,
with cosine distance used as the underlying dis-
tance function.

For a pair of usages u and v, let

xxl-lex
⟨u,v⟩ = δcos(u, v), (1)

where δcos is cosine distance and u and v are the
XL-Lexeme embeddings of usages u and v com-
puted with the lemma of the WUG in question
marked as the target.4

Since XL-Lexeme is currently state-of-the-art in
the WiC task (Periti and Tahmasebi, 2024), we use
xxl-lex
⟨u,v⟩ to investigate the predictive contribution of

contextual features in our experiments.

log-triangle Intuitively, we should be able to in-
fer something about missing edges based on the
edges that have been annotated. This feature works
on the intuition of “completing the triangle” be-
tween u and v based on the known edges. Suppose
we have another usage w and, following Figure 2a,
let x = W(u,w) and z = W(w, v) and suppose we
know that x = z = 4 (i.e,. both pairs ⟨u,w⟩ and
⟨w, v⟩ are closely related), we might expect that u

4Note that xxl-lex
⟨u,v⟩ is a scalar value, meaning that the regres-

sion model using only this feature essentially finds data-driven
thresholds that segment [−1, 1] (the range of δcos) into four
bins corresponding to the edge annotation schema.
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Figure 2: Setup for triangle path count edge induc-
tion. The value of the missing edge (ŷ) can be in-
ferred from the weights along each of the known paths
{(x1, z1), ..., (xn, zn)} from u to v.

and v are closely related too and therefore assign
W ′(u, v) = ŷ := 4. In fact, given that x = 4 we
might generalize to expect that y = z. However,
this is less true when x = 3. And when both x
and z are 1 or 2, it is difficult to say what can be
inferred about y. Moreover, as in Figure 2b, we
may have multiple intermediary wi’s that we want
to use to “complete the triangle” and aggregate the
information provided by their conjunction — pure
heuristics won’t get us very far.

The general case is described by Figure 2. There
is no edge between usages u and v, but we do have
edges between u and some number of other usages
w1,w2, ...,wn and edges between each wi and v.
We define the triangle path count as a count vector
of the weights along all the length-2 paths from u
to v. Formally,

xtri
⟨u,v⟩[i] =

∑

wj

{1 | ⟨W(u,wj),W(wj, v)⟩ = pi},

(2)
where pi indexes the set of the possible length-2
paths of weights (i.e., permutations of {1, 2, 3, 4}).
If all counts xtri

⟨u,v⟩[i] = 0, then xtri
⟨u,v⟩ is undefined —

assuming that the domain of W is constructed from
independently distributed samples from

(N
2

)
, the

fact that there is no length-2 path between u and v
doesn’t tell us anything about what W ′(u, v) should
be.

To account for the fact that each additional path
of a given type likely provides marginally less pre-
dictive information about the correct label for ⟨u, v⟩,
we use the point-wise log of the triangle path count
as input features to the logistic regression model.5

5A more natural way to account for this diminishing in-
formation content would be with a Multinomial Naive Bayes
model, that operates on xtri, however we found the classifi-
cation performance of that model to be similar to that of the
logistic regression model using the log-count feature. For
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xlog-tri
⟨u,v⟩ [i] = log(xtri

⟨u,v⟩[i] + 1) (3)

log-triangle+xl-lexeme-cos Finally, the model
that combines textual and and structural features
simply uses the concatenation of xl-lexeme-cos
and the log-triangle features:

xlog-tri+xl-lex
⟨u,v⟩ = xlog-tri

⟨u,v⟩ ⊕ [xxl-lex
⟨u,v⟩ ] (4)

3.1 Iterated inference

Models that use xlog-tri (and xlog-tri+xl-lex) have un-
defined features when there are no length-2 paths
from u to v. Suppose we have a trained classifier
C which, given an existing weight function W and
auxiliary information A, predicts new weights; i.e.,
CW,A : N × N 7→ [1, 4]. Letting W0 be the initial
weight function and E0 = Dom(W0) be the edges
for which we have ground-truth weights, we infer
edges in stages as follows:

W i(u, v) =

{
W0(u, v) if ⟨u, v⟩ ∈ E0

CW i−1,A(u, v) otherwise.
(5)

In other words, we preserve all of the original
(ground-truth) edge weights while updating in-
ferred weights with new predictions at each iter-
ation. Other schemes are of course possible, but
this one seeks a balance between propagating infor-
mation from the larger graph at each iteration and
remaining grounded in the seed edges (hopefully
avoiding excessive error propagation).

3.2 Levels of stratification

There are several choices for how to divide the
predictive domain of each classifier. Intuitively,
we would expect words to behave similarly with
respect to the inferential evidence provided by the
xlog-tri and xxl-lex features.

But there might be differences across words (es-
pecially considering that different words have dif-
ferent patterns of polysemy and part-of-speech)
and across languages. Given a limited annotation
budget, it would be beneficial to share training data
as much as possible. We experiment with three
schemes:

this reason and because the logistic regression model is more
readily compatible with additional features, we only report the
results of the logistic regression models.

word-level A classifier is trained based on the
training edges for each word, regardless of lan-
guage. At inference time, edges are inferred us-
ing the word-specific classifier with the same seen
edges initializing the graph.

language-level Training data is merged across
words in a given language. At inference time,
the language-specific classifiers are used to pre-
dict edges for words in the corresponding language.
Graphs are initialized with the word-specific seen
edges, which may be the edges from the training
set (as in Section 6.1) or edges from new words
from the same language that weren’t seen at train
time (as in Section 6.3).

cross-lingual Only one classifier is trained using
data from all training words. As before, the classi-
fier can be used to infer edges in WUGs for words
both inside or outside of the training set.

3.3 Evaluation: Correlation with human
annotators

We evaluate edge induction models by their
weighted average pairwise Spearman correlation
with human annotators, defined as follows:

∑
h∈H ρ(yh, ŷm,h)∑

h∈H | yh |
, (6)

where yh is the sequence judgments by annotator
h, ŷh is the corresponding sequence of model pre-
dictions on the same items, and ρ is the Spearman
correlation coefficient.

Pairwise Spearman correlation is a common
metric for evaluating agreement among annota-
tors of usage relatedness (e.g., Erk et al., 2013;
Schlechtweg et al., 2021b). We use this metric
to evaluate our edge induction models in order to
assess how well they perform as computational
annotators.

4 Clustering

Correlation Clustering has traditionally been used
with sparsely human-annotated WUGs. For ex-
ample, to identify senses forming the basis of
the SemEval-2020 bencmark (Schlechtweg et al.,
2020). We also experiment with two varieties
of Stochastic Block Model (SBM; Holland et al.,
1983), a family of generative models which may
better accommodate the uncertainty introduced by
computationally-annotated edges.

In an SBM, an edge between nodes u and v is
determined by a random variable which depends
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on the blocks that u and v belong to. The param-
eters of the distributions that generate edges be-
tween pairs of blocks and the block membership
of nodes can be jointly inferred through Bayesian
non-parametric inference. In this way, SBMs can
discover both assortative block structures (clus-
ters), in which nodes belonging to the same block
are more likely to have an edge, as well as other
more general relationships between blocks, as ex-
pressed though the graph’s edges.

The Hierarchical SBM (Peixoto, 2014) gen-
eralizes the SBM by imposing an additional
block structure on the first-order blocks. The in-
ferred relationship between — and membership
in — second-order blocks allows the model to find
informative priors for the first-order blocks. In prin-
ciple the model can be nested to an arbitrary depth.
In practice Peixoto (2014) provides methods to in-
fer the hierarchical structure.6 One benefit of using
hierarchical models is they they can find smaller
well-defined blocks compared to vanilla SBM. This
is particularly advantageous to our use-case, since
sense distributions are known to be highly skewed
(Kilgarriff, 2004).

In both standard and hierarchical SBM, block
membership determines the likelihood of an edge
between two nodes. Unknown values aside, WUGs
are complete graphs — the existence of an edge is
not informative for finding a good clustering. For
that reason, we experiment with two SBM variants
that can be adapted to our situation.

sbm-binomial The weighted SBM (Aicher et al.,
2015; Peixoto, 2018) draws edge weights from a
distribution in the exponential family. As with the
SBM, these distributions are parametrized by the
block membership of the nodes. Schlechtweg et al.
(2021a) found the Binomial distribution to have the
best fit to WUG edge weights.

sbm-layers We also experiment with an ap-
proach that uses the layered model of Peixoto
(2015). In this model, each of the four edge weights
are treated as a different type of edge. The genera-
tive process allows the the edge likelihood between
blocks to be treated independently for each block
while the blocks (clusters) themselves are inferred
jointly.

In all of our experiments that use SBM mod-
els, we cluster according to the most frequently-

6Both of our SBM models use hierarchical implementa-
tions from graph-tool.skewed.de (v.2.45).

assigned blocks over 10 000 samples from the ag-
glomerative Markov chain Monte Carlo algorithm,
after first minimizing the entropy of the model.7

correlation Correlation clustering (Bansal et al.,
2004) scores possible partitions according to the
difference between the sum of positive edges across
clusters and sub of the weight of negative edges
within clusters. Following (Schlechtweg et al.,
2021b), we shift all of the edge weights by 2.5
so that edges weighted 1 and 2 are negative and
edges weighted 3 and 4 are positive. We also use
their implementation of the cluster search, which
uses simulated annealing to approximate an opti-
mal solution.

4.1 Evaluation: Adjusted Rand Index

For two partitions of the same set, the Rand Index
(RI; Rand, 1971) measures the proportion of pairs
of items that either appear in the same or different
clusters in both partitions. RI is a measure of cor-
relation between partitions that, crucially, doesn’t
rely on any explicit alignment of clusters. The Ad-
justed Rand Index (ARI; Hubert and Arabie, 1985)
accounts for the possibility that pairs of items are
assigned together or apart at random by normaliz-
ing with the expected value of the RI.

5 Data

Our experiments draw on two sets of WUGs. We
use the German DWUG DE dataset (Schlechtweg
et al., 2022, v2.3.0). In particular, we use the subset
of this data which is additionally annotated with
usage-sense annotations (24 of 50 lemmas and 50
of 200 usages per lemma). In contrast to the usage-
usage annotation used to construct the WUGs, the
usage-sense annotation (Schlechtweg, 2023) was
carried out in the traditional way where annota-
tors select a sense from a predefined list of senses.
This will allow to evaluate how well the derived
WUG clusters correlate with traditional sense anno-
tation. Each usage was annotated by 3 annotators
and we use the sense annotated by a majority (2)
as the ground-truth. Usages where the annotators
disagree (83 out of 1200) are excluded from the
correlation analysis.

Additionally, the resampled dataset is a larger
dataset of WUGs (Schlechtweg et al., 2024)8 from
three languages (German, English, and Swedish),

7We use minimize nested blockmodel dl with default
parameters.

8https://www.ims.uni-stuttgart.de/data/wugs
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which are much more densely annotated with
usage-usage edges. This allows us to experiment
with the effect of different amounts of ground-truth
data (Sections 6.1 and 6.2).

In Section 6.3, we use the German portion of
the DWUG DE corpus that doesn’t overlap with the
sense-annotated lemmas to test the usefulness of
edge induction in a simulated low-data scenario.

Some of the data contains overlapping human
usage-usage annotation. In all of our experiments,
we use the median (rounded up to the nearest inte-
ger) of these judgments as the ground-truth edge
scores for clustering and training edge induction
models. For testing the edge induction models,
we use the disaggregated judgments to compute
annotator-wise correlations of the model prediction
with human judgments (see Section 3.3).

6 Experiments

Given limited human usage-sense annotation, we
conduct two stages of experiments. First (Sec-
tion 6.1), we use the densely annotated resampled
WUGs to test how well edge induction models
recover edge weights given different amounts of
usage-usage annotation for training and graph ini-
tialisation. Likewise (Section 6.2), we test the
robustness of different clustering methods with
respect to recovering sense clusters with limited
usage-usage annotated data. Next (Section 6.3)
we construct a more realistic scenario in which
pre-trained edge induction models are used to pre-
dict edges in sparsely-annotated WUGs of “new”
words. These enriched graphs are then clustered
and compared to human usage-sense annotations.

Ultimately the end-to-end results (correlation
with human sense annotation) are what matter, but
considering the intermediate results will allow us
to better explain the final performance and make
recommendations that generalize to more WUG
creation scenarios (for example, given different
annotation budgets).

6.1 Experiment 1: Edge induction
performance

For 5 different folds, we reserve 10% of the edges
in each resampled WUG for testing. Of the re-
maining edges, for each fold, we train classifiers
with different amounts of training data, from 50 to
300 annotated edges, using each of the stratifica-
tion schemes described in Section 3.2. At inference
time, we initialize the graphs with the edges that

were seen during training and infer the remaining
edges, including the edges in the respective test set.
For models that use xtri and xtri+xl-lex, four rounds
of inference are performed.

The results are shown in Figure 3. Overall, the
results are good. In the best cases, our models
roughly achieve parity with human-human agree-
ment for a moderate number ground-truth of edges
(see (Schlechtweg et al., 2021b)), and have decent
agreement in low-data scenarios.

The models that combine textual and structural
features (i.e., xtri+xl-lex) perform best for all but the
smallest number of ground-truth edges, especially
in the language-level and cross-lingual case. It’s
important to consider that the number of ground-
truth edges are reported per word, so at 50 ground-
truth edges, the cross-lingual model has many more
training examples than any of the individual word-
level models. However, this is exactly the point
of training models at higher levels of stratification,
since it makes quality inference more efficient in
terms of annotation effort.

We also see that iterated inference does make
a difference. For word-level models the perfor-
mance actually degrades at higher inference inter-
actions, suggesting that the model may suffer from
some degree of error propagation. This is not the
case with language-level and cross-lingual models,
which have richer training sets: subsequent infer-
ence iterations do improve the performance, though
there is not much change after the second round for
the combined model. Crucially, subsequent rounds
also have better predictive coverage, since the trian-
gle count-based models are unable to make an edge
prediction when there is no length-2 path between
the corresponding nodes. For the purposes of the
clustering, this means that later inference rounds
should almost always be preferred, especially in
the language-level and cross-lingual setups.

6.2 Experiment 2: Clustering robustness
In this experiment, we use the same data, folds,
and training limits as in Experiment 1, this time
experimenting with clustering results. The goal of
this experiment is to observe the stability of each
clustering algorithm given different numbers of
ground-truth edges. We perform this experiment as
a precursor to clustering on induced edges, since
it will provide context for any clustering improve-
ments stemming from edge induction. Each of the
algorithms we experiment with is designed to work
on graphs with missing edges, so it is important to
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Figure 3: Weighted average Spearman correlations between model predictions and human annotations (see Section
3.3). Here, the scores are computed by considering annotations from all lemmas together, and then averaged over 5
folds. For models using log-triangle features, inference iterations are shown with increasingly saturated lines,
with iteration 4 being the most saturated. A proportional random baseline (gray) is show for comparison. Analogous
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understand how much the results change for WUGs
with different amounts of missing data. For each
algorithm, we compute the ARI between clusters
produced with 50 to 200 ground-truth edges and
clusters produced by the same algorithm with 300
ground-truth edges.

The results are presented in Figure 4. Naturally,
all methods produce clusters more similar to the
300-edge clusters when provided with higher num-
bers of ground-truth edges. With 50 ground-truth
edges, clustering is very poor across all cluster-
ing algorithms for the majority of words. The
results using the sbm-binomial method improve
fastest with increasing numbers of ground-truth
edges, and at 200 edges, it performs best on Ger-
man and Swedish, while correlation performs
best for English.

Even at the highest number edges, though, there
is a wide spread of performance across words. It is

important to interpret all of these results bearing in
mind that the ARI is compared to clusters produced
by the same algorithm, just with more data. For an
extrinsic validation of the clusters, we must turn to
Experiment 3, which compares clusters to human-
annotated sense data.

6.3 Experiment 3: Realistic scenario
Experiment 3 imitates a scenario in which one
has (1) a number of “new” words with very lim-
ited edge annotation, and (2) another collection
of words with larger and more densely annotated
WUGs.

For the sparsely-annotated data, we draw from
DWUG DE, selecting the 24 words that have been
annotated with sense data. For each word, we con-
struct graphs with only the 50 usages that were
annotated with sense data and all of the annotated
edges that include only those usages (median 55
edges per word; see Appendix B for word-level
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Figure 5: ARI of WUG clusters versus human sense an-
notation. Spreads are shown over lemmas (N=24). The
judgments-only column shows clustering of the graphs
based on human usage-usage annotation alone, while
the other columns show the effect of adding predicted
edges. Disaggregated results for the xtri+xl-lex models
can be found in Appendix C.

counts) The densely-annotated data, is drawn from
the full set of usages of lemmas in DWUG DE that
don’t overlap with the words annotated for sense
(26 words). We reserve 10% of the edges for testing
and train language-level classifiers on the remain-
der.

We then predict edges on the sparsely-annotated
WUGs and compare the clusters to human-
annotated sense data. As a baseline, we com-
pute clusters for the graphs with only ground-truth
edges. For each edge induction model, we compute
clusters using the graph enriched with predicted
edges (retaining the ground-truth edges that exist).

The results (Figure 5) show clear improve-
ments over the sparse graph clusters for all in-
duction models and clustering algorithms. The
sbm-binomial algorithm performs slightly bet-
ter than the correlation clustering algorithm on
graphs with edges induced by models that include
the xxl-lex. Moreover, there is a tighter spread in
performance across words for the sbm-binomial
algorithm.

In cases where xxl-lex isn’t used, sbm-layers
performs best on average.

In all cases, there are still some words where the
correlation with human sense annotation is very
poor, median but performance can be improved
greatly by using induced edges.

7 Conclusion

In this paper we investigate the question of whether
missing edges in WUGs can be induced using infor-
mation derived from the existing human annotated
edges. Our final goal is to improve downstream
clustering performance by using only as much hu-
man annotation as is needed. To set the stage, we
first explore how well edge induction models that
exploit structural and textual features correlate with
human WUG annotation for different amounts of
ground-truth data (Section 6.1). Then, we charac-
terize the stability of clustering algorithms, finding
notable differences in the clusters as more ground-
truth edges are added across all 3 algorithms (Sec-
tion 6.2). Finally, we conduct an experiment show-
ing that edge induction models can be used to im-
prove the clustering of sparse WUGs even when
they are trained on data from a completely dis-
joint set of lemmas (Section 6.3). These results
show that edge induction can be a valuable tool
for improving the quality of sense clusters inferred
from sparsely-annotated WUGs. This can allow
researchers and lexicographers to cover a larger set
of lemmas on a limited annotation budget. It also
points to annotation strategies that strategically use
triangles to maximize the utility of each human
annotation.

Importantly, we saw that both structural (graph-
based) and contextual (language model-based) fea-
tures contribute to the WUG quality improvements
resulting from augmenting with induced edges.
This is significant since there may be situations
when it is desirable to avoid the possibility of in-
troducing historical biases with language model-
derived features.

This work leaves room for further improvements
on edge induction and clustering in WUGs. The it-
erated inference strategy described in Section 3.1 is
just one of many possible strategies for incorporat-
ing distant graph information while minimizing er-
ror propagation. More principled approaches, such
as Message Passing Neural Networks (Gilmer et al.,
2017; Zhang and Chen, 2018) should also be inves-
tigated. Likewise, some versions of the Stochastic
Block Model (i.e., Peixoto, 2019) can account for
missing edges, which theoretically makes joint in-
duction of edges and clusters possible, though no
implementation currently exists for weighted net-
works.
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8 Limitations

A notable limitation of the results in Section 6.3
stems from the use of usage-sense annotation for
evaluation. One of the motivations for WUGs is
that they can be used to discover unattested word
senses. By its nature, usage-sense annotation as-
sumes a fixed sense inventory — it could simply
be that some of the senses discovered by the clus-
tering process were not present in the sense inven-
tory used for annotation, either because they were
missing or because the clusters capture a more fine-
grained notion of sense. Nevertheless correlation
with usage-sense annotation is an important way to
validate that usage clusters correspond to what we
think of as word senses.

Finally, in this work, our investigation is con-
fined to English, Swedish, and German WUGs.
Since these languages are all closely related, the
cross-lingual results should be interpreted with that
in mind. Otherwise, our proposed methods are
language-agnostic, and we do not anticipate sig-
nificant challenges in adapting them to other lan-
guages.
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A Edge induction by language
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Figure 6: Weighted average Spearman correlations between model predictions and human annotations (see Section
3.3). Here, the scores are computed by considering all annotations from each respective language, and then averaged
over 5 folds. For models using log-triangle features, inference iterations are shown with increasingly saturated
lines, with iteration 4 being the most saturated.
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B Experiment 3 data

usages edges % edges
lemma

Pachtzins 139 179 1.85
Ackergerät 153 193 1.65
Festspiel 150 193 1.72
aufrechterhalten 140 201 2.05
Ausnahmegesetz 159 202 1.60
weitgreifend 164 205 1.52
Einreichung 160 207 1.62
Unentschlossenheit 176 223 1.44
Mut 200 237 1.19
Frechheit 200 258 1.29
Kubikmeter 200 258 1.29
Truppenteil 200 258 1.29
Entscheidung 200 261 1.31
Gesichtsausdruck 200 265 1.33
Tier 200 272 1.36
Mulatte 200 276 1.38
vergönnen 200 278 1.39
Naturschönheit 198 283 1.44
Lyzeum 200 284 1.42
Behandlung 200 315 1.58
vorliegen 200 331 1.66
Tragfähigkeit 182 337 2.03
voranstellen 200 379 1.90
vorweisen 168 384 2.72
beimischen 200 594 2.97
verbauen 168 1053 7.46

Table 1: Statistics of ground truth data used for train-
ing the edge induction models used in Section 6.3.

usages edges % edges
lemma

Seminar 50 22 1.76
Spielball 50 26 2.08
Sensation 50 27 2.16
Engpaß 50 32 2.56
Eintagsfliege 50 42 3.36
Manschette 50 43 3.44
Armenhaus 50 44 3.52
artikulieren 50 49 3.92
Knotenpunkt 50 50 4.00
abbauen 50 50 4.00
packen 50 54 4.32
Rezeption 50 54 4.32
Mißklang 50 56 4.48
Abgesang 50 57 4.56
zersetzen 50 60 4.80
überspannen 50 68 5.44
Fuß 50 68 5.44
Titel 50 68 5.44
abgebrüht 50 76 6.08
Schmiere 50 76 6.08
Dynamik 50 81 6.48
abdecken 50 84 6.72
Ohrwurm 50 86 6.88
ausspannen 50 151 12.08

Table 2: Statistics of ground truth data used for edge
induction (inference) and clustering in Section 6.3.
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C Cluster characteristics

Correlation Clustering

usage-sense judgments only edge induction
H(C) | C | H(C) | C | ARI H(C) | C | ARI

lemma

Spielball 0.17 2 1.17 5 0.05 0.69 4 -0.01
Rezeption 0.37 3 1.80 8 0.08 0.64 4 0.26
Sensation 0.48 3 1.67 7 0.20 1.43 6 0.23
Mißklang 0.51 3 1.46 6 -0.00 -0.00 2 -0.02
artikulieren 0.54 3 1.38 6 0.08 1.36 5 0.17
Abgesang 0.62 3 1.90 9 0.07 1.12 7 0.12
Dynamik 0.64 2 1.76 8 0.13 0.91 4 0.47
Manschette 0.64 4 0.51 4 0.06 0.76 5 0.21
zersetzen 0.68 2 0.68 3 0.34 0.67 3 0.60
Armenhaus 0.68 2 1.76 8 0.11 1.10 5 0.31
Knotenpunkt 0.68 3 1.52 8 -0.01 1.35 6 0.23
Engpaß 0.69 3 1.05 5 0.32 0.88 4 0.34
Ohrwurm 0.69 3 0.68 4 0.66 0.55 3 0.59
Eintagsfliege 0.69 3 0.94 4 0.31 0.68 3 0.50
abgebrüht 0.69 3 1.33 6 0.30 0.92 4 0.78
Titel 0.80 4 0.82 5 0.00 1.03 5 0.07
Seminar 0.92 4 1.29 5 0.12 0.88 4 0.12
packen 1.01 4 1.88 8 0.20 1.45 6 0.41
abbauen 1.04 4 0.92 4 0.32 1.17 5 0.36
ausspannen 1.18 5 1.32 6 0.47 1.23 5 0.63
überspannen 1.22 5 1.38 6 0.20 0.67 3 0.48
abdecken 1.27 6 1.43 6 0.29 0.77 4 0.48
Fuß 1.34 8 1.31 6 0.09 1.43 6 0.48
Schmiere 1.45 8 1.67 7 0.11 0.69 3 0.45

Table 3: Distributional characteristics of correlation clusters from Section 6.3 compared to the human usage-sense
annotation. The edge induction column shows the best-performing edge induction model in terms of median ARI
(log-triangle+xl-lexeme-cos) while judgments only is the result of clustering only on ground-truth usage-usage
edges. H(C)=entropy of the sense/cluster distribution, | C | = number of senses/clusters, ARI=ARI with usage-sense
annotation.
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SBM-binomial

usage-sense judgments only edge induction
H(C) | C | H(C) | C | ARI H(C) | C | ARI

lemma

Spielball 0.17 2 0.37 2 0.17 0.97 3 0.08
Rezeption 0.37 3 0.85 3 0.21 1.07 4 0.26
Sensation 0.48 3 0.37 2 0.26 1.17 4 0.38
Mißklang 0.51 3 0.53 2 0.21 0.50 2 -0.02
artikulieren 0.54 3 0.23 2 0.14 1.59 5 0.14
Abgesang 0.62 3 0.67 2 0.02 1.37 4 0.08
Dynamik 0.64 2 0.47 2 -0.04 1.16 4 0.49
Manschette 0.64 4 0.67 3 0.38 1.09 4 0.30
zersetzen 0.68 2 0.37 2 0.00 1.08 4 0.60
Armenhaus 0.68 2 0.53 3 0.19 1.16 4 0.33
Knotenpunkt 0.68 3 0.33 2 0.02 1.36 4 0.22
Engpaß 0.69 3 0.17 2 -0.00 1.04 3 0.37
Ohrwurm 0.69 3 0.69 2 0.84 1.09 4 0.63
Eintagsfliege 0.69 3 0.33 2 0.02 1.27 4 0.47
abgebrüht 0.69 3 0.40 2 -0.01 1.37 5 0.60
Titel 0.80 4 0.50 2 -0.02 0.95 3 0.13
Seminar 0.92 4 -0.00 1 0.00 1.11 5 0.11
packen 1.01 4 0.40 2 0.03 1.31 4 0.44
abbauen 1.04 4 0.65 2 0.10 1.33 4 0.38
ausspannen 1.18 5 0.37 2 0.06 1.42 5 0.63
überspannen 1.22 5 0.68 3 0.13 1.29 4 0.43
abdecken 1.27 6 0.81 3 0.23 1.23 4 0.45
Fuß 1.34 8 0.70 3 0.08 1.37 4 0.35
Schmiere 1.45 8 1.21 5 0.29 1.45 5 0.52

Table 4: Distributional characteristics of sbm-binomial clusters from Section 6.3 compared to the human usage-
sense annotation. The edge induction column shows the best-performing edge induction model in terms of median
ARI (log-triangle+xl-lexeme-cos) while judgments only is the result of clustering only on ground-truth usage-
usage edges. H(C)=entropy of the sense/cluster distribution, | C | = number of senses/clusters, ARI=ARI with
usage-sense annotation.
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SBM-layers

usage-sense judgments only edge induction
H(C) | C | H(C) | C | ARI H(C) | C | ARI

lemma

Spielball 0.17 2 -0.00 1 0.00 0.44 2 0.30
Rezeption 0.37 3 -0.00 1 0.00 0.49 3 0.70
Sensation 0.48 3 -0.00 1 0.00 0.82 3 0.45
Mißklang 0.51 3 -0.00 1 0.00 1.12 4 0.03
artikulieren 0.54 3 -0.00 1 0.00 1.33 4 0.05
Abgesang 0.62 3 -0.00 1 0.00 1.16 4 -0.02
Dynamik 0.64 2 -0.00 1 0.00 0.93 3 0.48
Manschette 0.64 4 -0.00 1 0.00 0.59 3 0.61
zersetzen 0.68 2 0.28 2 0.03 0.87 4 0.67
Armenhaus 0.68 2 -0.00 1 0.00 0.99 4 0.42
Knotenpunkt 0.68 3 -0.00 1 0.00 1.23 4 0.20
Engpaß 0.69 3 0.17 2 -0.00 0.55 2 0.16
Ohrwurm 0.69 3 0.40 2 0.08 0.53 3 0.15
Eintagsfliege 0.69 3 -0.00 1 0.00 0.89 4 0.35
abgebrüht 0.69 3 0.40 2 -0.01 1.18 4 0.57
Titel 0.80 4 -0.00 1 0.00 1.56 5 0.23
Seminar 0.92 4 -0.00 1 0.00 0.50 2 -0.01
packen 1.01 4 0.37 2 0.04 1.05 3 0.25
abbauen 1.04 4 -0.00 1 0.00 1.05 4 0.21
ausspannen 1.18 5 0.37 2 0.06 1.41 5 0.61
überspannen 1.22 5 0.10 2 0.02 0.95 3 0.38
abdecken 1.27 6 0.55 2 0.33 0.94 4 0.48
Fuß 1.34 8 -0.00 1 0.00 1.02 3 0.29
Schmiere 1.45 8 0.33 2 0.01 1.25 5 0.39

Table 5: Distributional characteristics of sbm-levels clusters from Section 6.3 compared to the human usage-sense
annotation. The edge induction column shows the best-performing edge induction model in terms of median ARI
(log-triangle+xl-lexeme-cos) while judgments only is the result of clustering only on ground-truth usage-usage
edges. H(C)=entropy of the sense/cluster distribution, | C | = number of senses/clusters, ARI=ARI with usage-sense
annotation.
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Abstract

Thus far, the research community has focused
on a simplified computational modeling of se-
mantic change between two time periods. This
simplified view has served as a foundational
block but is not a complete solution to the com-
plex modeling of semantic change. Acknowl-
edging the power of recent language models,
we believe that now is the right time to extend
the current modeling to multiple time periods
and diachronic word sense induction. In this
position paper, we outline several extensions of
the current modeling and discuss issues related
to the extensions.

1 Introduction

Lexical Semantic Change (LSC) is the problem of
automatically identifying words that change their
meaning over time (Periti and Montanelli, 2024;
de Sá et al., 2024; Tahmasebi et al., 2021; Kutuzov
et al., 2018; Tang, 2018). Conceptually, this prob-
lem implicitly involves a fundamental step of di-
achronic word sense induction to distinguish each
individual sense of a word over all the multiple
time periods of interest (Periti et al., 2023; Al-
sulaimani and Moreau, 2023; Alsulaimani et al.,
2020; Emms and Jayapal, 2016; Tahmasebi, 2013).
However, the computational challenges in handling
large corpora and the absence of comprehensive
benchmarks have in practice led to a simplified
modeling focused on two time periods 𝑡1 and 𝑡2
only. These are either modeled individually 𝑡1, 𝑡2
or in a single time interval ⟨𝑡1, 𝑡2⟩ considering all
the data jointly.

Typically, approaches over two time periods
are assumed to be directly extendable to real sce-
narios involving multiple time periods. For ex-
ample, approaches designed for a single inter-
val ⟨𝑡1, 𝑡2⟩, can be iteratively re-executed across
multiple, contiguous intervals ⟨𝑡1, 𝑡2⟩, ⟨𝑡2, 𝑡3⟩, …,

*Authors contributed equally

⟨𝑡𝑛−1, 𝑡𝑛⟩ (Giulianelli et al., 2020). However, mul-
tiple re-executions presents a computational chal-
lenge that significantly escalates as the number of
considered periods increases. Procedures that were
initially considered optional steps to expedite mod-
eling in two time periods become fundamental over
multiple time periods. For instance, since words
can occur thousands of times in a diachronic corpus,
it becomes imperative to randomly sample a limited
number of occurrences and to leverage hardware
components, such as GPU processor units.

Due to the absence of diachronic lexicographic
resources (e.g., dictionaries, thesauri), and the gap
between a general resource and specific data, the
modeling of word sense is commonly approached
in an unsupervised manner. Clustering techniques
are generally employed to aggregate usages of a
specific word into clusters, with the idea that each
cluster denotes a specific word meaning that can
be recognized in the considered documents. How-
ever, clusters of usages (regardless of method of
clustering) do not necessarily correspond to precise
senses (Martinc et al., 2020), but typically represent
noisy projections related to specific context (Periti
and Montanelli, 2024). As a result, manual activity
is always required to translate the automatically
derived clusters into a diachronic sense inventory.
This sense inventory is the basis for interpreting
the identified semantic change and modeling sense
evolution (see Figure 1). While automatic meth-
ods, such as keywords extraction (Kellert and Mah-
mud Uz Zaman, 2022), or generating definitions
for word usages (Giulianelli et al., 2023), have been
proposed to support cluster interpretation, a reli-
able interpretation still needs manual supervision.
Therefore, when multiple time periods are consid-
ered, interpretability challenges increase several or-
ders of magnitude, making the direct re-execution
of existing approaches unsuitable for effectively de-
tecting semantic change and the evolution of each
individual word meaning (Periti et al., 2023, 2022).
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Figure 1: Word usages and their corresponding representations, for time period 𝑡1, 𝑡2, and 𝑡3 are denoted with ■,
△, ⬖, respectively. Typically, the clustering of representations is done for individual time interval (i.e., two time
periods jointly) and manual supervision is required to translate the clusters of each time interval to a diachronic
sense inventory. The amount of manual supervisions increase with the number of considered time intervals.

We thus argue that the diachronic word sense in-
duction over multiple time periods inherent to LSC
requires more careful considerations compared to
the simplified modeling currently done. More ef-
forts should be devoted to develop approaches for
assisting text-based researchers like linguists, his-
torians and lexicographers as much as possible.

Our original contribution
In this paper, we discuss the complexities inher-
ent in modeling semantic change for each word
sense individually over multiple time periods. We
challenge the general assumption that conventional
approaches designed to address LSC over two time
periods are easily extendable over multiple time
periods. Because currently, contextualized em-
beddings represents the preferred tool for address-
ing LSC (Periti and Tahmasebi, 2024), we will
use these as an example. Our discussion is how-
ever more general, and can be applied regardless
of which model is used to represent individual
word usages – such as definitions (Giulianelli et al.,
2023), co-occurrence vectors (Schütze, 1998), lex-
ical replacements (Periti et al., 2024), or bag-of-
substitutes (Kudisov and Arefyev, 2022) – or sense
clusters in general as in Tahmasebi and Risse, 2017.

We advocate for an alternative modeling of LSC
over multiple time periods, and specifically, we
present i) five distinct approaches for tracking se-
mantic change and the evolution of word meanings;
and ii) three distinct settings for assessing seman-
tic change over time. Our work has significant

implications for both the computational modeling
and the creation of benchmarks, contributing to the
ongoing discussion presented by Periti and Mon-
tanelli (2024); Hengchen et al. (2021); Montariol
et al. (2021) on the open challenges associated with
modeling semantic change.

2 Background and related work

Since SemEval-2020 (Schlechtweg et al., 2020),
there is an established evaluation framework for
LSC to compare the performance of various mod-
els and approaches. However, given the substantial
annotation efforts required to create reliable bench-
marks over multiple time periods, the framework is
typically adopted to create simplified benchmarks
over two time periods, with gold labels for semantic
change but without diachronic sense labels (Ling
et al., 2023; Chen et al., 2023; Kutuzov et al.,
2022a; Zamora-Reina et al., 2022; Kutuzov and
Pivovarova, 2021; Basile et al., 2020; Schlechtweg
et al., 2020).1 In such benchmarks, the LSC prob-
lem is defined as follows.

2.1 Problem statement over two time periods
Given a diachronic corpus  containing a set of
documents (e.g., sentences, paragraphs) from two
time periods 𝑡1 and 𝑡2, the current modeling of LSC
involves the following evaluation tasks:

1Kutuzov and Pivovarova, 2021 introduced a benchmark
encompassing two time intervals. However, these intervals
have been treated independently, leading to their consideration
as two distinct sub-benchmarks over a single time interval.
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i) to quantify the semantic change of words
(i.e., Graded Change Detection);

ii) to recognize words that change their meaning
by either gaining new ones or losing old ones
(i.e., Binary Change Detection, Sense Gain
Detection, Sense Loss Detection).

Words that change their meanings by means of
gaining or loosing senses will have a high degree
of (graded) semantic change, while words that have
a high degree of graded change do not need to have
lost or gained senses.

These tasks inherently involve the modeling of
word meanings across 𝑡1 and 𝑡2. However, due to
the lack of diachronic sense labels, researchers and
practitioners tend to focus on addressing tasks i)
and ii) without adequately tackling the challenges
associated with modeling sense evolution.

2.2 State-of-the-art approaches to LSC

Thus far, computational approaches to solve the
above tasks have followed a standard receipt using
a four-step pipeline (Periti and Montanelli, 2024).
Given a corpus  spanning two time periods 𝑡1 and
𝑡2, and a target word 𝑤:

1) extraction of the word occurrences from both
𝑡1 and 𝑡2;

2) computational representation of each occur-
rence (the current standard is to leverage pre-
trained contextualized embeddings);

3) word sense induction by aggregating embed-
dings with a clustering algorithm;

4) assessment of semantic change by leveraging
a distance measure on the embeddings from
𝑡1 and 𝑡2.

Approaches are typically distinguished in form-
based and sense-based. The former does not in-
duce sense (3) but quantifies semantic change using
(1,2,4), either as a shift in the dominant meaning
of 𝑤 or in its degree of polysemy. There is thus
no easy way to discern individual senses from the
change score without integrating “close reading”
by humans. Sense-based approaches remedies this
by relying on all steps (1-4) but generally induce
senses (3) in a synchronic way, without considering
the temporal nature of the documents (Ma et al.,
2024). That is, they consider all the documents
from 𝑡1 and 𝑡2 available as a whole and perform a
single clustering activity over the entire set of gen-
erated embeddings, regardless of their time origin.

2.3 Modeling senses through clusters

The clustering of representations via word sense
induction, step (3) above, serves as a tool to oper-
ationalize word senses in an unsupervised fashion
through unstructured text (Lake and Murphy, 2023).
On one hand, this operationalization offers a flexi-
ble adaptation to the data under consideration and
allows to derive senses that do not necessarily need
to be aligned with available static lexicographic
resources (Kilgarriff, 1997). For instance, senses
derived from youth slang (Keidar et al., 2022), or
scientific texts are unlikely to align with a general
lexicon meant to cover the whole spectrum of a
given language.

On the other hand, as computational models
derive information from the contexts surrounding
word tokens, sense modeling tends to emphasize
word usages rather than word meanings (Tahmasebi
and Dubossarsky, 2023; Kutuzov et al., 2022b).
Thus, while ideally we would like each cluster to
correspond to one, and only one sense, in prac-
tice, multiple clusters may correspond to different
nuances of the same sense. This effect is further
amplified when considering data from diverse time,
domains, or genres, where distinct linguistic regis-
ters, styles, or co-occurrence patterns may results
in different senses.

Additionally, the interpretation of clusters as
senses requires a notion of (word) “meaning” that
can both differ in the mind of humans according to
social or cultural background and age, as well as
in the varying usages of a word in context. Thus,
the mapping of clusters to senses involves i) identi-
fying commonalities on the usages of each cluster
that may be judged differently, as well as ii) map-
ping these commonalities to word meanings. The
outcome results in a sense inventory.

2.4 Modeling LSC over multiple time periods

Modeling LSC involves computationally deriving
word senses progressively over time. This entails
re-executing the steps (1-4) multiple times. At each
execution 𝑖, a set of clusters is generated and hu-
mans are needed to identify and update the sense
inventory. This involves mapping the clusters gen-
erated at the 𝑖-th execution to senses and aligning
senses temporally.

The way senses align over time give us important
insights into how word meanings change. Classify-
ing types of semantic change has been long studied
and different schema have been proposed (Blank,
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1997; Bloomfield, 1933; Paul, 1880). Among oth-
ers, common types of change include broadening
of meaning (e.g., dog was used to refer to dogs
of specific large and strong breeds), narrowing of
meaning (e.g., girl was used to refer to people of
either gender), novel senses (e.g., rock as a music
genre) and metaphorical extensions (e.g., surfing
the web). The result is a diachronic sense inven-
tory with temporal information on the active senses
at each time, as well as potential relationships be-
tween senses.

To facilitate the interpretation of semantic
change and the evolution of word meaning, the
current, synchronic modeling of senses can bene-
fit from diachronic modeling encompassing both
incremental word sense induction and cluster align-
ment (Kanjirangat et al., 2020). Aligning clusters
computationally will allow the simultaneous inter-
pretation of multiple clusters, thereby reducing the
burden of manual supervision at each time period.
Clusters aligned over time can potentially suggest
the continuation of an active sense, as well as the
broadening and narrowing of meanings. In contrast,
clusters not aligned over time can reveal both the
continuation of different senses, as well as types of
semantic change, like metaphoric extension.

Thus far, word meanings have been modeled
through conventional clustering algorithms such
as Affinity Propagation (Martinc et al., 2020) or
K-Means (Kobayashi et al., 2021). However, these
algorithms were originally designed for one-time
data clustering and are not inherently suited to
handle temporal dynamics. Specifically, clusters
generated at 𝑡𝑖−1 can become mixed up when re-
executing the algorithm with both previous data and
new data points at time ⟨𝑡𝑖−1, 𝑡𝑖⟩. Consequently, ob-
jects that were previously clustered together at time
𝑡𝑖−1 may either remain in the same cluster or be re-
assigned to different clusters based on the updated
data at time 𝑡𝑖. This dynamic nature complicates
the task of tracking the history of specific clusters
across different time periods, and can lead to the
creation of noisy clusters, especially when new data
points arrive according to a skewed distribution.

Diachronic sense clustering. Conventional un-
supervised clustering algorithms do not incorpo-
rate the faithfulness properties typical in incremen-
tal clustering literature, where clustering activities
at any given point in time should remain faithful
to the already existing clusters as much as possi-
ble (Chakrabarti et al., 2006) while at the same time

Figure 2: Clustering over consecutive time intervals.

be flexible to fit the new data. This would avoid
dramatic change in clusters from one time-step to
the next that do not derive from semantic change,
but from differences in the underlying documents
over time (Castano et al., 2024).

To this end, we argue that, for each target word,
modeling LSC over time should involve monitor-
ing the evolution of each individual senses across
all the time periods under consideration, as well as
tracing the types of each change. However, this ex-
tension is not straightforward; instead, it requires
crucial time series analysis to mitigate potential
noise introduced by the predictions of computa-
tional approaches (Kulkarni et al., 2015).

Monitoring and tracing word meaning evolution
and semantic change require a careful considera-
tion in the current four-step pipeline of sense-based
approaches. As for scalability and interpretability
issues related to (1-3), suggestions and workaround
are discussed in Periti and Montanelli, 2024; Mon-
tariol et al., 2021. In this paper, we further discuss
the extension of steps (3) and (4) when consider-
ing multiple time points. In particular, we discuss
diachronic word sense induction in Section 3, and
semantic change assessment in Section 4.

3 Diachronic word sense induction

For the sake of simplicity, consider a diachronic
corpus  spanning three general, consecutive time
periods 𝑡1, 𝑡2, 𝑡3, not necessarily contiguous. This
simplification does not lead to any loss of infor-
mation, but serves to aid the discussion in a clear
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Figure 3: Clustering over consecutive time periods.

and concise fashion. At the same time, three time
points are easily extendable to the general case of
tens or hundreds of time periods. Word usages, and
their corresponding representations, for time period
𝑡1, 𝑡2, and 𝑡3 are denoted with ■, △, ⬖, respectively.
From here on, we will use contextualized embed-
dings as an example for contextualized represen-
tations. In the following, we present five different
approaches for monitoring the evolution of word
meanings and discuss suitability, and drawbacks.

3.1 Clustering over consecutive time intervals

Clustering algorithms used for jointly modeling
senses over two time periods 𝑡1 and 𝑡2 can be pro-
gressively re-executed over consecutive pairs of
time periods ⟨𝑡1, 𝑡2⟩ and ⟨𝑡2, 𝑡3⟩. To facilitate the
interpretation of sense evolution, a cluster align-
ment step is thus required between consecutive re-
executions. For instance, in Figure 2, the clusters
generated in step (B) are linked to those gener-
ated in step (A) through a cluster alignment step
(C) (Deng et al., 2019).

When clustering over consecutive time intervals
⟨𝑡1, 𝑡2⟩,… , ⟨𝑡𝑛−1, 𝑡𝑛⟩, the embeddings from 𝑛 − 2
time periods (all time periods but first and last)
are clustered twice. For instance, consider the em-
beddings △ from 𝑡2 in Figure 2: (A) they are first
clustered with the embeddings ■ from 𝑡1, and (B)
then re-clustered with the embeddings ⬖ from 𝑡3.
When a limited number of word usages is available,
this approach can potentially enhance the emer-
gence of certain senses, as patterns of embeddings
from 𝑡𝑖−1 are reinforced by additional evidence (if
present) from 𝑡𝑖. However, this compromises the

Figure 4: One-time clustering over all time periods.

faithfulness property, as embeddings from 𝑡𝑖 can be
clustered differently when considered jointly with
𝑡𝑖−1 compared to when considered jointly with 𝑡𝑖+1
(from a past and future perspective respectively).

3.2 Clustering over consecutive time periods

When a substantial number of documents is avail-
able for each time period, there is no need to cluster
the embeddings of a time interval as a whole. In-
stead, the embeddings of each time period can be
clustered individually, and a cluster alignment al-
gorithm can be applied progressively to link the
clusters across time periods (Kanjirangat et al.,
2020; Montariol et al., 2021). This approach is
represented in Figure 3. Step (A), (B), and (D)
represents the application of a conventional cluster-
ing algorithm over the embeddings of time period
𝑡1, 𝑡2, 𝑡3, respectively. Step (C) and (E) represents
cluster alignment steps to link the clusters gen-
erated through step (B) to the cluster generated
through step (A), and in turn, the clusters generated
through step (D) to the cluster generated through
step (B) (Deng et al., 2019).

Clustering over time periods involves a similar
number of clustering activities and cluster align-
ment steps as clustering over time intervals. How-
ever, each clustering activity is more scalable, as it
involves a smaller number of embeddings.

3.3 One-time clustering over all time periods

Embeddings from all the considered time periods
can be clustered jointly in one single execution.
For instance, in Figure 4 step (A), embeddings
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Figure 5: Incremental clustering over time periods.

■, △, ⬖ are clustered together as a whole. This
single clustering activity results in clusters that may
include embeddings from various combinations of
time periods. For example, a cluster may include
embeddings from a single, all, or selected time
periods. A cluster alignment step (B) can be further
executed to enable the modeling of sense evolution
and change type.

When dealing with hundreds of time periods
and a significant number of embeddings at once,
clustering can be unfeasible due to scalability is-
sues. In real scenarios, a diachronic corpus can
be dynamic (Periti et al., 2022), where documents
from subsequent time periods are not available as a
whole but are progressively added (e.g., posts from
social networks, Kellert and Mahmud Uz Zaman,
2022; Noble et al., 2021). In such scenarios this
approach is thus not suitable as it would require
re-execution of the clustering from scratch when
new documents are added.

Furthermore, the use of conventional clustering
algorithms is generally insensitive to the order of
time periods, allowing embeddings of later time pe-
riods to influence pattern of the earlier time periods.
This risks leading to a global view of word meaning
while precluding a local view where smaller and
gradual variation of individual senses as well as
small sense clusters are missed. These issues can
be mitigated by considering the temporal order of
documents in the clustering activity (Smyth, 1996).

3.4 Incremental clustering over time periods

Incremental clustering algorithms are designed
to effectively address the temporal nature of
data (Kulkarni and Mulay, 2013). Thus, they are

Figure 6: Scaling up with form-based approaches.

a suitable option to model the dynamic nature of
language where temporal progression is key. When
employed for diachronic word sense induction, they
can efficiently and directly update the prior cluster-
ing results by processing and assimilating new data
into existing clusters. The word usages observed
in past time periods are consolidated into a set of
clusters that constitute the memory of the word
meanings observed thus far (Periti et al., 2022).
This memory then serves as a foundation for un-
derstanding subsequent word usages in the current
time period. Like Figure 4, Figure 5 represents
similar steps (A-C) without alignment as clusters
generated in step (A-C) are directly and consecu-
tively updated.

Some of the incremental algorithms implement
the faithfulness property in an evolutionary way:
once a cluster has been created, it can only gain
new members (i.e, word usages) but can never loose
any members that have already been assigned to
it. Meanwhile, the word usages observed in the
present must be stratified or integrated over those
from the past, that is, either be placed in existing
clusters, or create new clusters. Other algorithms
implement the faithfulness property in a more flex-
ible way and enable small changes in past clusters
when more evidence is available.

3.5 Scaling up with form-based approaches

Regardless of the complexity of each presented
method, it is difficult to scale an approach to the
level of whole vocabulary in a large corpus. In addi-
tion, some senses remain stable for a long time be-
fore they potentially change meaning, others never
change. Therefore, clustering the senses during
the stability periods of words is superfluous. To
reduce computational needs and scale to the entire
vocabulary, form-based approaches (without sense-
induction) can be used to monitor stability allowing
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the use of more powerful sense-based approaches
only when there is indication of change.

By considering change only in the general usage
of a word, form-based approaches reduce the se-
mantic change problem significantly. Thus, they
serve for two important purposes: first, they can
be used to quantify the degree of change at the vo-
cabulary level, and thus give us the opportunity to
quantify change during different time periods (e.g.,
before and after WWI v. WWII); secondly, they
can be used to find words and periods of interest.

Such a kind of stability monitoring can be done
via change point detection (Kulkarni et al., 2015)
and be integrated with diachronic sense modeling
as shown in Figure 6. In particular, step A involves
quantifying semantic change through form-based
assessment to detect change points across the entire
time span covered by the corpus. Step B involves
modeling each individual sense of the word around
the detected change point(s) through approaches
presented in Section 3.1-3.4.

4 Semantic change assessment

The diachronic word sense induction is indepen-
dent from the assessment of change at the level
of senses or words. While the modeling of word
meaning relies on the notion of word senses, the
assessment of change depends on the research ques-
tions that we want investigate. E.g., considering a
perfect sense inventory we may want to ask how
many meanings have been lost and gained, and if
change is more evident in some time intervals com-
pared to others. The answer to these depend on the
way we assess change.

Assessment of change, like sense induction, has
focused on two time intervals which is the smallest
unit over which we can quantify change. How-
ever, generalizing from two intervals to multiple
intervals is not trivial and needs considerations that
depend heavily on the kind of research question
that is being asked, as well as the kind of data avail-
able. Short-term data contra long-term data, or
small contra large data require different strategies
for quantifying change. Here we present some pos-
sible strategies that extend to multiple time periods.

Assessment over consecutive time intervals
represents a general way to assess semantic change
over time ⟨𝑡1, 𝑡2⟩, ⟨𝑡2, 𝑡3⟩, …, ⟨𝑡𝑛−1, 𝑡𝑛⟩. This kind
of assessments can be affected by i) (random) fluc-
tuations in the underlying corpus, where the cover-
age of topics can be heavily influenced by real-life

events; and ii) noisy artifacts of the computational
modeling, e.g., influenced by frequency. The use
of time series analysis or statistical tests can reduce
the effect of potential artifacts from the data and
capture only significant changes evident in the time
series (Liu et al., 2021; Kulkarni et al., 2015).

This assessment represents a useful solution for
scenarios where the focus is on detecting immedi-
ate changes, such as in rapidly evolving fields or
during specific events that might impact language
usage. When comparing ⟨𝑡𝑖−1, 𝑡𝑖⟩, the assumption
is that all the active word meanings in 𝑡𝑖, except
for the new or changed ones, are active also in 𝑡𝑖−1.
However, some senses are periodic and an unde-
sirable side-effect is that they may be detected as
change each time they appear and disappear as they
are not represented in 𝑡𝑖−1.

Pairwise assessment over time periods Some-
times research questions may be tailored to specific
time intervals (e.g, before and after the time period
𝑡𝑖 of the corona pandemic). Thus, this assessment
aims to quantify the change across specific time in-
tervals ⟨𝑡𝑖−1, 𝑡𝑖⟩ and ⟨𝑡𝑗 , 𝑡𝑗+1⟩ such that 𝑖 < 𝑗. This
assessment is also useful for identifying changes in
periodic senses when the periodicity of the sense is
known. For example, the meaning of the term gold
related to the Olympic games that take place every
forth year.

This assessment is also useful when research
questions are tailored to specific types of change
irrespective of when the change occurs. For exam-
ple, when a diachronic sense inventory is available,
broadening or narrowing can be investigated re-
gardless of their time-specific appearance.

When all possible time intervals are considered,
this assessment is associated with a computational
complexity of (𝑛2) where 𝑛 is the number of con-
sidered periods. However, it provides a broader
view of how meaning evolves over different spans,
capturing trends that may not be apparent in consec-
utive intervals. For example, gradual changes over
time would not appear with assessment over con-
secutive time intervals as too little evidence would
be present, but could appear as radical changes
when larger gaps between intervals are used.

By considering all the possible time intervals
it is also possible to quantify the global level of
change over the whole corpus. This method is
insensitive to the order of the time periods and is
useful for capturing overarching trends and patterns
in semantic change across the entire timeline.
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Cumulative assessment over time When re-
search questions focus on the novel senses gained
at time period 𝑡𝑖, the comprehensive overview of
active senses from the past must be considered⋃𝑖−1

𝑗=1 𝑡𝑗 . Instead of considering only consecutive
or specific time intervals, each new time period
should be compared with the full diachronic sense
inventory. Cumulative assessment emphasizes the
overall evolution of meaning, providing a holistic
view of changes from the beginning to the end of
the timeline. It is useful for consolidating the ev-
idence across multiple time periods which would
not suffice on their own. For example, when re-
search questions focus on the novelty introduced
in time period 𝑡𝑖 compared to the past periods, the
assessment of change should consider the cumu-
lative evidence of the past as a single, large time
period. Similar assessment can be employed when
research questions want to compare a past time pe-
riod 𝑡𝑖 with respect to the following

⋃𝑛−1
𝑗=𝑖+1 𝑡𝑗 , until

the 𝑛𝑡ℎ time period.

5 Discussion and conclusion

Computational modeling of semantic change has
long been done in a simplified way due to the chal-
lenges related to modeling senses across multiple
time periods. However, sense inventories and the
type of change a word exhibits, are fundamental
aspects for text-based researchers like historians,
linguists and lexicographers, and therefore, the
full complexity of semantic change must be taken
into consideration in the computational modeling.
Now that we have powerful language models like
GPT-4 (OpenAI, 2023) and XL-LEXEME (Cas-
sotti et al., 2023) there are no excuses for tak-
ing a simplistic view on the modeling of semantic
change.

In this paper, we have presented possible ex-
tensions to expand on the simplistic view. These
extensions have equal implications both for the
computational modeling as for the generation of
manually annotated benchmarks which has also
been done over two time periods due to the sheer
volume of required annotations.

Crucial for the usefulness of semantic change
studies is a diachronic sense inventory where the
different senses are linked together to capture se-
mantic change type and linguistic relation. It is us-
ing the diachronic sense inventory that the majority
of the research questions can be answered. These
pertain both to linguistic, language-level questions,

but also to societal and cultural enquiries where text
can be used as evidence. How to best frame and
store the diachronic sense inventory is still an open
issue and requires involvement from the commu-
nities around computational modeling of semantic
change, word sense induction and lexical semantics
in general, as well as the text-based researchers that
will use the outcome.

Human supervision is necessary to develop a
reliable sense inventory. As diachronic corpora
can span multiple time periods and contain mil-
lions of documents, automatic supervision support
is mandatory to reduce manual efforts as much as
is possible. In this regard, aligning similar clusters
and detecting change types to speed up the inter-
pretation process is as crucial as it is difficult. Em-
ploying different kinds of diachronic word sense
induction and assessment as outlined here, will lead
to different amounts of manual interaction.

Aligning clusters over time poses a very chal-
lenging task, as some clusters may represent out-
liers, time intervals may be characterized by dif-
ferent numbers of clusters, and multiple noisy (or
nuanced) clusters denoting the same meaning may
emerge. As a result, the cluster alignment often in-
volves the discretization of a fuzzy problem (Kian-
mehr et al., 2010), that is the creation of new global
clusters that encompass sets of fuzzy clusters. Fur-
thermore, when cluster are aligned through a poste-
riori step rather than being linked and updated di-
rectly, the alignment process (worst case) involves
comparing each cluster with every other cluster
across all time periods. This risks amplifying the
potential level of noise and require intricate deci-
sions typically taken without any theoretical basis.

Thus far, the research community has focused
more on the quantification of semantic change
rather than the underlying word sense induction
because form-based approaches consistently out-
performed sense-based approaches. However, the
clustering algorithms that have been employed do
not take the temporal nature of documents into
consideration, and we thus argue that they are not
optimal for modeling word meaning over time.

In this paper, we have outlined several possible
paths forward, both in terms of diachronic word
sense induction and assessment of change. We
have left methods for change type detection for
future work. Each proposed path is suitable for
different kinds of research questions and data. For
example, by clustering embeddings over a whole
corpus, smaller senses that would not appear in
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sequential modeling can gain sufficient evidence
in global clustering. Such a method is however
computationally expensive. Other methods suf-
fer from the problem that when only consecutive
time periods are considered, slow and gradual shift
risks being missed and over long time periods other
strategies are more suitable. Among these methods,
we strongly advocate for a shift towards incremen-
tal methods as these are currently the best fit to the
LSC problem.

6 Limitations

This is a position paper and as such, we have not
reported any experiments nor proposed concrete al-
gorithms. Instead, we have outlined general weak-
nesses of the current methods in the field of com-
putational modeling of semantic change and dis-
cussed possible ways forward. We believe that
different kinds of solutions can be used for this pur-
pose, spanning from different classes of clustering
algorithms (e.g., evolutionary, Periti et al., 2023)
to different classes of graphs and networks (e.g.,
temporal, Ma et al., 2024).

We have focused on unsupervised methods that
induce senses through clustering of word represen-
tations. In particular, we have focused on contex-
tualized representations, which represent the de
facto standard, irrespective of the model that is
used to generate the representations (e.g., Devlin
et al., 2019; Hofmann et al., 2021; Cassotti et al.,
2023). We only mention other methods such as
word masking for lexical substitutions (Card, 2023;
Arefyev and Zhikov, 2020) or previous paradigms
such as the use of static embeddings (Shoemark
et al., 2019). Typically, static embeddings, as well
as methods based on SVD or PPMI (Hamilton et al.,
2016), collapse all the meanings of a word into a
single static vector, thus our proposals may not be
considered suitable for such solutions even if dy-
namic word embeddings such as those presented
by Bamler and Mandt (2017); Yao et al. (2018);
Rudolph and Blei (2018) are used. However, we
argue that the methods outlined in this paper are di-
rectly extendable to methods based on static embed-
dings where sense clusters are generated by looking
at the top neighbors in the embedding space (Go-
nen et al., 2020).

We have not focused on how to detect the type
of semantic change nor the cause of it, primarily
due to space limitations. However, we believe that
the methods outlined in this paper inherently offer

ways to detect type, but not necessarily cause, of
change. When we begin to target change types, we
need evaluation benchmarks. Creating such bench-
marks entail consolidating and digitizing the types
of change offered in taxonomies as, for example,
(Blank, 1997; Ullmann, 1957; Bloomfield, 1933;
Stern, 1931; Bréal, 1904; Darmesteter, 1893; Paul,
1880; Reisig, 1839), such as the work started by
Cassotti et al. (2024).
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Abstract

We present our submission to the AXOLOTL-
24 shared task. The shared task comprises two
subtasks: identifying new senses that words
gain with time (when comparing newer and
older time periods) and producing the defini-
tions for the identified new senses. We imple-
mented a conceptually simple and computation-
ally inexpensive solution to both subtasks. We
trained adapter-based binary classification mod-
els to match glosses with usage examples and
leveraged the probability output of the models
to identify novel senses. The same models were
used to match examples of novel sense usages
with Wiktionary definitions. Our submission
attained third place on the first subtask and the
first place on the second subtask.

1 Introduction

The subject of the AXOLOTL-24 shared task (Fe-
dorova et al., 2024) is diachronic semantic change
detection and explanation. Diachronic semantic
change is understood as the change in word mean-
ings (i.e., words losing old senses and obtaining
new ones) over shorter or longer periods. Accord-
ingly, given a dataset containing usage examples
from different periods (old and new), the task is to
identify and define the new senses that words gain
in the new time period compared to the old one.

The goal of the shared task is to implement a
semantic change modeling system for two tasks:

1) Correctly assigning existing senses to target
word usages and identifying novel, previously
unseen senses;

2) Describing the identified novel senses.

The data in the shared task is provided in three
languages: Finnish, Russian, and German (the sur-
prise language for which only the test split is avail-
able). For each language, examples from old and
new periods are given. Each data point consists

Team ARI F1

deep-change 0.413 0.750
Holotniekat 0.312 0.641
TartuNLP (ours) 0.310 0.590
IMS_Stuttgart 0.287 0.487
ABDN-NLP 0.221 0.431
WooperNLP 0.187 0.316
Baseline 0.041 0.207

Table 1: Overall results on the Subtask 1.

Team Overall BLEU BERTScore

TartuNLP (ours) 0.467 0.208 0.726
WooperNLP 0.340 0.020 0.660
ABDN-NLP 0.253 0.045 0.461
baseline 0.218 0.013 0.423

Table 2: Overall results on the Subtask 2.

of a target word and its usage example, gloss (tar-
get word definition), the period the example comes
from, and usage and sense IDs. The data includes
glosses for both time periods in the training and
validation splits, while glosses for the new time
period are not provided in the test splits. The “old”
and “new” periods differ for each language. For
Finnish, old texts are dated before 1700, and new
ones are dated after 1700. For Russian, the old tar-
get word usages are from the 19th century, and the
new data represents modern usages of words. For
German, the old period is from 1800 to 1899, and
the new period is from 1946 to 1990 (Schlechtweg,
2023).

Although we participated in both subtasks, we
were primarily interested in the second subtask of
producing definitions for new senses. We imple-
mented a solution that matches identified novel
sense usages with definitions from an external re-
source (Wiktionary). Our approach is based on a
binary classification task to predict whether a pro-
posed definition matches the sense under consider-
ation. We reused this binary classification model
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for the second subtask of describing the identified
novel senses.

Our system attained the first place on the second
subtask (Table 2) and obtained competitive results
on the first subtask (Table 1).

2 Methodology

We propose a simple classification-based solution
for both subtasks. We adopt the GlossBERT ap-
proach (Huang et al., 2019) that treats word sense
disambiguation as a sentence pair classification
task, where each pair comprises a usage example
and a sense definition. In turn, we frame the prob-
lem of new sense identification as the problem of
matching between usage examples and sense def-
initions. Accordingly, the matching problem can
be solved with a binary classification model that,
given a usage example and a sense definition, out-
puts the probability of the sense definition correctly
describing the usage example.

We adopt the cross-encoder model that simul-
taneously processes the usage examples and the
sense definitions with the same model. Given a
usage example and a sense inventory, we apply the
classification model to predict binary probabilities
for each example/sense definition combination. If
the highest probability over all candidate pairs ex-
ceeds a predefined threshold, the system assigns
the highest probability sense to the usage example.
Otherwise, the sense used in the example is deemed
to be new.

2.1 Subtask 1: Bridging Diachronic Word
Uses and a Synchronic Dictionary

This subtask aims to assign a sense ID to every
usage example from the new period; the sense ID
may come either from the senses in the old period
or, if the system identifies a novel sense, a unique
new sense ID is created.

The data for the first subtask contains sense def-
initions and correct usages, which can be used to
construct positive examples for our task formula-
tion. However, having only positive examples for
a classification model is generally insufficient. To
produce negative examples, we employ a simple
algorithm. We only consider words associated with
at least two distinct sense IDs. For a given sense
ID and its associated gloss, we create all possible
combinations of the gloss with the usage examples
associated with the other sense IDs of the same
word (consult Appendix A for additional details).

We expect that the negatives obtained with this al-
gorithm are hard and, as such, are more useful for
training that could be obtained, for instance, via
random sampling.

We transform every split of every language by
extending it with negative examples created with
the procedure described above. For each language,
we train a separate classification model on the train
split and evaluate on the development split. When
training and evaluating the classifier, we do not
consider the period (old or new) from which the ex-
amples come. The best checkpoint for each model
is selected based on the development F1 score.

Having trained the classification models, we per-
form inference on the test set and transform the
output into the expected format. During inference,
the usage examples from the old period are ignored
and the classification is performed only on pairs of
usage examples from the new period and sense defi-
nitions from the old period. If the highest predicted
probability for a usage example is above a thresh-
old, we assign the sense ID of the most probable
sense definition to the usage example. Otherwise, a
new sense ID is created. The final result submitted
for evaluation contains both the predicted senses
for the examples from the new period as well as
the positive examples in the test split from the old
period.1

For the surprise language—German—the train-
ing process is slightly different. No training or
validation data is provided, so we train and validate
the classification model on the positive and nega-
tive examples obtained from the old period in the
test data. Inference, however, is exactly the same.

2.2 Subtask 2: Definition Generation for
Novel Word Senses

Subtask 2 aims to define each novel sense identi-
fied in the first subtask. Despite the name of the
subtask, our approach does not generate any new
definitions. We also do not train any additional
models. As previously mentioned, we consider this
task a matching problem, except that the defini-
tions for the novel senses are not present in the data
provided in the shared task. To solve this prob-
lem, we scrape the definitions of the surface forms,
for which we identified at least one example as
the usage of a novel sense, from the Wiktionary.
More specifically, we scrape the definitions from

1Since the test examples for the old period were already
annotated, we simply copied their sense definitions to the
submitted result file.
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the language-specific Wiktionary versions for each
language (i.e. Finnish,2 Russian,3 and German4

Wiktionaries).
Having scraped the necessary definitions, we

head straight to inference on the test set. We reuse
the models and predictions from the first subtask.
We collect the examples identified as the usages of
the novel senses from the predictions and match
them with the Wiktionary definitions using the clas-
sifier models trained in the first subtask. After that,
we add the matched definitions to the predicted new
senses.

2.3 Implementation Details
Different from GlossBERT (Huang et al., 2019),
which is based on the BERT (Devlin et al., 2019)
model, we instead use XLM-RoBERTa (Conneau
et al., 2020) as the base model for our classifiers.
XLM-RoBERTa is a multilingual model that in-
cludes Finnish, Russian, and German in its training
data. We expect our system to benefit from the
multilinguality. Instead of full fine-tuning, we opt
for parameter-efficient fine-tuning. More specifi-
cally, we train bottleneck adapter (Houlsby et al.,
2019) classifiers for each language. We adopted
this approach because it makes our solution com-
putationally lightweight and easily reproducible.

In GlossBERT, Huang et al. (2019) differenti-
ate between training setups with and without weak
supervision, with the former including the defined
word itself in the gloss, as well as highlighting it
in the usage example. According to the experimen-
tal results reported by Huang et al. (2019), weak
supervision appears to bring minor improvements
in sense prediction. However, we do not use weak
supervision in our submission. The reason is that
Finnish and Russian are substantially more mor-
phologically rich languages than English; thus, the
target words rarely appear in their dictionary forms
in the usage examples. Moreover, in some cases,
the orthography also differs between old and new
periods.

To delimit context and gloss, Huang et al. (2019)
use the special [SEP] token that is pre-trained into
the BERT model via the next sentence prediction
task. However, RoBERTa (Zhuang et al., 2021),
and by extension XLM-RoBERTa, omitted the next
sentence prediction task in the pre-training. As
a result of that, the </s> token that is used by

2https://fi.wiktionary.org/
3https://ru.wiktionary.org/
4https://de.wiktionary.org/

RoBERTa in place of [SEP] does not have the same
classification-oriented meaning. For this reason,
we employed the tabulation symbol as the delim-
iter instead.

For each language, we employed different vari-
ations of the base model and varying training se-
tups. For Finnish, we used the large version of
XLM-RoBERTa and trained for ten epochs in half-
precision with a batch size of 128 and 3 steps of gra-
dient accumulation. We observed that the training
did not converge with a smaller effective batch size.
For Russian, we trained the classifier adapter with
the base version of XLM-RoBERTa for 50 epochs
with a batch size of 144. We also experimented
with the large version of the model for the Russian
language; however, it showed no improvements
compared to the base version. For German, we did
not train the classifier from scratch. Instead, we
continued training from the best checkpoint trained
on the Finnish data. The motivation is that there
is considerably more data in Finnish than in Rus-
sian in the shared task, so we assume the Finnish
model to be stronger. We continued training the
Finnish classifier for 20 epochs in half-precision
with a batch size of 48 and 6 steps of gradient ac-
cumulation. All models were trained with a 5e-4
learning rate.

The threshold value for the classifier’s proba-
bility to identify novel senses was selected as the
highest scoring option in the first subtask using the
evaluation script provided by the organizers. We
tested a small number of values in the range of
of 0.2 to 0.5 on Russian and determined the best
value to be 0.35. The same value was used for all
languages without additional testing due to time
limitations.

The models were trained on the University High-
Performance Cluster (University of Tartu, 2018).
We used a single Tesla V100 GPU for Russian and
German, while for Finnish, we used a single A100
80GB GPU. The time elapsed on training is 9 hours
for Finnish, 3 hours for Russian, and 9 minutes
for German. We implemented our solution using
the transformers5 and the adapters6 libraries. The
source code and the data are available on GitHub7

and HuggingFace Hub,8 respectively.

5https://github.com/huggingface/transformers
6https://github.com/adapter-hub/adapters
7https://github.com/slowwavesleep/

ancient-lang-adapters/tree/axolotl
8https://huggingface.co/datasets/adorkin/

axolotl-wiktionary-definitions
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Team Fi-BLEU Ru-BLEU De-BLEU Fi-BERTScore Ru-BERTScore De-BERTScore
TartuNLP (ours) 0.028 0.587 0.01 0.679 0.869 0.63
WooperNLP 0.023 0.027 0.01 0.675 0.656 0.65
ABDN-NLP 0.107 0.027 0.0 0.706 0.677 0.0
baseline 0.033 0.005 0.0 0.403 0.377 0.49

Table 3: Language specific results for the Subtask 2.

3 Results

The overall results of both subtasks are presented in
Tables 1 and 2. For subtask 1, the metrics reported
are the average macro-F1 score and the average
Adjusted Rand Index (ARI) (Hubert and Arabie,
1985) across target words per language. The over-
all F1 and ARI scores are computed as the mean
across all languages. For subtask 2, the evaluation
metrics are the BERTScore (Zhang et al., 2020)
and BLEU (Papineni et al., 2002) averaged across
target words per language. BLEU and BERTScore
values for the entire subtask are the respective aver-
ages across all languages. The overall score is the
mean of BLEU and BERTScore.

Our submission attained the third place out of
eight participants in the first subtask and the first
place out of four participants in the second sub-
task (Table 2). This aligns with our expectations
since we focused on the second subtask from the
beginning and applied the system developed for
the second subtask to the first subtask. When look-
ing at the language-specific measures of subtask
2 (Table 3), one can see considerable differences
between languages. Our system works the best in
Russian while also performing well in German in
terms of BERTScore (although the BLEU score is
close to 0 for all systems). In Finnish, our system is
competitive in terms of BERTScore but underper-
forms compared to the baseline in terms of BLEU.

4 Discussion

Our submission to the second subtask is well ahead
of the other participants in the overall leaderboard
(Table 2) despite the simplicity of our approach.
However, the language-specific results show that
it is not so clear-cut (Table 3). Some of the suc-
cess can be attributed to accidentally matching
the source of definitions for the Russian language,
which is the Russian Wiktionary. We believe so
because the value of the BLEU metric of our sub-
mission in the Russian language is higher than that
of the other teams and in the other languages by an
order of magnitude. However, we do not consider
this a critical issue because the BERTScore metric

Wiktionary language Number of unique pages

Finnish 586,439
German 1,314,597
Russian 2,877,010

Table 4: The number of unique Wiktionary pages per
language.

is reasonably high and well above the baseline for
all languages, suggesting that the matched defini-
tions capture the expected senses well. However,
the corresponding low BLEU scores highlight the
inadequacy of the BLEU metric for this task.

Secondly, our approach to the second subtask
has limitations. More specifically, matching usage
examples only against the definitions of the target
word, while efficient, considerably limits the sys-
tem’s ability to describe completely new senses.
Intuitively, a definition associated with a differ-
ent word may be a more suitable description of a
new sense. A more robust solution would involve
matching usage examples against all available defi-
nitions. However, that would likely require using
a bi-encoder architecture (as proposed by Blevins
and Zettlemoyer (2020), for instance) instead of a
cross-encoder due to the computational complexity
of matching every example with every definition.

Accessing the definitions for all the words
in a given language-specific Wiktionary is time-
consuming because the layout, article structure,
and templates used are completely different for
each Wiktionary version. While there is a resource
providing Wiktionary dumps in a much more con-
venient format,9 it is mostly limited in its support
to the English language, with the support for some
languages, such as Russian and German, being
work in progress, and for others, such as Finnish,
completely missing at the time of writing. More-
over, the Finnish, German, and Russian Wiktionar-
ies differ in size and the fullness of their coverage.
A rough estimate can be made by accessing the
Special:Statistics page of each Wiktionary and ex-
amining the total number of unique pages (Table 4).

9https://kaikki.org/
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We note the correlation between the smaller sizes of
the Finnish and German Wiktionaries and the lower
performance of our system on these languages.

Lastly, although we did not focus on the first
subtask, we believe the results of the sense predic-
tion task obtained with our systems could also be
improved. For instance, the choice of the threshold
value for determining a new sense could be done
in a more systematic manner or made learnable.
Similarly, adjusting the training data or the hyper-
parameters might bring further improvements.

5 Conclusion

This paper described our solution to both subtasks
of the AXOLOTL-24 shared task based on leverag-
ing classifier probabilities for usage example/sense
definition pairs. The developed system is concep-
tually simple, adopting a binary classification ap-
proach to predict the probability of a sense defini-
tion matching the usage example and employing
the adapters framework to reduce computation re-
source requirements. Our submission attained the
third place in the first subtask and the first place in
the second subtask, showing the feasibility of our
approach.
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A Training Examples

Table 5 presents two training examples for the Russian word “Перо” (Feather). In the first row, we have
a gloss and a matching usage example for the figurative meaning of the word (a symbol of the writer’s
art), which is denoted by the label 1. Each usage example of the word in its other senses is paired with
this gloss and used as a negative example labeled 0. For instance, in the second row, the same gloss is
paired with a mismatching usage example in the literal sense of the word. We omit the rest of the negative
examples and the other senses for brevity.

Gloss Usage example Label

“Символ искусства писателя, писательского труда, его ремесла.” “У него бойкое, острое перо.” 1
“Символ искусства писателя, писательского труда, его ремесла.” “Перья зверя.” 0

Table 5: A subset of training examples for a single word.
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Abstract

Etymology, and the field of lexicography, is
often constrained by unstructured data formats
buried in scholarly articles and dictionaries.
This paper presents a methodology and an em-
pirical study for creating a structured etymolog-
ical dataset suitable for computational analysis.
Using data from the Online Etymology Dic-
tionary (Etymonline), we manually annotated
a subset of entries to establish a high-quality
ground-truth dataset and fine-tuned the FLAN-
T5-base model to extract structured etymologi-
cal relationships automatically. The resulting
dataset contains over 103,000 relationships cov-
ering 63,603 English lexical terms. Our find-
ings emphasise feasibility of using large lan-
guage models for structuring lexicographical
data, exploring the transferability of the model
to other dictionary datasets with no additional
manual annotation.

1 Introduction

Etymology, is the study of the origin and historical
development of words. The etymological under-
standing of words not only reveals their origins,
but also the cultural and historical contexts that
have shaped their contemporary meanings. Figure
1 shows the etymology of the English word "re-
search", meaning diligent and systematic inquiry.
It is commonly understood that the word is made
up of the prefix "re-", meaning ‘again’, and the
root "search". The etymological trace leads further
back to the reduplicated form of the Proto-Indo-
European (PIE) root *sker-, which means to cut or
divide. The duplication of *sker suggests a repeti-
tive action, along with the prefix "re-" which adds
another sense of intensity and repetitiveness. This
understanding, traced all the way to Proto-Indo-
European roots not only uncovers the origin, but
also offers a deeper understanding of how the con-
cepts of high scrutiny and repeated examination
evolved into the modern concept of "research".

research

recercher

recercher

re-

re-

cercher

circare

circus

kirkos

*kikro

*sker-

English

French

Old French

Old French

Latin

Old French

Latin

Latin

Greek

PIE

PIE

Figure 1: The etymology of the English word "re-
search".

Traditional etymological studies have been lim-
ited to philosophical and comparative methods, re-
lying heavily on linguistic expertise with a focus
on specific languages and historical periods. This
specialisation, while valuable, restricts the broader
application etymology in large-scale comparative
and computational linguistics. Most etymologi-
cal data lives in scholarly articles, etymological
dictionaries, or web resources. Such formats, al-
though rich in detail, are inherently unstructured
and not suited for computational approaches that
require systematic data to process language on a
large scale.

The field’s reliance on verbose descriptions
poses another challenge. These prose descriptions,
typical of most etymological entries, make it dif-
ficult for computational tools to extract and ana-
lyze the relationships between words across lan-
guages and time periods. Consequently, the ab-
sence of structured, computation-suitable etymo-
logical databases has been a notable gap, leaving
computational linguists without the resources nec-
essary to quantitatively analyze historical linguistic
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data effectively.
This paper introduces a new structured dataset

specifically designed for computational etymology.
We begin by crawling data from the Online Etymol-
ogy Dictionary (or Etymonline)1, an online dictio-
nary compiled by historian Douglas Harper from
various scholarly articles and books such as The
Dictionary of Etymology (Barnhart and Steinmetz,
1988) and A Comprehensive Etymological Dictio-
nary of the English Language (Ernest Klein, 1971).
We manually annotated a subset of these entries
to establish a high-quality baseline and ground-
truth dataset. We then use the annotated dataset
to fine-tune FLAN-T5 (Chung et al., 2022), an
instruction fine-tuned encoder-decoder language
model to extract etymological relations from the
dictionary entries. This method allows us to ex-
plore Large Language Models (LLMs) and other
automation techniques to systematically extract tra-
ditional prose-based etymological entries buried in
scholar articles and dictionaries into a structured
format. Ultimately, the structured dataset gener-
ated through this project will provide a valuable
resource for computational linguists and other re-
searchers, facilitating more large scale analysis of
language evolution and enabling new insights into
the interconnectedness of languages across time
and space. Furthermore, this approach explores the
feasibility of leveraging LLMs to curate structured
data from traditional dictionary data.

The dataset comprises 63,603 entries crawled
from Etymonline, with 5,361 entries manually an-
notated and 58,242 entries automatically annotated
using the trained system. The final dataset includes
103,322 etymological relationships and 15,931 con-
nected components, providing a comprehensive
resource for examining language evolution and ety-
mological connections. The dataset will be publicly
accessible.

2 Linguistic Background

Diachronic change is an inherent aspect of linguis-
tic evolution, driven by the need for effective com-
munication within and between communities. Un-
derstanding the evolution of language requires ex-
amining various factors that contribute to linguistic
change. Simplification of grammatical structures
is a common trend in language evolution. For ex-
ample, the transition from Old English and Mod-
ern English shows a significant reduction in verb

1https://www.etymonline.com/

conjugation complexity (Baugh and Cable, 1993).
Technological advancement also impacts linguistic
development. For example, the printing press con-
tributed to the linguistic standardization and a more
uniform spelling of the English language (Okrent
and O’Neill, 2021).

2.1 Current Etymology Studies
Despite extensive research, many words still have
unresolved origins.The Oxford English Dictionary,
a prominent resource in this field, offers etymolo-
gies for over 600,000 words but lists a significant
number as "origin unknown" or "of uncertain ori-
gin".

The absence of historical documentation is a
significant barrier, especially for words from pre-
historic times or non-literate cultures. For exam-
ple, the etymology of the English word "dog" re-
mains surprisingly unclear, as it appears in Middle
English with no clear Old English predecessors
(Gąsiorowski, 2006). Language contact adds an-
other layer of complexity, particularly for borrowed
words from extinct or significantly transformed lan-
guages. The semantic shift and phonetic changes
over centuries obscure the word’s origins.

Etymological research also faces methodolog-
ical difficulties. Deciphering ancient languages
requires specialized knowledge, and distinguishing
borrowed words from native ones is challenging
in linguistically diverse areas. Polysemy and ho-
mophony further complicate research, as words
that sound similar may have different origins or
meanings. For instance, "bank" can refer to a finan-
cial institution or a riverbank, each with separate
etymological paths.

2.2 Computational Historical Linguistics
Computational etymology employs innovative ap-
proaches like automated etymology extraction, us-
ing natural language processing and machine learn-
ing to identify relevant relationships in large cor-
pora. Cognate detection is an active area of re-
search, with traditional methods measuring lexical
similarity via string similarity (Ciobanu and Dinu,
2014; Gomes and Pereira Lopes, 2011; Simard
et al., 1992). Recent trends involve machine learn-
ing to identify cross-lingual orthographic trans-
formations (Bergsma and Kondrak, 2007; Mitkov
et al., 2007), and neural networks are used to trace
changes in word forms over time (Kanojia et al.,
2019; Goswami et al., 2023; Bollmann, 2018).

The construction and analysis of linguistic
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databases are essential for large-scale computa-
tional linguistics. These databases store extensive
data and support analytical queries revealing pat-
terns in language evolution. CogNet (Batsuren
et al., 2019) is a large-scale cognate database ex-
tracted based on WordNet. The Database of Cross-
Linguistic Colexifications (CLICS2) is a computer-
friendly framework for analyzing cross-linguistic
colexification patterns with the Cross-Linguistic
Data Formats initiative (CLDF) (List et al., 2018).

3 Challenges in Modern Lexicography

Lexicography, the practice of compiling, writing,
and editing dictionaries, has undergone significant
changes in the digital age. Historically, dictio-
naries have served as authoritative references for
language, offering definitions, etymologies, pho-
netic guides, and usage examples. However, tra-
ditional lexicographical methods are increasingly
struggling to keep pace with computational ap-
proaches and the rapid evolution of language in
the modern era.

Traditional lexicographic methods often lead to
inconsistencies in dictionary data due to the sub-
jective nature of language documentation and the
variability in editorial practices. For instance, the
noun "research" has four different definition in the
Oxford English Dictionary (OED) but only three
in Merriam-Webster. Another example is the ety-
mology of "pumpkin". The word is traced to its
French origin (pompon or pompion) in the OED,
Merriam-Webster, and Etymonline, but each pro-
vides varying historical context. The OED links it
to Classical Latin pepōn-, Merriam-Webster further
identifies Greek pépon, and Etymonline traces it to
the Proto-Indo-European root *pekw-. These incon-
sistencies in the depth and nature of information
reflect differing editorial standards and the lack of
standardised lexicographical practices.

Digitizing traditional dictionaries presents an-
other challenge due to their inherently non-
structured, descriptive format, which is often in-
compatible with computational processing. Dictio-
nary entries typically contain long, verbose para-
graphs that are sometimes hard for humans to com-
prehend and even more challenging for computers
to parse. This is further complicated by the lack
of consistencies among dictionaries for data inte-
gration, such as differing abbreviations for parts of
speech.

These challenges highlight the need for sophis-

ticated computational approaches and collabora-
tion between lexicographers and computational lin-
guists. This project aims to explore using Infor-
mation Extraction (IE) and NLP systems to auto-
mate structured data extraction from dictionaries,
enabling systematic linguistic pattern analysis. Ul-
timately, the goal is to bridge the gap between tra-
ditional lexicography and modern computational
linguistics, providing scalable and transferable so-
lutions for mining valuable information.

4 Building an IE system for
Lexicographical Mining

This paper presents the collection and annotation
of etymological entries from Etymonline, using
large language models to extend annotations. The
aim is to convert unstructured dictionary data into
a structured format suitable for linguistic analysis
and computational processing.

4.1 Data Collection

For this study, Etymonline was selected as the pri-
mary source of data. The website aggregates etymo-
logical information from various scholarly sources,
providing a detailed description of a word’s ori-
gins, historical developments, and transformations
within the English language. Below is an exam-
ple entry of the word "research" whose structured
etymology is given in Figure 1.

research (v.)
1590s, "investigate or study (a matter)
closely, search or examine with con-
tinued care," from French recercher,
from Old French recercher "seek out,
search closely," from re-, here perhaps
an intensive prefix (see re-), + cercher
"to seek for," from Latin circare "go
about, wander, traverse," in Late Latin
"to wander hither and thither," from
circus "circle" (see circus).

The intransitive meaning "make re-
searches" is by 1781. Sometimes
17c. also "to seek (a woman) in love
or marriage." Related: Researched;
researching.

Etymonline is grounded in scholarly rigor, exten-
sive coverage, and open accessibility. The dictio-
nary is curated by Douglas Harper, who compiles
information solely from scholarly sources, ensuring
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high accuracy and reliability. Harper’s consistent
approach to entry composition allows for system-
atic extraction and analysis of etymological data.
This uniformity is crucial for applying computa-
tional techniques that require standardization data
inputs.

A total of 63,603 entries were extracted from
Etymonline.

4.2 Data Preprocessing

Simple data preprocess was conducted. For words
with the same spelling but have different parts of
speech, the POS tag remains part of the lexical
term to differentiate between them, as illustrated
in the "research (v.)" example. Homographs, such
as "bank", are differentiated by an index, such as
bank (n.1) and bank (n.2). The typsetting informa-
tion given by the original Etymonline entry was
ignored, while hyperlinks were preserved to build
a complete etymological network.

Since all entries used similar expository lan-
guage to describe the etymological relations, regex,
a pattern matching tool, was used to extract a col-
lection of candidate lexical terms. The candidate
terms extracted for the verb "research" are shown
below.

recercher, recercher, re-, re-, cercher,
circare, circus, circus, Researched, re-
searching

4.3 Manual Annotation

A main challenge of this paper is transforming the
prose paragraph style of the Etymonline dictionary
entries into structured formats. 5,361 entries were
selected for manual annotation. A key criterion for
selection was diversity in word initials to prevent
overrepresentation of any particular prefix. In Ety-
monline, suffixes are represented by unique word
initials, so varied initials also account for word
endings.

In etymological studies, prefixes and suffixes are
critical for tracing word origins as they often con-
tain significant linguistic markers of historical and
morphological transformations. Ensuring varied
word initials prevents bias toward specific affix pat-
terns, which is crucial to prevent machine learning
models from skewing their learning toward particu-
lar initials. This approach enhances the generaliz-
ability and accuracy of the models.

The manual annotation of the dataset was exe-
cuted by a single linguistics student, tasked with

converting the text into edge list format. The tar-
get format of the entry "research" is an edge list
shown below. In this study, the annotation task was
designed to be straightforward and did not neces-
sitate specialized expertise. Therefore, we opted
to employ a single annotator for the task. While
inter-annotator agreement is important for tasks
requiring trained experts to ensure reliability and
consistency, we deemed it unnecessary for this sim-
ple annotation task. The clarity and simplicity of
the task ensured that the single annotator could
perform it with sufficient accuracy and consistency.

research (v.)
research_E, recercher_F
recercher_F, recercher_OF
recercher_OF, re-_OF, cercher_OF
cercher_OF, circare_L
circare_L, circus_L

The edge list format used in this project is designed
to represent the descendency relationships between
words. Each line in the list represents a direct ety-
mological link from one form to another. For exam-
ple, the line "recercher_OF, re-_OF, cercher_OF"
indicates that the Old French word recercher de-
rives directly from the Old French prefix re- and
the Old French word cercher. Further more, the
suffixes attached to each word after the underscore,
such as "_E", specify the language of the word
form in question. Table 1 reports some language
and their abbreviations. The complete list of lan-
guages and their abbreviation, refereed to as lan-
guage labels from here on, used in this dataset can
be found in appendix A.

Language Label Language

PIE Proto-Indo-European
F French

ONF Old North French
AF Anglo-French
MF Middle French
OF Old French
... ...

Table 1: Language Labels and Corresponding Lan-
guages

One observation of the edge list is that it is not
yet complete compared to the graph given in Figure
1. More specifically, it is still missing the etymolog-
ical relationships from the Latin word circus to the
Proto-Indo-European root *sker-. These missing
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links are documented under the entry for the word
"circus". Once the annotation process is completed
for the entire dataset, these connections will be
fully integrated, resulting in a complete representa-
tion of the word’s etymological history.

4.4 Automatic Annotation

To fully annotate the entirety of the crawled en-
tries from Etymonline, we employed the FLAN-
T5-base model (Chung et al., 2022), a variant of the
Transformer-based T5 model with 248 million pa-
rameters, which has been pre-trained on a diverse
range of language understanding tasks. This sec-
tion details the selection rationale, fine-tuning pro-
cess, and the specific configurations used to adapt
the model to the task of etymological annotation.

4.4.1 Model Selection
The open-source FLAN-T5-base model was chosen
for its flexibility, strong performance in text gener-
ation tasks, and relatively small size compared to
some state-of-the-art LLMs.The core architecture
of FLAN-T5 is based on the Transformer model
(Vaswani et al., 2017), utilizing self-attention mech-
anisms to process data sequences. These mecha-
nisms, which compute the relevance of all other
words in the sequence for each word in the input,
are particularly beneficial as etymological relation-
ships are buried within and across non-adjacent sen-
tences. Unlike most current LLMs with a decoder-
only structure, FLAN-T5 employs a dual structure
with an encoder that processes input text and a de-
coder that generates output text. This setup is ideal
for transforming verbose etymology descriptions
into structured formats like edge lists. The encoder
captures contextual relationships within the input,
while the decoder uses this context to generate ac-
curate, formatted output. Furthermore, FLAN-T5
has been fine-tuned to adapt to specific tasks with
minimal task-specific data, crucial for high-quality
annotation where such data is scarce. The model’s
robust pre-training enables it to generalize well
across previously unseen tasks.

4.4.2 Fine-Tuning
The manually annotated subset of 5,361 entries
from the initial data collection phase was split into
a training dataset of 4,556 entries and a test dataset
of 805. Each entry in the dataset was further pro-
cessed and presented as a prompt to the model. As
example of the input prompt to the model is given
below.

###INSTRUCTION:extracting etymo-
logical relations from text and structur-
ing this information into an edge adja-
cency list.
###WORD: research (v.)
###TEXT: 1590s, from Middle French
recercher, from Old French recercher
""seek out, search closely,"" from re-, in-
tensive prefix (see re-), + cercher ""to
seek for,"" from Latin circare ""go about,
wander, traverse,"" in Late Latin ""to
wander hither and thither,"" from cir-
cus ""circle"" (see circus). Related: Re-
searched; researching.
###CAND: recercher, recercher, re-, re-
, cercher, circare, circus, circus, Re-
searched, researching"

The target output is the edge list shown in sec-
tion 4.3. The list is further processed into a string
format as the model can only output sequence data.
Each node in the edge is separated by a comma;
each edge is encapsulated in parenthesis, and edges
are separated by a semicolon. An example target
output for the word "research" is shown below.

(research_E, recercher_F);(recercher_F,
recercher_OF);(recercher_OF, re-
_OF, cercher_OF);(cercher_OF, cir-
care_L);(circare_L, circus_L)

The model was trained for 2 epochs with a learn-
ing rate of 5.6× 10−4 and a weight decay of 0.01.
The fine-tuning of FLAN-T5-base was performed
on three NVIDIA A100 Tensor Core GPU to facili-
tate computation.

4.5 Evaluation
Two types of evaluations were performed, string-
based and edge-based metrics. String-based evalua-
tion metrics are the current standard in Natural Lan-
guage Generation (NLG) tasks, and what LLMs
used in this project was originally evaluated on.
Though they are useful for accessing the presence
of important etymological elements by comparing
the target and generated texts, is not sufficient on
its own for tasks like etymological relationship an-
notation where structural accuracy is important.
For this task, where the correct representation of
relationships between words is essential, string-
based metrics may overlook errors in the logical
or hierarchical arrangement of data. Therefore, an
edge-based assessment focusing on the structural

130



and relational accuracy of the outputs is needed for
a comprehensive evaluation approach.

4.5.1 String-based Evaluation
The string-based evaluation focuses on measuring
the textual similarity between the model-generated
output and the target (manually annotated) output.
This involves the use of several well-established
metrics in NLG tasks. Bilingual Evaluation Un-
derstudy (BLEU; Papineni et al., 2002) calcu-
lates the precision at word or phrase level be-
tween the model’s output and the reference text.
Recall-Oriented Understudy for Gisting Evalua-
tion (ROUGE; Lin, 2004) emphasizes recall, en-
suring all necessary etymological components are
included. ChrF (Popović, 2015) evaluates the sim-
ilarity at the character level, making it useful in
this scenario where morphological differences be-
tween languages are significant. The results are
reported in table 2. We observe a consistent and
high accuracy among all three metrics.

String-based Evaluation

BLEU 0.902
Rouge 0.920
ChrF 0.929

Table 2: String-based evaluation results

4.5.2 Edge-based Evaluation
The edge-based evaluation assesses the structural
and relational accuracy of the outputs.

Edge-based Evaluation

Edge Recall 0.905
Language Label Detection 0.990
Language Label Accuracy 0.909

Word Root Accuracy 0.905
Word Root Levenshtein Distance 0.321

Table 3: Edge-based evaluation metrics. Edge recall is
the proportion of the etymological relationships (edges)
in the data that the model identified, accurately or not.
Language label detection reports the proportion of word
roots that received a language label, accurately or not,
while language label accuracy reports the proportion
of word roots with the correct language label. Word
root accuracy reports the proportion of the word roots
correctly extracted and word root Levenshtein distance
reports the average edit distance of predicted word roots
from the actual roots.

Figure 2: Performance on BLEU, ROUGE, ChrF, Root
Accuracy, and Language Label Accuracy over different
training data size.

Table 3 reports several relevant metrics. A rela-
tively high edge recall indicates that the model is
proficient at identifying the presence of etymologi-
cal relationships. A high language label detection
rate at 0.990 but a comparably lower language label
accuracy at 0.909 means that the model is gener-
ally reliable in applying language labels to word
roots, it struggles to extract and interpret the correct
source of the words.

A relatively high word root accuracy shows the
model’s effectiveness in identifying and extracting
the foundational elements of the words, though
further improvement is needed. Lastly, an aver-
age Levenshtein distance of 0.370 indicates the
wrongly identified words still remain similar to the
actual words.

4.5.3 Effects of Training Data Size on Model
Performance

One of the motivation of this project is to investi-
gate the feasibility of leveraging LLMs to extract
structured data from dictionaries. In this section,
we wish to explore the effects of training data size
on model performance, given most dictionary data
has little to no structured annotation. The FLAN-
T5-base model was trained with different subsets of
the training corpus, including sizes of 1000, 2000,
3000, 4000, and the entire corpus of 4556. The
hyperparameters were kept exactly the same as de-
scribed in section 4.4.2. The results are reported in
Figure 2.

As expected, performance generally improves
with increasing training data size for all metrics,
although the magnitude of improvement varies.
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ROUGE, and ChrF scores both show a plateau ef-
fect, where performance gains diminish after reach-
ing approximately 3000 training examples. Root
accuracy also shows a similar trend, suggesting
that the models no longer learns to extract the root
words with more training samples. This might be
attributed to the fact that these metrics are string-
based, similar to what LLMs were pre-trained on,
where they excel even with relatively small sam-
ples for fine-tuning. Hence, even limited data is
sufficient to achieve strong results in these metrics.

Label Accuracy, measuring correctly predicted
language labels, and BLEU show a significant
surge from 4000 to 4556 samples, indicating that
a larger dataset benefits these metrics. The sudden
performance jump may reflect a threshold effect,
where the additional 556 samples provide sufficient
data to predict specific label patterns accurately. It
remains unclear why this threshold occurs between
4000 and 4556 training samples. The BLEU score
jump is likely due to improved Label Accuracy.

Edit Distance shows substantial improvement
from 1000 to 2000 training samples, even with high
root accuracy rates. This suggests that while root
accuracy was high with 1000 samples, the model
made significant mistakes on incorrect predictions.
The extra 1000 samples helped the model better
predict more challenging words.

Overall, these results emphasize the importance
of training data size, particularly for non-string-
based metrics like Label Accuracy. The plateau
effect in ROUGE, ChrF, root accuracy, and Edit
Distance suggests that LLMs can effectively struc-
ture lexicographical data with limited manual an-
notation. However, additional data significantly
benefits more complex tasks like Language Label
predictions.

5 Resulting Resource and Analysis

Out of the 63,603 entries crawled from Etymonline,
5,361 were manually annotated to fine-tune the sys-
tem and the remaining 58,242 were automatically
annotated with the trained system.

Using a regex-based method to pattern match the
result, we found that the exact match rate for our
model’s output was 0.913, indicating that 53,148
out of the 58,242 output adhered to the expected
format. Though the formatting of the dataset is
relatively easy, LLMs, such as the one used in this
study, often struggle with generating outputs that
adhere to specialized formatting requirements, as

they are predominantly trained to produce fluent,
natural language text rather than structured or for-
matted data.

Upon further analysis, we discovered that a sig-
nificant proportion of the mismatches were due to
the absence of a language label for each node. This
suggests that while the model was often success-
ful in identifying etymological relationships (e.g.,
detecting the correct word roots and their connec-
tions), it frequently failed to append the appropriate
language labels to these roots. To address this is-
sue and better understand the model’s capabilities
in detecting relationships without the confounding
factor of label generation, we modified our evalua-
tion approach. We expanded the regular expression
used in our assessment to no longer require a lan-
guage label for each node, focusing instead solely
on the detection of correct relationships between
the word roots. This adjustment aimed to isolate
the model’s performance in understanding and re-
constructing the etymological connections from
the additional task of accurate language classifica-
tion. After removing the language label constraint,
57,214 entries had the correct format, about 98.2%
of the total entries, a significant improvement.

In total, 103,322 relationships were found, with
15931 connected components. The top 5 most con-
nected lexical terms are given below in Table 4, all
of which are affixes. This result is not surprising as
affixes are one of the most productive morphologi-
cal units in English.

Lexical Term #Connections

‘un-’ 656
‘-y’ 552
‘-ly’ 388
‘-al’ 360

‘-ism’ 346

Table 4: Top 5 most connected lexical terms. The terms
are all English, eliminated language labels for brevity.

More interestingly, Table 5 reports the top 3 most
connected Proto-Indo-European roots. It is impor-
tant to point out that the concept of most connected
does not necessarily mean there are the most En-
glish words derived from it. It simply means the
PIE root had evolved into the most distinct terms
which then evolved into English terms.

We also analyzed the immediate word origins of
the English words. Immediate word origins refer
to the most recent source language from which
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Term Meaning #Connections

‘*kwo-’ stem of relative
and interroga-
tive pronouns

12

‘*gno-’ to know 12

‘*gene-’ give birth, beget 11

Table 5: Top 3 most connected PIE roots.

modern English words were borrowed or derived.
We can better understand the linguistic influences
that have shaped contemporary English Vocabulary.
The top five immediate word origins, other than
English itself, are

1. Latin

2. Old French

3. French

4. Old English

5. German

6 Related Work

6.1 Computational Resources in
Lexicography

The Oxford English Dictionary was one of the ear-
liest digital lexicographical projects, bringing tra-
ditional practices into the digital era by offering
searchable and downloadable lexical data (Simp-
son and Weiner, 1989). Merriam-Webster’s online
dictionary similarly provides API access for inte-
grating curated lexical information with computa-
tional systems. WordNet (Miller, 1995), a land-
mark in lexical resource development, is organized
as a network of synonym sets (synsets) and pro-
vides rich semantic relationships between words.
It has inspired projects like BabelNet (Navigli and
Ponzetto, 2012), which integrates WordNet with
multilingual resources. Wiktionary, a collaborative
and open-source dictionary project, has grown into
a significant resource for structural lexical infor-
mation. However, due to its collaborative nature,
quality and consistency issues arise, necessitating
data refinement and filtering for computational ap-
plications (Meyer and Gurevych, 2012).

6.2 Computational Resources in Etymology
Etymological WordNet (de Melo, 2014) was one
of the first significant attempts to create a struc-

tured multilingual etymological database. It ag-
gregates etymology sections from Wiktionary and
organizes them into a machine-readable network.
Etymological WordNet contains over 500,000 lexi-
cal items from various languages and more than 2
million links, offering the first structured multilin-
gual view of word origins and relationships across
languages. Despite the significant contributions of
Etymological WordNet, it relies entirely on data
extracted from Wikitionary, which suffers from in-
consistencies due to its collaborative natures and
lacks granularity in tracking etymological relation-
ships. Some entries on Wikitionary presents folk
etymologies, such as the word "pumpkin". Out of
the 2 million links within the network, a major por-
tion of those emphasize cross-lingual cognates and
derivational links, rather than genuine etymologi-
cal relationships. Futhermore, de Melo (2014) uses
custom pattern matching techniques to mine data,
making it only applicable for Wikitionary, and thus
not transferable to other dictionaries one wishes to
structure.

7 Conclusion

In this paper, we presented a comprehensive
methodology for building an information extrac-
tion system that transforms the unstructured tex-
tual data of the Online Etymology Dictionary (Et-
ymonline) into a structured, computation-friendly
format. Our system achieved 94.4% accuracy in
correctly identifying relationships between word
roots, demonstrating the feasibility and potential
of leveraging large language models for structured
data extraction from unstructured lexicographical
sources.

Future work will focus on exploring is the trans-
ferability of the current model on different dic-
tionary data, potentially eliminating the need for
time-intensive manual annotation of other similar
datasets.
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A Language Labels

Below is the complete list of languages and their
labels (abbreviations) used to annotated the dataset.

Language
Label

Language

PIE Proto-Indo-European
F French
ONF Old North French
AF Angolo-French
MF Middle French
OF Old French
L Latin
MediL Medieval Latin
ModL Modern Latin
LateL Late Latin
VL Vulgar Latin
OE Old English
PGer Proto-Germanic
H Hebrew
Avest Avestan
IndoIr Indo-Iranian
San Sanskrit
G Greek
GE Greenland Eskimo
I Italian
A Arabic
Sy Syriac
Per Persian
Ira Iranian
Por portuguese
OHGer Old High German
Adut Afrikaans Dutch
Ger German
AL Anglo-Latin
Cel Celtic
Tur Turkish
ModG Modern Greek
EG Ecclesiastical Greek
OL Old Latin
PI Proto-Italic
Nor Norse
ONor Old Norse
Dan Danish
FCan French-Canadian
Fran Frankish
Gae Gaelic
Scot Scottish
Hin Hindi
Yid Yiddish
Rus Russian
Algo Algonquian
preL Pre-Latin
Serb Serbian
Aben Abenaki
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ORus Old Russian
OPro Old Provencal
LGer Low German
WGer West Germanic
Ir Irish
Nah Nahuatl (Aztecan)
Mal Malay
Ch Chinese
Scan Scandinavian
Wel Welsh
Sem Semitic
Norw Norwegian
Swe Swedish
Sla Slavonic
Jap Japanese
Ber Berrichon
Afr Africa
SerCro Serbo-Croatian
Aram Aramaic
Gas Gascon
Egy Egyptian
Tup Tupi
Jav Javanese
Ben Bengali
Fin Finnish
Kut Kutchin
Guugu Yimidhirr
Sio Siouan
Nepa Nepalese
Dra Dravidian language
Pol Polish
OFri Old Frisian
Canto Cantonese
Esto Estonian
Lith Lithuanian
GaRo Gallo-Roman
CuSpan Cuban Spanish
Araw Arawakan
NEAL Southern New England Al-

gonquian
Nar Narragansett
Flem Flemish
Aztec Aztec
ByG Byzantine Greek
Que Quechua
Afrika Afrikaans
Ojib Ojibwa
Hun Hungarian
Lush Lushootseed
Dako Dakota
Cro Croatian
EL Extinct language 136
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Abstract

This paper explores the intersection of lexi-
cal complexity prediction and lexical seman-
tic change detection. We investigate the po-
tential connection between changes in lexical
complexity and lexical semantics, aiming to un-
cover how these two aspects of language evo-
lution are intertwined. Our findings indicate
that lexical complexity models human annota-
tor uncertainty surprisingly well. Further, we
find a moderate correlation between changes in
lexical complexity and graded lexical semantic
change. This highlights the potential for lever-
aging lexical complexity for lexical semantic
change detection.

1 Introduction

Though seemingly distinct, the fields of lexical
complexity prediction and lexical semantic change
detection share surprising points of contact. One
predicts the inherent difficulty of words (Lexical
Complexity Prediction, LCP; North et al. 2023),
while the other tracks shifts in meaning and usage
(Lexical Semantic Change Detection, LSCD; Tah-
masebi et al. 2021). Despite starting with words
as their foundational unit, both have gravitated to-
wards considering individual word senses thanks
to advancements in transformer models (Vaswani
et al. 2017) and contextualized word embeddings.
While LSCD inherently deals with this concept,
research in LCP suggests different senses within a
word exhibit varying complexities (Crossley et al.
2010; Alfter 2021; Shardlow et al. 2022). It has
also been noted that the manual annotation of both
LSCD data (e.g., whether a word has the same,
closely/distantly related, or unrelated sense in two
given sentences) and LCP data (how complex a
word is in a given sentence) is quite subjective
(Shardlow et al., 2021; Schlechtweg et al., 2021).
Given the shared focus on contextual meaning and
the inherent subjectivity of the tasks, we postulate
a potential link.

In this paper, we specifically explore whether
lexical complexity can explain human uncertainty
in annotation. Utilizing human judgments on se-
mantic closeness of words in sentences, we ana-
lyze if lexical complexity differences between sen-
tences correlate with annotator indecision. As a
downstream task, we also look at whether lexical
complexity can directly predict lexical semantic
change.

The rest of the paper is structured as follows: in
section 2 we contextualize our work and highlight
the commonalities and gap in communication be-
tween these disciplines. In section 3, we detail the
methodological framework, including the dataset
and experimental design. In section 4 we present
the key findings of our experiments. In section
5, we interpret our results in a broader context,
discussing their implications and potential future
directions.

2 Related Work

2.1 Lexical complexity prediction

Lexical complexity prediction tries to identify the
complexity of words in a text, with downstream
tasks such as text simplification of various gen-
res (e.g., medical texts (Deléger and Zweigen-
baum, 2009), legal texts (LoPucki, 2014)) for vari-
ous groups (e.g., children (De Belder and Moens,
2010), language learners (Petersen and Osten-
dorf, 2007), people with disabilities (Devlin, 1998;
Chung et al., 2013)). Lexical complexity predic-
tion has been explored in several shared tasks
and several languages: the Complex Word Iden-
tification 2016 shared task for English (Paetzold
and Specia, 2016a), the Complex Word Identifica-
tion 2018 shared task for English, Spanish, Ger-
man and French(Yimam et al., 2018), the ALexS
2020 shared task for Spanish (Ortiz-Zambranoa
and Montejo-Ráezb, 2020), and the Lexical Com-
plexity Prediction 2021 shared task for English
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(Shardlow et al., 2021).
Early tasks focused on binary complexity (“is the

word complex or not?”) while later tasks focus on
graded complexity (“how complex is the word?”).
While early system relied on feature engineering
(e.g., Paetzold and Specia 2016b; Gooding and
Kochmar 2018), later approaches use transformer-
based models (e.g., Pan et al. 2021; Yaseen et al.
2021) or a combination of classical features and
transformers (Paetzold, 2021). However, fully fea-
ture engineered systems still perform almost on-par
with transformer-based systems; the best fully fea-
ture engineered system scored third place in the
task (Shardlow et al., 2021; Agarwal and Chatter-
jee, 2021; Mosquera, 2021).

2.2 Lexical semantic change detection
Lexical semantic change detection tries to iden-
tify words that have undergone shifts in meaning
over time, mainly as a task in itself, but also for
downstream tasks such as OCR error correction
(Morsy and Karypis, 2016) or document similarity
computation (Chiron et al., 2017).

Lexical semantic change detection is an unsuper-
vised tasks, and systems to detect this change gen-
erally use techniques such as word2vec (Mikolov
and Dean, 2013) to represent words in a continuous
vector space, allowing for the analysis of seman-
tic similarities and changes over time (Tahmasebi
et al., 2021). Other systems use co-occurrence
information to build matrices and measure similar-
ity between words based on their contexts (Sagi
et al., 2009). Pointwise mutual information scores
and cosine similarity are often employed to track
changes in co-occurrence patterns over time to un-
cover how word meanings evolve and shift across
different contexts (Teh et al., 2004; Gulordava and
Baroni, 2011). Some methods use topic model-
ing to partition information based on word senses,
allowing for the detection of sense changes over
time (Lau et al., 2012). Topics are interpreted as
senses, and new induction methods aim to infer
sense and topic information jointly (Wang et al.,
2015). Techniques such as word sense induction or
discrimination aim to identify different senses of a
word and track changes in these senses over time.
Recent works use transformer-based models and
average pairwise distance and prototype distance
to detect change (Cassotti et al., 2023).

Lexical semantic change detection has been
explored in several shared tasks for various lan-
guages: the SemEval 2020 task 1 on unsuper-

vised lexical semantic change detection for En-
glish, German, Swedish and Latin (Schlechtweg
et al., 2020), DIACR-Ita for Italian (Basile et al.,
2020), RuShiftEval for Russian (Kutuzov and Pivo-
varova, 2021), and the SemEval 2022 task on se-
mantic change discovery and detection in Spanish
(Zamora-Reina et al., 2022).

The main common point between lexical com-
plexity prediction and lexical semantic change lies
in polysemy. Polysemy is a strong predictor of
lexical complexity (Gala et al., 2013; Alfter and
Volodina, 2018), as more polysemous words can
occur in more varied contexts. As the context influ-
ences the specific meaning of the word, we expect
the complexity to vary more strongly if the possible
contexts are more numerous. In unsupervised lexi-
cal semantic change detection, the context is crucial
in determining whether a word occurs in a given
sense, and the degree of polysemy (and its change)
is directly linked to lexical semantic change. To the
best of our knowledge, there is no prior work in-
vestigating the role of lexical complexity in lexical
semantic change.

3 Methodology

3.1 Data

For lexical semantic change detection, we use
the English data from the Diachronic Word Us-
age Graph (DWUG) dataset (Schlechtweg et al.,
2021) used in the SemEval 2020 shared task on
unsupervised lexical semantic change detection
(Schlechtweg et al., 2020). The shared task cov-
ered English, German, Swedish, and Latin, with
labels for graded lexical semantic change as well
as binary change. The English portion of the data
set covers 46 target words, each with 200 sentences
split across two time spans (100 per time span).
The data was manually annotated using a Word-in-
Context approach where annotators are asked to
rate the semantic closeness of a word in two sen-
tences on a scale from 1 (unrelated) to 4 (identical);
as an additional annotation option, there is 0 which
means ‘cannot decide’. These judgments are then
clustered to derive sense clusters, based on which
a graded lexical semantic change score ∈ [0− 1] is
computed (Schlechtweg et al., 2020).

For lexical complexity prediction, we use the
data from the SemEval 2021 shared task on lexical
complexity prediction (Shardlow et al., 2021). This
data is only available for English. It contains about
9000 words from three genres (biblic, parliamen-
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tary, medical). The data was manually annotated
using a five-point Likert scale from 1 (very easy)
to 5 (very difficult). These judgments were aggre-
gated and normalized into the range [0− 1].

3.2 Models

We first fine-tune a model for lexical complexity
on the provided training data from the 2021 shared
task, evaluating on the trial data and testing on
the test data. We take inspiration from Pan et al.
(2021), the top performing team at the shared task,
and prepend the word to the sentence (see Figure
1), but we omit the genre information, since this
information is not available for the semantic change
detection data.

Pan et al.: [CLS] genre word [SEP] sentence
Our input: [CLS] word [SEP] sentence

Figure 1: Illustration of Pan et al. (2021)’s input format
versus our input format

As a proof of concept experiment, we do not
follow Pan et al. (2021) and other teams in creating
an ensemble of transformers for prediction; instead,
we use a single RoBERTa-base model.1 We train
the model for 20 epochs with the R2 objective and
early stopping.

We then apply the fine-tuned model to the lexical
semantic change data set: for each target word, we
predict the complexity for each context it occurs
in. We then calculate the average complexity for
time span 1 (Ct1

avg) and time span 2 (Ct2
avg). We

then calculate the difference in complexity between
these time spans (δC).

We explore whether lexical complexity can ex-
plain human uncertainty in annotation by retrieving
the human judgments for each pair of sentences
for each label for each word (29.000 judgments
total), including the label 0 (cannot decide) and
compare the complexity difference δC between the
sentences. We rank the labels by absolute average
difference |δC | from largest to smallest, with rank 1
being the label with the highest absolute difference
in complexity.

For lexical semantic change detection, we cal-
culate Spearman’s rank correlation coefficient be-
tween the words’ graded lexical change score and
δC . As baseline, we use a vanilla RoBERTa-base
model that was not fine-tuned.

1Preliminary experiments have shown a worse perfor-
mance when using RoBERTa-large and XLM-RoBERTa.

4 Results and Discussion

Table 1 shows the results for the fine-tuned model
on the task of lexical complexity prediction. For
the limited scope of the study, our model shows ac-
ceptable performance. Mean Squared Error (MSE)
measures the average deviance from the target,
while R2 measures the proportion of the variance
in the data the model explains. A lower MSE and a
higher R2 are generally better.

MSE R2

Our model (val) 0.0070 0.687
Our model (test) 0.0078 0.524
Best model 2021 0.0061 0.621

Table 1: Results for lexical complexity prediction

Figure 2 shows the clustered column chart for
the labels (on the x-axis) and rank counts (on the
y-axis) for human uncertainty estimation. The fig-
ure clearly shows that the label 0 is ranked first in
the majority of cases, indicating that a higher com-
plexity difference coincides with human “cannot
decide” judgments. Conversely, label 4 is system-
atically ranked last, indicating that sentence pairs
with low complexity differences are annotated as
having the same sense. We can also observe a sys-
tematic linear decrease in rank counts for labels 1
down to 3, suggesting that complexity difference
inversely correlates with semantic relatedness: the
higher the complexity difference, the less probable
it is that the word senses in the two sentences are
related.

Spearman’s ρ

Baseline 0.077
Our model Ct1

avg 0.014
Out model Ct2

avg -0.089
Our model δC 0.444
Best model 2020 0.422
Cassotti et al. 2023 0.757

Table 2: Results for graded lexical semantic change
detection

Table 2 shows the results for lexical semantic
change detection. As can be gathered from the
results, lexical complexity prediction in itself does
not correlate with graded semantic change (‘Our
model’ Ct1

avg and Ct2
avg), but the difference in lexical

complexity (‘Our model’ δC) shows a moderate
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Figure 2: Label-rank counts showing the distribution of rank counts based on complexity difference between the
sentence pairs to annotate. We calculate for each label of each word the average complexity difference and rank the
labels according to the complexity difference, then aggregate the ranks over all words.

correlation with graded lexical semantic change
as calculated by the SemEval 2020 shared task
organizers. In fact, this model beats the best result
of the shared task, although only by a small margin,
and it is quite far behind the current state-of-the-art.

This finding suggests that variations in lexical
complexity may be indicative of shifts in word
meaning over time.

5 Implications and future work

The findings of this study underscore the intercon-
nected nature of lexical change, highlighting the
potential for leveraging lexical complexity predic-
tion in detecting semantic shifts.

Leveraging state-of-the-art machine learning
models, such as transformer architectures and con-
textual embeddings, can enhance the accuracy and
scalability of lexical complexity prediction and se-
mantic shift detection.

Our model exhibits surprising performance in
graded lexical semantic change detection, outper-
forming the best result of the shared task by a small
margin. While our model’s performance would
have been competitive, it falls short of the current
state-of-the-art models in the field.

In the future, one should extend the analysis to
(at least) the other languages covered by the lexical
semantic change data (German, Swedish, Latin).
However, there are no suitable lexical complexity
data sets available for these languages. Hence, it
would be necessary to first compile graded lexical
resources including different word contexts.

Another promising avenue would be a hybridiza-
tion of approaches that include lexical complexity
prediction as a feature for lexical semantic change
detection.

6 Conclusion

In conclusion, our proof-of-concept exploration has
shed some light on the interplay between lexical
complexity and semantic shift. In this paper, we
have shown that pairs of sentences for which the
absolute difference in lexical complexity is high
tend to be annotated as “cannot decide” by human
annotators; this finding suggests that high lexical
complexity differences might create ambiguity for
human judges, making it difficult for them to con-
fidently discern the exact meaning of a word in
the given sentences. We also uncovered a poten-
tial inverse correlation between lexical complexity
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and semantic relatedness. Finally, we have shown
that lexical complexity prediction can be useful
for lexical semantic change detection; differences
in lexical complexity correlate with graded lexical
semantic change to a moderate degree.

Limitations

The presented work focuses on English only due to
the availability of resources. It would be beneficial
to extend it to other languages. However, results
may also be skewed due to the fact that the lexical
complexity prediction data set only contains nouns,
and the lexical semantic change data set mostly
contains nouns. Results might thus not scale to
other part-of-speech categories. Further studies
with diverse data and evaluation settings are crucial
to establish broader validity and generalizability.

Our method shows promising results, but we
cannot be sure that it is indeed capturing differences
in meaning as expressed through the different word
contexts, or whether the model is relying on other
(potentially confounding) information.

As a proof of concept study, we only fine-tuned a
single model. Future work should explore a wider
variety of models. However, fine-tuning models
can be costly and may require the use of GPUs. We
have only fine-tuned a single (smaller) model, as
opposed to a larger or multiple models.

The current work utilizes a relatively limited data
set. Therefore results should be interpreted with
this limitation in mind.
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Abstract

We show that meaning shifts in political dog-
whistle expressions (DWEs) are explained by
the expressions changing with regard to their
“hidden” (in-group) and “public” (out-group)
dimensions. We study the association between
computational measures of Lexical Semantic
Change (LSC) and the In-group/Out-group Ra-
tio (IOR) of four Swedish DWEs. We use
a combination of distributional modeling of
DWEs in the online discussion forum Flash-
back and data collected from a lexical replace-
ment survey of Swedish residents. We explore
several vector-space meaning representation ap-
proaches and demonstrate that distributional
methods can be used to identify semantic shifts
relevant to dogwhistle development, particu-
larly contextual representations from Swedish
BERT, SBERT, and multilingual T5.

1 Introduction

Online media is important for political communi-
cation, but its fast pace makes it very susceptible to
meaning manipulation and deceptive communica-
tion strategies. Analyzing communicative patterns
in such large quantities of data requires computa-
tional methods (Theocharis and Jungherr, 2021).
In the context of political discourse, this form of
data analysis has been used to combat hate speech
and related problems for online moderation.

A key challenge for automated analysis of text
is identifying implicit meanings (Magu and Luo,
2018). In this work, we explore computational ap-
proaches for modeling the temporal dynamics of
political dogwhistles. Following Lo Guercio and
Caso (2022, p. 203), political dogwhistles can be
defined as “speech acts that explicitly convey a cer-
tain content to an audience, while simultaneously
sending a different, concealed message to a spe-
cific subset of that audience” (Saul, 2018; Howdle,
2023; Witten, 2023). Henceforth, we refer to the
explicit meaning of dogwhistles as their out-group

meaning, and the concealed meaning as their in-
group meaning. We define a dogwhistle expression
(DWE) as a linguistic form that encodes this dual
function and carries both in-group and out-group
meanings (Henderson and McCready, 2018).

Dogwhistles that secretly convey racist or oth-
erwise derogatory attitudes are ethical problems
for democratic society (Åkerlund, 2022; Lindgren
et al., 2023; Bhat and Klein, 2020; Saul, 2018; Stan-
ley, 2015; Haney-López, 2014). Independent of
content, dogwhistles have been discussed as prob-
lems for democracy by obscuring political mandate
and democratic legitimacy (Goodin and Saward,
2005; Howdle, 2023).

Previous work includes theoretical accounts of
how dogwhistles work semantically (Breitholtz and
Cooper, 2021; Henderson and McCready, 2018;
Stanley, 2015; Khoo, 2017; Lo Guercio and Caso,
2022), experiments that test the consequence of
dogwhistle communication for the acceptance of
policies and attitudes (White, 2007; Wetts and
Willer, 2019), and content analyses of how dog-
whistles are used online (Bhat and Klein, 2020; Åk-
erlund, 2022). Less attention has been devoted to
the distributional modeling of dogwhistle meaning
(but see, e.g., Hertzberg et al., 2022; Mendelsohn
et al., 2023; Boholm and Sayeed, 2023; Xu et al.,
2021). In particular, while semantic change is es-
sential to the concept of dogwhistle, it has only
recently been systematically addressed (Boholm
and Sayeed, 2023; Sayeed et al., 2024).

Our aim is to combine established methods of
lexical semantic change (LSC) detection (Kutuzov
et al., 2018; Tahmasebi and Dubossarsky, 2023;
Tahmasebi et al., 2021; Tang, 2018) and survey data
from linguistic replacement tests (Arefyev et al.,
2022; Lindgren et al., 2023) to model the temporal
dynamics of dogwhistle meaning over time. The
research questions are (1) to what extent are com-
putational measures of LSC associated with shifts
in the in-group and out-group meanings of DWEs.
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Moreover, we ask (2) how different approaches to
modeling meaning compare with respect to the re-
lationship between LSC and shifts in in-group and
out-group meaning over time.

We analyse the relationship between rate of
LSC and the in-group–out-group dynamics of dog-
whistles through four ways of modeling mean-
ing: (i) skip-gram with negative sampling (SGNS)
(Mikolov et al., 2013), (ii) Bidirectional Encoder
Representations from Transformer BERT (De-
vlin et al., 2019), (iii) Sentence-BERT (SBERT)
(Reimers and Gurevych, 2019), and (iv) massively
multilingual Text-to-Text Transfer Transformer
(mT5) (Raffel et al., 2020; Xue et al., 2021). These
methods are sensitive to the dynamic meaning
changes of DWEs, suggesting that they can be de-
veloped for the detection and analysis of dogwhis-
tle communication online. We also show that the
pipelines with the large language models (LLMs)
are better at predicting dogwhistle meaning shifts
than the SGNS-based pipelines.

2 Related work

Methods of distributional semantics have recently
been applied to the long-standing study of semantic
change (Bréal, 1904). Advances include the devel-
opment and validation of approaches for studying
when, how, and how much words change. (Kutu-
zov et al., 2018; Tahmasebi and Dubossarsky, 2023;
Tahmasebi et al., 2021; Tang, 2018). To study how
much and when words change, the features of the
vector representations can be compared. Formally,
the semantic change of a word w in a transition
from ti to tj can be defined as the distance of w’s
vector at ti (−→w ti) and its vector at tj (−→w tj ):

∆ti,tj (w) = distance(−→w ti ,
−→w tj )

Diachronic word embeddings have been built
as static word embeddings trained at time peri-
ods t1, . . . tn (Hamilton et al., 2016b; Kim et al.,
2014), such as SGNS (Mikolov et al., 2013), PPMI
(Levy et al., 2015) and GloVe (Pennington et al.,
2014); by averaging over contextualized token em-
beddings at t1, . . . tn (Martinc et al., 2020a; Ku-
tuzov and Giulianelli, 2020), using, for example,
BERT (Devlin et al., 2019) and ELMo (Peters et al.,
2018); and as probability distributions over clusters
of contextualised token embeddings at t1, . . . tn
(Giulianelli et al., 2020; Kutuzov and Giulianelli,
2020; Martinc et al., 2020b; Vani et al., 2020).

To investigate how words change, we can an-
alyze how words’ positions change in the vector
space (Hamilton et al., 2016a,b). By measuring
the distance between the vector of a word w and
those of other words, the nearest neighbors of w
at time ti can be compared with its neighbors at tj
(Charlesworth et al., 2022; Vylomova and Haslam,
2021; Tripodi et al., 2019). With predefined con-
cepts (or dimensions) of interest (Caliskan et al.,
2017), w’s distance to those “concepts” can be
tracked over time (Mendelsohn et al., 2020). This
latter approach enables exploration of conceptual
shifts in large datasets, possibly over long time
spans (Garg et al., 2018). For example, Mendel-
sohn et al. (2020) studied the dehumanization of
LGBTQ people in US media by tracking over time
the distance between the words for these groups
and the vocabulary relevant for the analytical di-
mensions investigated (e.g., disgust and power).
Other work has tested the theory of “concept creep”
(Haslam, 2016) by analyzing the semantic shift of
harm-related (Vylomova and Haslam, 2021) and
health-related concepts (Baes et al., 2023).

The present work analyses dogwhistles and how
their in-group and out-group dimensions of mean-
ing change over time. Previously, philosophers of
language and linguists have tried to explain the dual
meanings of dogwhistles (Breitholtz and Cooper,
2021; Henderson and McCready, 2018). The role
of convention versus pragmatic inference is one
of the main theoretical issues addressed in this
discussion (Breitholtz and Cooper, 2021; Hender-
son and McCready, 2018; Stanley, 2015; Khoo,
2017; Lo Guercio and Caso, 2022). Few attempts
have been made to use distributional semantics
to study dogwhistles, but notable exceptions exist.
Hertzberg et al. (2022) partitioned in-group and out-
group interpretations of DWEs in a word replace-
ment experiment, using SBERT. Xu et al. (2021)
built an annotated data set for Chinese dogwhistles.
Similarly, Mendelsohn et al. (2023) presented an
extensive database of dogwhistle definitions in a
US context. In addition, they illustrated the ability
of GPT-3 to identify dogwhistles, based on prompts
with definitions from their database.

We expand on these efforts to study dogwhistles
by combining LSC techniques and suvey data for
modeling in-group–out-group dynamics of DWEs.
Although time is essential for dogwhistles, since
the in-group meaning evolves in parallel to an exist-
ing (out-group) meaning (Sayeed et al., 2024), only
recently have the temporal aspects of dogwhistles
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been systematically studied. Boholm and Sayeed
(2023) used computational methods of LSC analy-
sis to model the rate of change of DWEs in different
online discussion forums and found that the rate of
semantic change of DWEs observed in the highly
politically polarized online community diverged
from the rate of semantic change of the same terms
(at the same period of time) in the less polarized
community, suggesting that dogwhistle evolution
is community dependent (Quaranto, 2022; Clark,
1996). However, they did not systematically test
whether the rate of change observed for the DWEs
was explained by systematic variation in the in-
group and out-group meaning of the expressions.

3 Data

3.1 Replacement survey

We use data from a word replacement test imple-
mented via a survey of Swedish residents. The aim
of this test was to quantify variability in how in-
dividuals understand the meaning of dogwhistles.
In the first step, we collected potential dogwhistle
words from political messaging in Swedish media.
Twelve words were included in the replacement test
(February and March 2021). The sample (n=1780)
consisted of self-recruited panelists, pre-stratified
to reflect the Swedish population in terms of age,
gender and education.

Panelists were asked to read sentences and in-
structed to replace a potential DWE in each sen-
tence with one or more words so that the meaning
of the sentence remains largely the same. The re-
placement test was completed by 1,045 panelists,
with a participation rate of 51%.

The test was followed by manual coding of re-
sponses. A coding manual was drafted and re-
fined by the research group. Coders classified
the replacement words into three categories: 1)
the implicit dogwhistle meaning, 2) the explicit
literal meaning, or 3) word(s) that could not be
coded as 1 or 2. In this study, we take DWEs that
had high inter-annotator agreement (Krippendorff’s
α > 0.6) and acceptable corpus frequency (at least
10 instances per year when mentioned). We discuss
these in the next section.

3.2 Four Swedish DWEs

The in-group meanings of the DWEs analyzed can
be listed at a general level. With the out-group
meaning of ‘suburban gang’, the in-group meaning
of the dogwhistle förortsgäng is that of ‘immi-

grant gang’. As such, this DWE works by a biased
place-for-person metonymy, similar to inner city
discussed in US context (Saul, 2018). The DWE
återvandring (‘re-migration’) has in-group and out-
group meanings based on the (in)voluntariness of
the process, with a voluntary act as the out-group
meaning, while ‘deportation’ is the in-group mean-
ing. The DWE of berika (‘enrich’) is the result of
malevolent irony, in response to positive opinions
on multiculturalism, where the in-group meaning
is the opposite of enrichment, namely criminal and
destructive activities (by immigrants). In a Swedish
context and elsewhere, globalist is used with sev-
eral different in-group meanings, including an anti-
Semitic reference to Jews, a nationalistic reference
to anti-nationalists (i.e., opponents of nationalism),
and a populist reference to elitism.

3.3 Corpus
Flashback is a discussion forum with over 1.5
million users and more than 80 million posts, as
of 13 March, 2024 (according to the website’s
own claim). The topics of discussions are or-
ganized in “threads” under 15 general sections
(e.g., drugs, economy, lifestyle and politics). With
anonymous users, Flashback is known for discus-
sion of controversial topics and the expression of
controversial opinions, including discrimination
and racism (Åkerlund, 2021; Blomberg and Stier,
2019; Malmqvist, 2015). Although hate speech
and threats are not allowed by the rules, the web-
site clearly contains offensive language. We here
analyze Flashback data from 2000 to 2022, on the
topic of politics. The corpus, which in total con-
tains 49M sentences (posts) and 785M words, was
collected from the Swedish national language data
processing infrastructure Språkbanken Text.1 On
average, there are 2.1M sentences (SD = 1.4M) and
34.1M words (SD = 21.7M) per year.

There is considerable variation in frequency of
the four DWEs analyzed in the corpus (Table 1). In
particular, förortsgäng is much less frequent than
the other terms. Moreover, term frequencies are
very different in different years, which is reflected
in the high values of the standard deviation.

The corpus has been preprocessed for all
pipelines (SGNS, BERT, SBERT and mT5) by
lower-casing and removing URLs and emojis. Cor-
pus data for the SGNS approach have been further
processed by removal of numbers and punctuation;

1https://spraakbanken.gu.se/en/resources/
flashback-politik
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DWE Total M SD
berika 20936 27.92 12.18
förortsgäng 227 0.23 0.26
globalist 31156 32.07 39.62
återvandring 12999 13.19 22.20

Table 1: Total frequency and mean frequency per mil-
lion per year

separation of compounds that contain the DWEs un-
der analysis as their left-hand element, e.g., “glob-
alistelit” is replaced by “globalist elit” (with space);
and lemmatization of the DWEs analyzed, for ex-
ample, “globalisten” (definite form of globalist)
is replaced by “globalist” (lemma form). Regular
expressions were used for lemmatization and split-
ting of compounds. For the other approaches, there
was no additional step of preprocessing to the steps
listed above, but some minor changes were made to
facilitate mapping of input words and tokenisation
for BERT and mT5.

4 Semantic modeling

Below we introduce four pipelines to test the re-
lationship between the LSC and the in-group/out-
group dynamics of DWEs. The piplelines have two
basic steps: (a) modeling of the rate of semantic
change of DWEs in the corpus; and (b) modeling
of the degree of in-group vs. out-group meaning
of the DWEs based on the replacements observed
in the survey. The key difference between the four
pipelines is the algorithm used for modeling mean-
ing: SGNS, BERT, SBERT and mT5.2

4.1 LSC modeling
The semantic change of a word w in a transition
from ti to tj , i.e., ∆ti,tj (w), is defined as the an-
gular distance of w’s vector at ti (i.e., −→w ti) and
its vector at tj (i.e., −→w tj ) (Kim et al., 2014; Noble
et al., 2021):

∆ti,tj (w) =
arccos(cossim(−→wti ,

−→wtj ))

π

We apply four approaches to build time-indexed
word vectors in the diachronic corpus C, which
is a collection of sentences from the consecutive
set of time periods, T = ⟨2000, . . ., 2022⟩. Thus,
C = ⟨c2000, . . ., c2022⟩. Vectors are trained only for
words at t with a minimum frequency of 10.

2Code for running experiments can be found at https:
//github.com/mboholm/dogwhistle-lsc-predicition.

4.1.1 The SGNS approach
A SGNS model is trained for each sub-corpus
in C, in the sorted order of T, from first to last.
The weights of the model are randomly initial-
ized for the first time period, M2000, but for every
other model, Mti , where ti > 2000, the weights
of Mti are initialized with the trained weights of
Mti−1 . For every consecutive pair in T, i.e. the
set of transitions R = ⟨⟨t1, t2⟩, . . .⟨tn-1, tn⟩⟩ =
⟨⟨2000, 2001⟩, . . .⟨2021, 2022⟩⟩, and for every
word w existing in both models Mti and Mti+1 , the
vectors −→wti and −→w ti+1 are compared for ∆ti,tj (w).
We train six SGNS variants for 100 and 200 dimen-
sions and window sizes of 5, 10, and 15.

4.1.2 The BERT approach
The diachronic corpus B is a subset of C, such that
it covers the same consecutive time periods in T, but
where every sub-corpus bt = {sentence s: s is in ct∧
at least one the analyzed DWEs is in s}. Sentences
in B are encoded by Swedish BERT (Malmsten
et al., 2020).3 A word vectors of a DWE w at t
is built in two steps: first, contextualised token
embeddings of w in sentences from bt, are built by
averaging over the token embeddings of the last
hidden layer of BERT that correspond to w in the
input. Next, the mean vector of the contextualized
token embeddings for w in t constitutes −→w ti .

4

4.1.3 The mT5 approach
The third approach uses the mT5 model (Xue et al.,
2021), a multilingual variant of T5 (Raffel et al.,
2020) trained on the multilingual extension of the
Colossal Clean Crawled Corpus (C4), mC4, which
in total contains 6.3T tokens. Swedish is among
the 101 languages in mC4. With T5, every NLP
task is generalized as text-to-text problem. The
model is similar to the original transformer model
in Vaswani et al. (2017), with some alternations of,
for example, normalization of layers and position
embeddings (Raffel et al., 2020; Xue et al., 2021).
T5 was originally developed to test, in a unified and
controlled way, the effectiveness of transfer learn-
ing on a variety of NLP tasks (Raffel et al., 2020).
However, our implementation does not fine-tune
the pre-trained model. Rather, our main motive for

3https://huggingface.co/KB/
bert-base-swedish-cased

4For some compound words, the tokenization for BERT or
mT5 does not perfectly match the DWE part of the compound.
We then use the embeddings of tokens that maximize the simi-
larity of the two strings by the Ratcliff et al. (1988) algorithm
implemented as SequenceMatcher in Python.
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using mT5 is to test a recent large-scale transformer.
Here we use the 3.7 billion parameter version of
the model, named XL.5

We build word vectors at t as in the BERT ap-
proach: contextualized token embeddings are built
by averaging token embeddings of the last hidden
layer, corresponding to w in the input sentence;
−→w ti is the mean vector of the contextualised token
embeddings at t.

4.1.4 The SBERT approach
The fourth and final approach uses Swedish
SBERT (Rekathati, 2021).6 SBERT (Reimers and
Gurevych, 2019) is BERT (Devlin et al., 2019)
fine-tuned for predicting the semantic similarity
of two sentences. SBERT has a bi-encoder archi-
tecture to reduce the computational cost of sen-
tence pair-regression in original BERT. Reimers
and Gurevych (2019) show that a bi-encoder with
fine-tuning reaches state-of-the-art performance on
sentence similarity. Swedish SBERT is trained with
transfer learning in Reimers and Gurevych (2020),
where the objective is to make a student model7 (of
an under-resources language, here: Swedish) match
the sentence embeddings of a high-performing
teacher model8 (developed for a well-resourced
language, here: English) in a parallel corpus.

The implementation of the SBERT approach is
in most respects similar to the implementation of
the other transformer models, but does not require
mapping between token embeddings and the DWE
of the input, nor selection of layer, since SBERT
output 1 × 768-dimensional vectors that serve as
the contextualized token embedding. The mean
vector of the contextualized embeddings for w at t
constitutes −→w t.

4.2 In-group and out-group modeling

We modeled the semantic dimensions of in-group
and out-group meaning of a DWE w at time t by
measuring the similarity between (a) the embed-
ding for w at t trained on online community data (as
defined above, sect. 4.1) and (b) the (averaged) em-
bedding for text replacements Rw = {rw1 , ..., rwn }
for w in the replacement survey, annotated as “in-
group” (Iw) or “out-group” ( Ow). Details on how

5https://huggingface.co/google/mt5-xl
6https://huggingface.co/KBLab/

sentence-bert-swedish-cased
7https://huggingface.co/KB/

bert-base-swedish-cased
8https://huggingface.co/sentence-transformers/

paraphrase-mpnet-base-v2

the in-group and out-group embeddings,
−→
Iw and−→

Ow, are built from Iw and Ow are presented in
the following (sect. 4.2.1 - 4.2.2); each approach
parallels those defined above for the analysis of
LSC.

Once in-group and out-group embeddings for
DWE w are derived, we use cosine similarity to
calculate an in-group score (IS) and an out-group
score (OS) at each time t:

ISt(w) = cossim(−→wt,
−→
Iw)

OSt(w) = cossim(−→wt,
−→
Ow)

Next, we define the In-group/Out-group Ratio
(IOR) of DWE w, reflecting a normalized measure
of w’s in-group meaning relative to its out-group
meaning (Kapron-King and Xu, 2021):

IORt(w) =
ISt(w)

ISt(w) +OSt(w)

To measure the change in IOR for w over time,
we define the absolute difference in IOR as:

∆IOR
ti,tj (w) = abs(IORtj (w)− IORti(w))

This study uses linear regression to test whether
the difference in IOR (i.e., ∆IOR

ti,tj (w)) is a predictor
of the LSC of DWEs (i.e., ∆ti,tj (w)). Regression
models are described in more detail below (sect.
5.1), but first vectorization of in-group and out-
group dimensions is addressed.

4.2.1 SGNS
For the SGNS approach, vectorization of in-group
and out-group dimensions is based on the word
embeddings trained for the diachronic corpus data
(sect. 4.1.1). A bag-of-words (BOW) approach
was implemented to build in-group and out-group
embeddings from the SGNS models.9

The steps for building in-group and out-group
embeddings from the BOW-sets are as follows:10

first, stopwords were removed. Second, the top 3
words of each BOW set were selected based on

9An alternative approach could have been to build token
vectors of multi-word inputs (replacements) by pooling SGNS
word vectors of the input and then averaging over those token
vectors (similar to the approaches described below). The BOW
approach implemented here has lower computational cost than
a pooling of multi-word inputs would have had.

10We have tested different strategies for selection. Other ex-
amples of strategies include selecting the top 3 most frequent
words in Iw and Ow without overlap.
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their keyness (Gabrielatos, 2018), using the odds
ratio, which is an asymmetric measure of the proba-
bility of a word in a target corpus relative to a refer-
ence corpus (e.g., the probability of finding a word
x in the in-group replacements relative to the out-
group replacements). Third, we generalize from
the selected words, by adding related word forms
of the same lexeme, using existing resources for
Swedish morphology (Borin and Forsberg, 2009).
For example, in the replacement survey participants
were asked to replace the plural form of the DWE
globalist, i.e., “globalister” (plural). Consequently,
the replacements for globalist are dominated by plu-
ral forms of nouns, e.g., “elitister” (plural). How-
ever, embeddings for other wordforms than the
exact ones used in the replacement survey might be
relevant for modeling the in-group and out-group
dimension. Once the word forms of each lexeme
were identified, to minimize the influence of infre-
quent words, word forms that were not frequent
enough to account for at least 20% of the frequency
of the lexeme were removed. Finally, after selec-
tion and expansion, for each word in a remaining
set, its SGNS embedding was collected. The in-
group and out-group embeddings are defined as
the average vector of the collected embeddings for
each set (see Appendix A for examples of words).

4.2.2 BERT, mT5, and SBERT
For BERT and mT5, we represent each replacement
r by the average embedding of the last hidden layer
(Ni et al., 2021).11 Since SBERT is designed to rep-
resent sentences, there is no need for (additional)
pooling of token embeddings. Replacements are
represented by sentence embeddings. We define
the in-group (

−→
Iw) and out-group embeddings (

−→
Ow)

as the mean vectors of the contextualized token
embeddings for the replacements in Iw and Ow.

For examples of sentences from the Flashback
training data, with high and low scores of IOR, see
Appendix B.

5 Analysis

5.1 Regression models
The relationship between IOR and LSC is mod-
eled by linear regressions (OLS), implemented in
Python through statsmodels package. We try
to predict the rate of semantic change of DWEs

11For BERT we also tested the embedding of the CLS token,
which resulted in slightly higher R2 scores. Here we focus on
the mean pooling approach for comparability with the pipeline
for mT5-XL, which lacks a CLS token (Ni et al., 2021).

(∆ti,tj (w)) from their change in IOR (∆IOR
ti,tj (w)).

If the coefficient for the (independent) variable is
significant, the semantic change observed for the
DWEs is explained by their shifting meaning with
regard to in-group and out-group meanings. In
addition to the significance of the coefficent for
∆IOR, the pipelines defined above can be com-
pared with respect to the total variance explained
(R2). In total, there are 64 DWE-time pairs in the
data.

Previous research has shown that semantic
change is strongly correlated with term frequency
(Dubossarsky et al., 2017; Hamilton et al., 2016b).
To avoid having term frequency as a confound-
ing factor between ∆ti,tj (w) and ∆IOR

ti,tj (w), we
control for the effect of term frequency by hav-
ing term frequency per million (FPM) (at ti, log2-
transformed) and proportional change in FPM from
ti to tj as predictors (control variables).

Thus, we model the following relationship:

∆ti,tj (w) = β0 + β1 ×∆IOR
ti,tj (w)+

β2 × log2(FPMti(w)) + β3 ×∆FPM
ti,tj (w)

For comparability, the model variables are nor-
malized by z-scores. We assess there being no
problem with multicollinearity, since the variance
inflation factor (VIF) for independent variables is
close to 1 (below 2) in all models. For all regres-
sion models, except the ones based on the pipeline
for 200-dimensional SGNS models, the residuals
are not normally distributed, as measured by the
Jarque-Bera test. Under the assumption of the cen-
tral limit theorem, we proceed with the regression
model proposed above, despite nonnormal residu-
als, relying on our sample size being sufficiently
large (N = 64, with three predictors) (Weisberg,
2013; Schmidt and Finan, 2018). However, we
did test transformations of variables to meet the
assumption of normal residuals, see Appendix C.
The overall patterns are the same.

5.2 Results

For most models, shifts in IOR (∆IOR
ti,tj (w)) is a

significant predictor of rate of semantic change
(∆ti,tj (w)). That is, the rate of change observed for
DWEs using common methods for LSC-modeling
is related to shifts in in-group and out-group mean-
ing. Overall, these findings suggest that the estab-
lished computational methods of LSC detection
are, in fact, sensitive to the emergence and decline
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Dependent variable: ∆ti,tj

SBERT BERT mT5-XL SGNS-
w5-d100

SGNS-
w10-d100

SGNS-
w15-d100

SGNS-
w5-d200

SGNS-
w10-d200

SGNS-
w15-d200

∆IOR
ti,tj 0.794∗∗∗ 0.546∗∗∗ 0.555∗∗∗ 0.250∗ 0.129 0.246∗ 0.273∗ 0.184 0.361∗∗

(0.059) (0.103) (0.102) (0.121) (0.130) (0.122) (0.112) (0.123) (0.114)
∆FPM

ti,tj -0.022 -0.078 -0.220∗ 0.256∗ 0.236 0.198 0.265∗ 0.202 0.206
(0.057) (0.099) (0.103) (0.122) (0.126) (0.123) (0.113) (0.120) (0.114)

FPM (log) -0.265∗∗∗ -0.236∗ -0.451∗∗∗ 0.049 -0.032 -0.078 0.347∗∗ 0.258∗ 0.223
(0.059) (0.103) (0.099) (0.122) (0.130) (0.123) (0.113) (0.125) (0.115)

Const. -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
(0.057) (0.098) (0.097) (0.120) (0.125) (0.122) (0.112) (0.119) (0.113)

R2 0.807 0.426 0.430 0.129 0.067 0.113 0.248 0.149 0.240
Adj. R2 0.798 0.398 0.401 0.086 0.021 0.069 0.210 0.106 0.202
Resid. Std. Er-
ror

0.453
(df=60)

0.782
(df=60)

0.780
(df=60)

0.964
(df=60)

0.997
(df=60)

0.973
(df=60)

0.896
(df=60)

0.953
(df=60)

0.901
(df=60)

F Stat. 83.866∗∗∗

(df=3; 60)
14.862∗∗∗

(df=3; 60)
15.079∗∗∗

(df=3; 60)
2.971∗

(df=3; 60)
1.447
(df=3; 60)

2.545
(df=3; 60)

6.589∗∗∗

(df=3; 60)
3.495∗

(df=3; 60)
6.302∗∗∗

(df=3; 60)

Note: N = 64; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 2: Explaining semantic change of DWEs (standardized coefficients)

Figure 1: Relationship between LSC and IOR in SBERT
pipeline

of dogwhistles. Exceptions to this general observa-
tion are found among variants of the SGNS models,
where the coefficient for ∆IOR

ti,tj (w) is not signifi-
cant (at α = 0.05); namely those with window size
= 10. We return to this pattern below.

Out of the pipelines, the LLM-based pipelines
explain more variability of the data and have
larger coefficients for ∆IOR

ti,tj , than the SGNS-based
models. Thus, in predicting semantic change,
these models rely more on the semantic variabil-
ity related to the IOR, than the SGNS models
do. When comparing LLM-based pipelines, the
SBERT-based approach shows higher R2 and a
stronger effect of ∆IOR than the BERT and mT5
approaches. For SBERT, the strong correlation
between LSC and IOR is illustrated in Figure 1.
These observations suggest that sentence embed-
dings are beneficial for explaining the semantic

change of dogwhistles (SBERT), compared with av-
eraging over the embeddings of input tokens map-
ping to the DWE (BERT, mT5). Note that these
findings derive from pipelines that contain both the
rate of change and the IOR. Thus, the different ob-
served can be a consequence of how replacements
are represented, how LSC is modeled, or both.

An explanation for why SBERT explains more
variability in the data might be that SBERT is fine-
tuned for a task that has a similar structure as the
one implemented in our pipeline for modeling in-
group and out-group scores, namely to predict the
similarity of embeddings (Reimers and Gurevych,
2019). It might also be the case that in-group and
out-group meanings of DWEs are best captured
holistically by sentence representations that give
more prominence to the full context of DWEs.

The pipelines with BERT and mT5 are very sim-
ilar in terms of R2 and effect of ∆IOR. On the one
hand, the large computational overhead of mT5-XL
compared to BERT does not result in stronger pre-
dictions, as modeled in the present context. On the
other hand, the multilingual transformer performs
on par with the language-specific one.

For the SGNS models, both the window size and
the number of dimensions of the vectors matter.
With higher dimensionality of the vectors, more
variation in ∆ti,tj (w) is explained. When different
window sizes are compared, a U-shaped pattern
emerges. For both 100- and 200-dimensional mod-
els, the strongest effect of ∆IOR and the highest
values of R2 are observed for window size = 5.
However, almost as strong effects are found for
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window size = 15, but smaller effect sizes for win-
dow size = 10. These observations indicate that
words used both in close proximity and far away
from the DWE are relevant to communicate in-
group messages. This U-shaped pattern may be
related to the fact that we model different DWEs.
That is, for some DWEs, words in close context
may be central to the in-group meaning, but for
other DWEs, a wider context is important.

As in previous studies, term frequency (at ti) ex-
plains the rate of semantic change (Hamilton et al.,
2016b; Dubossarsky et al., 2017). For LLMs, the
relationship is negative: the more frequent a word
is, the less it changes, which is in line with “law
of conformity” (Hamilton et al., 2016b). However,
for the SGNS models, the relation between term
frequency and semantic change is in most cases
not significant; and when significant, the relation-
ship is, unlike for the LLM pipelines, positive.The
change in frequency from ti to tj have no effect on
∆ti,tj (w), besides the case of SGNS, where win-
dow size = 5 and d = 100.12 In both models for the
BERT-pipelines, ∆IOR

ti,tj (w) has a stronger effect on
∆ti,tj than term frequency, while for mT5 pipeline,
the effect of IOR and term frequency are in the
same magnitude (though the latter is negative).

6 Discussion

We find that the observed meaning shifts for DWEs
using distributional methods are explained by their
in-group and out-group dimensions. That is, the
methods for detecting LSC are sensitive to the dy-
namic meaning of DWE, suggesting that the mea-
sures of LSC could be used to detect dogwhistles
online. However, it could have been the case that
LSC measures did pick up on contextual drifts of
DWEs, which were not directly related to their
function as dogwhistles. After all, as an implemen-
tation of the distributional hypothesis, meaning is
in LSC detection modeled as statistical correlation
over context words.

But context can vary for various reasons, not all
of which are straightforward cases of change in
meaning (Bender and Koller, 2020). Words can be
used in the same sense in relation to different topics
of discussion at different times, which poses chal-
lenges for modeling meaning change (Hengchen
et al., 2021; Tang, 2018). For example, previous

12Other operationalisation of change in term frequency
(than percental difference) were tested: (non-proportional) raw
change in frequency and absolute difference of frequency, but
the overall pattern persists: no effect for predicting ∆ti,tj (w).

work has showed that distributional methods for
LSC sometimes overgeneralizes due to “referential
effects”, i.e., the observed change of word usage
is explained by reference to different persons or
events at different times (Del Tredici et al., 2018).
In such cases, “the meaning of the word stays the
same, despite the change in context” (Del Tredici
et al., 2018, 2073). These types of “semantic” (or
contextual) shifts are not clear examples of mean-
ing change or differentiation of senses that have
been mainly discussed in theoretical linguistics
(Traugott and Dasher, 2002). But from the point
of view of distributional semantics, it is difficult to
distinguish these different aspects of variable usage
(Geeraerts et al., 2024). Given a strict interpreta-
tion of the distributional thesis, a change in context
is a change of meaning.

In the context of these potential challenges that
have been raised for the interpretation of distribu-
tional LSC detection results, our results are notably
interpretable. The rate of change of the DWEs is,
in fact, related to changes in the in-group vs. out-
group “senses” of these words. From the geometric
viewpoint that defines distributional modeling of
meaning, the shifting positions of DWEs in seman-
tic space over time (as identified by LSC) are repo-
sitioning along the in-group vs. out-group axes (as
identified by ∆IOR). Given the high values of R2,
for many of the pipelines tested here, the IOR of the
DWEs is a key factor in explaining their semantic
variability over time.

The above findings suggest that the pipelines
with LLMs are better than the SGNS models at the
relevant meaning variation of DWEs. This finding
is in line with the general trend, with transformer
models having substantially improved the state-
of-the-art for NLU tasks. The nuanced semantic
representation enabled by these models seems to be
important also for the related challenge of modeling
dogwhistle meaning.

Future research should attempt to scale up the
present approach for the analysis of a wider range
of DWEs. A key challenge in doing so is infer-
ring and representing the in-group and out-group
dimensions of the DWEs. This study used a survey
methodology to develop an independent basis for
defining the in-group and out-group dimensions of
DWEs, but such an approach is costly, especially
at a large scale. Another possibility for future re-
search is using definitions of dogwhistles in ex-
isting online databases to represent in-group and
out-group embeddings (Mendelsohn et al., 2023).
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Limitations

This work applies to the political media context
of Sweden. Although we believe that the gen-
eral methodologies developed should also apply
to other national, linguistic, and political contexts,
this must be tested in other work.

Since DWEs emerge and disappear on the basis
of politically relevant current affairs, it is not pos-
sible to develop a sample of relevant DWEs that
allows analysis of DWEs themselves as a general
category. As a result, our work shows our hypoth-
esis for an admittedly limited set of dogwhistles
from which we cannot make global generalizations.
However, the fact that the effects are strong is a con-
tribution that calls for future testing of the method-
ology at a larger scale, with additional terms, and
in other national contexts.

Ethics Statement

When creating a system that detects potentially neg-
ative social phenomena, there is always a risk of
malicious use of the system. In principle, the de-
veloped technology can be used for evaluating, for
example, attempts to manipulate political discourse.
However, we believe that actors motivated to do so
can do so anyway and that public research should
not avoid the analysis of harmful communication
for this reason. Rather, tools should be developed
to detect and combat these harmful phenomena. In
addition, this work is part of the foundational work
that contributes to understanding dogwhistle com-
munication; it does not enable full detection on its
own.
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vey was approved by the Swedish Ethical Review
Authority.

Acknowledgements

Funding for this work was provided by the Gothen-
burg Research Initiative for Politically Emergent
Systems (GRIPES) supported by the Marianne and
Marcus Wallenberg Foundation grant 2019.0214 as
well as a Swedish Research Council (VR) grant
(2014-39) for the Centre for Linguistic Theory
and Studies in Probability (CLASP). We wish to
thank the anonymous reviewers for their construc-
tive comments.

References
Mathilda Åkerlund. 2021. Influence Without Metrics:

Analyzing the Impact of Far-Right Users in an On-
line Discussion Forum. Social Media + Society,
7(2):20563051211008831.

Mathilda Åkerlund. 2022. Dog whistling far-right
code words: The case of ‘culture enricher’on the
Swedish web. Information, Communication & Soci-
ety, 25(12):1808–1825.

Nikolay Arefyev, Boris Sheludko, Alexander Podolskiy,
and Alexander Panchenko. 2022. Always keep your
target in mind: Studying semantics and improving
performance of neural lexical substitution. arXiv
preprint arXiv:2206.11815.

Naomi Baes, Nick Haslam, and Ekaterina Vylomova.
2023. Semantic shifts in mental health-related con-
cepts. In Proceedings of the 4th Workshop on Compu-
tational Approaches to Historical Language Change,
pages 119–128.

Emily M. Bender and Alexander Koller. 2020. Climbing
towards NLU: On meaning, form, and understanding
in the age of data. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5185–5198, Online. Association for
Computational Linguistics.

Prashanth Bhat and Ofra Klein. 2020. Covert hate
speech: White nationalists and dog whistle commu-
nication on twitter. Twitter, the public sphere, and
the chaos of online deliberation, pages 151–172.

Helena Blomberg and Jonas Stier. 2019. Flashback as
a rhetorical online battleground: Debating the (dis)
guise of the Nordic Resistance Movement. Social
Media+ Society, 5(1):2056305118823336.

Max Boholm and Asad Sayeed. 2023. Political dog-
whistles and community divergence in semantic
change. In Proceedings of the 4th Workshop on
Computational Approaches to Historical Language
Change, pages 53–65.

Lars Borin and Markus Forsberg. 2009. All in the fam-
ily: A comparison of saldo and wordnet. In Pro-
ceedings of the Nodalida 2009 Workshop on Word-
Nets and other Lexical Semantic Resources - between
Lexical Semantics, Lexicography, Terminology and
Formal Ontologies. NEALT Proceedings Series, vol-
ume 7.

Michel Bréal. 1904. Essai de sémantique (science des
significations). Hachette.

Ellen Breitholtz and Robin Cooper. 2021. Dogwhis-
tles as inferences in interaction. In Proceedings of
the Reasoning and Interaction Conference (ReInAct
2021), pages 40–46.

Aylin Caliskan, Joanna J Bryson, and Arvind Narayanan.
2017. Semantics derived automatically from lan-
guage corpora contain human-like biases. Science,
356(6334):183–186.

152

https://doi.org/10.1177/20563051211008831
https://doi.org/10.1177/20563051211008831
https://doi.org/10.1177/20563051211008831
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463


Tessa E. S. Charlesworth, Aylin Caliskan, and
Mahzarin R. Banaji. 2022. Historical representations
of social groups across 200 years of word embed-
dings from Google Books. Proceedings of the Na-
tional Academy of Sciences, 119(28):e2121798119.

Herbert H. Clark. 1996. Using Language. Cambridge
university press.

Marco Del Tredici, Raquel Fernández, and Gemma
Boleda. 2018. Short-term meaning shift: A distribu-
tional exploration. arXiv preprint arXiv:1809.03169.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Haim Dubossarsky, Daphna Weinshall, and Eitan Gross-
man. 2017. Outta control: Laws of semantic change
and inherent biases in word representation models.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1136–1145.

Costas Gabrielatos. 2018. Keyness analysis. In Char-
lotte Taylor and Anna Marchi, editors, Corpus Ap-
proaches to Discourse: A Critical Review, pages
225–258. Routledge, London.

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and
James Zou. 2018. Word embeddings quantify 100
years of gender and ethnic stereotypes. Proceedings
of the National Academy of Sciences, 115(16):E3635–
E3644.

Dirk Geeraerts, Dirk Speelman, Kris Heylen, Mariana
Montes, Stefano De Pascale, Karlien Franco, and
Michael Lang. 2024. Lexical variation and change:
A distributional semantic approach. Oxford Univer-
sity Press.

Mario Giulianelli, Marco Del Tredici, and Raquel Fer-
nández. 2020. Analysing Lexical Semantic Change
with Contextualised Word Representations. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3960–
3973, Online. Association for Computational Lin-
guistics.

Robert E Goodin and Michael Saward. 2005. Dog whis-
tles and democratic mandates. The Political Quar-
terly, 76(4):471–476.

William L Hamilton, Jure Leskovec, and Dan Jurafsky.
2016a. Cultural shift or linguistic drift? comparing
two computational measures of semantic change. In
Proceedings of the conference on empirical methods
in natural language processing. Conference on empir-
ical methods in natural language processing, volume
2016, page 2116. NIH Public Access.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky.
2016b. Diachronic Word Embeddings Reveal Sta-
tistical Laws of Semantic Change. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1489–1501, Berlin, Germany. Association for
Computational Linguistics.

Ian Haney-López. 2014. Dog Whistle Politics: How
Coded Racial Appeals Have Reinvented Racism and
Wrecked the Middle Class. Oxford University Press.

Nick Haslam. 2016. Concept creep: Psychology’s ex-
panding concepts of harm and pathology. Psycholog-
ical inquiry, 27(1):1–17.

Robert Henderson and Elin McCready. 2018. How dog-
whistles work. In New Frontiers in Artificial Intelli-
gence: JSAI-isAI Workshops, JURISIN, SKL, AI-Biz,
LENLS, AAA, SCIDOCA, kNeXI, Tsukuba, Tokyo,
November 13-15, 2017, Revised Selected Papers 9,
pages 231–240. Springer.

Simon Hengchen, Nina Tahmasebi, Dominik
Schlechtweg, and Haim Dubossarsky. 2021. Chal-
lenges for computational lexical semantic change.
Computational approaches to semantic change,
6:341.

Niclas Hertzberg, Robin Cooper, Elina Lindgren, Björn
Rönnerstrand, Gregor Rettenegger, Ellen Breitholtz,
and Asad Sayeed. 2022. Distributional properties
of political dogwhistle representations in Swedish
BERT. In Proceedings of the Sixth Workshop on
Online Abuse and Harms (WOAH), pages 170–175.

Giles Howdle. 2023. Microtargeting, dogwhistles, and
deliberative democracy. Topoi, 42(2):445–458.

Anna Kapron-King and Yang Xu. 2021. A diachronic
evaluation of gender asymmetry in euphemism. In
Proceedings of the 2nd International Workshop on
Computational Approaches to Historical Language
Change 2021, pages 28–38, Online. Association for
Computational Linguistics.

Justin Khoo. 2017. Code words in political discourse.
Philosophical Topics, 45(2):33–64.

Yoon Kim, Yi-I Chiu, Kentaro Hanaki, Darshan Hegde,
and Slav Petrov. 2014. Temporal analysis of lan-
guage through neural language models. arXiv
preprint arXiv:1405.3515.

Andrey Kutuzov and Mario Giulianelli. 2020. UiO-
UvA at SemEval-2020 task 1: Contextualised embed-
dings for lexical semantic change detection. arXiv
preprint arXiv:2005.00050.

Andrey Kutuzov, Lilja Øvrelid, Terrence Szymanski,
and Erik Velldal. 2018. Diachronic word embeddings
and semantic shifts: A survey. In Proceedings of the
27th International Conference on Computational Lin-
guistics, pages 1384–1397, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

153

https://doi.org/10.1073/pnas.2121798119
https://doi.org/10.1073/pnas.2121798119
https://doi.org/10.1073/pnas.2121798119
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1073/pnas.1720347115
https://doi.org/10.1073/pnas.1720347115
https://doi.org/10.18653/v1/2020.acl-main.365
https://doi.org/10.18653/v1/2020.acl-main.365
https://doi.org/10.18653/v1/P16-1141
https://doi.org/10.18653/v1/P16-1141
https://doi.org/10.18653/v1/2021.lchange-1.5
https://doi.org/10.18653/v1/2021.lchange-1.5
https://arxiv.org/abs/1405.3515
https://arxiv.org/abs/1405.3515
https://arxiv.org/abs/2005.00050
https://arxiv.org/abs/2005.00050
https://arxiv.org/abs/2005.00050


Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the associa-
tion for computational linguistics, 3:211–225.

Elina Lindgren, Björn Rönnerstrand, Ellen Breitholtz,
Robin Cooper, Gregor Rettenegger, and Asad Say-
eed. 2023. Can Politicians Broaden Their Support by
Using Dog Whistle Communication? In 119th APSA
Annual Meeting & Exhibition, August 31 – Septem-
ber 3, 2023, Held in Los Angeles, California, Los
Angeles, California.

Nicolás Lo Guercio and Ramiro Caso. 2022. An ac-
count of overt intentional dogwhistling. Synthese,
200(3):203.

Rijul Magu and Jiebo Luo. 2018. Determining code
words in euphemistic hate speech using word embed-
ding networks. In Proceedings of the 2nd workshop
on abusive language online (ALW2), pages 93–100.

Karl Malmqvist. 2015. Satire, racist humour and the
power of (un) laughter: On the restrained nature
of Swedish online racist discourse targeting EU-
migrants begging for money. Discourse & Society,
26(6):733–753.

Martin Malmsten, Love Börjeson, and Chris Haffenden.
2020. Playing with Words at the National Library of
Sweden–Making a Swedish BERT. arXiv preprint
arXiv:2007.01658.

Matej Martinc, Petra Kralj Novak, and Senja Pollak.
2020a. Leveraging contextual embeddings for detect-
ing diachronic semantic shift. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 4811–4819, Marseille, France. European
Language Resources Association.

Matej Martinc, Syrielle Montariol, Elaine Zosa, and
Lidia Pivovarova. 2020b. Discovery Team at
SemEval-2020 Task 1: Context-sensitive Embed-
dings Not Always Better than Static for Semantic
Change Detection. In Proceedings of the Four-
teenth Workshop on Semantic Evaluation, pages 67–
73, Barcelona (online). International Committee for
Computational Linguistics.

Julia Mendelsohn, Ronan Le Bras, Yejin Choi, and
Maarten Sap. 2023. From dogwhistles to bull-
horns: Unveiling coded rhetoric with language mod-
els. Preprint, arXiv:2305.17174.

Julia Mendelsohn, Yulia Tsvetkov, and Dan Jurafsky.
2020. A Framework for the Computational Linguis-
tic Analysis of Dehumanization. Frontiers in Artifi-
cial Intelligence, 3.

Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751.

Jianmo Ni, Gustavo Hernández Ábrego, Noah Con-
stant, Ji Ma, Keith B. Hall, Daniel Cer, and Yin-
fei Yang. 2021. Sentence-t5: Scalable sentence en-
coders from pre-trained text-to-text models. Preprint,
arXiv:2108.08877.

Bill Noble, Asad Sayeed, Raquel Fernández, and Staffan
Larsson. 2021. Semantic shift in social networks. In
Proceedings Of* SEM 2021: The Tenth Joint Confer-
ence on Lexical and Computational Semantics, pages
26–37.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Anne Quaranto. 2022. Dog whistles, covertly coded
speech, and the practices that enable them. Synthese,
200(4):330.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

John W Ratcliff, David E Metzener, et al. 1988. Pattern
matching: The gestalt approach. Dr. Dobb’s Journal,
13(7):46.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Nils Reimers and Iryna Gurevych. 2020. Mak-
ing monolingual sentence embeddings multilin-
gual using knowledge distillation. arXiv preprint
arXiv:2004.09813.

Faton Rekathati. 2021. The KBLab Blog: Introducing a
Swedish Sentence Transformer.

Jennifer Saul. 2018. Dogwhistles, political manipula-
tion, and philosophy of language. In Daniel Fogal,
Daniel Harris, and Matt Moss, editors, New Work
on Speech Acts, pages 360–383. Oxford University
Press, Oxford.

Asad Sayeed, Ellen Breitholtz, Robin Cooper, Elina
Lindgren, Gregor Rettenegger, and Björn Rönner-
strand. 2024. The utility of (political) dogwhistles–a
life cycle perspective. Journal of Language and Poli-
tics.

154

https://arxiv.org/abs/2007.01658
https://arxiv.org/abs/2007.01658
https://aclanthology.org/2020.lrec-1.592
https://aclanthology.org/2020.lrec-1.592
https://doi.org/10.18653/v1/2020.semeval-1.6
https://doi.org/10.18653/v1/2020.semeval-1.6
https://doi.org/10.18653/v1/2020.semeval-1.6
https://doi.org/10.18653/v1/2020.semeval-1.6
https://arxiv.org/abs/2305.17174
https://arxiv.org/abs/2305.17174
https://arxiv.org/abs/2305.17174
https://doi.org/10.3389/frai.2020.00055
https://doi.org/10.3389/frai.2020.00055
https://arxiv.org/abs/2108.08877
https://arxiv.org/abs/2108.08877
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813


Amand F Schmidt and Chris Finan. 2018. Linear re-
gression and the normality assumption. Journal of
clinical epidemiology, 98:146–151.

Jason Stanley. 2015. How Propaganda Works. Prince-
ton University Press.

Nina Tahmasebi, Lars Borin, and Adam Jatowt. 2021.
Survey of computational approaches to lexical se-
mantic change detection. Language Science Press
Berlin.

Nina Tahmasebi and Haim Dubossarsky. 2023. Compu-
tational modeling of semantic change. In Claire Bow-
ern and Bethwyn Evans, editors, Routledge Hand-
book of Historical Linguistics, 2nd edition. Rout-
ledge.

Xuri Tang. 2018. A state-of-the-art of semantic
change computation. Natural Language Engineering,
24(5):649–676.

Yannis Theocharis and Andreas Jungherr. 2021. Com-
putational social science and the study of political
communication. Political Communication, 38(1-2):1–
22.

"Elizabeth Closs Traugott and Richard B." Dasher. 2002.
Regularity in semantic change. Cambridge Univer-
sity Press.

Rocco Tripodi, Massimo Warglien, Simon Levis Sul-
lam, and Deborah Paci. 2019. Tracing anti-
semitic language through diachronic embedding
projections: France 1789-1914. arXiv preprint
arXiv:1906.01440.

K. Vani, Sandra Mitrovic, Alessandro Antonucci, and
Fabio Rinaldi. 2020. SST-BERT at SemEval-
2020 Task 1: Semantic Shift Tracing by Cluster-
ing in BERT-based Embedding Spaces. ArXiv,
abs/2010.00857.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, \Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Ekaterina Vylomova and Nick Haslam. 2021. Semantic
changes in harm-related concepts in english. Compu-
tational approaches to semantic change, 6:93.

Sanford Weisberg. 2013. Applied linear regression,
fourth edition, volume 528. John Wiley & Sons.

Rachel Wetts and Robb Willer. 2019. Who is called
by the dog whistle? Experimental evidence that
racial resentment and political ideology condition
responses to racially encoded messages. Socius,
5:2378023119866268.

Ismail K White. 2007. When race matters and when
it doesn’t: Racial group differences in response to
racial cues. American Political Science Review,
101(2):339–354.

Kimberly Witten. 2023. The definition and typological
model of a dogwhistle. Manuscrito, 46:e–2023.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Ke Xu, Ju-
lian McAuley, and Furu Wei. 2021. Blow the dog
whistle: A Chinese dataset for cant understanding
with common sense and world knowledge. arXiv
preprint arXiv:2104.02704.

Linting Xue, Noah Constant, Adam Roberts, Mihir
Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua,
and Colin Raffel. 2021. mt5: A massively multilin-
gual pre-trained text-to-text transformer. Preprint,
arXiv:2010.11934.

A In-group and out-group vocabulary for
SGNS approach

Table 3 exemplifies the words whose embeddings
are used to model the in-group and out-group em-
beddings of the four DWEs in the SGNS approach.

B Example sentences

Warning: the following examples may be upsetting
or offensive to some readers.

Examples are selected from the training corpus
(Flashback) to illustrate high and low IOR values
from years with high and low general IOR val-
ues, as measured by BERT. To identify examples,
IOR values for individual sentences were computed.
That is, we compute IORt(w), as defined above,
but where −→w is not the diachronic embedding of t,
but the embedding of a word instance from the time
bin t. We show examples from the top (“high IOR”)
and bottom (“high IOR”) five of the sentences of a
year, measured by their individual IOR value.

B.1 berika

1. (low IOR, 2007) den typen av invandring är
bra och berikande och bör uppmuntras
(that kind of immigration is good and enrich-
ing and should be encouraged)

2. (high IOR, 2010) kålsvart hår och mörkt hud-
pigment, troligen hemmavarande i Iran eller
Irak, varför måste vi skandinaver berikas med
detta drägg?
(coal black hair and dark skin pigment, proba-
bly native to Iran or Iraq, why do we Scandi-
navians have to be enriched with this dreg?)

B.2 globalist

3. (low IOR, 2006) jag är alltså globalist, fri-
handelsförespråkare, demokrat och kapitalist
för att detta är det bästa sättet att göra fattiga
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DWE In-group Out-group
berika förstöra (destroy, inf.), förstör (destroy,

pres.), utnyttjar (exploit, pres.), utnyttja
(exploit, inf.), negativ (negative), negativa
(negative, pl.), negativt (negative, neut.)

positiv (positive), positiva (positive, pl.),
positivt (positive, neut.), ger (give, pres.),
ge (give, inf.), gynna (benefit, inf.), gynnar
(benefit, pres.)

globalist judar (jews), eliten (elite, def.), elit (elite,
indef.)

världsmedborgare (world citizen), inter-
nationellt (international, neut.), interna-
tionell (international), internationella (in-
ternational, pl.)

återvandring utvisning, skickar (send, pres.), skicka
(send, inf.)

flytta (move, inf.), återvänder (return,
pres.), återvända (return, inf.), hemland
(home country, indef.), hemlandet (home
country, def.)

förortsgäng invandrargäng (immigrant gang, indef.),
invandrare (immigrant, indef.), invan-
drarungdomar (immigrant youths)

utsatt (exposed), utsatta (exposed,
neut./pl.), förorten (suburb, def.), förorter
(suburbs, indef.), förorterna (suburbs,
def.), ungdomsgäng (youth gangs, indef.)

Note: def. = definite; indef. = indefinite; inf. = infinitive; neut = neuter; pres. = present; pl. = plural

Table 3: Vocabulary for in-group and out-group

människor rikare och utvecklar alla länder
som ingår i handelsutbytet
(so I am a globalist, free trade advocate, demo-
crat and capitalist because this is the best way
to make poor people richer and develop all
countries that are part of the trade exchange)

4. (high IOR, 2008) globalist-maffian med ju-
darna i spetsen har ju mer eller mindre full
kontroll över Amerika, och därmed har dom
tillgång till världens starkaste armé
(the globalist mafia with the Jews at the head
has more or less full control over America,
and thus they have access to the world’s
strongest army)

B.3 återvandring

5. (low IOR, 2011) de flesta invandrar p.g.a
studier, arbete, återvandring eller för att de
har anhöriga i Sverige
(most people immigrate due to studies, work,
re-migration or because they have relatives in
Sweden)

6. (high IOR, 2018) återvandring och utvisning
nu, det är enda lösningen
(re-migration and deportation now, that is the
only solution)

B.4 förortsgäng

7. (low IOR, 2014) kan tillägga att vi var ett
helsvenskt förortsgäng med 50 % skinnskallar

och 50 % fotbollshuliganer
(can add that we were an all-Swedish sub-
urban gang with 50 % skinheads and 50 %
football hooligans)

8. (high IOR, 2015) ett passivt / slappt invan-
drarflöde orsakar sånt, och man måste ak-
tivt minska folkvandringen som bosätter sig i
förorterna om man vill bli av med förortsgäng
(a passive / slack immigrant flow causes that,
and you have to actively reduce the migration
of people settling in the suburbs if you want
to get rid of suburban gangs)

C Transformations

To maximize the number of models having nor-
mal distribution of residuals, we tested combina-
tions of log transformation of variables. The log
transformation of the dependent variable and of the
∆IOR

ti,tj resulted in normally distributed residuals for
all models but BERT and mT5-XL. No combina-
tion of transformed variables was found that makes
the error term normally distributed for all models.
The regression models for the transformed data are
shown in Table 4.
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Dependent variable: log2(∆ti,tj )

SBERT BERT mT5-XL SGNS-
w5-d100

SGNS-
w10-d100

SGNS-
w15-d100

SGNS-
w5-d200

SGNS-
w10-d200

SGNS-
w15-d200

∆IOR 0.640∗∗∗ 0.424∗∗∗ 0.464∗∗∗ 0.286∗ 0.190 0.272∗ 0.285∗ 0.209 0.351∗∗

(0.066) (0.092) (0.091) (0.119) (0.128) (0.121) (0.109) (0.120) (0.113)
∆FPM -0.006 -0.043 -0.159 0.259∗ 0.249 0.205 0.257∗ 0.207 0.205

(0.065) (0.088) (0.092) (0.120) (0.125) (0.122) (0.110) (0.117) (0.113)
FPM (log) -0.451∗∗∗ -0.493∗∗∗ -0.647∗∗∗ 0.097 -0.033 -0.071 0.400∗∗∗ 0.300∗ 0.268∗

(0.067) (0.092) (0.088) (0.120) (0.129) (0.122) (0.110) (0.122) (0.114)
const 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000

(0.064) (0.087) (0.087) (0.119) (0.123) (0.120) (0.109) (0.116) (0.111)

R2 0.757 0.541 0.549 0.156 0.089 0.129 0.289 0.189 0.256
Adj. R2 0.745 0.518 0.527 0.114 0.043 0.085 0.253 0.148 0.219
Resid. Std. Er-
ror

0.509
(df=60)

0.699
(df=60)

0.693
(df=60)

0.949
(df=60)

0.986
(df=60)

0.964
(df=60)

0.871
(df=60)

0.930
(df=60)

0.891
(df=60)

F Stat. 62.391∗∗∗

(df=3; 60)
23.607∗∗∗

(df=3; 60)
24.378∗∗∗

(df=3; 60)
3.709∗

(df=3; 60)
1.949
(df=3; 60)

2.958∗

(df=3; 60)
8.128∗∗∗

(df=3; 60)
4.659∗∗

(df=3; 60)
6.889∗∗∗

(df=3; 60)

Notes: N = 64; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Relationship estimated: log2(∆ti,tj (w)) = β0 + β1 ×∆IOR

ti,tj (w) + β2 × log2(FPMti(w)) + β3 ×∆FPM
ti,tj (w)

Table 4: Explaining semantic change of DWEs (standardized coefficients), log-transformed data
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Abstract
Lexical Semantic Change, the temporal evo-
lution of the mapping between word forms
and concepts, can be studied under two com-
plementary perspectives: semasiology studies
how given words change in meaning over time,
while onomasiology focuses on how some con-
cepts change in how they are lexically realized.
For the most part, existing NLP studies have
taken the semasiological (i.e. word-to-concept)
view. In this paper, we describe a novel com-
putational methodology that takes an onoma-
siological (i.e., concept-to-word) view of se-
mantic change by directly inducing concepts
from word occurrences at the different time
stamps. We apply our methodology to a French
diachronic corpus. We examine the quality of
obtained concepts and showcase how the re-
sults of our methodology can <be used for the
study of Lexical Semantic Change. We discuss
its advantages and its early limitations.

1 Introduction

Lexical Semantic Change (LSC) is usually defined
as the evolution of the meaning of words over time.
In the last years, there has been an increasing num-
ber of computational approaches proposed to pre-
dict LSC between two periods (Schlechtweg et al.,
2020; Zamora-Reina et al., 2022) or more (Kulka-
rni et al., 2015; Alsulaimani and Moreau, 2023).
The most recent studies use contextualized word
representations and compare how the representa-
tions from a later time period differ from those of
an earlier period. While some of these approaches
use aggregation of pairwise distances between rep-
resentations of the two periods (Kutuzov and Giu-
lianelli, 2020; Kutuzov et al., 2022), another range
of work uses a clustering of a word’s contextualized
representations to distinguish its different senses,
and compare sense inventories over time (Montar-
iol et al., 2021; Laicher et al., 2021). However,
this view of LSC is only focused on specific tar-
get words and their meanings: it considers change

under an semasiological perspective. Another side
of this two-faced problem is the onomasiological
perspective, focused on changes in the way a given
concept is expressed (Geeraerts et al., 2023).

While the semasiological perspective has been
prevalent in recent NLP work on LSC, the onoma-
siological perspective is widespread in historical
linguistics. And one can argue that this perspective
has additional explanatory potential for uncovering
and characterizing patterns of semantic change, as
it takes a more systematic view of the lexicon. For
instance, Traugott (1985) argues that the way we
express abstract concepts usually borrows words
from more concrete concepts; Georgakopoulos and
Polis (2021) studied the mixed evolution of the
naming of celestial objects and the naming of time-
related concepts; Lehrer (1985) showed that animal
metaphors of human traits (e.g. snake for treacher-
ous person) often affect the whole naming of the
animal over time. To the best of our knowledge,
the only NLP work taking an onomasiological per-
spective is Franco et al. (2022), but it is limited in
scope since they study the evolution of the lexical
realizations of the concept DESTROY in Dutch.

One obvious obstacle for any large-scale onoma-
siological study of LSC is that it requires a con-
cept inventory. In this paper, we propose a novel
clustering-based approach that automatically in-
duces concepts from the word occurrences in a
diachronic corpus. In line with an onomasiolog-
ical view, we propose to describe a concept as a
set of lemmas that are used to express this concept
in a corpus. Specifically, we use contextualized
word vectors extracted from XLM-R to represent
word occurrences. We rely on a two-step hierar-
chical clustering to learn the concepts from word
occurrences at the different time periods. We ob-
tain clusters of words that are supposed to repre-
sent concepts as well as a set of concepts that each
lemma can refer to. We apply this methodology to a
French corpus (the Presto Corpus, Blumenthal et al.
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2017), and discuss the quality of obtained clusters
and the evolution of clusters and lemmas. Code for
this study can be found at https://github.com/
blietard/towards-onomasio-semchange.

2 Diachronic Concept Induction

We call concept the intended meaning behind the
usage of a word, the mental representation associ-
ated with a word in a given context and abstracting
over its denotation. In “a bunch of people” and “a
group of tourists”, “bunch” and “group” are syn-
onymous and both denote the same concept. We
call naming of a concept the set of lemmas used
to refer to this concept. In this paper, we use the
term “word” as a synonym of “lemma” to avoid
repetitions.

Let W be a set of target lemmas. Let C be a
corpus of texts spanning from time τstart to time
τend. The time span [τstart, τend] is divided into
a set of M periods T = {t1, . . . , tM}. We call
owt,i the i-th occurrence of the word w ∈W in the
corpus in period t. We denote Ow

t the set of all owt,i
for a given word w and given time period t.

2.1 Inducing concepts at a single period

Let us first consider a single time period t and
only the corresponding occurrences. The goal is
to automatically learn a clustering function that
maps each word occurrence owt,i to a cluster c that
represents a concept. Contrarily to Word Sense
Induction that only regroups occurrences around
the same word sense, our clustering aims to account
for concepts shared across lemmas: all occurrences
instantiating the same concept, whether they are
of the same word or not, should be mapped to the
same concept-cluster c. We propose to perform this
concept clustering in two steps, a lemma-centric
clustering and a cross-lexicon clustering.

In the first, lemma-centric clustering, an algo-
rithm A1 partitions each lemma w’s occurrences
to obtain a set of nw clusters, as in Martinc et al.
(2020), which we simply call sense clusters. The j-
th sense of lemma w at time t group is represented
with swt,j . For each word w at time t we obtain the
set Sw

t = {swt,1, . . . , swt,nw
}.

The second, cross-lexicon clustering aims at
merging sense clusters containing occurrences with
the same concept, and keep distinct sense clusters
of occurrences with different meanings. In the
representational space of all sense clusters of all
lemmas (

⋃
w∈W Sw

t ), we apply another cluster al-

gorithm A2, obtaining clusters of sense clusters.
The final obtained clusters are our concept clusters.

The mapping from occurrences to concepts is
done by transitivity: if swt,j is clustered in a concept
c, any occurrence owt,i clustered in the group repre-
sented by swt,j can be directly assigned to concept
c. By extension, we say a concept cluster c con-
tains a lemma w if one of the occurrences of w is
assigned to c. Sense clusters of the same lemma
w are said to be merged because their occurrences
will appear in the same concept cluster in the end.
Thus, when in our analysis we refer to the senses
of a lemma and its degree of polysemy, we are only
interested in the concept-derived senses, i.e. the set
of the concept clusters that occurrences of a word
are assigned to and not the intermediate sense clus-
ters. A polysemous word is expected to be assigned
to multiple clusters, while synonymous words are
expected to be assigned to at least one common
cluster.

2.2 Inducing concepts over time

For diachronic purposes, we need not only to con-
sider concepts induced at one time t, but also to
align concept clusters of different periods. Follow-
ing existing work such as Kanjirangat et al. (2020),
we propose to learn the clusterings merging all time
periods, using all occurrences from C as a whole
instead of learning clusterings for each time inde-
pendently. Doing so, we can track the evolution of
a concept cluster simply by looking at the occur-
rences from the different times that are assigned to
this cluster. We can also track the evolution of a
lemma by looking at the different clusters to which
its occurrences are mapped over time. Not only
does this allow to detect a semantic change, but it
is also characterizes the type of change (revealing
if the lemma gained and/or lost senses).

3 Experiments

We apply the proposed methodology (section 3.2)
to an historical corpus. We discuss the quality of
clusters in section 3.3, and conduct both semasio-
logical and onomasiological studies in sections 3.4
and 3.5.

3.1 Diachronic Data

The Presto Corpus1 is a French historical corpus of
texts from 1500 to 1950 (Blumenthal et al., 2017).

1http://presto.ens-lyon.fr/?page_id=584
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Most word occurrences are annotated with a Part-
Of-Speech tag and the modern form of lemmas, al-
lowing us to mostly ignore orthographic variations
over time.2 We use the freely available “Noyau”
part which contains 53 documents. We focused
this initial study study on Nouns. For statistical
significance and because of the rather small size
of the corpus, we selected the 623 most frequent
noun lemmas across the overall time span to be our
target words, tallying a total of 314k occurrences.
In our analyses, we define 3 periods such that they
all contain balanced portions of the data (33% of
the target lemmas’ occurrences): 1500-1699, 1700-
1799 and 1800-1949. The 3 intervals share 498 out
of the 623 selected lemmas. Unless stated other-
wise (as in Section 3.4), our analyses are conducted
using the full set of 623 lemmas. A discussion of
our selection process and choice of periods can be
found in Appendix A.3.

To decrease the impact of orthographic differ-
ences in old periods, we partially lemmatize sen-
tences by replacing all nouns, verbs, adjectives and
adverbs with their modern-form lemmas. While
we acknowledge that these morphological replace-
ments may bring a slight semantic deviation (e.g.
singular instead of plural), we consider that over-
coming orthographic discontinuities is a higher pri-
ority for the clustering to be as little as possible
influenced by tokenization-based differences when
using Contextualized Language Models to repre-
sent occurrences in a vector space.

French-English translations of examples used in
this paper can be found in Appendix A.1.

3.2 Models and Algorithms

We use the XLM-R model (Conneau et al., 2020)
(large) to get contextualized vector representations
of occurrences of the 623 lemmas. For each lemma,
we use Agglomerative Clustering with minimum
linkage in place of algorithm A1 to create (lemma-
centric) clusters of occurrences, the sense clusters.
As explained in Section 2.2, the clustering algo-
rithm is applied on the whole set of occurrences
for each lemma, regardless of time periods. Word
embeddings contained in each cluster are averaged
to obtain a single vector representation per sense
cluster. The cross-lexicon clustering algorithm A2

is applied to the set of sense cluster representatives
of all words. In our experiments, A2 is chosen to

2For the method to be applied on unannotated data, one
could use a syntactic parser/lemmatizer with special rules for
orthographic changes (e.g. VARD2, Baron and Rayson 2008).

be Agglomerative Clustering with average linkage.
In the end, occurrences are labeled with a concept
cluster resulting from A2 by transitivity from A1,
as described in 2.1.

We choose XLM-R because of its zero-shot
cross-lingual transferability to French due to its
multilingual training data. We extracted vectors
from layers 14 to 17 (incl.), averaging over these
layers to get the embeddings of the target word.
Vectors of subwords were averaged if necessary to
get a single vector. This choice of using interme-
diate/high layers of the model is motivated by the
work of (Chronis and Erk, 2020) who found that
lexical similarity (a core aspect of synonymy) was
best represented in these layers. We also find these
layers to produce qualitatively better clusters than
last layers of the model (21 to 24).

In this diachronic data, there is no sense annota-
tion to guide us in chosing the algorithm and hyper-
parameters. Therefore we relied on our expertise
of French for accessing the quality of the obtained
cluster in the most recent time period (1800-1949),
similarly to analysis presented in Section 5. For
a given combination of A1 and A2, we kept the
set of hyperparameters that provides the highest
number of concept clusters containing at least 2
but no more than 5 lemmas in the last time period.
This upper limit of 5 was decided from prelim-
inary observations that clusters containing more
that 5 different lemmas almost always gathered
lemmas that did not share a common concept but
were linked by other non-semantic factors (for in-
stance, words that shared a common subword to-
ken). In the absence of sense annotations to better
evaluate the clusterings, this rule helps ensuring
the recall of a maximum number of concept clus-
ters, while avoiding clusters that are too large. For
A1, we tried K-means, Affinity Propagation and
Agglomerative Clustering. For algorithm A2, we
tried Affinity Propagation and Agglomerative Clus-
tering. To decide which algorithms to use, we kept
the combination that produced the most plausible
clusters of size 2 to 5 in this period, i.e. clusters
containing actual (near-)synonyms. This process
resulted in our preference for Agglomerative Clus-
tering. More details on tried hyperparameter values
in Appendix A.2.

Our double-clustering methodology using Ag-
glomerative Clustering was benchmarked among
other systems in a parallel study conducted in Lié-
tard et al. (2024) on SemCor, a synchronic English
corpus annotated with concepts from the original
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Cluster size
Category Total 2 3 4

Nb. of clusters 101 62 29 10

Synonyms 27% 32% 24% 0%
Near-synonyms 20% 15% 28% 30%
Lexical / topical 40% 42% 38% 40%
Invalid cluster 13% 11% 10% 30%

Table 1: Categorization of small induced concept-
clusters in 1800-1949. Invalid clusters are those show-
ing no semantic relation. Raw counts in Appendix A.6.

Princeton WordNet. It achieved the best results
reaching a F1 score of 0.60 and a precision of 0.80.

Improvement of the model selection criterion
used in this initial study is left for future work.

3.3 Analysis of Induced Concepts

With the chosen clustering algorithms and corre-
sponding hyperparameters, we obtain a total of 867
concept-clusters. In each period, 40% of the 867
clusters are not represented and another 40% are
expressed with only a single lemma. In the 265
(31%) that are instantiated in all three periods, 54%
of them also only contain a single lemma. This
particular observation is in line with Clark (1993)’s
principle of Conventionality : “For certain mean-
ings, there is a form that speakers expect to be
used in the language community”. These distribu-
tion details can be found in Appendix A.5. We
also found that while only 16% of concept clus-
ters contain multiple lemmas, 46% of words have
at least two senses:3 polysemy is a more frequent
phenomenon that synonymy. We also noticed that
a small fraction of clusters (less than 7) are very
large and gather lemmas not based on semantic
similarity (e.g. based on a common subwords after
being processed by the tokenizer (e.g. “autorité”,
“postérité”)).

Clusters of smaller sizes are more reliable. Out
of the 867 clusters, we manually evaluated the 101
concept-clusters of 2 to 4 lemmas in the last time
interval, and the distribution of our annotations is
displayed in Table 5. We focused only on the last
time period because it is the closest to the current
state of French. Only 10% of these small clus-
ters are to be considered invalid. Around 30% are
actual (cognitive) synonyms, and 20% are near-

3average polysemy: 2.28 senses per word ; average syn-
onymy: 1.15 word per concepts

Figure 1: JSD and detected type of evolution of lemmas
with respect to their initial number of senses. Missing
points (no bar and no marker) indicate that no lemma
in this category of evolution had this initial number of
senses. Stable lemmas with 1 sense have a JSD of 0.

Concept Evolution #Concepts

Expanded naming 27 (10%)
Shrinked naming 5 (2%)

Both 6 (2%)
Identical naming 227 (86%)

Table 2: Evolution of concept-clusters over time.

synonyms,4 i.e. words that are not absolute syn-
onyms but overlapping in meaning (e.g. “bourse”,
“fortune”, “richesse”, “trésor” denote an individ-
ual’s wealth at different scales). The remainder
exhibits a lexical (like hyper/hyponyms, antonyms,
etc.) or another topical relation between words (e.g.
“journée”, “nuit”, “soir”). This kind of clusters
can be seen as partial semantic fields. Although
they are not synonyms, we argue that they are still
interesting for the study of LSC. For instance, the
disappearance of a lemma from such a cluster could
indicate a transfer of its unique semantic load to
another word.

3.4 Evolution of Target Lemmas

In this section, we discuss the semantic evolution
of target lemmas, i.e. a semasiological view. Here
we only focus on the 498 (out of 623) lemmas that
appear in every period and look at their concept-
derived senses. We use these sense inventories to
distinguish 4 categories of evolution a lemma can
undergo. A lemma gained a sense if one of its
senses in the last period is new compared to the
first period. In the reverse scenario, we say the

4using definitions of scales of synonymy provided by
Stanojevic (2009).
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lemma lost a sense. A lemma can also both gain
and loose a sense between the first and the last time
periods. A lemma is said to be stable if none of
these cases apply.

Prior works like Giulianelli (2019) have pro-
posed continuous measures of semantic change
based on distribution in sense inventories. For each
target word, we compute the Jensen Shannon Di-
vergence (JSD) between the distribution of concept
to which its occurrences are assigned in the first pe-
riod and those of the last period. Both the categori-
cal and the continuous approaches reflect LSC, the
former allowing to charaterize the type of change
and the latter accounting for the relative frequency
of each sense.

Let us now consider the relation between LSC
and polysemy. In Figure 1, we show these two
measures of semantic change (evolution category
and averaged JSD) with respect to the number of
senses. 318 target lemmas out of 498 are stable in
meaning and have lower JSD. Note that these stable
lemmas have a very low number of senses (1 or 2).
Conversely, lemmas with stronger semantic change
are those with many senses. They are more prone
to loose and/or gain a sense over time. We also find
a significant (p-value < 0.01) positive correlation
between the initial number of senses and JSD. This
holds even if we only consider those with at east
2 initial senses. This observation echoes the Law
of Innovation proposed by Hamilton et al. (2016)
and studied by Luo and Xu (2018), stating that
polysemy is positively correlated with semantic
change.

3.5 Evolution of Induced Concepts
In this section, we adopt an onomasiological point-
of-view. Let us focus on the 265 concepts that are
instantiated at all time intervals. We are interested
in the evolution of the naming of a given concept
over time, i.e. changes in the set of lemmas appear-
ing in the corresponding cluster between the first
time interval (1500-1699) and the last one (1800-
1949). Such a naming may have expanded (gained
lemmas), shrinked (lost lemmas) or both, or neither
and remained identical. The distribution of these
cases is presented in Table 2

86% of induced clusters kept an identical nam-
ing, which we expected because we had no diffi-
culty to understand the meaning of texts from 1550
in modern spelling.

In expanded-naming clusters, we find that it re-
sults in most cases from new lemmas appearing

later in the corpus. We search their history in the
TLFi, a reference dictionary for French5, and find
the introduction of the word in the corpus often
coincides with a new meaning that is more general
(less specific) than existing ones, and the cluster
to which the new word is assigned indeed corre-
sponds to this emerging sense. For instance, the
word “tribu” appeared in the 1700-1799 interval
in the corpus and is clustered with “peuple.” The
TLFi indicates that it was in 1734 that “tribu” ac-
quired its new meaning of “social group based on
ethnic kinship”. Yet, we cannot verify that the in-
troduction is caused by the new meaning. In other
cases, the introduced word does not have existing
senses and is newly created at the time of its ap-
pearence in the corpus (e.g. “incendie” (clustered
with “feu”), only attested past 1600 in the TLFi).

In the case of shrinked-naming concepts, we can
distinguish clusters in which a lemma disappeared
from the corpus (e.g. “parquoi”, old alternative to
“pourquoi” with which it was clustered at the begin-
ing) and clusters in which a lemma was removed
from the cluster while still existing (e.g. “amitié”,
no longer clustered with “amour”, as its use for
romantic feelings became old-fashioned.)

4 Conclusion

In this paper, we proposed a new methodology
for inducing concepts from word occurrences. We
mapped each word to a set of concepts and each
concept to a set of words at different time period.
Using historical data in French, we made of proof-
of-concept of this methodology and showed in an
initial study that this approach allows to character-
ize the evolution of a word’s sense inventory, as
well as those of a concept’s naming. This offers
a promising direction and can lead to a better un-
derstanding of Lexical Semantic Change and its
systemic aspects, enabling the investigation of both
the semasiological and the onomasiological aspect
of Lexical Semantic Change.

5 Limitations

Without access to sense-annotated diachronic data,
we cannot evaluate with certainty the quality of
induced concept-clusters. Therefore, while we con-
ducted a qualitative evaluation on a portion of the
clusters at the lemma level, we cannot evaluate the
precision of the clustering at the occurrence level,
neither whether we retrieved all actual concepts.

5http://atilf.atilf.fr/
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To select the best set of hyperparameters, we
choose to maximize the number of obtained clus-
ters containing between 2 and 5 lemmas. We dis-
carded the conventional use of statistical criterion
such as Silhouette score because (i) this score puts
an assumption on the shape/density of clusters and
we don’t believe it applies ; (ii) Martinc et al. (2020)
already showed that Silhouette score was not satis-
fying when inducing senses for Lexical Semantic
Change. Our criterion is inspired by the objective
to retrieve a maximum number of concept and com-
plete naming, and the observation that clusters of
more than 5 lemmas are usually noisy and invalid.
Without annotated data, we cannot ascertain how
good this heuristic is. A future study could attempt
to compare different heuristics to determine the
most relevant to induce concepts.

Prior studies of LSC with word-sense clustering
(Martinc et al., 2020; Kutuzov et al., 2022) found
that clustering in raw vector spaces from Language
Models sometimes find clusters of word usages
instead of actual word meanings, which may hap-
pen in our lemma-centric clustering. We think the
impact of this in the onomasiological setting is
limited; this may explain the number of clusters
actually corresponding to lexical/topical relations
instead of actual (near-)synonymy. Improving the
lemma-centric clustering to avoid this could in-
crease the precision of obtained clusters in future
studies.

The small size and the sparse nature of the cor-
pus prevents detailed analysis and fine-grained re-
sults. Taking smaller time periods lead to very
unbalanced number of lemmas/occurrences, and
the 18th century is prominent compared to other.

The fact that a lemma is missing at a given period
does not necessarily mean that it was not used at
all at the time; it could be just an artefact of the
small size of the corpus.

Our clustering approach appears to group to-
gether word tokenized in multiple subwords, with-
out actual semantic relation between them. Further
research could be made about these invalid clusters
and how to parse them into plausible clusters.
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A Appendix

A.1 French-English translations
In this paper, we used a number of exemples in
French, as our experimental data were in French.
Translations can be found in Table 3.

A.2 Representations, Algorihtms,
Hyperparameters

For k-means as A1, we tried values of k between
2 and 10. For both A1 and A2, when using Ag-
glomerative Clustering, we tried average, minimum
and maximum linkage. We set a linkage threshold
below which clusters are merged iteratively. Call-
ing µ the average distance between occurrences
of a considered set of occurrences, and σ the stan-
dard deviation, we set the value of this threshold
to µ + n × σ, with n an hyperparameter. When
using Agglomerative Clustering for A1 on each set
of occurrences of a lemma, n is shared across all
lemmas but the linkage threshold is computed us-
ing each set of occurrences. As a result, we obtain
a dynamic number of clusters that is more suited to
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French English

amitié friendship, affection
amour love
autorité authority
bourse purse
ennui boredom
envie envy
feu fire
fortune fortune, wealth
groupe group
incendie fire (vast and uncontrolled)
jour day
journée day, daytime
parquoi old alternative for pourquoi
peuple people
postérité posterity
pourquoi the why, an explaination
réseau network
richesse wealth
soir evening
système system
trésor treasure
tribu tribe

Table 3: French-English translations

each lemma. We tried value of n between -2 and
+2.

A.3 Selection criterion

We find that the data are noisy, and a number of
lemmas do not appear often. Indeed, the number of
documents in the corpus is relatively small, leaving
room for sparsity and discontinuity in the represen-
tations of lemmas. Therefore, we had to select a
subset of them.

To this extent, we partition it into 50 years time
spans. Doing so, we ensured that the number of
documents was balanced between spans, and that
we can control that selected lemmas are represented
frequently enough and not sparsely across too large
spans.

In order to mitigate the noise resulting from the
sparse nature of the data, we apply the following
selection criteria. We keep only lemmas :

• appearing in at least 3 consecutive spans,

• occurring at least 10 times in the overall cor-
pus,

• at least 3 times in each spans where they are
present,

• composed of a single word and of 3 characters
at least.

• appearing in the first or the last span or both.

Doing so, we mitigate the risk for selected lem-
mas to be subject to unexplained discontinuity over
time. The last criterion is applied because our anal-
yses are conducted mainly by comparing early and
late time periods.

After selection however, these 50 years long
spans are not balanced enough in the corpus for
fair analyses. See Appendix A.4.

A.4 Corpus description and choice of periods

Time span #Doc. |W| #Occ. Ratio

1500 6 484 12 014 24.8
1550 5 523 30 206 57.8
1600 6 537 35 202 65.6
1650 6 541 34 177 63.2
1700 4 547 10 729 19.6
1750 8 608 89 179 146.7
1800 6 614 46 778 76.2
1850 6 611 33 823 55.4
1900 6 599 22 146 37.0

Total 53 623 314 254 504.4

Table 4: Number of documents, of target words, of
occurrences and ratio between occurrences and target
words at the different spans (half centuries).

The number of documents, of selected target
words and of their occurrences can be found in
Table 4. Note that the number of occurrences is not
uniform across the spans.

We remark here that the 18th century is an out-
lier. Its first half contains the lowest number of
occurrences, but its second half is very big com-
pared to any other span, containing around 28% of
occurrences on its own.

Figure 2 shows that the number of target lemmas
is not equally distributed over 50-years time spans,
and that only a subset of them (425 out of 623) is
actually appearing in all spans. The induction of
concepts suffers a similar imbalance.

We posit three possible reasons for a lemma to be
missing in a time span : (i) the lemma was not used
in the language at the time, whether is appears later
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Figure 2: Number of lemmas and concepts in the differ-
ent periods (half centuries). Hatched areas represent the
425 lemmas and 202 concepts appearing in all periods.

Figure 3: Number of lemmas and concepts in the dif-
ferent time intervals. Hatched areas represent the 498
lemmas and 265 concepts appearing in all periods.

or had already disappeared ; (ii) the lemma was
used but is not represented in this span of corpus ;
(iii) the lemma was used but rare, and as such does
not appear in the corpus for this time span.

Similarly, we posit three possible reasons for
concepts not to be instantiated: (i) some concepts
may not exists in the language at some time spans
(e.g. the concept of COMPUTER) ; (ii) this may
be because the span is relatively short and the cor-
pus is not uniformly distributed; (iii) our cluster
induction may have failed to identify occurrences
instantiating this concept. There is however no way
for us to know which of these cases apply.

This leads us to consider larger time periods for
our analyses : 1500-1699, 1700-1799 and 1800-
1949. Such large periods would not be suitable for
target words selection, as we need to ensure a word
is regularly instantiated over time. At analysis time
however, while large periods will prevent us to
notice subtle or short-lived semantic changes, this
balances the number of occurrences, of lemmas
and of retrieved concepts (see Figure 3).

The length of considered periods for analysis has
no influence on the actual clustering, as we apply
the clustering algorithms on data from all periods.

Cluster size
Category Total 2 3 4

Synonyms 27 20 7 0
Near-synonyms 20 9 8 3
Lexical/topical relation 41 26 11 4
Invalid cluster 13 7 3 3

Total 101 62 29 10

Table 5: Categorization of small induced concept-
clusters in 1800-1949. Invalid clusters are those show-
ing no semantic relation.

A.5 Distribution of concepts size over time
Figure 4 shows the distribution of concept sizes
over time. At a given time, the concept size is the
number of lemmas for which at least one occur-
rences is assigned to the concept.

Figure 4: Distribution of the size of the 867 concept-
clusters in the different time intervals. Size of 0 means
that these concepts are not instantiated.

A.6 Qualitative analysis: raw counts
A.7 Evolution of the number of senses over

time
Table 6 shows how the number of senses of lemma
changes. Stable lemmas are those with a very low
number of senses, while lemma that change have
higher number of senses.
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Average number of senses
Evolution of lemmas # Lemmas 1500-1699 1700-1799 1800-1949

Lost a sense 88 2.84± 2.02 1.94± 1.44 1.32± 1.01
Gained a sense 53 1.15± 0.50 1.77± 1.12 2.30± 0.80
Both 39 4.95± 3.09 4.10± 2.60 4.18± 2.52
Stable 318 1.07± 0.25 1.18± 0.44 1.07± 0.25

Table 6: Evolution of the number of senses of target lemmas over time.
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Abstract

This paper describes our solution of the first
subtask from the AXOLOTL-24 shared task on
Semantic Change Modeling. The goal of this
subtask is to distribute a given set of usages
of a polysemous word from a newer time pe-
riod between senses of this word from an older
time period and clusters representing gained
senses of this word. We propose and experi-
ment with three new methods solving this task.
Our methods achieve SOTA results according
to both official metrics of the first substask. Ad-
ditionally, we develop a model that can tell if a
given word usage is not described by any of the
provided sense definitions. This model serves
as a component in one of our methods, but can
potentially be useful on its own.

1 Introduction

The shared task on explainable Semantic Change
Modeling (SCM) AXOLOTL-24 (Fedorova et al.,
2024) is related to automation of Lexical Semantic
Change (LSC) studies, i.e. linguistic studies on
how word meanings change over time. It consists
of two subtasks, however, we focus on the first one
and skip the definition generation subtask. Unlike
other shared tasks LSC held before, the first subtask
of AXOLOTL-24 requires automatic annotation of
individual usages of target words instead of target
words as a whole. An example of the provided data
and required outputs is shown on Figure 1. Namely,
for each target word, two sets of usages from an
older and a newer period are given (we will call
them old and new usages). Additionally, a set of
glosses describing word senses in the older time
period (old senses) are provided, and the old usages
are annotated with these sense glosses. Senses oc-
curring among the new usages (new senses) should
be discovered automatically. To be precise, the
goal is to annotate each new usage with one of the
given old sense glosses, or a unique sense identifier
if none of them is applicable. We will refer to those

Old usages
a cell in a castle

New usages
locked in a cell

call me on my cell

Glosses for old senses
1. a small room for one or
more prisoners in a prison
2. the smallest unit in an
organism

blood cells

cell with stone walls

he was put in a cell

1.

1.

Sense Sense

1.

2.

3.

1.

bacteria cell 2.

Old time period New time period

Target word: cell

Inputs

Outputs
Glosses for gained senses
3. a phone that does not have
wires and works by radio

Figure 1: An example of data for the first subtask of
AXOLOTL-24.

senses that occur only among old and only among
new usages as lost and gained senses, and all other
senses as stable senses.

To solve the task, we experiment with three types
of models. Word Sense Disambiguation (WSD)
models for a given word usage select among given
glosses the most suitable one. Word Sense Induc-
tion (WSI) models group word usages into clusters
corresponding to word senses, they are applicable
even when sense descriptions are not available. Fi-
nally, Novel Sense Detection (NSD) models find
usages corresponding to unknown word senses, the
ones that are not covered by the provided defini-
tions. We propose three methods that solve the
task. Our best solution denoted as Outlier2Cluster
combines all three types of models in a novel way,
essentially using an NSD model for each usage
to decide whether to return a definition selected
by a WSD model, or an identifier of a cluster this
usage was put into by a WSI model. On average
across languages, this solution achieves SOTA re-
sults among all participants of the first substask of
AXOLOTL-24 according to both official metrics.

An important additional contribution is the pro-
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posed NSD model and the related experiments. We
study the importance of different features of the
NSD model and its effect on SCM quality. Our
experiments suggest that improving NSD quality
is the most promising direction for the future.

2 Related work

LSCD methods. Several shared tasks related
to LSCD were organized in the past, includ-
ing Schlechtweg et al. (2020); Kutuzov and Pivo-
varova (2021); Zamora-Reina et al. (2022). Un-
like AXOLOTL-24 (Fedorova et al., 2024), they
required word-level predictions from their partici-
pants, either in the form of word ranking or binary
word classification. This type of task setup is gen-
erally mentioned under the name Lexical Seman-
tic Change Detection / Discovery (LSCD). In the
earlier shared tasks the best results were achieved
by solutions that employed non-contextualized
word-level embeddings such as word2vec (Mikolov
et al., 2013) and vector alignment methods such
as Canonical Correlation Analysis and Orthogonal
Procrustes Alignment (Pömsl and Lyapin, 2020;
Pražák et al., 2020). However, recently token-
level methods (Laicher et al., 2021; Rachinskiy and
Arefyev, 2021a, 2022) have surpassed them. These
methods rely on masked language models fine-
tuned on existing datasets for various tasks of lex-
ical semantics. For instance, solutions relying on
the contextualized embeddings from GlossReader,
which is a WSD system, have shown SOTA results
in the shared tasks on LSCD in Russian and Span-
ish (Rachinskiy and Arefyev, 2021a, 2022). Meth-
ods proposed in this work exploit GlossReader too,
both as a WSD model and as a source of contex-
tualized embeddings well-suited for LSC-related
tasks.

GlossReader is a multilingual gloss-based
WSD model originally developed to solve the
Word-in-Context task (Rachinskiy and Arefyev,
2021b). It modifies the English WSD model
BEM (Blevins and Zettlemoyer, 2020) replacing
the backbone with the multilingual XLM-R lan-
guage model (Conneau et al., 2020). The model
consists of a gloss encoder and a context encoder,
both initialized with the XLM-R weights and fine-
tuned jointly learning to select among all glosses
of a target word the one describing its sense in
a given context. Specifically, the dot product be-
tween the context embedding and the correct gloss
embedding is maximized.

NSD methods. Several methods were proposed
to solve the NSD task. Some of them perform WSI
internally. For instance, Lau et al. (2012); Cook
et al. (2014) employ a topic modelling approach
to jointly cluster old and new usages using the Hi-
erarchical Dirichlet Process. Clusters are ranked
based on the novelty score (the difference between
estimated probabilities of a cluster appearing in the
new and the old corpus). While the method was
originally designed for LSCD, the novelty ranking
of senses can be combined with a static threshold
to identify novel senses.

Alternatively, Mitra et al. (2015) performs WSI
separately for an old and a new corpus on graphs,
where an edge weight between two words is propor-
tional to the number of words appearing in bigrams
with both of them. A cluster in the new corpus is
labeled as a novel sense if words in this cluster have
weak links with the target word in the graph for the
old corpus. A recent method by Ma et al. (2024)
uses BERT (Devlin et al., 2019) to build contextu-
alized representations. It employs agglomerative
clustering to perform WSI and then matches old
and new clusters based on their centroids. The new
clusters that are not matched are considered novel
senses. Similarly to this method we use agglom-
erative clustering for WSI, but employing Gloss-
Reader to obtain contextualized embeddings.

In Erk (2006) several NSD methods were pro-
posed to detect word senses that are not described
in FrameNet (Baker et al., 1998). Instead of re-
lying on WSI, similarly to our NSD method their
best method formulates the task as an outlier de-
tection problem. They employ distances between
old and new usages requiring a significant number
of old usages for each sense, which are not always
available in AXOLOTL-24. Thus, we rely on dis-
tances between new usages and old glosses instead.
Another similar method is introduced in Lauten-
schlager et al. (2024). They use the XL-LEXEME
model (Cassotti et al., 2023) to build representa-
tions for usages and senses. Sense representations
are built from glosses or example usages of senses
taken from dictionaries. They do not always con-
tain the target word, which makes application of
XL-LEXEME non-trivial. Authors attempt to solve
this problem by modifying glosses and example us-
ages to include the target word. For each usage
its nearest sense is found based on the cosine simi-
larity or the Spearman’s correlation between their
embeddings. If the similarity is above a threshold,
the usage is considered to belong to some non-

169



described sense. Our methods also rely on usage
and sense representations, but we use GlossReader
which has a separate gloss encoder and does not
require any preprocessing for glosses. We experi-
ment with many measures of similarity between a
sense and a usage embedding, and found the man-
hattan distance between l1-normalized embeddings
to outperform other measures and a classifier on a
combination of measures to perform best. However,
we did not experiment with example usages from
sense inventories. When such usages are available,
being combined with glosses they may potentially
improve sense representations.

3 Methods

3.1 Target word positions

All our methods assume that a usage is represented
as a string and two character-level indices pointing
to a target word occurrence inside this string. How-
ever, for the Russian subsets these indices were
absent. To find them, we first generated all gram-
matical forms for each target lemma using Pymor-
phy2 (Korobov, 2015). Then retrieved all occur-
rences of these forms as separate tokens in the pro-
vided usages employing regular expressions.1 For
usages with several occurrences of the target word
we selected one of them that has both left and right
context of reasonable length.2 We inspected new
usages from the development and the test sets that
did not contain any of the automatically generated
word forms and added absent forms manually, then
reran retrieval.3

3.2 WSD methods

The first group of methods in our experiments in-
clude pure WSD methods, which select one of the
provided definitions of old senses for each new
usage, and thus, cannot discover gained senses.

1E.g. ’\b(cat|cats)\b’, where \b denotes a word
boundary. Matching is case-insensitive.

2This idea is based on our observations that a word oc-
currence is encoded sub-optimally when it is either the first
or the last token, which is probably related to confusion of
Transformer heads that have learnt to attend to the adjacent to-
kens (Voita et al., 2019). The heuristic implemented takes the
second to last occurrence if there are more than two of them.
For two occurrences it takes argmaxu∈{u1,u2}min(lu, ru),
where lu, ru are the lengths of the left and the right contexts.

3Repeating this manual procedure for all Russian data
requires significantly more efforts and would have few benefits
for our methods. Thus, all old usages having this issue were
left without indices and new usages from the training set we
dropped.

GlossReader. We employ the original Gloss-
Reader model (Rachinskiy and Arefyev, 2021b) as
the baseline. For a given new usage u of a target
word w its usage representation ru is built with the
context encoder. Then gloss representations rg are
built for each gloss g of the target word w using the
gloss encoder. Finally, the gloss with the highest
dot product similarity to the usage is selected.

To improve the results, we further fine-tune the
GlossReader model on the data of AXOLOTL-24.

GlossReader FiEnRu is fine-tuned following
the original GlossReader training procedure on
three datasets: the train sets of the shared task in
Finnish and Russian, and the English WSD dataset
SemCor (Miller et al., 1994) which GlossReader
was originally trained on. We employ all old and
new usages from the Russian and Finnish datasets
along with their sense definitions. We fined-tuned
for 3 epochs using 90/10% train/validation split to
select the best checkpoint.4

GlossReader Ru is fine-tuned exactly the same
way, but only on the train set in Russian.

GlossReader Fi SG is fine-tuned on the Finnish
train set only. Unlike two previous models, we
made an attempt to teach this model how to dis-
cover novel senses. Specifically, we replaced all
glosses of gained senses with a Special Gloss (SG)
"the sense of the word is unknown" in Finnish5

and fine-tuned the model as before. For inference
we tried adding the special gloss to the provided
old glosses, essentially extending the WSD model
with NSD abilities. However, this resulted in a
noticeable decrease of the metrics on the Finnish
development set. Thus, we decided to use the spe-
cial gloss for training only.6

3.3 WSI methods
Unlike WSD methods, WSI methods do not use
definitions or any other descriptions of word senses.
Instead they discover senses of a word from an un-
labeled set of its usages by splitting this set into
clusters hopefully corresponding to word senses.
WSI methods cannot attribute usages to the pro-
vided old glosses, but can potentially group usages

4The last checkpoint was selected, though after ≈0.5
epochs metrics improve very slowly.

5"sanan merkitystä ei tunneta" as translated by Google
Translate

6The majority of words in the Finnish dataset have one
sense only, see Section 4.2. Pure WSD methods always return
perfect predictions for such cases, thus, it is very hard to
compete with them on this dataset. In the future we plan to
experiment with this model on the Russian dataset having
much smaller proportion of such words.
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of the same sense, including gained senses, into a
separate cluster.

Agglomerative is the only WSI method we pro-
pose and experiment with. For each new usage
its representation ru is built using the context en-
coder of the original GlossReader model. Then
we perform agglomerative clustering of old usages
using the cosine distance and average linkage on
these representations. This clustering algorithm
was successfully used to cluster vectors of lexical
substitutes, another kind of word sense represen-
tations, in several substitution-based WSI meth-
ods (Amrami and Goldberg, 2018, 2019; Arefyev
et al., 2020; Kokosinskii and Arefyev, 2024), as
well as for LSCD (Laicher et al., 2021; Ma et al.,
2024).

Agglomerative clustering starts with each usage
in a separate cluster, then iteratively merges two
closest clusters. The distance between two clusters
is the average pairwise cosine distance from the
usages in the first cluster to the usages in the second
one. Merging stops when the predefined number
of clusters is reached. We range the number of
clusters between 2 and 9 and select a clustering
with the highest Calinski-Harabasz score (Caliński
and Harabasz, 1974).7

3.4 SCM methods

WSD and WSI methods provide only partial so-
lutions of the semantic change modeling task, the
former cannot discover novel senses, and the latter
cannot annotate usages with the old glosses pro-
vided. We propose three new methods developed
to fully solve the task.

3.4.1 AggloM
Our first SCM method modifies the Agglomera-
tive WSI method by incorporating old usages and
senses into the clustering process. We perform ag-
glomerative clustering of a set containing both old
and new usages of a target word. Initially, each new
usage is assigned to a separate cluster. The old us-
ages are clustered according to the provided sense
annotations. Then at each iteration we compute the
distances from each cluster containing only new
usages to all other clusters. The distance between
two clusters is defined as the minimum cosine dis-
tance between the usage representations from the
first and the second cluster.8 We then merge two

7For one or two usages the Calinski-Harabasz score is not
defined. We return a single cluster in such cases.

8This is known as single linkage.
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Figure 2: Outlier2Cluster pipeline. Inputs are in green
and outputs are in blue. Triangles denote ML models.

nearest clusters, one of which contains new usages
only. This iterative merging process stops when
the number of clusters is larger than the number of
old senses by k ≥ 0. Therefore AggloM returns
exactly k novel senses, where k is a hyperparam-
eter.9 We do not use this method on the Russian
datasets because for most senses there are no old
usages there.

AggloM FiEnRu is identical to AggloM but
relies on the fine-tuned GlossReader FiEnRu.

3.4.2 Cluster2sense
In the second SCM method we first independently
cluster new usages using the Agglomerative WSI
method and annotate them with the old senses using
GlossReader FiEnRu. We then keep the clustering
obtained from WSI, but relabel those clusters that
overlap heavily with one of the predicted senses.
Specifically, we label a cluster c with a sense s if
c has the highest Jaccard similarity to s among all
the old senses of the target word, and at the same
time s has the highest similarity to c among all the
clusters built for new usages of this word. Notably,
two clusters cannot be labeled with a single sense,
thus the clustering of usages is identical to the one
originally predicted by WSI. Some clusters will not
be labeled with any sense, thus, Cluster2sense can
discover gained senses. At the same time, some
senses will not be assigned to any cluster, which
means the potential to discover lost senses as well.

3.4.3 Outlier2Cluster
Unlike Cluster2Sense which relabels whole clus-
ters, Outlier2Cluster relabels individual usages.
Figure 2 shows the processing pipeline. First
WSD and WSI predictions are independently made

9In the preliminary experiments on the Finnish develop-
ment set we selected k = 0, which means that all new usages
are eventually merged into clusters representing old senses.
This is likely related to the low proportion of gained senses
in this dataset and noisy usages which make them hard to
discover.
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by GlossReader FiEnRu and Agglomerative re-
spectively. Then we discover usages of gained
senses. For that we propose a Novel Sense Detec-
tion (NSD) model finding usages of those senses
that we do not have definitions for.10 Finally, we
return WSI predictions for all these discovered us-
ages, and WSD predictions for all other usages.

Novel sense detection. We treat the NSD task
as an outlier detection problem, essentially finding
those usages that are distant enough from all the
provided definitions. Since GlossReader selects
the most similar definition for a given usage, it is
enough to check if this definition is distant enough
to conclude that the usage is an outlier. To check
this we employ a logistic regression classifier. Each
input example corresponds to a single usage and
a gloss selected for this usage by the WSD model.
The output is 1 if this usage is an outlier, i.e. does
not belong to the predicted sense, and 0 otherwise.

We use distances (computed with several dis-
tance functions) between GlossReader represen-
tations of the new usages and the glosses for old
senses as features for logistic regression.

For the new usage u and the selected definition
g we take the corresponding representations ru and
rg from a gloss encoder and a context encoder re-
spectively. We take these representations from two
different GlossReader models, the original one and
GlossReader FiEnRu, and calculate distances from
ru to rg using different distance and normaliza-
tion functions. This gives 10 different features
presented in Table 1. We also include three extra
features: the number of old usages, old senses, and
new usages for the target word in the dataset. We
employ the Standard Scaler to normalize features
and train the logistic regression with L2 regulariza-
tion of C = 1.

Thus, the trained logistic regression can be used
for each usage to decide whether the WSD method
has assigned a correct sense or should be replaced
with some cluster corresponding to a gained sense.
If the score is above a threshold of 0.65, which was
selected on the development sets of the shared task,
the usage is considered an outlier.

We train two NSD models on the Russian and
the Finnish development sets separately and use
the trained models for the corresponding test sets.

10In the context of the shared task these are gained senses.
However, the approach is general enough to discover lost
senses when a modern dictionary and old usages are given, or
just senses from the same time period as the dictionary but not
covered by it.

Distance Function Cos. Euclid. Manh.
Encoders Normalized
GR FiEnRu No ✓ ✓ ✓
GR FiEnRu L1-norm ✓
GR FiEnRu L2-norm ✓
GR No ✓ ✓ ✓
GR L1-norm ✓
GR L2-norm ✓

Table 1: Ten distance-based features used in the NSD
model. Distances are calculated between usage and
gloss representations obtained from context and gloss
encoders of the same GlossReader model. GR stand for
GlossReader, Cos. is the cosine distance, Euclid. is the
euclidean distance, Manh. is the manhattan distance.

For the surprise language, we do not have labeled
data to select one of two models or train a separate
model, thus, we simply report the results of both
models.

Outlier relabeling. We experiment with two
ways of assigning clusters to the detected outliers.
Our first approach (w/o WSI) groups all outliers
into a single new cluster. Alternatively, w/ WSI
approach assigns the clusters predicted by the WSI
method to outliers. We use the first option for the
Finnish test set, as we observed that the words in
the Finnish development set rarely have more than
one gained sense. On the contrary, the words in the
Russian development set have many gained senses,
therefore, we employ w/ WSI for the Russian test
set. For the surprise language Outlier2Clusterfi
employs w/o WSI and Outlier2Clusterru employs
w/ WSI.

All of the described methods are briefly summa-
rized in Table 2.

4 Evaluation setup

The first AXOLOTL-24 subtask evaluates seman-
tic change modeling systems in three diachronic
datasets in Finnish, Russian, and German (Fe-
dorova et al., 2024). Train and development sets
are provided for the first two, but not for the last.
We will now describe the datasets in more detail.

4.1 Data sources

The source for the Finnish dataset of the shared
task is resource (1997). The usages are divided
into two groups: before 1700 and after 1700. The
usages in the dataset are not complete sentences
but short phrases. Some parts of the phrase can be
missing and replaced with double hyphens, presum-
ably due to OCR errors. Furthermore, the usages
from both the old and the new corpus exhibit no-
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Requires Requires Requires a Able to Able to
Underlying usages of old train set with discover predict
embeddings old senses glosses gained senses∗ gained senses old senses

GR GR - ✓ - - ✓
GR FiEnRu GR FiEnRu - ✓ - - ✓
GR Ru GR Ru - ✓ - - ✓
GR Fi SG GR Fi SG - ✓ ✓ - ✓
Agglomerative GR - - - ✓ -
AggloM GR ✓ - - if k > 0 ✓
AggloM FiEnRu GR FiEnRu ✓ - - if k > 0 ✓
Cluster2Sense GR, GR FiEnRu - ✓ - ✓ ✓
Outlier2Cluster GR, GR FiEnRu - ✓ ✓ ✓ ✓

Table 2: A brief description of the proposed methods. GR stands for GlossReader model. ∗GR Fi SG is trained
to predict the special gloss for usages of all gained senses. In Outlier2Cluster the NSD model is trained to detect
usages of gained sense.

table differences from modern Finnish. They often
feature characters (such as c, z, w, and x), that are
not commonly found in contemporary Finnish. It
is important to highlight that the glosses provided
for word senses are in modern Finnish.

Two data sources used to create the Russian
dataset are Dahl (1909) processed by Mikhaylov
and Shershneva (2019) and Mickus et al. (2022).
The first one was the source of old usages and
glosses, and the latter provided new usages and
glosses. However, the specific procedure used to
map senses between these two sources was undis-
closed at the time of the competition. Some old
senses are not accompanied by old usages in the
Russian datasets. Consequently, our methods for
the Russian datasets do not rely on the old usages.
Notably, the Russian datasets lack information re-
garding the position of a target word within a usage
or the actual word form of the target word. As a re-
sult, we incorporate the identification of the target
word’s position within a usage as a preprocessing
step in our solution.

The shared task also includes a test dataset in a
surprise language revealed only at the test phase
of competition with no development or train sets.
The source of this dataset is a German diachronic
corpus with sense annotations (Schlechtweg et al.,
2020; Schlechtweg, 2023).

4.2 Data Statistics
To get insights into the data we categorize the target
words within the train and the development sets
based on several characteristics:

• Has lost senses: does the word have old senses
for which there are no new usage?

• Number of gained senses: how many senses
are there having new usages only?
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Figure 3: Proportions of target words falling into differ-
ent categories in the shared task datasets.

• Disjoint senses: are the sets of senses for old
and new examples disjoint?

• New has one sense: do all the new usages
have the same meaning?

• Has one sense: do all the usages (both old and
new) have the same meaning?

The number of target words in each category for
all11 the datasets of the shared task is presented on
Figure 3.

In the Finnish datasets, almost half of target
words have only one sense and approximately 70%
of words have no gained senses. Therefore, the
conservative methods that rarely discover gained
senses are preferable for the Finnish datasets.

The main observation for the Russian datasets is
the dramatic differences in proportions of almost all
categories between the train and the development

11This information for the test sets was not available during
the competition.
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set. We can see that the statistics of the test set are
similar to those of the development set. Contrary
to the Finnish sets, almost all words in the Russian
development set have gained senses. Therefore,
methods which are prone to predict new senses
rather than old ones are preferable for the Russian
development set.

The German dataset is relatively small and con-
tains 8 times fewer words than the other test sets.
We can see that it is similar to the Finnish datasets
in the proportion of gained and lost senses.

4.3 Metrics

The shared task employs two metrics to evaluate
the systems, the Adjusted Rand Index (ARI) and
the F1 score.

ARI (Hubert and Arabie, 1985) is a well-
established clustering metric employed to evaluate
how well new usages are clustered by a system. In
the subtask, ARI is computed for all the new usages
of a target word, the ground truth clusters corre-
spond to senses. Notably, cluster labels are not
taken into account by ARI. It means that old senses
and gained senses are indistinguishable from each
other in terms of ARI.

The F1 score is used in the first subtask to esti-
mate how well a system can discriminate between
old senses. It is computed only for the new usages
of the old senses, and not for the usages of the
gained senses. The F1 score for a target word is
the average of the F1 scores for all old senses. If a
target word does not have any new usages with the
old senses, it is arbitrarily assigned the F1 score
of 1 if old senses are not predicted for any of its
usages and 0 otherwise. Thus, in this edge case
a system is heavily penalized when even a single
usage is misclassified as one of the old senses.

All new usages of the old senses which are
(incorrectly) predicted as belonging to a gained
sense are considered to belong to a single auxiliary
"novel" class when calculating the F1 score. The F1
score for this class is zero as it has zero precision.
For this reason, even a single usage misclassified as
a gained sense can dramatically affect the overall
score for a target word independently of the total
number of its usages.12

12Assume the target word has k old senses. In case when
only old senses are predicted: F = F1+...+Fk

k
. If we replace

one of the correct predictions of sense 1 with an incorrect pre-
diction of a gained sense: F ′ =

F ′
1+...+Fk+0

k+1 < F1+...+Fk+0
k+1 .

The drop in this metric is F
F ′ > k+1

k
E.g. in the case k = 1,

which is a frequent case in the Finnish AXOLOTL-24 dataset,

5 Results

5.1 Our submissions

The number of submissions for the test sets per
team was not limited in the competition. We eval-
uate ten models on the test sets: four WSD mod-
els (based on GlossReader, GlossReader FiEnRu,
GlossReader Ru, and GlossReader Fi SG), one
WSI model (Agglomerative with GlossReader
representations), two AggloM models (based on
GlossReader and GlossReader FiEnRu represen-
tations), Cluster2Sense, and Outlier2Cluster with
different configurations for the German dataset:
Outlier2Clusterru and Outlier2Clusterfi. Table 3
demonstrates the evaluation results. We also in-
clude the best submissions from other teams for
comparison.

WSD and WSI. The best results in terms of the
F1 score are achieved by pure WSD methods. The
F1 score is calculated only for the usages of old
senses, this gives a huge advantage to WSD meth-
ods because incorrect prediction of old senses for
usages of gained senses is not penalized, while the
opposite reduces the F1 score severely as explained
in Section 4.3.

WSD methods have notably higher ARI than
Agglomerative and Cluster2Sense (both of them
predict the same clusters but label them differently)
for the Finnish and German datasets. On the con-
trary, Agglomerative and Cluster2Sense are the
best-performing methods for the Russian dataset.
Our explanation for this fact comes from the analy-
sis in Section 4.2. The sets of senses of the new and
the old usages in the Finnish and German datasets
overlap heavily, which is beneficial for WSD meth-
ods. The overlap is much smaller for the Russian
dataset, which hurts ARI of the WSD methods. Dis-
covering gained senses is crucial for the Russian
dev and test set.

AggloM. The AggloM method with the hyper-
parameter k = 0 (never predicts gained senses)
does not fall far behind pure WSD methods. The
main reasons for that probably are the usage of the
same underlying context encoder and prediction
of only old senses. Therefore, AggloM is a viable
alternative to the GlossReader models when word
senses are described with usage examples instead
of sense definitions.

Outlier2Cluster. Outlier2Cluster achieves

an incorrect prediction of a gained sense for a single usage
results in more than 2x decrease of the F1 score.
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ARI F1
Method Fi Ru De FiRu AVG Fi Ru De FiRu AVG
WSD methods
GR 0.581 0.041 0.386 0.311 0.336 0.690 ⋄0.721 0.694 0.706 0.702
GR FiEnRu ⋄0.649 0.048 ⋄0.521 0.348 0.406 ⋄0.756 ⋄0.750 ⋄0.745 ⋄0.753 ⋄0.750
GR Ru 0.568 0.053 0.464 0.310 0.361 0.568 ⋄0.750 ⋄0.724 0.659 0.681
GR Fi SG ⋄0.638 0.059 ⋄0.543 0.348 0.413 ⋄0.752 ⋄0.729 ⋄0.758 ⋄0.741 ⋄0.746
WSI methods
Agglomerative 0.209 ⋄0.259 0.316 0.234 0.261 0.055 0.152 0.042 0.104 0.083
SCM methods
AggloM 0.581 0 0.492 0.290 0.357 0.674 0 0.695 0.337 0.456
AggloM FiEnRu ⋄0.631 0 0.485 0.315 0.372 ⋄0.731 0 0.639 0.366 0.457
Cluster2Sense 0.209 ⋄0.259 0.316 0.234 0.261 0.432 0.346 0.432 0.389 0.403
Outlier2Cluster ru

fi
⋄0.649 ⋄0.247 0.322

0.480 ⋄0.448 0.406
⋄0.459 ⋄0.756 0.645 0.510

⋄0.745 0.701 0.637
⋄0.715

Other teams
Holotniekat 0.596 0.043 0.298 0.319 0.312 0.655 0.661 0.608 0.658 0.641
TartuNLP 0.437 0.098 0.396 0.267 0.310 0.550 0.640 0.580 0.595 0.590
IMS_Stuttgart 0.548 0 0.314 0.274 0.287 0.590 0.570 0.300 0.580 0.487
ABDN-NLP 0.553 0.009 0.102 0.281 0.221 0.655 0 0.638 0.328 0.431
WooperNLP 0.428 0.132 0 0.280 0.186 0.503 0.446 0 0.475 0.316
Baseline 0.023 0.079 0.022 0.051 0.041 0.230 0.260 0.130 0.245 0.207

Table 3: The results on the test tests. The best result for each metric is underlined, the best result in each group is in
bold font. A diamond (⋄) denotes those results that are worse than the best one, but the difference is practically
insignificant (we consider relative differences smaller than 0.05 as practically insignificant). The official AXOLOTL-
24 leaderboard is based on the average metrics across the languages having the training sets provided (the FiRu
columns) and all languages (the AVG columns).

SOTA or near-SOTA ARI13 for Russian and
Finnish, but falls behind WSD methods for Ger-
man, which has no labeled data to train a dedicated
NSD model. However, Outlier2Cluster can dis-
cover gained senses unlike WSD methods. Thus,
we consider Outlier2Cluster to be preferable for
the SCM task and suggest training the NSD model
for each language of interest.14

The important hyperparameter of the NSD
model, and consequently the Outlier2Cluster model
exploiting it as a component, is the threshold di-
viding usages into outliers and normal usages. Fig-
ure 4 shows the dependence of the metrics on the
threshold value for the Finnish and Russian devel-
opment sets. Both w/ WSI and w/o WSI versions
of Outlier2cluster are included. We also compute
the results of Outlier2Cluster with the WSI oracle
which perfectly clusters the detected outliers ac-
cording to their ground truth senses, and the NSD
oracle which perfectly detects usages of gained
senses. The methods we study in this Section are
briefly summarized in Table 4.

We can see that the F1 score (computed only

13We made Outlier2Clusterfi submissions in the competi-
tion separately for different datasets. For this reason, it was not
selected as our best submission by the competition organizers.

14We used only small development sets with ≈ 200 target
words to train novel sense detection models.
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Figure 4: ARI and F1 on the development sets depend-
ing on the threshold of novel sense detector. Higher
threshold means higher proportion of WSD predictions
and less WSI predictions.
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Method WSD WSI NSD
w/ WSI GR FiEnRu Agglomer. LogReg
w/o WSI GR FiEnRu One cluster LogReg
w/ WSI oracle GR FiEnRu Oracle LogReg
NSD oracle GR FiEnRu Agglomer. Oracle

Table 4: A brief summary of methods for the NSD
threshold study.

over new usages with old senses) monotonically
increases with the increasing threshold, i.e. with
fewer outliers detected. This again shows that try-
ing to detect usages of gained senses and clean the
old senses from them hurts the F1 score, supporting
the criticism of this metric in Section 4.3.

ARI reaches a peak at the threshold of 0.65 for
the Russian dataset with F1 being close to maxi-
mum as well. We therefore set the threshold at 0.65
for the Russian NSD model. This gives the SCM
model that almost achieves the ARI of pure WSI
predictions (threshold of 0) while having only a bit
smaller F1 score compared to the best WSD model.

For the Finnish dataset, higher ARI monotoni-
cally increase with the threshold, i.e. with the pro-
portion of predictions taken from the WSD model.
This agrees with the observations from Table 3 that
the pure WSD models give the best ARI for Finnish.
We can also see that the threshold values in the mid-
dle, where neither WSI nor WSD predictions are
dominant, result in a significant decrease in ARI.
It means, that our NSD model cannot be used ef-
fectively to combine the predictions for Finnish.
We select a high threshold of 0.65 for the Finnish
dataset, resulting in a low number of outliers. Con-
sequently, the novel sense detector predicts less
than 1% of usages to be outliers in the Finnish
test set, compared to 42% of usages predicted as
outliers for the Russian test dataset.

We can observe that according to the F1 score,
the NSD oracle performs better than the pure WSD
method, especially on the Russian development set.
The reason lies in the words with disjointed senses.
Since there are no new usages of old senses for such
words, the ordinary F1 score and it is arbitrarily
defined as 1 if all usages are recognized as usages
of gained senses, i.e. put into new clusters, and 0
otherwise. Thus, the ideal processing of these edge
cases is crucial for the F1 score, but can hardly be
achieved unless the NSD oracle is employed. For
other words it does not help. Considering ARI,
the NSD oracle performs much better than w/WSI
on the Russian dataset. It means that better NSD
models may help greatly improve clustering.

According to the results of w/ WSI oracle on
the Finnish development set, it is impossible to
increase ARI with better WSI method without a
huge drop in the F1 score. For the Russian dataset
situation is the opposite. The main reason is likely
the average number of gained senses per word in
these datasets as described in Section 4.2. Only 7%
of words in the Finnish dataset have gained two or
more senses, therefore the perfect clustering of the
gained senses does not increase the results signifi-
cantly compared to merging all gained senses into
a single cluster. On the contrary, 97% of the word
in the Russian have two or more gained senses,
making WSI necessary.

6 Conclusion

We have proposed three new methods that solve
the SCM task. Our solution achieves SOTA re-
sults among all participants of the first subtask of
the AXOLOTL-24 shared task. Additional experi-
ments propose directions of further improvement
of the developed models, NSD being potentially
the most promising one.

7 Limitations

While our methods can in theory be applied to any
SCM dataset, we acknowledge that they may be
overspecified for the first subtask of AXOLOTL-24.
Notably, we extensively use the train sets provided
for the competition in Finnish and Russian to train
the embedding model and to optimize the hyperpa-
rameters. While we also evaluate on the German
dataset in a zero-shot fashion, the results may be
unreliable due to relatively small size of the dataset.

Semantic change modeling may be of particular
interest in studies of older time periods, where the
language is quite different from its modern state.
The underlying model, GlossReader, is a finetuned
version of XLM-R, which was not specifically de-
signed to handle old languages. In this case dataset-
specific finetuning of the base GlossReader may
become even more relevant.
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NSD model. In order to get insights about the
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our trained classifiers and several pure similarity
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selected by GlossReader FiEnRu (Figure 5). It
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they even perform no better than a random classifier.
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dev fi AP dev ru AP
Model GR GR FiEnRu GR GR FiEnRu
single features
cosine 0.106 0.110 0.685 0.695
euclid. 0.106 0.110 0.684 0.694
l2/euclid. 0.106 0.110 0.685 0.695
manh. 0.106 0.113 0.685 0.690
l1/manh. 0.154 0.242 0.816 0.822
full classifiers
classifier w/ extra 0.378 0.840
classifier w/o extra 0.305 0.833
best pairs of features w/o extra features
l1/manh. + euclid. 0.194 0.284 0.818 0.823
l1/manh. + l2/euclid. 0.195 0.284 0.818 0.823
l1/manh. + manh. 0.192 0.277 0.819 0.823
best pairs of features w/ extra features
l1/manh. + #old usages 0.190 0.291 0.820 0.827
l1/manh. + #new usages 0.153 0.249 0.821 0.829
#new usages + #old senses 0.266 0.266 0.643 0.643

Table 5: Average precision of novel sense detection models on the dev sets. Except for the block with full classifiers,
models use distance-based features either from GlossReader or GlossReader FiEnRu. The best results in each group
are in bold font. The overall best results are underlined.

features consistently help on the Finnish dev set,
but are almost useless on the Russian dev set.

In Table 5 we compare different NSD models
using the average precision on the dev sets. To
understand which quality can be achieved using
the minimal number of features, we evaluate all
single distance-based features. Furthermore, we
train classifiers on all possible pairs of features,
where each pair contains distances only from the
same GlossReader. Also we compare classifiers
with or without extra features.

We observe that the manhattan distance with
l1 normalization, which is the best single feature,
works poorly on the Finnish dataset, especially for
the embeddings from GlossReader that was not
fine-tuned on the Finnish train set. However, on the
Russian dev set it closely follows the best classifier.
As for the classifiers, we found that including non-
distance features is important for Finnish. What
is more interesting, when using the original Gloss-
Reader model among all pairs of features the best
one does not contain embedding-based features at
all, only the number of old senses and the num-
ber of new usages. This signals that for the Fin-
ish dataset GlossReader provides poor embeddings
without fine-tuning.
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Figure 5: Precision-recall curves of novel sense de-
tection models. Non classifier models are distances
between usages and chosen glosses from GlossReader
FiEnRu. Classifier w/ extra stands for classifier trained
on distance-based and non distance-based features in-
troduced in sub subsection 3.4.3. Classifier w/o extra
stands for classifier trained only on distance-based fea-
tures.
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Abstract

Computational and human perception are of-
ten considered separate approaches for study-
ing sound changes over time; few works have
touched on the intersection of both. To fill
this research gap, we provide a pioneering re-
view contrasting computational with human
perception from the perspectives of methods
and tasks. Overall, computational approaches
rely on computer-driven models to perceive his-
torical sound changes on etymological datasets,
while human approaches use listener-driven
models to perceive ongoing sound changes on
recording corpora. Despite their differences,
both approaches complement each other on
phonetic and acoustic levels, showing the po-
tential to achieve a more comprehensive per-
ception of sound change. Moreover, we call
for a comparative study on the datasets used by
both approaches to investigate the influence of
historical sound changes on ongoing changes.
Lastly, we discuss the applications of sound
change in computational linguistics, and point
out that perceiving sound change alone is insuf-
ficient, as many processes of language change
are complex, with entangled changes at syntac-
tic, semantic, and phonetic levels.

1 Background

There has been ongoing scholarly interest in sound
change over time for decades. A popular histori-
cal sound change is the Great Vowel Shift (Lass,
1992), where the long vowel [i:] in Middle English
shifted to a diphthong /aI/ in Modern English for
example. It took place over time from the 15th
to 18th centuries, and greatly changed the English
vowel system. Other examples include the loss of
voiceless velars like [ç] in Modern English (Dob-
son, 1968), reduction of consonant clusters like
[kn]→ [n] (Turville-Petre and Burrow, 2020), and
vowel reduction in unstressed syllables (Minkova,
2013). Many ongoing sound changes took place
in the 20th century. For instance, in American

regional dialects, a notable shift such as [2] →
[E] in the vowel system occurred in the Northern
Cities around the mid-20th century (Wolfram and
Schilling, 2016).

While many works proposed computational ap-
proaches to perceive historical sound changes
(Mielke, 2008; Dekker, 2018; Boldsen and Pag-
gio, 2022) and others suggested using the listener-
driven model to perceive ongoing sound changes
(Janson, 1983; Sanker, 2018a; Quam and Creel,
2021), few works explored the intersection of both
computational and human perception. The benefits
of doing so can be substantial. Firstly, computa-
tional approaches perceive historical sound change
by analyzing IPA transcriptions in etymological
datasets, but these datasets lack acoustic features
that human listeners/speakers can produce and per-
ceive. Secondly, human perception observes on-
going changes through participation surveys over
recording corpora, which lacks the considerations
of acoustic and phonetic alignments between speak-
ers that computational approaches can produce
and perceive. Lastly, connections between ety-
mological datasets and recording corpora are lit-
tle explored; by combining both, one could con-
duct a comparative analysis of historical and ongo-
ing sound changes, e.g., examining how historical
changes impact ongoing changes. Thus, there is
a need for a comparative review of computational
and human perception.

In this work, we aim to fill the gap between two
distant perception of sound change over time, with
computational models on one hand and human ob-
servation on the other. To achieve this, we first
review the tasks and methods from each perspec-
tive, and then present a unified view that combines
both perception to explore sound change. More-
over, we discuss the connections of sound change
to semantic and syntactic change, as well as the
applications of sound change in computational lin-
guistics.
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2 Computational Perception

Sound change detection. Boldsen and Pag-
gio (2022) connected semantic change detection
with sound change detection and argued that di-
achronic distributional embeddings used for se-
mantic change detection can track historical sound
change. For lexical semantic change, diachronic
word embeddings are guided by the distributional
hypothesis suggesting that words that occur in sim-
ilar contexts appear to have similar meanings. In-
terestingly, this idea also applies to phonology. Pre-
vious works showed that phonemes occurring in
similar phonetic contexts likely belong to the same
phonological class, demonstrating the applicability
of the distributional hypothesis to phoneme embed-
dings (Mielke, 2008; Silfverberg et al., 2018).

Boldsen and Paggio (2022) proposed using
phoneme embeddings trained on a historical Dan-
ish corpus to track sound changes over time. Their
approach compared the embeddings of a phoneme
pair across different periods to observe sound
changes. For instance, [p]→ [b] is observed when
the distance between the phoneme embeddings of
[p] and [b] becomes smaller over time. The re-
sults showed a decrease in distance between three
phoneme embedding pairs: [p] and [b], [t] and [d],
[k] and [g] over time, meaning that their approach
recognized the phonetic changes from voiceless
plosives to their voiced counterparts in Danish.

Phonetic alignment between cognate words.
Phonetized cognate words consist of paired IPA
transcriptions in two languages: either a proto-
language and its descendant language or two de-
scendant languages. Each transcription represents
a sequence of phonemes. Translating a sequence
of phonemes from one language to another can
be framed as a machine translation task, as both
execute a cross-lingual sequence-to-sequence task
(Dekker, 2018; Fourrier and Sagot, 2020a).

For instance, Fourrier and Sagot (2020a) pro-
posed using both statistical and neural machine
translation models to perform phoneme-level trans-
lations between cognate words. The models in-
vestigated include Moses (Koehn et al., 2007) and
MEDeA (Luong et al., 2015). The languages con-
sidered include Latin, Italian, and Spanish. For
evaluation, the generated translations were com-
pared to the ground-truths through BLEU (Pap-
ineni et al., 2002)—which calculates the overlap
of n-grams phonemes between translations and the
ground-truths. The results showed that the pho-

netic translations between cognate words from the
proto-language to a descendant language (or from
a descendant language to another) are much better
than those from a descendant language to the proto-
language. Moreover, the results demonstrated the
superiority of the statistical model over the neural
MT model on small datasets, whereas the neural
model showed a greater ability to handle many-
to-one mappings from various proto-forms to the
same descendant form. It is important to note that
the ground-truth translations were collected by au-
tomatically phonetizing cognate word pairs via Es-
peak (Duddington, 2007), and the automatic phone-
tization process is prone to errors, meaning that
comparing generated translations with the ground
truths may lead to inaccurate model assessment.

Markedness of phonemes. Markedness is a lin-
guistic label separating common from less common
phonemes in a phonological system. In English,
the voiceless consonants [p], [t], and [k] are un-
marked as they are more common compared to
their voiced, marked counterparts [b], [d], and [g].
For vowels, peripheral high vowels such as [i] and
[u] are marked while mid-central vowels like [@]
are unmarked (Jakobson, 1968; Haspelmath, 2006).

Ceolin and Sayeed (2019) proposed a probabilis-
tic approach to model sound change by estimating
the frequency of phonemes over time. Interestingly,
they found that their approach could also recog-
nize the markedness of a phoneme. Their approach
was to estimate the frequency of each phoneme
at a later time based on the frequencies of other
phonemes observed at an earlier time through the
split-merger process. The results showed that the
unmarked phonemes at a later time appear to have
higher frequencies compared to marked counter-
parts as postulated, meaning that their approach
could separate unmarked from marked phonemes.
We note that their approach considered neither pho-
netic nor acoustic features and was only evaluated
on three phonemes in an artificial setup.

Sound convergence. Unlike historical sound
change, which takes place gradually over centuries,
sound convergence is a process of ongoing sound
change through which speakers adjust their speech
to align acoustically and phonetically with other
speakers (Natale, 1975). Research showed that
native speakers often phonetically converge to non-
native speakers in interactive environments (Giles,
1973; Pardo, 2006; Babel, 2010; Yu et al., 2013).
Recently, works by Lewandowski and Nygaard
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(2018); Wagner et al. (2021) showed that sound
convergence can also occur in non-interactive set-
tings. For instance, Wagner et al. (2021) recruited
76 native Dutch speakers and a non-native speaker
to read aloud a careful selection of words, and their
speech was recorded. Importantly, although the
native and non-native speakers have no interaction,
the speech of non-native speakers was made avail-
able to the native speakers. This allows the native
speakers to potentially adjust their speech. All the
speech was transformed into acoustic features by
using Praat (Boersma, 2011). Acoustic features
(e.g., vowel and fricative duration) of the native
speakers are compared to the non-native speaker
by calculating the difference-in-distance score over
these acoustic features. The positive score indi-
cates convergence, otherwise divergence. The re-
sults showed that (a) the Dutch native speakers
show sound convergence to the non-native speaker
in the scenario where interaction is minimal and
(b) the degree of sound convergence is affected by
how much native speakers think the speech by the
non-native speaker is native-like.

Despite being useful, relying on acoustic fea-
tures to observe sound convergence has at least
two limitations: Firstly, the convergence on the
phonetic level is overlooked; for example, speak-
ers who adjust their speech in terms of place and
manner of articulation are not recognized as sound
adaptation. Secondly, the outcome of sound con-
vergence is affected by the quality of acoustic fea-
tures—which relies on the recording quality and
the efficacy of computer tools to extract these fea-
tures from speech.

3 Human Perception

Perceptual similarity. The work by Goldinger
(1998) introduced the perceptual similarity task
that is concerned with how phonetic changes are
received, processed and interpreted by listeners
(Martin and Bunnell, 1981; Sanker, 2018b). This
approach is known as the listener-driven model
of sound change, where a group of listeners heard
recordings of a speaker’s initial speech and the later
speech (after the speaker listened to a target speech
by another speaker). The listeners were then asked
to determine which of the two recordings sounded
closer to the target speech the speaker was exposed
to.

Sound convergence. Wagner et al. (2021) em-
ployed the perceptual similarity task to study sound

convergence from native speech to non-native
speech in Dutch. They recruited 16 listeners native
in Dutch and asked them to perform the perceptual
similarity task where the listeners heard partici-
pants’ initial and later speech and had to choose
which production sounded more similar to that of
the model speaker non-native in Dutch. More-
over, the listeners were asked to rate the model
speaker’s speech in terms of how accented, com-
prehensible, and familiar it sounded. These rat-
ings were included in the analyses to determine
how they affected the degree of observed conver-
gence. The results showed that the overall sound
convergence score was slightly above the random
chance, indicating a weakly perceived convergence
in participants’ speech after the target speech was
exposed to them. Secondly, they found that sev-
eral speech samples showed more sound conver-
gence than others. Moreover, they noted that per-
ceived convergence was affected by how strongly
the model speaker’s foreign accent was perceived.

Although human perception can observe ongo-
ing sound changes, listeners may misperceive the
acoustic and phonetic features of a speaker, result-
ing in incorrect judgments of sound changes (Babel
and Johnson, 2010; Ohala, 2017; Sanker, 2018b).

4 A Unified Perspective

Computer-aided human perception. Using
computational methods can partly automate and
possibly refine the human perception process of
sound changes. This is because doing so allows for
observing subtle changes on phonetic and acoustic
levels, such as vowel duration shift and nasal place
assimilation that are sometimes not obvious to per-
ceive by listeners. Additionally, combining compu-
tational and listener-driven methods would create a
feedback loop where computational results could
refine the human perception process and insights
from listeners could be used to improve computa-
tional models.

Cross-studying etymological datasets and
recording corpora. Etymological datasets
contain phonetic transcriptions that reflect histor-
ical sound changes, which are commonly used
for computational models to observe changes
over centuries. In contrast, recording corpora
are a database for listeners to perceive ongoing
sound changes. Despite their different aims, it is
intriguing to know the influence of historical sound
changes on ongoing changes. A potential idea is to
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start with collecting shared words in etymological
datasets and recording corpora, and then inspect
their phonetic similarity and difference. Note that
unlike recording corpora, phonetic transcriptions
do not include acoustic features; therefore, a
comparative study of historical and ongoing sound
changes at the acoustic level is not possible.

5 Discussions

5.1 Connections to Other Changes

While there have been many works on computa-
tional modeling of semantic and syntactic change
(Hamilton et al., 2016; Schlechtweg et al., 2020;
Ma et al., 2024a,b; Merrill et al., 2019; Krielke
et al., 2022; Chen et al., 2024), they often lack
connections to sound change. Such connections
are crucial because many changes simultaneously
affect multiple linguistic levels. A notable case
is homograph where two words share the same
spelling but have different meanings and pronunci-
ations. Examples include “present” (["prEz@nt] vs.
[prI"zEnt]) and “bow” ([baU] vs. [boU]). Another
case is grammaticalization—a process that incurs
semantic, syntactic and phonetic changes. For ex-
ample, “going to” grammaticalizes into “gonna”,
shifting from a verb to a future marker. This
process changes the original meaning, impacts
syntactic structure, and incurs phonetic reduction.
To identify homographs and grammaticalization,
it might be necessary to develop computational
and human approaches to model/observe changes
across multiple linguistic levels at once.

5.2 Applications in Computational Linguistics

Phylogenetic Inference. This task aims to re-
construct the evolutionary relationships among lan-
guages based on their shared linguistic features.
For example, Proto-Indo-European, as the ancestral
language, gives rise to many descendant languages
within the Indo-European language groups such
as Indo-Iranian, Germanic, and Celtic. Linguists
construct a phylogenetic language tree by taking
the ancestor language as the root and connecting
it to descendant languages, based on the laws of
sound changes over time (Hoenigswald, 1965). For
instance, there exists a phoneme correspondence
between High German [ts], Dutch [t], English [t],
Swedish [t], and Icelandic [t], all of which are inher-
ited from the proto-phoneme [*t] in their ancestry
Proto-Germanic language group (where [*t]→ [t]
in High German). This phoneme correspondence

is one of many reasons that these languages are the
descendants of Proto-Germanic.

However, computer-based language phyloge-
nies for major language groups like Dravidian
(Kolipakam et al., 2018), Sino-Tibetan (Sagart
et al., 2019), and Indo-European (Heggarty et al.,
2023) often rely on cognate sets from semantically
aligned word lists across languages. Campbell and
Poser (2008) questioned the use of cognate sets
for phylogenetic inference, as meanings in cognate
words might undergo changes over time, result-
ing in the instability of a phylogenetic tree. Other
works proposed reconstructing phylogenetic lan-
guage trees using sound correspondences between
cognate words instead of lexical cognates (Cha-
con and List, 2016; Cathcart, 2019; Chang et al.,
2023; Häuser et al., 2024). For instance, Häuser
et al. (2024) presented a framework that first iden-
tifies phonetic alignment between cognate words
using LingPy and then uses BMrBayes (Ronquist
and Huelsenbeck, 2003) and RAxML-NG (Kozlov
et al., 2019) to reconstruct phylogenetic trees. For
evaluation, the generated phylogenetic trees are
compared to the ground-truth Glottolog tree (Ham-
marström et al., 2019) by computing their topolog-
ical distance via generalized quartet distance (Pom-
pei et al., 2011). The results showed that sound-
based phylogenetic trees underperform cognate-
based counterparts, i.e., that cognate-based trees
are topologically closer to the gold Glottolog tree.
This might be attributed to the lack of consideration
for borrowing. For instance, two languages might
not be related, although the phoneme sequences of
their cognate words could be similar. Loanword is
the example, where phonemes are borrowed from
a third, unrelated language, rather than inherited
from the proto-phoneme.

Quality assessment of etymological datasets.
Etymological datasets are a crucial resource for
phylogenetic inference, low-resource machine
translation, and historical linguistic tasks. Many
such datasets have been made available and are
automatically generated from various data sources.
For instance, EtymWordNet (De Melo, 2014) and
CogNet (Batsuren et al., 2019) are derived from
WordNet across hundreds of languages, while Et-
ymDB 1.0 (Sagot, 2017) and 2.0 (Fourrier and
Sagot, 2020b) are sourced from Wiktionary across
over two thousand languages. However, the qual-
ity of these datasets remains unclear. Firstly, many
datasets use a loose definition of cognacy to enlarge
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data coverage. Secondly, the automatic processes
used to generate these datasets are prone to errors.
Therefore, there is a need to estimate the quality of
these etymological datasets.

Wettig et al. (2012) proposed using the degree
of phonetic alignment between cognate words as a
measure of the internal consistency of an etymolog-
ical dataset. They postulated that the more phoneti-
cally similar cognates words are, the better quality
a dataset would be. For instance, the English word
‘house’ and the German word ‘Haus’ are phoneti-
cally equivalent [haUz], implying that this cognate
word pair is likely correct. To achieve this idea,
they use the Minimum Description Length, a dy-
namic programming algorithm, to calculate the cost
of an optimal phoneme-level alignment between
cognate word pairs for the Uralic language group.
The alignment operates on phonetic features such
as plosive/fricative and labial/dental. The challenge
arises from the fact that phonemes inherited from
the proto-phoneme may undergo sound changes
over time, resulting in phonemes in one language
potentially different from another. For evaluation,
the generated alignments were not compared to
the ground-truths due to the lack of gold phoneme-
level alignments. Instead, their approach was eval-
uated in three scenarios: compression rates, rules
of correspondence and imputation.

Note that phoneme-level alignments were not
compared against the ground-truths. Thus, the ef-
ficacy of the measure based on these alignments
in estimating the quality of etymological datasets
remains unclear. Moreover, their approach only
considers one-to-one phoneme-level alignment and
ignores one-to-many. In doing so, their approach
could wrongly penalize correct cognate word pairs
with one-to-many alignments, such as [kæt] in ‘cat’
and [kats@] in the German word ‘Katze’.

6 Conclusions

As two rarely connected disciplines, computational
and human perception have their own interests,
tasks and methods. However, we showed that these
two perception benefit each other from the perspec-
tive of methods and datasets. Additionally, we
showed that the applications of sound change are
manifold in computational linguistics, including
phylogenetic inference and quality assessment of
datasets. Despite these positive aspects, we argue
that a unified perception of multi-faceted change
is crucial, as many changes are entangled across

phonetics, syntax and semantics.
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Abstract

Lexical Semantic Change Detection (LSCD)
aims to detect language change from a di-
achronic corpus over time. We can see that
over the last two decades there has been a surge
in research dealing with the LSC Detection.
Recently, a series of methods especially con-
textualized word embeddings have been widely
established to address this task. While several
studies have investigated LSCD using large lan-
guage models (LLMs), an evaluation of prompt
engineering techniques, such as few-shot learn-
ing with different in-context examples for im-
proving the LSCD performance is required. In
this study, we examine the few-shot learning
ability of GPT-4 to detect semantic changes in
the Chinese language change evaluation dataset
ChiWUG. We show that our LLM-based solu-
tion improves the GCD evaluation metric on
the ChiWUG benchmark compared to the previ-
ously top-performing pre-trained system. The
result suggests that using GPT-4 with three-
shot learning with hand-picked demonstrations
achieves the best performance among our dif-
ferent prompts.

1 Introduction

Lexical semantic change detection (LSCD) aims
to address the problem of automatically identify-
ing meaning change in target words between the
current period and earlier time periods (Kim et al.,
2014), (Kulkarni et al., 2015), (Giulianelli et al.,
2020) (Schlechtweg et al., 2020). The majority
of current work on LSCD uses deep contextual-
ized models, such as BERT (Devlin et al., 2018) or
EMLO (Peters et al., 2018), to model the semantics
of target words from different time-sliced corpus
(Periti and Tahmasebi, 2024) (Kutuzov and Giu-
lianelli, 2020) (Hamilton et al., 2016), (Giulianelli
et al., 2020). Semantic change can then be detected
by vector similarities between word embeddings
using these models.

Recently, Large Language Models (LLMs) have
showcased remarkable capabilities in solving nat-
ural language processing tasks based on zero-shot
predictions (Karjus, 2023), (Karanikolas et al.,
2023). Recent work has shown that LLMs can
even excel in an wider range of applications with
appropriate prompt instructions (Hou et al., 2024),
(Marvin et al., 2023), (Chen et al., 2023a). How-
ever, current work on the LSCD using LLMs lacks
a proper method that uses prompt engineering to
build LSCD model, such as using example retrieval
algorithm to find the most similar language change
context pairs compared to input pairs.

In this paper, we apply prompt engineering on
an LSCD task, where few-shot learning using GPT-
4 is applied with in-context demonstrations of
prompts based on manual selection or machine
retrieval algorithms. Our proposed method is sys-
tematically tested on a Chinese evaluation dataset
ChiWUG (Chen et al., 2023b) following the Di-
achronic Word Usage Graph (DWUG) annotation
and evaluation framework. Our methods serve as
an exploratory examination of LLM performance
for LSCD with various prompting strategies. This
may be applied to other LSCD tasks in different
language which also follow the DWUG framework,
such as English (EN), German (DE), Swedish (SW)
and Latin (LA) (Schlechtweg et al., 2020) and Nor-
wegian(NO) (Kutuzov et al., 2022).

2 Related Work

Lexical semantic change has been evaluated by
both static models, such as skip-gram (Kim et al.,
2014), (Kulkarni et al., 2015) or contextualized em-
bedding methods, such as BERT (Kutuzov and Giu-
lianelli, 2020), (Giulianelli et al., 2020). To quanti-
tatively evaluate lexical semantic change, Semeval
2020 task 1 defined an evaluation framework for
measuring lexical semantic change (Schlechtweg
et al., 2020). Two tasks including binary change
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classification and graded change detection (GCD)
were developed for evaluating systems seeking to
address LSCD. Binary classification simply mea-
sures whether the meaning changes or not, while
GCD aims to measure the correlation between
true scores and change degrees for all the target
words. Recent work has shown that LLM models
have impressive reasoning and prediction ability
on many natural language processing (NLP) in-
cluding language change detection (Karjus, 2023),
(Ziems et al., 2024), (Laskar et al., 2023). More-
over, some evaluations of ChatGPT have been built
on a series of NLP tasks including Word Sense
Induction (WSI) and Word Sense Disambiguation
(WSD) (Laskar et al., 2023).

Meanwhile, one work compared the perfor-
mances of LLM and pre-trained language mod-
els on the shot-term language change dataset Tem-
poWIC and showed that zero-shot GPT-4 achieved
superior results (Wang and Choi, 2023). More
recently, ChatGPT web interface and the official
OpenAI APIs have been evaluated on WSI and
LSCD with GCD scores, results show that Chat-
GPT achieves slightly lower performance than
BERT in detecting both long-term and shot-term
changes on the HistoWIC dataset and TempoWIC
dataset respectively (Periti et al., 2024).

To the best of our knowledge, only one study
has employed a series of contextualized models
to implement language change detection on all
LSCD datasets including the ChiWUG task (Periti
and Tahmasebi, 2024). The XL-LEXEME (Cas-
sotti et al., 2023) with the average pairwise dis-
tance (APD) performs best among their models.
The performance of GPT-4 was comparable to XL-
LEXEME on three tasks relevant to LSCD: Word-
in-Context (WIC), WSI and GCD task. GPT-4
and XL-LEXEME achieve close to human-level
while other contextualized embeddings perform
in a low-moderate level, the performance of GPT-
4 was only slightly lower than the BERT model.
However, their GPT-4 model was only evaluated
on an English dataset, and not for any other lan-
guage dataset for the LSCD task. In our study, we
compare our approach to this system using GCD
scores on the ChiWUG evaluation dataset.

3 LSCD using LLM

To implement LSCD using LLM, we use the offi-
cial GPT-4 API to conduct our experiments, other
versions of GPT-4 can be found in the OpenAI

下海 xiahai
原本在大学担任生物学教授的他,
决定下海创办了一家生物科技公司.
A professor of biology in a university

decided to set up a biotechnology company
她曾是一名成功的时尚设计师，

后来选择下海，开设了自己的时装品牌
She was as a successful fashion designer

before she chose to go to business and start
her own fashion brand

Table 1: Our hand-picked context example in one-shot
learning with label Related.

documentation 1. Our basic prompt is to predict
whether the meaning of a target word changes or
not given two context sentences. The task instruc-
tion leverages a similar prompt template proposed
in (Karjus, 2023). We show a prompt example of
a one-shot learning method with this template in
Appendix B. In this paper, we propose to use few-
shot learning using GPT-4 with different methods
to select the demonstration examples for further
improvements in performance of LSCD prediction.

3.1 Prompt Engineering

To increase the prediction ability, we use the few-
shot learning approach to enrich the LLM’s repre-
sentation ability for semantic change. Meanwhile,
we set the temperature of the GPT-4 model to zero
and to reduce the randomness of the generated lan-
guage change results to improve the performance.

To construct the in-context example, we first
develop our hand-picked examples and then design
a method to select an example from the training
corpora for providing similar semantic knowledge
directly from the ChiWUG dataset and inject it
into a prompt. In following subsection, we provide
details of the selections of demonstration learning
examples using both methods.

3.2 Manual Selection

Our manually selected examples are developed
from searching online linguistic resources from
the internet containing two context sentences of a
target word. We show one of these examples in
Table 1. This manually selected example contains
a Chinese target word下海, which means ’go into
the sea’ or ’to venture’.

1https://platform.openai.com/docs
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This sample is labeled by the change type Re-
lated, in which the meanings between the two text
inputs are basically similar, but with different back-
ground contexts. We suppose such information
could improve representation of GPT-4 model for
inferring related semantic change types.

3.3 Example with Retrieval

As well as manual selection, we explore selection
of demonstration examples by retrieval from a cor-
pus with similar semantic representation with input
queries. The retrieval process relies on the Chinese
Bert model from the Huggingface 2.

Specifically, the last four hidden state embed-
dings of the Chinese BERT base model for the
target word in two input sentences from two time
periods are extracted for constructing the word em-
bedding. For computing the similarity, two context
sentences are concatenated to form a single vector
representation, then cosine similarity is calculated
between the representations for the input context
pairs and the sample context pairs from the dataset.
Two contexts in the dataset with the highest similar-
ity are used as the retrieved examples to construct
the prompt demonstrations. The retrieval corpus
was generated from the first 40 sentences among
the whole dataset for each word. An example of
retrieved and original context pairs is shown in Ap-
pendix B with input and retrieved sentence pairs.

Our idea of example retrieval is that the greater
the similarity between the input context and the
demonstration example, the higher probability that
the model will improve the performance, such in-
context information could provide LLMs with bet-
ter representation ability for detecting similar se-
mantic changes.

4 Experiments

In this section, we introduce the dataset used for
our experiments, give details of our experiments
with results and analyze our findings.

4.1 Dataset

The dataset used for our investigation is ChiWug
(Chen et al., 2023b). This consists of 6,100 human
semantic relatedness judgments for 40 target words.
The ChiWUG dataset follows the DWUG frame-
work for LSCD tasks (Schlechtweg et al., 2021).
Moreover, the context pairs are annotated with the
relatedness between them with a four-scale degree

2https://huggingface.co/google-bert/bert-base-uncased

Figure 1: Word Usage Graph for word ’下海’ (xiahai).
Nodes represents the word usages, the edges represent
the usage relatedness between word usages (Chen et al.,
2023b).

with 1 to 4 referring to semantic proximity from
unrelated to the identical usages. The examples
are represented in a DWUG with related semantic
relations between target words, figure 1 shows one
such word example for a target word ’xiahai’.

In ChiWUG, the corpora are divided into two
sub-corpora, the EARLIER is from 1953 to 1978
and the LATTER is from 1979 to 2003. Three met-
rics are set within the dataset (Chen et al., 2023b):
binary change, Jensen-Shannon Distance (JSD) and
COMPARE. Binary change is the same as that used
in the Semeval 2020 subtask1 and JSD can be re-
garded as the graded change scores.

4.2 Evaluations

In our system, we use two metrics to evaluate our
method: binary change and the GCD score. To
detect the binary change, we label target changed
that contain more than 4 labels unrelated following
similar criteria in (Karjus, 2023).

Moreover, we compute the GCD scores by cal-
culating the Spearman correlation between the sum
of all the change scores from 1 to 4 for a target
word to ground truth scores. We evaluate these two
metrics based on a sample of ChiWUG with solely
40 sentences pairs among 1,560 for each target
word, which was shown to be a sufficient number
of samples to predict correct change scores.

4.3 Zero-shot vs One-shot vs Few-shot

Zero-shot can be built directly with an initial
prompt, where the instruction leveraged prompts
used in (Karjus, 2023), a one-shot learning exam-
ple with the same task introduction of the language
change task is shown in the Appendix A.

As shown in Table 2, the three-shot model
with hand picked examples shows the best re-
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Approaches Binary Change GCD
XL-LEXEME / 0.73

Zero-shot 0.65 0.65
Two-shot 0.83 0.73

Three-shot 0.70 0.79
One-shot Retrieval 0.70 0.72

Table 2: GCD predictions with different zero-shot or
few-shot settings of GPT-4 models, XL-LEXEME is the
previous best-performing model evaluated on ChiWUG
(Periti and Tahmasebi, 2024), (Cassotti et al., 2023).

sults for both GCD scores and binary classifica-
tion among these methods, which also outperforms
the current best GCD prediction scores by XL-
LEXEME model on ChiWUG benchmark dataset
with smaller corpus for change prediction. Results
for one-shot and three-shot models demonstrate im-
provement compared to zero-shot learning and two-
shot-learning models. However, we do not see any
improvements from two-shot learning compared
to the one-shot learning method, the performance
of one-shot learning model, with or without the
machine selected demonstration example, is shown
in the Table 2. Results show that they achieve the
same scores, we leave the detailed discussion of
this to the next section.

4.4 Discussion

Overall, we can see an upward trend of perfor-
mance as the number of in-context demonstra-
tion examples increases. The three-shot method
is better than all other established methods in-
cluding zero-shot, one-shot and two-shot models.
We can also see that few-shot method can benefit
from our meticulously selected examples. More-
over, as shown in Table 2, our three-shot learning
model outperforms the previously best contextual-
ized word embeddings and achieves a new state-
of-art performance on ChiWIG evaluation dataset,
two-shot learning model with manually selected
examples also shows superior change detection pre-
dictions over a pre-trained language model. We
infer that few-shot learning with typical semantic
change examples can improve LLMs in-context
ability for language change detection.

Nevertheless, we get relatively similar results
with one-shot learning using a manually selected
demonstration example and automatically selected
example, although the retrieved example is sharing
similar semantic change context with input pairs,
this method does not provide any improvements

as we expected. We show one such example re-
trieved from the sample dataset in the Appendixm
B to illusrate retrieved contexts and original in-
puts. Though they are most similar context pairs
among our sample dataset according to BERT re-
trieval, the in-context learning may not improve
from this directly. Our manually selected example
in one-shot learning may be representative enough
to provide semantic changes knowledge for GPT-4.
Moreover, results show that two-shot learning with
hand-picked examples may not provide further im-
provements in predicting language change results.
This may also be because the quality of the added
demonstration examples in two-shot learning may
be poorer than other examples.

In the next stage of our work, we will exam-
ine different combinations of examples manually
selected and retrieved for any improvements in per-
formance. We leave the detailed reasons for the
relation between the detection performance and the
example similarity with the original query to the
future work.

5 Conclusions

Overall, we have demonstrated higher performance
of the proposed GPT-4’s few-shot learning model
on the LSCD task following the Semeval 2020 task
1 evaluation, compared to the previous contextual-
ized embedding model. We tested the effectiveness
of few-shot learning with hand-picked examples
and the most similar samples from corpora with our
retrieval method utlizing BERT. Our model, utiliz-
ing three-shot leaning featuring manually selected
demonstration examples for semantic change de-
tection, achieves the current highest GCD scores
on the ChiWUG evaluation dataset. We show that
few-shot learning with representative examples in
prompts has the potential to increase the seman-
tic representation ability of the LLM for this task.
However, there is no evidence that one-shot learn-
ing with example retrieval increases GPT-4’s pre-
diction performance on the LSCD task. We leave
developing explanations for the effect of retrieval
on LSCD performance to future work.
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A Prompts for One-shot Learning

Initial prompt for the the system introduction:
You are a expert in multilingual language
change detection, determine whether the
target word has changed its semantic
meaning between given sentences, answer
with Same, Related, Linked or Distinct.

Prompt for one-shot learning:
This is very important to my career.
Consider the use of target word in two
contexts of sentences, determine whether
the target word has changed its semantic
meaning between those sentences. Do the
refer to the Same, different but Related,
distant Linked or unrelated objects.

Determine the meaning change of target
word target in following sentences:
1. [sentence1]
2. [sentence2]
Answer: choose from (Same, Related,
Linked, Distinct).
Provide your answer without any
illustration

B Retrieved Example
Target word, 下海 xiahai, go to the sea or join a
business

Query input:

1. 辽西省在春汛下海时即已组成九十个渔业生产合作
社，一百四十五个互助组。
When the spring floods hit the sea, Western Liaoning Province
had already formed 90 fishery production cooperatives and
145 mutual aid groups.

2. 福建省沿海各地民兵积极配合人民解放军加强海防巡
逻和解放台湾的斗争，并组织了武装护渔队、巡逻队，
保卫渔民下海捕鱼。
He militias in various coastal areas of Fujian Province
actively cooperated with the People’s Liberation Army in
strengthening coastal defense patrols and the struggle to
liberate Taiwan, and organized armed fishing teams and
patrols to protect fishermen fishing in the sea.

Retrieved sentence:

1 ”他瞅了瞅他现在穿的新皮大氅，又说：“过去我下
海、在家，总是穿一件又腥又破的棉短袄；吃呢，一天
挣来的钱连啃窝窝头吃都不够. . . . . .有一次我们有四个
人在葫芦岛下潮（出海），半路遇着大风，一个三丈多
高的浪头，打翻了我们的小船，其中一个同伴被打下水
以后没有踪影了，剩我们三个人在孤岛上冻饿了好几
天，好容易才返回来。
He took a look at the new leather cloak he was wearing now,
and said: "In the past, when I went to the sea and at home,
I always wore a fishy and torn cotton jacket. When it came
to eating, the money I earned in a day even cost me a lot of
money. Not enough... One time, four of us went out to sea
in Huludao. We encountered strong winds on the way, and
a wave more than three feet high capsized our boat. One of
our companions was knocked into the water and disappeared
without a trace. The three of us froze and starved on the
isolated island for several days, and finally returned with great
difficulty

2. 他们说：“只要能治好唐山亲人的伤病，别说上山捉
毒蛇，就是下海擒蛟龙，俺们也在所不辞。
’They said: "As long as we can cure the injuries and illnesses
of our relatives in Tangshan, we will do whatever we can to
catch venomous snakes in the mountains or go to the sea to
catch dragons."
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