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Abstract 
We present a manually curated and annotated, multidisciplinary dataset of 15,262 sentences from research articles (abstract 
and main text) that can be used for transformer-based extraction from scholarly publications of three types of entities: 1) 
research methods, named entities of variable length, 2) research goals, entities that appear as textual spans of variable 
length with mostly fixed lexico-syntactic-structure, and 3) research activities, entities that appear as textual spans of variable 
length with complex lexico-syntactic structure. We explore the capabilities of our dataset by using it for training/fine-tuning 
various ML and transformer-based models. We compare our finetuned models as well as LLM responses (chat-GPT 3.5) 
based on 10-shot learning, by measuring F1 scores in token-based, entity-based strict and entity-based partial evaluations 
across interdisciplinary and discipline-specific datasets in order to capture any possible differences in discipline-oriented 
writing styles. Results show that fine tuning of transformer-based models significantly outperforms the performance of few-
shot learning of LLMs such as chat-GPT, highlighting the significance of annotation datasets in such tasks. Our dataset can 
also be used as a source for linguistic linked data by itself. We demonstrate this by presenting indicative queries in SPARQL, 
executed over such an RDF knowledge graph.   

Keywords: Information Extraction from Text, Transformer-based Information Extraction, Scholarly Annotation Corpus, 
Linguistic Linked Data, RDF Knowledge Graph  

1. Introduction 
The steep increase of research publications in every 
major discipline (Bornmann et al., 2021) makes it 
increasingly difficult for experts to maintain an 
overview of their domain, increases the risk of missing 
new work or reinventing solutions, and makes it 
harder to relate ideas from different domains. To 
address this problem new “strategic reading” 
methodologies can be applied in order to transform 
the essence of knowledge encoded in textual form 
into structured format comprising concepts and 
relations that address the information needs of 
researchers, thus changing the ways in which they 
engage with literature (Renear & Palmer, 2009). This 
type of encoded information can alleviate the task of 
keeping up to date in a specific domain, while 
maintaining a bird’s-eye-view over a discipline or 
across disciplines, something particularly useful in 
interdisciplinary fields. To this end, entities 
representing the encoded information need to be 
appropriately identified and extracted from text 
through the use of various NLP and ML methods. This 
task has been significantly alleviated by the recent 
advancements in Deep Learning, where the 
application of transformer-based models in various 
NLP tasks (Vaswani et al., 2017) enabled the 
extraction of semantically complex information from 
text, while at the same time increased the demand for 
large annotated datasets for fine-tuning the millions of 
parameters of those models.  
Indeed, information extraction (IE) from scientific 
papers has attracted a lot of interest over the past 

 
1 https://chat.openai.com/chat 

years, as testified by the recent creation of various 
challenges on Scientific Information Extraction 
(ScienceIE). This constant challenge for new ML 
methods for ScienceIE calls for additional new 
datasets, capable of demonstrating and 
benchmarking the new capabilities of those methods.  
In addition, despite the recent advancements in Large 
Language Models (LLMs) such as chat-GPT1 and its 
remarkable ability to generate text that resembles 
human-like language, as demonstrated by numerous 
studies (Gao et al., 2023; Jimenez Gutierrez et al., 
2022; X. Li et al., 2023; Ma et al., 2023; Qin et al., 
2023; Qiu & Jin, 2024), when it comes to NLP tasks 
like IE and NER, these models underperform 
significantly compared to DL models that are 
finetuned in task specific annotated datasets, thus 
showcasing even more the significance of the latter in 
IE tasks.  

In this paper we present such a manually curated 
dataset comprising of 15,262 sentences sampled 
from 3,500 research publications and 172 research 
subfields, that is specifically designed for extracting 
various types of entities of varied semantic 
complexities and lexico-syntactic characteristics. 
Specifically, we offer annotations for three different 
types of entitles: 1) research methods, named entities 
of variable length, 2) research goals, entities that 
appear as textual spans of variable length with mostly 
fixed lexico-syntactic-structure, and 3) research 
activities, entities that appear as textual spans of 
variable length with complex lexico-syntactic 
structure.  
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The concepts in this dataset are designed to be 
general enough so that they can be applied across 
disciplines and, at the same time, be capable of 
representing essential knowledge of “who has done 
what, why and how” in a research paper. Extracting 
such information can lead to creating RDF Knowledge 
Graphs capable of answering complex semantic 
queries like: “find all papers that address a given 
problem”; “how was the problem solved”; “which 
methods are employed by whom in an activity 
addressing particular research goals”, etc. (Pertsas & 
Constantopoulos, 2023). This goes beyond the 
retrieval features of search engines widely used by 
researchers, such as Google Scholar2, Scopus3 or 
Semantic Scholar4 that mostly leverage bibliographic 
metadata, while knowledge expressed in the actual 
text is exploited mostly by matching query terms to 
documents.  

We explore the capabilities of our dataset along four 
dimensions: 1) Classification Method: we experiment 
with training/fine-tuning various ML and DL models as 
well as LLMs (chat-GPT 3.5) through prompting; 2) 
Linguistic Characteristics: we explore the 
performance of our methods across interdisciplinary 
and discipline-specific subsets in order to capture any 
possible differences in discipline-oriented writing 
styles as demonstrated in (Alluqmani & Shamir, 2018; 
Leong, 2024); 3) Processing Granularity: we test the 
effectiveness of classification at three levels of 
granularity: token-based, entity-based strict and 
entity-based partial. In addition, the included entities 
represent three levels of lexico-syntactic complexity: 
named entities of variable length, “non-named” 
entities (i.e. non real world objects that can’t be 
denoted with proper names) that are of variable length 
with mostly fixed lexico-syntactic-structure and 
variable length with complex lexico-syntactic 
structure; 4) Linguistic Linked Data Generation: we 
demonstrate the capabilities of our dataset as a 
source for linguistic linked data, through semantically 
complex queries in SPARQL that can be executed 
over such an RDF Knowledge Graph. 

The rest of the paper proceeds as follows: in Section 
2 we present related work regarding the creation of 
datasets for Science IE; in Section 3 we present the 
characteristics of our dataset and describe the 
methodology for its creation; in Section 4 we 
demonstrate the capabilities of the dataset through 
various experiments with ML, DL transformer-based 
and LLM prompting methods; in Section 5 we discuss 
the performance of the dataset based on the 
evaluation experiments and demonstrate its 
capabilities as a source for linguistic linked data and 
in Section 6 we conclude the paper with insights for 
future work. 

2. Related Work 
Information extraction from scientific text constitutes 
an active research field where ML and DL models are 
trained/fine-tuned on annotated corpora designed for 

 
2 https://scholar.google.com/ 
 

capturing specific knowledge according to the task at 
hand. Entity extraction is usually treated as a token 
classification or sequence labeling task where a 
classifier predicts whether each token belongs to the 
entity in question or not, based on the corresponding 
token-based annotations. In addition, recent 
advancements in LLMs have given rise to new 
methodologies regarding prompting techniques for 
interacting with these models based on few or even 
zero demonstrating examples in few / zero-shot 
learning (Brown et al., 2020; Das et al., 2022; Lu et 
al., 2022; Perez et al., 2021; X. Wei et al., 2023), while 
others implement chain-of-thought (CoT) reasoning 
(Ashok & Lipton, 2023; J. Wei et al., 2023) that can 
help in reasoning tasks such as solving mathematical 
problems, or works like (P. Li et al., 2023; Wang et al., 
2023) that experiment with code generation. In our 
work, for comparison purposes, we include in our 
dataset experiments, a prompt template for LLMs 
(chat-GPT 3.5) that leverages both few-shot and code 
structure transformation.  
 
Concerning the creation of datasets that can be used 
for IE, in domain specific fields like Biology and 
Bioinformatics, works like the BioText project (Rosario 
& Hearst, 2004) offer semantically annotated corpora, 
consisting of 3500 sentences drawn from MEDLINE 
abstracts labelled for Disease and Treatment and 
seven types of relation holding between them. In 
(Franzén et al., 2002; Kim et al., 2003) the Yapex and 
GENIA corpora offer annotated sentences with 
named entities of proteins and specific biological 
entities and events respectively. Regarding Medicine 
and Health Sciences, in (Roberts et al., 2009) the 
authors present a dataset from clinical texts, 
annotated with domain specific entities like Condition, 
Investigation, Drug, Locus etc. interrelated with 
relations: has_target, has_type, location, modifies. In 
(Borchert et al., 2022) the authors present a dataset 
of annotated named entities regarding Oncology (e.g. 
Finding, Substance, Procedure), which then evaluate 
using transformer-based models. In (Cheng et al., 
2022) the authors present a manually annotated 
dataset from Japanese clinical reports with entities 
representing medical terms like Diseases and 
Symptoms and Medicine, as well as medical and 
temporal relations among them, which they evaluate 
using ML models. In Material Science, the authors of 
(Mullick et al., 2022) annotate a corpus with entities of 
type: Code, Material, Method, Parameter and 
Structure in order to train and evaluate their ML 
pipeline architecture.  
 
In interdisciplinary ScienceIE projects, works like 
(Jain et al., 2020; Luan et al., 2018) present SciREC 
and SciREX, datasets from paper abstracts 
containing annotations of  scientific entities (Task, 
Method, Metric, Material, Other-ScientificTerm and 
Generic). In (Qasemi, Zadeh & Schumann, 2016) a 
corpus of paper abstracts is manually annotated with 
terms classified into categories like Method, Tool, 

3 https://www.scopus.com/home.uri  
4 https://www.semanticscholar.org/  
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Language Resource, Product, etc. In (Osenova et al., 
2022) the authors present the Bulgarian Event corpus 
with annotations of named entities like Locations, 
Events, Products, etc. derived from the CIDOC-CRM 
Ontology and oriented mainly to Social Sciences and 
Humanities. In (Augenstein et al., 2017) the authors 
present a dataset with annotations of named entities 
like Process, Task, Material and relations like 
hyponym-of and synonym-of. 
 
Compared to these works, we use a multidisciplinary 
dataset deriving from more than 170 research 
subfields in order to capture potential differences in 
writing styles among disciplines (Alluqmani & Shamir, 
2018), since we use concepts that are general 
enough to be applied in any scientific field. In addition, 
to the best of our knowledge, our dataset is the first to 
contain entities of such lexico-syntactic complexity 
and variation in form and length. In this sense, it can 
be used for showcasing the capabilities of ML models 
in capturing various attributes of English language in 
a scholarly publication and not only those contained 
in a form of a named entity or an entity of relatively 
small length and fixed lexico-syntactic structure. The 
use of such semantically complex and -of highly 
variable length- entities, makes the problem of IE 
more challenging when it comes to employing 
prompting techniques for LLMs (as demonstrated in 
Section 4), thus showcasing the value of creating 
large, annotated datasets that can instead fine-tune 
DL transformer-based models with higher 
performance in such tasks.  

3. Dataset Creation Methodology 
For the creation of our dataset, we initially gathered a 
set of 25,681 papers spanning years 2000-2021 from 
JSTOR repository using the Constellate5 portal. This 
initial material after various NLP processes for OCR 
Noise removal, text cleaning, tokenization and 
sentence segmentation, yielded in total 3,700,000 
cleaned sentences. From those, we randomly 
sampled a total of 15,262 sentences deriving from 
3,500 papers which, according to articles’ metadata 
(fields: “publisher” and “tdmCategory”) were 
published under 352 different publishers and derived 
from 172 different disciplines and subfields. The 
dataset is in English language since this is most 
commonly used in academia. The aim was to create 

 
5 https://constellate.org/ 

a multidisciplinary corpus capturing as many different 
writing styles as possible.  
 
The conceptual model behind the annotation schema 
is Scholarly Ontology (SO) (Pertsas & 
Constantopoulos, 2017), a domain-independent 
ontology of scholarly/scientific work. A specialization, 
in fact precursor, of SO already applied to the domain 
of Digital Humanities (that being an interdisciplinary 
field itself) is the NeDiMAH Methods Ontology 
(NeMO) (Constantopoulos et al., 2016). A brief 
overview of the definitions of SO concepts that were 
used in the annotation schema and guidelines is given 
below. For a full account see (Pertsas & 
Constantopoulos, 2017). 
3.1 Annotation Schema 
The Annotation schema used for the creation of this 
dataset was based on the following SO concepts and 
relations:  
 
Activity: Instances of the Activity class represent 
research processes or steps thereof such as an 
experiment, a medical or social study, an 
archaeological excavation, etc. They usually manifest 
in text as spans of phrases in passive or active voice 
in first person singular or plural, according to the 
number of authors who are their actual participants.  
 
Method: In contrast to activities, which are actual 
events carried out by actors, instances of the Method 
class denote procedures, such as an algorithm, a 
technique or a scheme that can be employed during 
an activity and describe how this was carried out. 
They are usually designated by single or multiple 
word terms, e.g. “ANOVA”, “radio-carbon dating”, etc., 
so their manifestations in text are mostly identified as 
named entities of variable length. 
 
Goal: Goals represent the objectives of the activities 
and describe the intentional framework in which they 
were carried out. In addition, instances of the Goal 
class can represent general research goals of the 
paper that summarize the research objectives of all 
the activities described in it. In either case, they 
manifest in text as spans that declare purpose and are 
mostly introduced with purpose clauses like “for”, “to” 
or “in order to”. 

Figure 1: Example of Activity in passive voice, Method and Goal 

Figure 2: Example of Activity in active voice, Method and Goal 
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Indicative examples of all the above textual 
manifestations of SO classes and relations can be 
seen in Figures 1 and 2. 
3.2 Annotation Process 
The annotation process was based on protocols 
described in (Roberts et al., 2009) and involved a trial  
phase during which three annotators, after 
appropriate training in the SO concepts, participated 
in 5 consecutive annotation trials covering in total 500 
sentences from 300 papers. Each trial was followed 
by review of the entire batch by the group, discussion 
on the results and differences among annotations, re-
adjustment of the annotation guidelines and 
evaluation of the inter-annotator agreement (IAA) 
using the Cohen’s Kappa metric for IAA between 
annotator couples   and Fleiss’ Kappa for the group of 
three. We used the Prodigy6 annotation tool for all the 
annotations and developed a Prodigy recipe for 
calculating the IAA scores.  
 
After the trials, the best IAA scores reached 0.89 for 
Activity, 0.91 for Method and 0.92 for Goal, yielding 
sufficient agreement levels so that annotators could 
subsequently work on separate datasets. The entire 
annotator training process lasted approximately 25 
hours.  
 
As a general comment regarding the annotation of 
different types of entities, the most difficult type to 
agree upon was the Activity class. This can be 
attributed to the complexity of the lexico-syntactic 
structure of that particular entity type that produced 
differences among annotators, especially in the 
identification of boundaries in cases of very large 
lengths (compound phrases). On the other hand, 
Methods and Goals with clearer lexico-syntactic 
structures were easier to agree upon as can be seen 
from the higher agreement levels starting even from 
the first trial.  
 
In addition to the annotation labels for the entities, the 
annotators used three “meta” labels for all the 
annotation sentences / spans: 1) Accept, where the 
annotator was confident for the annotation and the 
sentence/span is OK to be included in the dataset; 2) 
Reject, for the cases where the sentence/span was 
incomprehensible due to high noise from non-
Unicode artifacts or non-English language and thus 
were to be excluded from the dataset; 3) Ignore, for 
the cases where the sentence/span was 
comprehensible but it wasn’t clear if the annotation 
fulfils the specifications of the task at hand. The latter 
were agreed to be included in the dataset, since they 
can provide valuable material for other experiments, 
but not to be counted for the experiments mentioned 
in this paper since they were considered as prone to 
create outliers due to their ambiguity. Nevertheless, 
these cases were very few, counting less than 3% of 
the entire dataset. 
 

 
6 https://prodi.gy/ 

When the annotation task was completed, the entire 
dataset was adjudicated by one annotator in order to 
maintain a constant annotation style throughout the 
entire dataset. Analytical results (group IAA) for each 
annotation trial and entity/relation type that show the 
progress in the agreement of the annotation tasks are 
presented in Table 1. 
 

 Trial1 Trial2 Trial3 Trial4 Trial5 
Activity 0.69 0.73 0.78 0.81 0.89 
Method 0.71 0.78 0.84 0.89 0.91 

Goal 0.81 0.86 0.92 0.90 0.92 

Table 1: IAA scores per entity type for each 
annotation trial 

3.3 Dataset Statistics 
The annotation statistics of the final dataset, after 
adjudication, are shown in Table 2. In total, the 
dataset comprises 15,262 sentences and 517,499 
tokens. At sentence level, the dataset contains 10,754 
labeled sentences (i.e. sentences that contain at least 
one label). At span level (as a span we consider each 
individual textual chunk that is annotated as an entity) 
there are in total 19,173 entity labels (i.e., labels 
assigned to spans to denote them as activities, 
methods or goals). At token level (as tokens we 
consider individual lexical units like words, 
punctuation marks, etc.) the dataset contains in total 
192,087 labeled tokens (i.e. annotation labels 
assigned to tokens, to denote them as part of a textual 
span representing an activity, goal and/or a method). 
Compared to other published benchmarks in 
ScienceIE tasks (Augenstein et al., 2017; Jain et al., 
2020; Luan et al., 2018; Qasemi, Zadeh & Schumann, 
2016) our dataset shows similar or higher numbers of 
annotations, which renders it a good source for 
ground truth in such experiments. The annotated 
dataset in jsonl format can be accessed from GitHub7. 

 Activity Method Goal Total 
Sent-level 6,610 6,028 4,029 10,754 
Span-level 7,211 7,415 4,547 19,173 
Token-level 126,702 14,036 51,349 192,087 

Table 2: Dataset statistics for entity extraction 

4. Experimental Setup 
In order to evaluate the capabilities of the dataset in 
terms of how well it can fine-tune / train different types 
of ML models for performing the task at hand, we 
designed a total of 36 experiments measuring 
performance in entity extraction task.  

4.1 Models and Methods 
From the annotated dataset after random shuffling, 
we held out 20% for the evaluation set and the rest 
we split into training and development sets with the 
latter being 10% of the training set. We balanced our 
training sets but left unbalanced the evaluation sets 
so that we could measure performance in real case 
scenarios.  

7https://github.com/athenarc/ScholarlyIE-Datasets/ 
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In addition, in order to explore further possible 
differences in the writing styles of various disciplines, 
we created two subsets of the evaluation set: one with 
the sentences that were derived from papers in 
Humanities disciplines and another with sentences 
from papers in Health Sciences and Biology (H&B). 
Detailed statistics of the annotated entities contained 
in each subset are given in Table 3. 

Regarding the entity extraction task, we used the 
above datasets to train / evaluate two different DL 
models for each entity: 1) a DL entity recognizer 
employing a Bert-base-NER transformer model that 
uses self-attention to process input sequences and 
generate contextualized representations of words in a 
sentence and 2) a DL entity recognizer employing a 
Roberta-base transformer, a variant of BERT, trained 
on a much larger dataset (10 times larger) and using 
a dynamic masking technique during training that 
helps the model learn more robust and generalizable 
representations of words. Both models came from the 
Hugging-Face library8 and were used for vector 
representation in combination with a transition-based 
parser for the sequence labeling part. For the latter 
we used the development set for hyperparameter 
optimization (dropout=0.1, Adam optimizer -L2=0.01). 
All of the transformer models and the transition-based 
parsers were fine-tuned / trained on the same 
datasets. These are the models A-BERT-base-NER, 
A-RoBERTa-base, for the extraction of Activities, M-
BERT-base-NER and M-RoBERTa-base for the 
extraction of Methods and G-BERT-base-NER, G-
RoBERTa-base for the extraction of Goals. 

 
8 https://huggingface.co/models 

In addition, for comparison reasons, we used the 
same dataset for training/evaluation of the spaCy 
default Named Entity Recognizer9 consisting (at the 
time of writing this paper) of a CNN with Bloom 
Embeddings that utilize a stochastic approximation of 
traditional embeddings in order to provide unique 
vectors for a large number of words without explicitly 
storing a separate vector for each of them (Miranda et 
al., 2022). These are the models A-CNN, M-CNN, G-
CNN.  

Furthermore, we designed a prompt template that 
leverages k-shot learning and text-to-structure 
capabilities of chat-GPT (GPT 3.5), in order to recast 
the structured output in the form of code instead of 
natural language. More specifically, we used the 
development set for experimenting with various 
combinations in prompt, such as different number of 
included examples (k=3,5,10,20), inclusion or not of 
the actual entity spans and inclusion or not of the 
reasoning for each entity extraction. Responses of the 
LLM into various prompt types during development 
stage showed that: i) describing the type of output in 
combination with specific examples helps the LLM to 
understand how to perform the output transformation 
and the classification task; ii) Although the increase in 
the number of examples helps performance, the 
added computational (and budget) costs from the 
larger prompts need to be taken into account when 
setting the threshold for the number of included 
examples (in our case k=10 proved to be a fair 
threshold); iii) using only the reasoning field without 
any demonstrating examples didn’t contribute  

9 https://spacy.io/api/entityrecognizer 

 Training/development Total Evaluation set H&B Subset Humanities Subset 
Act Meth Goal Act Meth Goal Act Meth Goal Act Meth Goal 

Sent 4,329 4,259 2,492 2,281 1,769 1,537 1,242 1072 699 1,008 658 889 
Span 4,727 5,250 2,840 2,484 2,165 1,707 1,357 1,338 781 1,095 755 984 
Token 84,469 9,716 32,237 42,233 4,320 19,112 24,577 2,706 9,665 15,944 1,489 10,237 
Table 3: Number of annotated spans of the train/dev and eval subsets at sentence, span and token level. 

Figure 3: Indicative example of the prompt template. Each section is highlighted in different color. 
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significantly to the overall performance increase (in 
comparison to adding more examples), as could be 
the case with other tasks like solving mathematical 
problems. Also it is to be noted that, similarly to 
(Fatemi & Hu, 2023), we experienced inconsistent 
performance across all experiments with variations in 
the output when the same input was repeated, even 
from a single account. Based on these observations, 
our proposed template consists of five sections: 1) 
description of the task at hand; 2) definitions of the 
entities, requested for extraction; 3) description of the 
requested output; 4) inclusion of 10 indicative 
examples for guidance; 5) input of the text to be 
annotated in the desired format. Using this template, 
the input is inserted as json lines (jsonl), each 
consisting of a dictionary containing the keys: “text” -
with the actual text of the sentence and “spans” – a 
list of dictionaries, each containing the “label” 
denoting the type of the extracted entity, the entity 
span and pointers for the token-based and/or 
character-based entity boundaries, respectively. The 
LLM is enforced to recast the output in the same 
format, thus enabling easy integration with other 
workflows (through the Open AI API) and annotation 
tools such as Prodigy. The template is displayed in 
Figure 3. We used the same evaluation set in order to 
measure the performance of GPT 3.5 in the tasks at 
hand. These are the models A-10-shot-GPT for the 
extraction of Activities, G-10-shot-GPT for the 
extraction of Goals and M-10-shot-GPT for the 
extraction of Methods respectively.  
4.2 Evaluation 
The evaluation of Information Extraction methods 
involves comparing classifier results against a “gold 
standard” produced by human annotators. To this 
end, a confusion matrix is calculated based on the 
true positives (TP) -correctly classified predictions-, 
false positives (FP) -incorrectly classified predictions- 
true negatives (TN) -correctly non-classified 
predictions and false negatives (FN) -incorrectly non-
classified predictions. Performance scores are then 

 
10 https://pypi.org/project/nervaluate/ 

measured based on Precision (P), Recall (R) and F1 
as usual. 

For the entity extraction task, we conducted three 
types of evaluation experiments following the 
guidelines in (Segura-Bedmar et al., 2013) and using 
the nerevaluate 0.1.810 and the scikit-learn11 python 
libraries: 1) token-based, where a true positive (TP) is 
a token correctly classified as part of a chunk 
representing the entity, etc.;  2) entity based -partial 
matching, where some overlap between the tagged 
entity and the “golden” entity is required, but counts 
as half compared to the exact matches and 3) entity-
based -strict matching, where only exact boundaries 
of the entities are counted for the match. Detailed 
results for all the evaluation experiments (reported 
here as F1 scores per entity type, classification 
method, evaluation method and dataset) are shown in 
Table 4.  

5. Discussion 
As a general remark regarding all the evaluation 
experiments, overall performance suggests that the 
dataset can be used adequately for finetuning DL 
models like transformers.   

5.1 Classification Method  
Regarding the performance of each methodology, 
fine-tunned transformer-based models showed 
superior performance in comparison to the rest of the 
models.  

Specifically, compared to the CNN, higher 
performance was expected since transformer-based 
models can capture far more language attributes from 
the textual context and thus “understand” better the 
individual characteristics even for syntactically 
complex entity types.  

Performance of the LLM was also inferior, something 
expected since, as demonstrated in (Gao et al., 2023; 
Jimenez Gutierrez et al., 2022; X. Li et al., 2023; Ma 
et al., 2023; Qin et al., 2023; Qiu & Jin, 2024), when it 

11 https://scikit-learn.org/stable/ 

 Humanities Health & Biology Total 
Token Partial Strict Token Partial Strict Token Partial Strict 

A-10-shot-GPT 48.53 42.66 12.37 69.64 44.91 15.17 56.17 45.32 13.25 
A-CNN 64.99 61.12 47.21 71.46 65.71 50.51 68.15 63.06 48.36 

A-Bert-base-NER 86.93 81.58 78.26 86.19 86.78 80.26 86.43 84.07 79.08 
A-Roberta-base 88.10 84.36 79.67 89.26 88.00 81.06 89.01 86.62 80.06 
G-10-shot-GPT  44.28 44.99 11.26 49.76 47.05 12.34 47.54 45.11 12.27 

G-CNN 82.65 70.63 54.87 80.36 67.15 47.72 81.94 69.49 52.38 
G-Bert-base-NER 86.99 80.68 71.63 87.12 78.61 66.29 86.98 79.97 69.51 
G-Roberta-base 87.03 81.45 73.01 88.84 82.20 70.11 88.59 80.62 72.79 
M-10-shot-GPT  40.03 33.96 18.87 43.89 34.03 19.19 43.11 34.31 19.74 

M-CNN 74.41 72.86 64.85 76.33 74.49 66.95 75.54 73.75 65.84 
M-Bert-base-NER 82.83 79.29 73.18 82.61 79.63 73.70 83.03 79.80 74.01 
M-Roberta-base 83.59 80.47 75.10 83.61 80.60 74.43 83.79 80.81 74.97 

Table 4: Evaluation results (F1 Scores). Prefixes A, G & M denote Activities, Goals & Methods respectively. 
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comes to NLP tasks like IE and NER, these models 
underperform significantly compared to DL models 
like BERT that are finetuned in task specific annotated 
datasets. This situation is expected to become worse 
when it comes to the extraction of entities with more 
complex lexico-syntactic structures than standard 
named entities and of variable length, as is the case 
in our dataset. This is demonstrated in particular by 
the low performance in the entity-strict evaluations, 
where probably due to the aforementioned reasons 
and the lack of massive training data that is available 
in fine-tunning methods, the LLM failed to capture the 
exact boundaries of the spans. Nevertheless, LLM’s 
performance in partial- and token-based evaluations 
suggests their potential use in distance learning 
techniques, since they can easily yield massive (but 
noisy) annotations that could further be manually 
corrected, or filter candidate sentences for 
annotation, thus easing the total annotation cost in 
time and effort.  

Regarding the fine-tunned transformer-based 
models, the difference in performance among the 
RoBERTa and the BERT models can be attributed to 
the fact that the former is pretrained on much larger 
datasets and in a more efficient way than the latter. 
The high performance of transformer-based models, 
with F1 reaching up to 89.26 in “lenient” token-based 
evaluation and up to 81.06 in strict entity-based 
evaluation, is also evidence of the adequacy and 
quality of the annotations in our dataset for fine-
tuning/training.  

5.2 Linguistic Characteristics 
Regarding the variations in performance with respect 
to the different discipline-focused evaluation subsets, 
the biggest differences appear in the extraction of 
activities (F1=88.00 in H&B compared to F1=84.36 in 
Humanities subset). Apart from the difference in the 
number of labeled tokens between the two subsets, 
which could lead to lower performance, visual 
inspection of the errors showed that in Humanities 
disciplines (e.g. in Archeology, History, Paleontology, 
etc.) there are a lot of mentions of historical events 
which, being events themselves, have textual 
descriptions that bear similar lexico-syntactic 
structures with those of research activities. Such 
cases, especially in passive voice with missing agent, 
are more difficult to discern. A similar situation arises 
in certain cases of research goals extraction, 
especially when these are goals of those 
“misclassified activities”.  

Based on visual inspection of more than 1000 
sentences from the evaluation set and their 
comparison the rest of the dataset, the 
aforementioned cases could be considered as 
“extreme scenarios” of the dataset, since in these 
situations, the semantics for discerning a textual span 
representing a general activity or a goal (that are 
irrelevant of the research described in the paper) are 
not enough for the classifier to be able to make the 
correct prediction. Nevertheless, these errors could 

probably be resolved with heuristics that analyze only 
specific sections of the paper (e.g. excluding related 
work, background, historical references sections, 
etc.). 

5.3 Processing Granularity 
Analyzing the results of each entity type, showed that 
the highest performance was achieved in Activity 
extraction. This can be attributed to the differences in 
the number of labeled tokens for each entity that 
follows the overall differences in performance. So, the 
extraction of Methods -having the fewest labeled 
tokens per sentence on average-, despite being the 
simplest of all, in terms of lexico-syntactic structure, 
yielded lower performance compared to Goals which, 
in turn, fared slightly lower than Activities.  

Regarding the extraction of instances of the Goal 
class, analysis showed that, despite the fewer labeled 
tokens compared to activities spans, the overall good 
performance could be attributed to the fact that textual 
manifestations of goals have a concrete and 
consistent lexico-syntactic representation that allows 
for easier generalization of the corresponding DL 
models. Errors mainly occurred in cases of textual 
spans representing purpose that was not attributed to 
the author of the paper and thus should not be 
classified as a research goal according to SO 
definitions (e.g.: “The consortium’s survey of East Los 
Angeles was one of the first holistic efforts to 
document historic and cultural resources in the 
community.”). 

Similar performance was also observed in the 
recognition of Methods. Analysis showed that the 
errors mainly occurred in cases of named entities 
other than methods, which, however, appear in similar 
textual contexts. For example, consider the sentence: 
“In May 2005 two of us traveled to the Angolan 
provinces of Namibe and Bengo, where we employed 
a geographic information system (GIS) to model the 
potential distribution of new species.”. Here the tool: 
“geographic information system (GIS)” is erroneously 
annotated as a method by the classifier, probably due 
to the similar lexical form or the textual context of the 
sentence.  

Regarding the extraction of textual spans referring to 
the Activity class, errors were observed in some 
instances of the Activity class in passive voice, not 
recognized as such by the classifier.  For instance, in 
the sentence: “In this study carbon isotope 
discrimination was performed to assess the growing 
conditions of fossil cereal grains”, the classifier failed 
to recognize the activity span. These errors could be 
attributed to the inclusion of negative training samples 
(i.e., cases of sentences in passive voice referring to 
historical events or activities not performed by the 
authors and thus not being annotated as activities) in 
the training set.  

Regarding the variation in performance across 
different evaluation experiments (token-based, entity-
based-partial, and entity-based-strict evaluations) it 
can be seen that the exact boundaries of the entity 
are difficult to capture even for the highest performing 
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models. Analysis indicates that such errors mostly 
occur in cases where one type of entity overlaps with 
another. E.g., “As a consequence of different growth 
behavior of trees in the juvenile phase, two different 
methods to estimate the juvenile rings were used.”. 
Here, the boundaries of the enclosed entity were 
incorrectly detected, just like the tokens “were used” 
(in bold) were erroneously recognized as part of the 
goal span, although they are part of the overlapping 
activity. Other cases of erroneous boundary detection 
involved the inclusion of punctuation marks 
immediately following the entity inside the textual 
span. E.g., “To fulfill this purpose, we analyzed cranial 
discrete traits from this population.”. Especially 
concerning the Method class, such cases also 
involved the inclusion of information inside 
parentheses or brackets adjacent to the entities, 
probably due to the similarity in form with cases where 
the acronym of a method inside parentheses follows 
the method name (e.g., “Evaluation of Logistic 
Regression (P, R, F1) yielded good performance 
results…”, see also Fig. 1 for another example). 

5.4 Linguistic Linked Data Generation 
Apart from fine tuning transformer-based models for 
information extraction, this dataset can be used 
directly as a source for linguistic linked data by itself. 
Specifically, using the methodologies described in 
(Pertsas & Constantopoulos, 2023) the dataset can 
be transformed into an RDF Knowledge Graph (KG) 
adhering to Linked Data Standards. Such a KG can 
offer structured semantic views of the content of 
publications, which enhance our capability for 
comprehensive exploration of research work. This 
can be demonstrated through semantically complex 
queries executed over the KG. Indicative such 
queries, expressed in SPARQL are presented below: 

Query 1: Retrieve all researchers that participate in 
activities or have research objectives that deal with 
linguistic analysis. 
SELECT DISTINCT ?p_label  
WHERE { 
 ?p rdfs:label ?p_label 
 ?p so:hasGoal / rdfs:label ?g_label 
 ?p so:participatesIn / rdfs:label ?a_label 
 filter contains(lcase(?g_label,?a_label), 
 "linguistic analysis").} 
 
Here, through the use of property chains in SPARQL 
and the filter contains SPARQL expression, all the 
methods employed in activities that have objectives 
with labels (i.e. textual spans) that contain the words 
“linguistic analysis” can be retrieved.  

Query 2: For a specific paper (e.g. “Paper1”) retrieve 
all the research activities, conducted by the authors, 
along with their objectives and the methods they 
employed. 

SELECT ?m_label ?a_label ?g_label 
WHERE { 
 ?a so:isDocumentedIn so:Paper1. 
 ?a rdfs:label ?a_label. 
 ?g so:isDocumentedIn so:Paper1. 
 ?g rdfs:label ?g_label. 

 ?m so:isDocumentedIn so:Paper1. 
 ?m rdfs:label ?m_label. } 
 
Here, the overall activity reported in a paper is 
decomposed into a series of activities denoting “what” 
the authors have done, associated with the methods 
they employed, and the goals they were trying to 
accomplish. Through this way, basic questions of 
“what”, “how” and “why” regarding information 
described in a research publication can be answered. 
Using such queries, the reader has access to an 
enhanced “bird’s-eye” view of what is described in a 
paper before actually reading it. Additional 
information regarding the authors, their research 
interests or the abstract can also be retrieved using 
the appropriate SO classes and relations. 

6. Conclusion 
In this paper we presented a manually curated 
dataset of 15,262 sentences in English, derived from 
3,500 research articles (abstract and main text) and 
172 different disciplines and subfields. The dataset 
contains in total 23,562 labels for three types of 
entities: 1) research methods, named entities of 
variable length, 2) research goals, entities that appear 
in text as textual spans of variable length with mostly 
fixed lexico-syntactic-structure, and 3) research 
activities, entities that appear as textual spans of 
variable length with complex lexico-syntactic 
structure.  

We explored the capabilities of our datasets along 
four dimensions: 1) Classification Method: we 
experimented with training/fine-tuning various ML and 
DL models as well as LLMs (chat-GPT 3.5) through 
prompting; 2) Linguistic Characteristics: we explored 
the performance of our methods across 
interdisciplinary and discipline-specific subsets in 
order to capture any possible differences in discipline-
oriented writing styles; 3) Processing Granularity: we 
tested the effectiveness of classification at three 
levels of granularity: token-based, entity-based strict 
and entity-based partial. In addition, the included 
entities represent three levels of lexico-syntactic 
complexity: named entities of variable length, “non-
named” entities of variable length with mostly fixed 
lexico-syntactic-structure and variable length with 
complex lexico-syntactic structure; 4) Linguistic 
Linked Data Generation: we explored the capabilities 
of our dataset as a potential source for linguistic linked 
data through the use of SPARQL queries that can be 
executed over an RDF KG that can be created from 
it.  

Evaluation scores showed high performance in all the 
experiments, especially with transformer-based 
models, showcasing the capabilities of our dataset in 
fine-tuning / training transformer models that can 
achieve very high results in entity extraction reaching 
up to F1=89.26 in “lenient” token-based evaluation 
and up to F1=81.06 in strict entity-based evaluation, 
even for entities of complex lexico-syntactic structure 
and variable length like the ones of research activities.   
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Future work includes expansion of our dataset with 
annotation of other types of entities and relations of 
the Scholarly Ontology concerning research 
publications. Specifically, we intend to provide 
annotations as well as trained DL models for the 
relations among SO entities, such as 
employs(Activity,Method),hasObjective(Activity,Goal) 
for interrelating the extracted activities with their 
corresponding methods and goals respectively, thus 
enhancing the produced linguistic linked data. 

In addition, we intend to produce annotations for the 
research findings, arguments that describe various 
experiment results and interrelate them with their 
associated research activities that provide the 
supporting evidence or premise for those findings.  
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