@inproceedings{banerjee-etal-2024-cross,
title = "Cross-Lingual Ontology Matching using Structural and Semantic Similarity",
author = "Banerjee, Shubhanker and
Chakravarthi, Bharathi Raja and
McCrae, John Philip",
editor = "Chiarcos, Christian and
Gkirtzou, Katerina and
Ionov, Maxim and
Khan, Fahad and
McCrae, John P. and
Ponsoda, Elena Montiel and
Chozas, Patricia Mart{\'\i}n",
booktitle = "Proceedings of the 9th Workshop on Linked Data in Linguistics @ LREC-COLING 2024",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.ldl-1.2",
pages = "11--21",
abstract = "The development of ontologies in various languages is attracting attention as the amount of multilingual data available on the web increases. Cross-lingual ontology matching facilitates interoperability amongst ontologies in different languages. Although supervised machine learning-based methods have shown good performance on ontology matching, their application to the cross-lingual setting is limited by the availability of training data. Current state-of-the-art unsupervised methods for cross-lingual ontology matching focus on lexical similarity between entities. These approaches follow a two-stage pipeline where the entities are translated into a common language using a translation service in the first step followed by computation of lexical similarity between the translations to match the entities in the second step. In this paper we introduce a novel ontology matching method based on the fusion of structural similarity and cross-lingual semantic similarity. We carry out experiments using 3 language pairs and report substantial improvements on the performance of the lexical methods thus showing the effectiveness of our proposed approach. To the best of our knowledge this is the first work which tackles the problem of unsupervised ontology matching in the cross-lingual setting by leveraging both structural and semantic embeddings.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="banerjee-etal-2024-cross">
<titleInfo>
<title>Cross-Lingual Ontology Matching using Structural and Semantic Similarity</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shubhanker</namePart>
<namePart type="family">Banerjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bharathi</namePart>
<namePart type="given">Raja</namePart>
<namePart type="family">Chakravarthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="given">Philip</namePart>
<namePart type="family">McCrae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Workshop on Linked Data in Linguistics @ LREC-COLING 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Chiarcos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katerina</namePart>
<namePart type="family">Gkirtzou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maxim</namePart>
<namePart type="family">Ionov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fahad</namePart>
<namePart type="family">Khan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="given">P</namePart>
<namePart type="family">McCrae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="given">Montiel</namePart>
<namePart type="family">Ponsoda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patricia</namePart>
<namePart type="given">Martín</namePart>
<namePart type="family">Chozas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The development of ontologies in various languages is attracting attention as the amount of multilingual data available on the web increases. Cross-lingual ontology matching facilitates interoperability amongst ontologies in different languages. Although supervised machine learning-based methods have shown good performance on ontology matching, their application to the cross-lingual setting is limited by the availability of training data. Current state-of-the-art unsupervised methods for cross-lingual ontology matching focus on lexical similarity between entities. These approaches follow a two-stage pipeline where the entities are translated into a common language using a translation service in the first step followed by computation of lexical similarity between the translations to match the entities in the second step. In this paper we introduce a novel ontology matching method based on the fusion of structural similarity and cross-lingual semantic similarity. We carry out experiments using 3 language pairs and report substantial improvements on the performance of the lexical methods thus showing the effectiveness of our proposed approach. To the best of our knowledge this is the first work which tackles the problem of unsupervised ontology matching in the cross-lingual setting by leveraging both structural and semantic embeddings.</abstract>
<identifier type="citekey">banerjee-etal-2024-cross</identifier>
<location>
<url>https://aclanthology.org/2024.ldl-1.2</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>11</start>
<end>21</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-Lingual Ontology Matching using Structural and Semantic Similarity
%A Banerjee, Shubhanker
%A Chakravarthi, Bharathi Raja
%A McCrae, John Philip
%Y Chiarcos, Christian
%Y Gkirtzou, Katerina
%Y Ionov, Maxim
%Y Khan, Fahad
%Y McCrae, John P.
%Y Ponsoda, Elena Montiel
%Y Chozas, Patricia Martín
%S Proceedings of the 9th Workshop on Linked Data in Linguistics @ LREC-COLING 2024
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F banerjee-etal-2024-cross
%X The development of ontologies in various languages is attracting attention as the amount of multilingual data available on the web increases. Cross-lingual ontology matching facilitates interoperability amongst ontologies in different languages. Although supervised machine learning-based methods have shown good performance on ontology matching, their application to the cross-lingual setting is limited by the availability of training data. Current state-of-the-art unsupervised methods for cross-lingual ontology matching focus on lexical similarity between entities. These approaches follow a two-stage pipeline where the entities are translated into a common language using a translation service in the first step followed by computation of lexical similarity between the translations to match the entities in the second step. In this paper we introduce a novel ontology matching method based on the fusion of structural similarity and cross-lingual semantic similarity. We carry out experiments using 3 language pairs and report substantial improvements on the performance of the lexical methods thus showing the effectiveness of our proposed approach. To the best of our knowledge this is the first work which tackles the problem of unsupervised ontology matching in the cross-lingual setting by leveraging both structural and semantic embeddings.
%U https://aclanthology.org/2024.ldl-1.2
%P 11-21
Markdown (Informal)
[Cross-Lingual Ontology Matching using Structural and Semantic Similarity](https://aclanthology.org/2024.ldl-1.2) (Banerjee et al., LDL-WS 2024)
ACL