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Abstract
The development of ontologies in various languages is attracting attention as the amount of multilingual data
available on the web increases. Cross-lingual ontology matching facilitates interoperability amongst ontologies
in different languages. Although supervised machine learning-based methods have shown good performance
on ontology matching, their application to the cross-lingual setting is limited by the availability of training data.
Current state-of-the-art unsupervised methods for cross-lingual ontology matching focus on lexical similarity between
entities. These approaches follow a two-stage pipeline where the entities are translated into a common language
using a translation service in the first step followed by computation of lexical similarity between the translations
to match the entities in the second step. In this paper, we introduce a novel ontology matching method based
on the fusion of structural similarity and cross-lingual semantic similarity. We carry out experiments using 3
language pairs and report substantial improvements in the performance of the lexical methods thus showing the
effectiveness of our proposed approach. To the best of our knowledge, this is the first work that tackles the problem
of unsupervised ontology matching in the cross-lingual setting by leveraging both structural and semantic embeddings.

Keywords: cross-lingual ontology matching, cross-lingual semantic similarity, lexical similarity

1. Introduction

An increasing amount of multilingual data on the
web has led to the development of ontologies in
different languages. Ontologies are used to en-
able the sharing of information across different sys-
tems (Davies et al., 2002; Beydoun et al., 2011;
Elmhadhbi et al., 2021). Furthermore, the adoption
of ontologies as databases across domains has
also attracted attention (Pankowski, 2023). These
applications motivate the development of tools that
allow semantic interoperability of ontologies across
a wide range of languages. Identifying correspon-
dences between ontologies in different languages
is called Cross-lingual Ontology Matching (CLOM)
(Ibrahim et al., 2023). Cross-Lingual Ontology
Matching has the potential to contribute to various
areas such as ontology enrichment, peer-to-peer
information sharing, and linked data. Despite these
potential applications CLOM has largely been an
unexplored research problem. Therefore, more ef-
forts from the research community towards building
flexible CLOM systems are needed.

In recent times, deep learning based methods
have achieved good results on ontology matching
(Iyer et al., 2020; Li et al., 2019b; He et al., 2022).
However, these methods are dependent on large
amounts of training data which are not available in
cross-lingual scenarios. To tackle this challenge
we present an unsupervised ontology matching ap-
proach for CLOM. The proposed approach uses a
state-of-the-art text embedding model to embed the
concept descriptions into low-dimensional vectors

which are then used to compute semantic similar-
ity. Structural similarity between source and tar-
get concepts is an integral part of the proposed
approach. We leverage the semantic similarity be-
tween source and target concepts to generate ref-
erence alignments. These reference alignments
are used to learn structural embeddings for each
concept in source and target ontologies. The se-
mantic and structural embeddings are then used
to calculate a weighted similarity to find equivalent
entities in two ontologies. The main contributions
of this work can be summarized as follows:

• Our experiments reveal that a weighted com-
bination of semantic and structural similarity
achieves performance gains over lexical simi-
larity measures.

• We evaluate our method on 3 language pairs
to demonstrate its extensibility.

• The proposed approach does not require man-
ually labeled alignment data and thus is suit-
able for application in data-scarce scenarios.

The paper is organized as follows: Section 2
discusses the related works, Section 3 describes
the methodology, the experiments are described in
Section 4, the results are discussed in Section 5.
The conclusion is given in Section 6. The limitations
have been discussed in Section 7.
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2. Related Work

Cross-lingual Ontology Matching. Traditionally,
CLOM approaches involve translation of the con-
cepts into a common language (usually English)
followed by calculation of lexical similarity to identify
equivalent concepts. Following this paradigm Fu
et al. (2010) propose a CLOM approach that selects
the appropriate translation from amongst multiple
translations generated by their system based on
synonym-based matching with the entities in the
target ontology. Furthermore, to resolve conflicts in
alignments their system relies on the similarity of
1-hop neighbours of the entities from source and
target ontologies. The translation in Ibrahim et al.
(2019) follows a similar approach where they select
candidate translations based on similarity to target
concepts. Their system outperforms the state-of-
the-art systems on the Ontology Alignment Evalu-
ation Initiative (OAEI)1 2018 benchmark. Ibrahim
et al. (2020) introduced MULON, a modularized
CLOM system based on lexical and semantic simi-
larity. The alignments are computed using a com-
bination of both similarities. They use Jaccard for
lexical similarity and WordNet path-based matching
for semantic similarity.

MoMatch (Ibrahim et al., 2023) is based on
lexical similarity of translated entities computed
using metrics such as Jaccard (Jaccard, 1901),
Levenshtein (Levenshtein et al., 1966), Jaro (Jaro,
1989) and Jaro-Winkler (Wang et al., 2017). The
translation is carried out using the Yandex transla-
tion API and they improve upon the performance
of the state-of-the-art methods for CLOM from
the OAEI 2020 benchmark. Sharma and Jain
(2023) achieve the best results on the MultiFarm
dataset (Meilicke et al., 2012) at OAEI 2023. Their
method uses Levenshtein-based similarity of
translated concepts and WordNet-based synonym
matching to align concepts. Machine learning
based methods have also been explored for
CLOM; Spohr et al. (2011) use a small amount of
manually aligned concepts to train a SVM with 20
string-based features and 22 structural features
for CLOM. Gracia and Asooja (2013) leverage
artificial neural networks (ANNs) to calculate
similarity between source and target concepts
using manually designed features.
Unsupervised Entity Alignment. Ontologies are
graph structures that describe hierarchies between
concepts within a domain (Zhapa-Camacho and
Hoehndorf, 2023). Therefore, ontology matching is
fundamentally similar to the task of entity alignment
across knowledge graphs. Unsupervised and
self-supervised methods have been proposed
for aligning entities in data-scarce scenarios.
Liu et al. (2022a) propose a self-supervised

1http://oaei.ontologymatching.org/

training objective based on contrastive learning for
entity alignment. To generate reference training
alignments they use semantic similarity between
concept descriptions from the source and target
ontologies. The descriptions are encoded using
LaBSE (Feng et al., 2022) and graph attention
network (Velickovic et al., 2018) is used to learn
structural embeddings using a self-supervised
training objective based on noise-contrastive
estimation (Gutmann and Hyvärinen, 2010). Tang
et al. (2023) pose entity alignment as an optimal
transport problem and report good results. In par-
ticular, they calculate fused Gromov-Wasserstein
distance (Vayer et al., 2019) to minimize the
distance between entities. Mao et al. (2021)
formulate the ontology matching problem as a
minimum sum assignment problem. The optimal
assignments are calculated using the Hungarian
(Kuhn, 1955) and Sinkhorn algorithms (Sinkhorn,
1964). Graph convolutional networks (GCN) (Kipf
and Welling, 2017) have also been used to capture
structural information. Zeng et al. (2021) use
GCN to compute structural similarity between
concept nodes in source and target ontologies.
Textual similarity is computed using a weighted
combination of Levenshtein similarity and cosine
similarity of averaged word vectors. A weighted
combination of structural and textual similarity is
compared against a fixed threshold to align entities.

3. Methodology

We propose a framework for unsupervised cross-
lingual ontology alignment. As discussed in Sec-
tion 2, approaches based on lexical similarity have
achieved state-of-the-art (SOTA) results on CLOM
tasks. To demonstrate the effectiveness of our ap-
proach we compare it against 5 lexical similarity
measures.

3.1. Task Formulation
The source and the target ontologies O1 and O2

respectively are inputs to the proposed CLOM sys-
tem. The task of cross-lingual ontology matching
is defined as finding aligned concepts between the
ontologies. i.e.,

ϕ = {(a, b)|a ∈ C1, b ∈ C2, a ↔ b},

where C1 and C2 refer to the concept sets in O1

and O2, respectively, a ↔ b represent alignment
between source and target concepts i.e., a and b
refer to the same object in the real world. In this
paper, we focus on unsupervised cross-lingual on-
tology matching i.e., source and target concepts
belong to different languages and there is no la-
beled alignment data available.

http://oaei.ontologymatching.org/
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Figure 1: The source and target ontologies are inputs to our proposed CLOM framework in which we
leverage both semantic and structural similarity of concepts to align the candidate nodes.

3.2. Concept Alignment

We hypothesize that aligned concepts in the source
and target ontologies would have similar textual
descriptions. This hypothesis postulates that the
cosine similarity of text embeddings obtained from
concept descriptions is positively correlated with the
likelihood of the concepts being aligned/matched.
Similar ideas have been explored by various super-
vised, semi-supervised, and self-supervised knowl-
edge graph entity alignment approaches (Liu et al.,
2022b; Wu et al., 2019; Chen et al., 2017; Tang
et al., 2020). Here we leverage LaBSE (Feng et al.,
2022), a multilingual model pre-trained on 109 lan-
guages for generating cross-lingual embeddings
for the concepts in the source and target ontolo-
gies. Cosine similarity between the normalized
embeddings is computed as a measure of seman-
tic similarity between the corresponding concepts.
Semantic similarity in the multilingual space is then
leveraged for generating seed alignments between
the input ontologies.

Ontologies are fundamentally graphs that rep-
resent concept hierarchies within a domain. In
addition to textual descriptions, structural embed-
dings of the concepts in question can also consti-
tute an important factor in determining alignment.
Concept nodes with similar neighbourhoods are
more likely to be aligned. We carry out experi-
ments with various graph embedding approaches
such as node2vec (Grover and Leskovec, 2016),
Graph Convolutional Networks (Kipf and Welling,
2017, GCN), RGCN (Schlichtkrull et al., 2018) and
TransE (Bordes et al., 2013) to learn embeddings
for concept nodes. However, comparisons using
embeddings learned on the two input ontologies
independently are not meaningful as the embed-

dings would reside in two different vector spaces.
Therefore, we leverage the seed textual alignments
to consider source and target ontologies together
as a graph and learn structural embeddings for all
concept nodes in both ontologies. We employ two
strategies for seed alignment for this task. In the
first strategy, we select only those concept node
pairs as alignments where the source and target
concept node descriptions are semantically mutual
nearest neighbours of each other. In the second
strategy, we calculate the semantic similarity scores
of all source and target concept pairs. The top-k
most similar concept pairs are selected as seed
alignments. We experiment with k=1,3,5,7 to quan-
tify variation in performance as the number of seed
alignments changes. To generate structural embed-
dings we train the node2vec model using the self-
supervised loss defined by Grover and Leskovec
(2016). RGCN and TransE are trained using a mar-
gin ranking loss (MR) based on negative sampling2.
The seed alignments are used as training data for
training the GCN model using the training objective
given in Equation 1

L =
∑

(a,b)∈S

∑
(a′,b′)∈S′

[d(a, b) + γ − d(a′, b′)]+ (1)

where [·]+ = max{0, ·} and (a, b) denotes a labeled
concept pair from the training data. The set S′

(a′, b′) represents negative concept pairs obtained
by corrupting (a, b) using nearest neighbor sam-
pling (Li et al., 2019a). The embeddings of the
source and target concepts learned by GCN are
denoted as a and b, respectively. The distance func-

2https://pykeen.readthedocs.io/en/
stable/reference/training.html

https://pykeen.readthedocs.io/en/stable/reference/training.html
https://pykeen.readthedocs.io/en/stable/reference/training.html
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tion measuring the distance between two embed-
dings is represented by d(·, ·). The hyper-parameter
γ serves to separate positive samples from neg-
ative ones. Structural similarity between concept
nodes is calculated using the cosine similarity of
normalized structural embeddings generated by
the graph embedding models.

Algorithm 1: The proposed algorithm com-
bining semantic and structural similarity for
ontology matching
Data: Source Ontology, O1, Target Ontology,

O2

Result: Aligned node pairs ϕ̂
1 Strategy 1: Select seed set S1 by choosing

concept node pairs (c1, c2) where c1 ∈ O1

and c2 ∈ O2 and descriptions of c1 and c2
are semantically mutual nearest neighbors
of each other;

2 Strategy 2: Calculate semantic similarity
scores for all source and target concept
pairs (c1, c2) where c1 ∈ C1 and c2 ∈ C2 ;

3 Select the top-k most similar concept pairs
as seed set S for experiments with
k = 1, 3, 5, 7;

4 Construct joint graph Gjoint by combining O1

and O2 using S as reference alignments
between the graphs;

5 Learn structural embeddings for concept
nodes in Gjoint using one of the methods
defined in Section 3.2 ;

6 The combination of structural and semantic
similarities SimCombined is calculated using
the Equation 2 as a measure of their
alignment;

7 Output the aligned concept pairs according
to Equation 3;

OP DP Concept Classes
cmt 49 10 30

confOf 13 23 39
sigkdd 17 11 50

conference 46 18 61

Table 1: Dataset statistics: The number of Object
properties (OP), Data Properties (DP), and Con-
cept classes in each ontology. For our experiments,
only concept classes are considered.

Finally, as discussed above both structural and
semantic similarity are positively correlated with
the likelihood of alignment. Therefore, we use a
weighted combination of both these measures to
assign a final similarity score to a pair of concepts
from the source and target ontologies as shown in

Equation 2.

SimCombined = α · Simstr + (1− α) · Simsem (2)

where Simstr is the structural similarity between
concept nodes calculated using cosine similarity
of normalized structural embeddings, Simsem is
the semantic similarity of source and target con-
cept node description calculated using the embed-
dings output by LaBSE. The concept pairs where
SimCombined is greater than a fixed threshold θ are
considered to be aligned.

ϕ̂ = {(c1, c2) | c1 ∈ C1, c2 ∈ C2,

Simcombined(c1, c2) > θ}
(3)

where the ϕ̂ is the set of all aligned concept pairs
(c1, c2) where C1 is the set of all concepts in source
ontology and C2 is the set of all concepts in target
ontology and θ is the fixed threshold. The algorithm
for the aligning source and target concept nodes
has been described in Algorithm 1.

4. Experiments

4.1. Dataset
We carry out experiments on 3 ontology pairs
(cmt-confOf, conference-confOf, and conference-
sigkdd) across 3 language pairs (German-English,
German-French, and English-French) of the Multi-
farm dataset (Meilicke et al., 2012). The MultiFarm
dataset is a benchmark for multilingual ontology
matching. It is used to evaluate the ability of sys-
tems to deal with ontologies in different languages.
It consists of a set of 7 ontologies related to confer-
ences. The dataset was derived by translating the
OntoFarm dataset (Zamazal and Svátek, 2017) into
9 languages: Chinese, Czech, Dutch, French, Ger-
man, Portuguese, Russian, Arabic and Spanish.
The dataset statistics are given in Table 1.

4.2. Baselines
As discussed in Section 2, lexical string similarity
measures constitute the core part of most state-
of-the-art CLOM systems. Therefore, to evaluate
the proposed approach we compare it to 5 lexi-
cal similarity measure commonly used in the lit-
erature, namely: Jaccard (Jaccard, 1901), Leven-
shtein (Levenshtein et al., 1966), Jaro (Jaro, 1989),
Jaro-Winkler (Wang et al., 2017) and Tversky (Tver-
sky, 1977). Since the baselines compute lexical
similarity, we translate the source and target entities
to English before using these methods. In our ex-
periments, we have used MetaAI’s state-of-the-art
NLLB model (Costa-jussà et al., 2022) to translate
the source and target concepts. In particular, we
use a distilled 600M parameter version of the model
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γ Epochs Learning
rate

Walk
length

# of walks Batch
size

GCN 3.0 1000 1e-5 _ _ 1
node2vec _ _ _ 30 200 _
RGCN 3.0 100 _ _ _ 2
TransE 3.0 100 _ _ _ 2

Table 2: The hyperparameters used during training. The value of γ has been chosen based on prior
work on knowledge graph entity alignment by Zeng et al. (2021). The default learning rate scheduler in
pyKEEN is used for training RGCN and TransE. We set the other hyperparameters through empirical trial
and error.

nllb-200-distilled-600M to limit the computational
resources needed for inference.

4.3. Experimental Setup
As discussed above, to establish the effectiveness
of our approach we carry out experiments on 3 on-
tology pairs across 3 languages. In the first step
semantic similarity between source and target con-
cepts is calculated to establish seed alignments be-
tween the ontologies. As discussed in Section 3.2
experiments are carried out with node2vec, GCN,
RGCN, and TransE for the structural embeddings.
The hyperparameters used during training are listed
in Table 2. Furthermore, for our experiments, we
empirically set the similarity threshold θ to 0.80. We
carry out experiments with different values of α to
ascertain the relative importance of both similarity
measures for achieving good task performance.

4.4. Implementation Details
To ensure reproducibility we have used open-
source libraries in our implementation. The on-
tologies were pre-processed using RDFlib3. We
used Hugging Face4 to implement the transla-
tion pipeline for the baseline methods and calcu-
late semantic similarity5 between the source and
target concepts. GCN was implemented using
Torch Geometic6. The node2vec algorithm was
implemented using node2vec library7. TransE and
RGCN were implemented using PyKEEN library8.

5. Results

Our main experimental results can be found in Ta-
ble 3. It is important to note that semantic similarity

3https://rdflib.readthedocs.io/en/
stable/

4https://huggingface.co/
5We used setu4993/LaBSE model from then hugging

face repository to generate cross-lingual text embeddings
6https://pytorch-geometric.readthedocs.

io/en/latest/
7https://pypi.org/project/node2vec/
8https://pykeen.readthedocs.io/en/

stable/

using embeddings from LaBSE outperforms lexi-
cal similarity baselines in almost all cases on the
F1-score, often by large margins in the range of
approximately 1-40%. On the conference-sigkdd
dataset node2vec-NN (NN implies node2vec with
mutual nearest neighbour seed alignment strat-
egy) has the best performance and achieves an
average F1-score of 61.5% over all the language
pairs. Similarly on the conference-confOf ontol-
ogy pair node2vec-NN has the best performance
on German-English and German-French datasets.
However, on the English-French dataset, Jaro simi-
larity outperforms all other methods. We also note
that the TransE-NN based alignment approach out-
performs the lexical methods in most cases but
substantially lags behind node2vec-NN in all cases.
The other two graph embedding methods namely
GCN-NN and RGCN-NN have relatively bad perfor-
mance and are outperformed by the lexical base-
lines in most cases. These observations indicate
that using semantic similarity is a better alternative
than lexical similarity for ontology matching. This
result is not surprising as the semantic similarity
is based on similarity of "meaning" whereas lexi-
cal similarity is based on overlap of surface forms
and is dependent on the translations. Furthermore,
the good performance of node2vec-NN also estab-
lishes the effectiveness of the proposed framework
for ontology matching where we combine structural
similarity with semantic similarity using a weighted
combination. We attribute the relatively bad perfor-
mance of GCN and RGCN models to the smaller
size of the graph (≈ 100 nodes in source and target
ontologies combined) leading to ineffective learning
of node representations.

The results reported in Table 3 use θ = 0.80.
We recognize that fixed thresholds for alignment
identification may lead to sub-optimal performance
where a particular similarity threshold might not be
optimal for all datasets. Higher thresholds might
lead to a larger number of false negatives and a
smaller threshold might lead to a larger number of
false positives on different datasets. As demon-
strated in Figure 2, these fluctuations might also
have an impact on the overall performance.

Overall, the results indicate that incorporating

https://rdflib.readthedocs.io/en/stable/
https://rdflib.readthedocs.io/en/stable/
https://huggingface.co/
https://pytorch-geometric.readthedocs.io/en/latest/
https://pytorch-geometric.readthedocs.io/en/latest/
https://pypi.org/project/node2vec/
https://pykeen.readthedocs.io/en/stable/
https://pykeen.readthedocs.io/en/stable/
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cmt-confOf
German-French German-English English-French

Precision/Recall/F1 Precision/Recall/F1 Precision/Recall/F1
Jaro 66.6/44.4/53.3 66.6/44.4/53.3 50.0/20.0/28.5

Jaro-Winkler 44.4/57.1/50.0 66.6/75.0/70.5 50.0/55.5/52.6
Levenshtein 100.0/40.0/57.1 100.0/50.0/66.6 100.0/30.0/46.1

Jaccard 80.0/44.4/57.1 85.7/66.6/75.0 75.0/33.3/46.1
Tversky 41.6/62.5/50.0 43.7/87.5/58.3 33.3/42.8/37.5
LaBSE 83.3/50.0/62.5 83.3/55.5/66.6 66.6/60.0/63.1

LaBSE + node2vec-NN 100.0/50.0/66.6 100.0/55.5/71.4 71.4/50.0/58.8
LaBSE + GCN-NN 71.4/55.5/62.5 62.5/55.5/58.8 63.6/70.0/66.6

LaBSE + TransE-NN 100.0/50.0/66.6 100.0/50.0/66.6 100.0/50.0/66.6
LaBSE + RGCN-NN 100.0/22.2/36.3 100.0/10.0/18.1 100.0/20.0/33.3

conference-confOf
Jaro 33.3/33.3/33.3 40.0/44.4/42.1 70.0/70.0/70.0

Jaro-Winkler 25.0/50.0/33.3 27.7/62.5/38.4 50.0/80.0/61.5
Levenshtein 66.6/18.1/28.5 75.0/27.2/39.9 83.3/45.4/58.8

Jaccard 20.0/11.1/14.2 25.0/22.2/23.5 50.0/45.4/47.6
Tversky 7.1/33.3/11.7 9.3/75.0/16.6 22.2/66.6/33.3
LaBSE 66.6/54.5/60.0 60.0/54.5/57.1 60.0/54.5/57.1

LaBSE + node2vec-NN 75.0/54.5/63.1 66.6/60.0/63.1 66.6/54.4/60.0
LaBSE + GCN-NN 50.0/60.0/54.5 46.1/60.0/52.1 44.4/72.7/55.1

LaBSE + TransE-NN 75.0/27.2/39.9 83.3/45.4/58.8 85.7/54.5/66.6
LaBSE + RGCN-NN 80.0/36.3/50.0 75.0/36.3/50.0 100.0/27.2/39.9

conference-sigkdd
Jaro 42.8/30.0/35.2 42.8/30.0/35.2 40.0/18.1/25.0

Jaro-Winkler 25.0/40.0/30.7 29.4/50.0/37.0 33.3/27.2/30.0
Levenshtein 75.0/25.0/37.5 75.0/25.0/37.5 50.0/8.3/14.2

Jaccard 27.2/27.2/27.2 20.0/30.0/24.0 28.5/20.0/23.5
Tversky 8.5/42.8/14.2 10.5/44.4/17.0 13.3/57.1/21.6
LaBSE 55.5/41.6/47.6 42.8/54.5/47.9 60.0/50.0/54.5

LaBSE + node2vec-NN 66.6/50.0/57.1 70.0/63.6/66.6 58.3/63.6/60.8
LaBSE + GCN-NN 36.8/58.3/45.1 43.7/63.6/51.8 38.8/70.0/50.0

LaBSE + TransE-NN 60.0/25.0/35.2 80.0/33.3/47.0 66.6/33.3/44.4
LaBSE + RGCN-NN 100.0/25.0/40.0 100.0/8.3/15.3 100/16.6/28.5

Table 3: Precision, recall, and F1-scores of 5 lexical baselines compared with node2vec-NN, GCN-NN,
TransE-NN, and RGCN-NN (NN indicates that mutual nearest neighbour source and target concepts are
used as seed alignments between the input ontologies. This seed generation strategy is described as
Strategy 1 in Algorithm 1) for θ = 0.80 and α = 0.2.

structural information improves performance as
compared to only using semantic similarity. How-
ever, the performance is sensitive to the choice of
embedding methods used as node2vec substan-
tially outperforms GCN. Furthermore, these results
have been reported for α=0.2 which signifies a
smaller contribution of structural similarity to the
overall alignment. We discuss variation in perfor-
mance of the node2vec-NN model with α in more
detail in Section 5.2.

5.1. Performance vs. k

As discussed in Algorithm 1 we employ two seed
generation strategies. In this section, we compare
the task performance of node2vec using mutual
nearest neighbour seed alignments (Strategy 1)
and top-k most semantically similar seed align-
ments (Strategy 2). We fix α = 0.2 and θ = 0.80
for the experiments. The results are illustrated in
Table 4. In general, k = 1 leads to bad performance.
This is understandable as only 1 seed alignment
between the graphs is insufficient to learn meaning-
ful representations. As can be seen, the F1-scores
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Figure 2: The variation in F1-score with change in threshold for the German-English dataset for conference-
confOf pair (on the left) and the conference-sigkdd pair (on the right) with α = 0.2.

cmt-confOf
k German-French German-English English-French

1 36.3 46.1 66.6
3 46.1 66.6 53.3
5 57.1 66.6 62.5
7 57.1 66.6 62.5

NN 66.6 71.4 58.8

conference-confOf
1 28.5 58.8 28.5
3 58.8 58.8 39.9
5 55.5 66.6 47.0
7 55.5 63.1 44.4

NN 63.1 63.1 60.0

conference-sigkdd
1 26.6 47.0 47.0
3 52.6 55.5 52.6
5 60.0 70.0 50.0
7 57.1 60.0 63.6

NN 57.1 66.6 60.8

Table 4: F1-scores of top-k semantically similar seed alignments where k = 1,3,5,7 compared with mutual
nearest neighbour (NN) alignments for node2vec model for θ = 0.80 and α = 0.2.

exhibit monotonic behaviour concerning the num-
ber of seed alignments in general i.e., increasing
the number of alignments from 1 to 5 improves
performance. However, in general k = 7 leads to
degradation of performance as compared to k = 5.
This can be attributed to additional noise introduced
by a larger number of seed alignments. Hence, nei-
ther very low nor very high i.e., k = 5 is optimal for
almost all datasets. In terms of the two strategies
both are equally effective with nearest neighbour
seed alignment outperforming k = 5 on 5 out of the
9 datasets.

5.2. Performance vs. α

To quantify variation in performance with changes
in α we carry out experiments with varying α across
different thresholds for node2vec with mutual near-
est neighbour seed alignment. The results are illus-
trated in Figures 3, 4 and 5. As can be seen, almost
all the ontology pairs and all the language pairs α =
0.2 had the best F1-score overall. Interestingly, as
the value of alpha went up the performance deterio-
rated with the lowest F1-scores recorded for α = 0.8
for a given threshold. α = 0 has good performance
and for specific thresholds outperforms F1-scores
achieved by using α = 0.2. α = 0 indicates only the
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Figure 3: F1 vs. α: cmt-confOf

Figure 4: F1 vs. α: conference-confOf

Figure 5: F1 vs. α: conference-sigkdd

semantic similarity of concept descriptions being
used for ontology matching. These results suggest
that while the choice is alpha is dependent on the
similarity threshold being used, a value of 0.2 for
α leads at threshold 0.80 leads to good results in
general. Furthermore, the results demonstrate that
while semantic similarity is the more important fac-
tor for ontology matching even outperforming the
combined similarity for certain thresholds, the ad-
dition of structural similarity signals can lead to an
improvement in task performance.

6. Conclusion

In this work, we proposed a new framework for on-
tology matching and evaluated it on 3 ontology pairs
across 3 language pairs. The proposed framework
takes into account semantic similarity between con-
cept node descriptions in the source and target
ontologies as well as the structural similarity calcu-
lated using embeddings that aggregate information

about node neighbourhood structure. We showed
that our proposed system can outperform current
state-of-the-art lexical similarity measures being
used for CLOM. Furthermore, the results show that
semantic similarity of concept node descriptions is
the more important factor when aligning source and
target nodes. We experiment with four structural
embeddings, namely node2vec, TransE, RGCN,
and GCN, and find that node2vec leads to bet-
ter performance. It is also important to note that
the performance of Levenshtein similarity is better
than our proposed framework for German-English
and English-French datasets of the cmt-confOf and
conference-confOf ontology pairs respectively. Se-
mantic similarity is used to generate seed align-
ments in the first stage of our approach and we
explore two strategies for this purpose. Our analy-
sis suggests that selecting top-k semantically sim-
ilar concepts as seed alignments leads to better
performance.
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7. Limitations

Although we have shown good performance of our
method for ontology matching as compared to lexi-
cal measures there are limitations worth discussing.
We carry out our experiments using a fixed thresh-
old however as discussed in Section 5, there is
substantial variation in performance with chang-
ing thresholds. Choosing a threshold is associ-
ated with a trade-off between precision and recall.
Manually fixing a threshold for different datasets
is not optimal. Furthermore, we show that GCN
is substantially outperformed by node2vec; there
are more advanced alternatives such as Graph
attention networks which can allow the nodes to
only aggregate useful signals from their neighbours.
We expect there to be an improvement in perfor-
mance by using these algorithms. We show that
using top-k semantically similar concepts as seed
alignments is a better strategy for seed generation
overall. However, the experiments do not establish
an optimal value of k for all datasets. We hope to
develop better seed generation strategies as a part
of future work.
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