@inproceedings{mccrae-etal-2024-teanga,
title = "Teanga Data Model for Linked Corpora",
author = "McCrae, John P. and
Rani, Priya and
Doyle, Adrian and
Stearns, Bernardo",
editor = "Chiarcos, Christian and
Gkirtzou, Katerina and
Ionov, Maxim and
Khan, Fahad and
McCrae, John P. and
Ponsoda, Elena Montiel and
Chozas, Patricia Mart{\'\i}n",
booktitle = "Proceedings of the 9th Workshop on Linked Data in Linguistics @ LREC-COLING 2024",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.ldl-1.9",
pages = "66--74",
abstract = "Corpus data is the main source of data for natural language processing applications, however no standard or model for corpus data has become predominant in the field. Linguistic linked data aims to provide methods by which data can be made findable, accessible, interoperable and reusable (FAIR). However, current attempts to create a linked data format for corpora have been unsuccessful due to the verbose and specialised formats that they use. In this work, we present the Teanga data model, which uses a layered annotation model to capture all NLP-relevant annotations. We present the YAML serializations of the model, which is concise and uses a widely-deployed format, and we describe how this can be interpreted as RDF. Finally, we demonstrate three examples of the use of the Teanga data model for syntactic annotation, literary analysis and multilingual corpora.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mccrae-etal-2024-teanga">
<titleInfo>
<title>Teanga Data Model for Linked Corpora</title>
</titleInfo>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="given">P</namePart>
<namePart type="family">McCrae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Priya</namePart>
<namePart type="family">Rani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adrian</namePart>
<namePart type="family">Doyle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bernardo</namePart>
<namePart type="family">Stearns</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Workshop on Linked Data in Linguistics @ LREC-COLING 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Chiarcos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katerina</namePart>
<namePart type="family">Gkirtzou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maxim</namePart>
<namePart type="family">Ionov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fahad</namePart>
<namePart type="family">Khan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="given">P</namePart>
<namePart type="family">McCrae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="given">Montiel</namePart>
<namePart type="family">Ponsoda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patricia</namePart>
<namePart type="given">Martín</namePart>
<namePart type="family">Chozas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Corpus data is the main source of data for natural language processing applications, however no standard or model for corpus data has become predominant in the field. Linguistic linked data aims to provide methods by which data can be made findable, accessible, interoperable and reusable (FAIR). However, current attempts to create a linked data format for corpora have been unsuccessful due to the verbose and specialised formats that they use. In this work, we present the Teanga data model, which uses a layered annotation model to capture all NLP-relevant annotations. We present the YAML serializations of the model, which is concise and uses a widely-deployed format, and we describe how this can be interpreted as RDF. Finally, we demonstrate three examples of the use of the Teanga data model for syntactic annotation, literary analysis and multilingual corpora.</abstract>
<identifier type="citekey">mccrae-etal-2024-teanga</identifier>
<location>
<url>https://aclanthology.org/2024.ldl-1.9</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>66</start>
<end>74</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Teanga Data Model for Linked Corpora
%A McCrae, John P.
%A Rani, Priya
%A Doyle, Adrian
%A Stearns, Bernardo
%Y Chiarcos, Christian
%Y Gkirtzou, Katerina
%Y Ionov, Maxim
%Y Khan, Fahad
%Y McCrae, John P.
%Y Ponsoda, Elena Montiel
%Y Chozas, Patricia Martín
%S Proceedings of the 9th Workshop on Linked Data in Linguistics @ LREC-COLING 2024
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F mccrae-etal-2024-teanga
%X Corpus data is the main source of data for natural language processing applications, however no standard or model for corpus data has become predominant in the field. Linguistic linked data aims to provide methods by which data can be made findable, accessible, interoperable and reusable (FAIR). However, current attempts to create a linked data format for corpora have been unsuccessful due to the verbose and specialised formats that they use. In this work, we present the Teanga data model, which uses a layered annotation model to capture all NLP-relevant annotations. We present the YAML serializations of the model, which is concise and uses a widely-deployed format, and we describe how this can be interpreted as RDF. Finally, we demonstrate three examples of the use of the Teanga data model for syntactic annotation, literary analysis and multilingual corpora.
%U https://aclanthology.org/2024.ldl-1.9
%P 66-74
Markdown (Informal)
[Teanga Data Model for Linked Corpora](https://aclanthology.org/2024.ldl-1.9) (McCrae et al., LDL-WS 2024)
ACL
- John P. McCrae, Priya Rani, Adrian Doyle, and Bernardo Stearns. 2024. Teanga Data Model for Linked Corpora. In Proceedings of the 9th Workshop on Linked Data in Linguistics @ LREC-COLING 2024, pages 66–74, Torino, Italia. ELRA and ICCL.