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Abstract

This paper investigates the finetuning of end-to-
end models for bidirectional Estonian-English
and Estonian-Russian conversational speech-to-
text translation. Due to the limited availability
of speech translation data for Estonian, we cre-
ated additional training data by web scraping
and synthesizing data from speech recognition
datasets using machine translation. We evalu-
ated three publicly available end-to-end models:
Whisper, OWSM 3.1, and SeamlessM4T. Our
results indicate that fine-tuning with synthetic
data enhances translation accuracy by a large
margin, with SeamlessM4T matching or sur-
passing cascaded speech translation systems
that use state-of-the-art speech recognition and
machine translation models.

1 Introduction

Estonian language, spoken by around one million
native speakers, has benefited significantly from
the Estonian Language Technology Program in the
last decades (Rehm et al., 2020). This initiative has
fostered advancements in several key areas, such as
automatic speech recognition (ASR) (Alumäe et al.,
2023) and machine translation (MT) (Tättar et al.,
2022). These improvements are largely due to in-
vestments in collecting relevant training data and
the successful application of large multilingual pre-
trained models. Another crucial area of language
technology is spoken language translation, which
is essential for maintaining smaller languages like
Estonian in today’s digital world. This technol-
ogy enables native speakers of a small language to
access foreign language content more easily and
allows for the broader dissemination of native lan-
guage content. However, one of the significant
challenges in developing these technologies is the
lack of adequate training data for Estonian, par-
ticularly in conversational speech. This shortage
hampers the ability to further enhance and refine
speech translation tools.

In this study, we explore the finetuning of three
publicly available end-to-end models for bidirec-
tional Estonian-English and Estonian-Russian con-
versational speech translation tasks and evaluate
their accuracy against the cascaded spoken lan-
guage translation approach. Given the scarcity
of speech translation datasets containing signifi-
cant amounts of conversational speech for these
translation directions, we explore two methods to
generate additional data: synthesizing speech trans-
lation training data from ASR training data using
machine translation, and scraping data (e.g., videos
with subtitles) from the internet. We evaluate these
models and finetuning approaches using automatic
metrics (BLEU and BLEURT) on realistic conver-
sational speech evaluation sets.

The main contribution of this paper is demon-
strating that leading large publicly available end-to-
end multilingual speech translation models can be
fine-tuned to excel in translation tasks involving rel-
atively low-resource languages by using synthetic
data generated from diverse ASR training data.
Another innovative aspect of the paper is show-
ing that OpenAI’s Whisper, originally trained only
for translating into English, serves as an effective
base model that can be finetuned for other speech
translation directions. Additionally, we release an
evaluation set for Estonian-English-Russian spo-
ken language translation, which includes conver-
sational speech recordings “from the wild”, com-
plete with manual transcripts and professionally
produced translations1. The best-trained speech
translation models are publicly available2. An ex-
ample of an Estonian TV news broadcast with
English and Russian subtitles generated by our
finetuned Whisper model is available at https:
//www.youtube.com/watch?v=rZPqauCYfXI.

1https://github.com/alumae/
k6net6lke-benchmark

2Finetuned Whisper: https://huggingface.co/
TalTechNLP/whisper-large-v3-et-en-ru.translate
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2 Available models

In this section, an overview of publicly accessible
models suitable for speech translation in the tar-
geted translation directions of our study will be
provided.

2.1 Cascaded spoken language translation

The cascaded speech translation method involves
initially using an ASR system to transcribe speech,
followed by translating these transcriptions with
a text-to-text MT system. Presently, one of the
most widely used multilingual ASR model avail-
able to the public is OpenAI’s Whisper (Radford
et al., 2023). In our tests, we utilized the most
effective large-v3 model of Whisper to transcribe
English and Russian speech. For Estonian, we used
the same model, which was finetuned with 1334
hours of Estonian data available publicly from the
TalTech Estonian Speech Dataset 1.03 (Alumäe
et al., 2023). During the development of this pa-
per, the leading publicly accessible text-to-text
MT model for translations involving Estonian was
Meta’s NLLB-200 (NLLB Team et al., 2022). The
NLLB model is available in various sizes, with the
largest being the mixture-of-experts (MoE) version,
which requires 350 GB of storage. For practical rea-
sons, we opted for the largest dense model, which
has 3.3 billion parameters. Machine translation to
and from Estonian via text is also well supported
by several proprietary vendors via API calls, such
as Google and DeepL. The NLP research group at
Tartu University offers a publicly accessible NMT
system Neurotõlge4 that is effective for Estonian
MT tasks (Tättar et al., 2022), and it also provides a
free web API for batch processing. OpenAI’s GPT
models are also capable of conducting machine
translation through prompting.

2.2 End-to-end spoken language translation

Several publicly available multilingual end-to-end
spoken language translation models have recently
emerged. OpenAI’s Whisper model can perform
translation to English from all its supported speech
recognition languages. Other translation directions
are not supported by this model. The reported
BLEU score for Estonian-to-English translation
for the large-v2 version of Whisper is 18.7, mea-
sured on the FLEURS dataset (Conneau et al.,

3https://cs.taltech.ee/staff/tanel.alumae/
data/est-pub-asr-data/

4https://neurotolge.ee/

2022) and 15.0, measured on the CoVoST 2 (Wang
et al., 2020) dataset. Both of those datasets contain
read speech. Whisper uses Transformer encoder-
decoder architecture.

The Open Whisper-style Speech Model
(OWSM) (Peng et al., 2023b) reproduces Whisper-
style training using a diverse combination of
publicly available datasets and the open-source
toolkit ESPnet (Watanabe et al., 2018). It supports
multilingual automatic speech recognition (ASR)
and any-to-any speech translation (ST). The
latest release of the model (3.1 EBF) uses the
E-Branchformer (Kim et al., 2022) architecture
in the encoder and Transformer in the decoder.
The 1 billion parameter “base” version of OWSM
3.1 EBF has a reported BLEU score of 7.7 on
the English-to-Estonian translation direction,
measured on CoVoST 2.

The third publicly available multilingual speech
translation model originates from Meta’s Seam-
lessM4T project (Seamless Communication et al.,
2023). SeamlessM4T translation models are capa-
ble of translating both speech and text modalities,
and they can produce both text and speech out-
put. Around 100 languages are supported, although
speech output is supported for a much smaller sub-
set of languages. While both Whisper and OWSM
models are trained end-to-end from scratch, Seam-
lessM4T uses a more complicated process for train-
ing. First, a self-supervised speech encoder model
w2v-BERT 2.0 is pretrained, using a corpus of
4.5M hours of unlabeled audio data covering more
than 143 languages. This model is then bridged
with the NLLB text-to-text translation model, using
special adapter layers that map encoded and time-
compressed speech features to the same semantic
space as text tokens. This composed model is then
finetuned for speech-to-text and speech-to-speech
translation tasks, using paired text-text, speech-text
and speech-speech data scraped from the web and
aligned using a dedicated multimodal embedding
and alignment model (Duquenne et al., 2023). The
SeamlessM4T-large-v2 reports a BLEU score of
29.3 on English-Estonian and 27.7 on Estonian-
English test sets of CoVoST 2. On FLEURS,
this model has a BLEU score of 22.4 on English-
Estonian and 31.6 on Estonian-English speech-to-
text test sets.

The out-of-the-box BLEU scores of the de-
scribed models on Estonian-English speech trans-
lation tasks are reported in Table 1. Although the
scores are measured on test sets containing only
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CoVoST 2 FLEURS
Model #Parameters est-eng eng-est est-eng eng-est
Whisper large-v3 1.55B 15.0 N/A 18.7 N/A
OWSM 3.1 EBF 1B ? 7.7 ? ?
SeamlessM4T-v2 large 2.3B 27.7 29.3 31.6 22.4

Table 1: Speech translation BLEU scores of different publicly available models. N/A denotes that the model is not
capable of translating in this direction, and question marks denote scores that are not reported.

read speech, the scores suggest that these models
could be finetuned to perform well also on more
conversational speech that is known to be more
difficult to translate.

Whisper and OWSM models are designed to
handle audio recordings of any length due to the
integrated speech segmentation in their decoders.
These models effectively generate time-stamped,
subtitle-like transcripts, marking each decoded
word block with start and end times. In the process
of long-form decoding, the models work on 30-
second segments of speech at a time, shifting the
processing window by 30 seconds (or less) to start
where the last decoded word block ended after each
decoding step. On the other hand, SeamlessM4T
models are limited to processing shorter, utterance-
like speech segments, and their translation qual-
ity drops substantially with longer segments, of-
ten only translating the initial part of the segment.
To address this, long recordings must be initially
divided into shorter, speaker-consistent segments,
typically no longer than 20 seconds, using voice
activity detection and speaker segmentation tech-
nologies.

3 Methodology

The main focus of our work is finetuning pub-
licly available speech translation models using ad-
ditional data. Since there are no conversational
speech translation datasets that include Estonian,
we experiment with generating additional data on
our own using two methods: web scraping and data
synthesis. We compare the performance of all three
existing speech translation models before and after
finetuning with the same data.

Although Whisper is originally trained to per-
form only multilingual speech recognition and
speech translation to English, it has been shown
that it can perform speech translation to other direc-
tions with surprisingly high accuracy by changing
only the prefix of the decoder. For example, Peng
et al. (2023a) showed that by only modifying the

prompt, Whisper can achieve 18.1 BLEU score on
the English-German speech translation test set from
the MuST-C corpus (Gangi et al., 2019). Therefore,
we were relatively confident that Whisper can be
finetuned for all translation directions that we were
interested in.

The design of Whisper’s prompt does not sup-
port the specification of alternative translation di-
rections. Consequently, we finetuned Whisper us-
ing extra speech translation data by employing the
“transcribe” prompt, where the language specified
in the prompt matched the intended target language.
At the inference stage, the expected target language
was set in the prompt, but the source language re-
mained unspecified to the model.

On all datasets, Whisper was finetuned5 for three
epochs over the additional translation datasets. A
learning rate schedule with a peak rate of 1e-04
was used, with 500 warmup steps and a linearly
decaying schedule towards 0 after the warmup. An
effective batch size of 64 was used. Stochastic
weight averaging (SWA) (Izmailov et al., 2018)
with a learning rate of 1e-05 was applied during
the last epoch. Adam optimizer was used.

The OWSM 3.1 EBF model underwent fine-
tuning over five epochs, utilizing a batch size of
320 and a maximum learning rate of 2.0e-04, ac-
companied by a warmup phase of 600 steps. A
label smoothing technique was employed with a
smoothing factor of 0.1. During training, a multi-
task encoder-decoder/CTC loss method was used
(with source language transcript as supervision for
the CTC head), setting the CTC loss weight at
0.3. The majority of these hyperparameters were
adopted directly from the ESPnet’s training recipe
for the OWSM 3.1 EBF model without further ad-
justments.

The SeamlessM4T model was finetuned using a
batch size of 48, peak learning rate of 1e-06 with
100 warmup steps. This finetuning setup integrated

5Finetuning code: https://github.com/alumae/
pl-whisper-finetuner
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Direction Duration #Files
Estonian to Eng/Rus 4.15h 7
English to Estonian 3.05h 5
Russian to Estonian 4.51h 6

Table 2: Amount of evaluation data per translaton direc-
tion.

automatic early stopping that measured the model’s
loss on heldout training data after every 1000 model
updates and stopped training when the loss didn’t
improve during the last 10 evaluations. This usually
happened during the second epoch.

For Whisper and OWSM, the training data was
compiled to segments of maximally 30 seconds
in length, which usually involved concatenating
the transcripts of several adjacent utterances from
the long-form training audio, together with the cor-
responding audio chunks (including the audio be-
tween transcription end and start times). The Seam-
lessM4T model was finetuned using the original
utterances and/or subtitle segments.

All finetuning experiments were conducted us-
ing four Nvidia A100 (80GB) GPUs.

4 Experimental results

4.1 Evaluation data

A dedicated evaluation dataset was compiled for
this project, using data from public sources (e.g.
YouTube). When collecting evaluation data, we
tried to ensure that it contains mostly long con-
versational speech recordings with different lev-
els of spontaneousness, such as press conferences,
TV talkshows, YouTube videos, and broadcast
news with many interviews. Length of evaluation
datasets for all directions varied between 3 and
4.6h. Evaluation data is described in Table 2.

Estonian evaluation data was manually tran-
scribed. English and Russian data was all retrieved
from YouTube and we relied on the manually cre-
ated captions of the videos (after some manual
post-editing). We took extra care to select such
videos that have good quality verbatim captions.
The translations for the evaluation data were cre-
ated by professional translators in Estonia, using
both audio transcriptions and audio files as source
data.

Table 3 lists ASR word error rates (WER) of
Whisper-based models on the evaluation data. The
model whisper-large-v3-est stands for Whisper’s
large-v3 model, finetuned using 1334 hours of Es-

Language Model WER
English whisper-large-v3 24.5%
Russian whisper-large-v3 21.1%
Estonian whisper-large-v3 26.6%
Estonian whisper-large-v3-est 9.7%

Table 3: Whisper’s speech recognition WER on evalua-
tion data.

tonian ASR training data.
WERs were calculated using ASR hypotheses

from Whisper’s long-form decoding mechanism.
Due to that, reference sentences are not aligned
with hypotheses. WERs were calculated after re-
moving punctuation, lowercasing both hypotheses
and references, and aligning words in the hypothe-
ses with references, using minimum WER segmen-
tation (mwerSegmenter) (Matusov et al., 2005) via
the SLTev toolkit (Ansari et al., 2021).

It must be noted that Whisper is generally very
accurate on English and Russian evaluation data.
The surprisingly high WER (compared to the re-
sults published by Radford et al. (2023)) is mostly
caused by occasional hallucinations that repeat
some segment transcripts many times.

4.2 Training data

In order to finetune the end-to-end speech trans-
lation models to perform better in translation di-
rectons involving Estonian conversational speech,
we experimented with collecting additional data
from the web, and synthesizing additional data
from ASR training data using MT.

There are some publicly available speech transla-
tion datasets that include a relatively small amount
of Estonian. The dataset with the largest amount of
Estonian is CoVoST 2 with 364 hours of Estonian-
English data and 3 hours of English-Estonian data.
However, CoVoST 2 includes exclusively read
speech and short sentences. The VoxPopuli corpus
(Wang et al., 2021) also contains some Estonian
speech, originating from the European Parliamant
sessions, but only 3 hours of that are transcribed.
Due to the small size or out-of-domain nature, we
did not use those datasets for finetuning.

4.2.1 Scraping web data
Given the relatively small number of Estonian
speakers, the amount of speech data available on
the web for training speech translation models is
limited. We aimed to find data featuring long-form
conversational speech (rather than individual ut-
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Source est → → est

eng rus eng rus

ETV+ - - - 182.7
TED - - 41.2 -
TV7 - - 16.4 -
YouTube 39.6 18.2 - 433.9

39.6 18.2 57.6 616.7

Table 4: Amount of training data in hours per translation
direction, derived from subtitled online videos.

terances) since Whisper and OWSM require 30-
second speech segments for training to develop
models capable of transcribing long-form speech.
We avoided sources with machine-generated subti-
tles.

We identified several good sources: ETV+ (a
Russian-language TV channel of Estonian state
media), TED talks with Estonian subtitles, TV7
(an international TV channel with Christian back-
ground), and various YouTube channels with con-
sistently good subtitles.

Table 4 lists the amount of data we found for
each translation direction. As can be seen, the
sizes vary significantly across the four translation
directions we target.

4.2.2 Synthetic data
There are two primary methods for generating syn-
thetic data to train speech translation models: (1)
using speech synthesis to create source speech data
from existing MT training data, and (2) using MT
to generate target text data from existing source
language ASR training data. We chose the second
method because we already had substantial amount
of Estonian ASR training data from various con-
versational sources, and the current Estonian-to-
English and Estonian-to-Russian MT systems pro-
duce relatively high-quality translations. The main
drawback of the first method is the lack of MT train-
ing corpora that include transcribed conversational
speech, making it challenging to achieve a wide
variety of speakers and natural-sounding speech
through speech synthesis.

As Estonian source speech data, we used the
data available publicly from the TalTech Estonian
Speech Dataset 1.0. It contains mostly speech from
broadcast sources, with an emphasis on conversa-
tion speech, such as interviews and talk shows. In
addition, it contains speech recordings from var-

ious conferences and seminars, and a relatively
small amount of speech from the Estonian Parlia-
ment. All the speech data consists of long-form
speech and has been manually transcribed and time-
aligned with speech at an utterance level.

When searching for training data for English
and Russian speech, we found it challenging to lo-
cate high-quality, long-form conversational speech
data transcribed at the recording level with ortho-
graphic annotation, as needed for finetuning Whis-
per and OWSM models. For English, we used a
subset of the Gigaspeech corpus (Chen et al., 2021),
which includes long-form recordings (audiobooks,
podcasts, and YouTube videos) transcribed at the
utterance level. However, these utterances are up-
percased, and only a limited set of punctuation
marks (“.,!?”) are retained. To enhance the suit-
ability of these transcripts as MT source data, we
applied true-casing using a custom implementation.
This implementation uses spaCy to split utterances
into sentences and then uppercases sentence start
tokens, proper nouns, and certain special words
(such as I).

For Russian, we couldn’t find any open datasets
that contain sufficient amount of transcribed long-
form speech data. A popular choice for training
Russian ASR models is the Russian Open STT
Dataset6 which contains over 20 000 hours of tran-
scribed Russian speech. However, this dataset con-
tains exclusively relatively short utterances. Al-
though most of the data in this dataset originates
from long-form speech recordings, it is not possible
to reconstruct homogeneous 30-second speech seg-
ments with the corresponding transcripts from this
data, as the utterance IDs have been randomized.
Therefore, we used two online sources as the Rus-
sian speech data, both of which come with good
quality captions: Russian TEDx talks and the Rus-
sian language YouTube channel of the Deutsche
Welle (DW) news broadcaster 7.

The total amounts of ASR datasets used as in-
put for synthesizing MT-based speech translation
data are listed in Table 5. For creating synthetic
data for speech translation, the transcripts were
machine-translated. We used Google Translate for
translating Estonian and English language pair di-
rections. Russian and Estonian language pair trans-
lations were done with University of Tartu’s Neu-
rotõlge MT system. Those choices were based on

6https://github.com/snakers4/open_stt
7https://www.youtube.com/dwrussianreporter
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Language Estonian English Russian

Sources TalTech Estonian Speech
Dataset 1.0

Gigaspeech (subset M):
Audiobooks: 260h
Podcasts: 350h
YouTube: 390 h

DW Russian: 45h
TEDx talks: 57h

Total 1334h 1000h 102h

Table 5: Amount of source-language ASR training data, used as input for creating synthetic speech translation data.

our budget, as well as on the reference transcript
MT evaluation results in Table 6.

4.3 Evaluation metrics

We based our evaluation on two metrics: BLEU
and BLEURT (Sellam et al., 2020). BLEURT is a
learned metric, trained on subjective human evalu-
ations scores of machine translation references and
the corresponding MT candidates. BLEURT out-
puts scores that usually in the range of 0..1 (with
1 being a perfect match) and is found to be bet-
ter correlated with human judgements in several
languages. We used the multilingual BLEURT-20-
D12 model introduced by Pu et al. (2021).

BLEU and BLEURT scores are calculated after
aligning words in the translation candidates with
references, using mwerSegmenter via the SLTev
toolkit.

4.4 Results and discussion

Evaluation results, together with several baselines,
are presented in Table 6.

The first section of rows in the table compares
the performance of different MT systems on ref-
erence transcripts. It can be seen that while there
are substantial differences between the proprietary
systems among individual translation directions,
the average scores in terms of both BLEU and
BLEURT are surprisingly similar. The fully open
source NLLB-200 model however doesn’t reach
the accuracy of the top proprietary systems.

The next section compares MT systems, when
using automatically generated transcripts as input.
For Russian and English, we used the Whisper
large-v3 model, while for Estonian, the finetuned
Whisper model was used. All transcripts were gen-
erated using a beam size of 5, with speech activity
detection activated in order to exclude non-speech
segments from input. It can be seen that for Es-
tonian source speech, using ASR instead of ref-
erences transcripts deteriorates BLEU scores by

around 3 points, while for Russian and English, the
decrease in accuracy is larger, which is probably
tied to the relatively low WER of Whisper on these
datasets, as evident from Table 3.

The third section of rows compares the out-of-
the-box performance of three publicly available
end-to-end speech translation models. Whisper
produced a segmented transcript directly from the
long-form speech recordings, while for OWSM
and SeamlessM4T, we segmented the speech into
single-speaker chunks using pyannote 3.1 (Plaquet
and Bredin, 2023). Decoding was performed using
beam size of 5 for all models. The BLEU scores
of SeamlessM4T demonstrate the complexity of
translating automatically segmented conversational
speech, compared to read speech consisting of sin-
gle utterances: compared to the BLEU scores of
the same model on CoVoST 2 and FLEURS test
data shown in Table 1, the scores on our evaluation
data are lower by a large margin. Contrary to the
Estonian-English results on CoVoST 2, Whisper
outperforms SeamlessM4T on our data, suggesting
that Whisper is better suited for processing con-
versational speech. OWSM 3.1 EBF, which has a
BLEU score of 7.7 on English-Estonian CoVoST
2 data, has close to zero scores on our data in all
directions.

The last section of the table compares end-to-
end speech translation models after finetuning with
synthetic and/or web-scraped data. For Estonian-
English and Estonian-Russian, finetuning on syn-
thetic dataset outperforms web data by a large mar-
gin, which is expected based on the fact that the
Estonian ASR comes from similar domains as eval-
uation data. In general, SeamlessM4T benefits
more than Whisper from finetuning on properly
segmented ASR data than from subtitles. This can
be explained by the fact that subtitle start and end
times are not always properly aligned with speech.
For SeamlessM4T, which is finetuned on individ-
ual subtitle lines and the corresponding speech seg-
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Model Finetuned BLEU BLEURT

web synt. est → → est est → → est

eng rus eng rus avg eng rus eng rus avg

Text-to-text translation using reference transcripts

Ref. + NLLB-200 3.3B - - 31.4 25.2 21.5 19.2 24.3 .652 .665 .529 .574 .605
Ref. + GPT3.5-turbo - - 36.1 28.3 21.3 23.8 27.4 .696 .703 .593 .665 .664
Ref. + GPT4 - - 38.3 31.3 19.9 24.6 28.5 .702 .721 .609 .656 .672
Ref. + Google Translate - - 38.9 26.1 25.4 24.2 28.7 .690 .686 .576 .655 .652
Ref. + Neurotõlge - - 34.8 29.3 24.7 23.7 28.1 .656 .672 .558 .619 .626

Cascaded speech translation systems

Whisper + NLLB-200 3.3B - - 28.8 23.1 15.4 13.2 20.1 .568 .568 .439 .537 .528
Whisper + GPT3.5-turbo - - 32.9 26.5 15.1 18.3 23.2 .649 .656 .470 .621 .599
Whisper + GPT4 - - 35.1 29.8 16.3 18.3 24.9 .647 .687 .507 .625 .617
Whisper + Google Translate - - 35.2 23.8 17.4 16.1 22.9 .628 .617 .481 .585 .578
Whisper + Neurotõlge - - 31.9 26.6 16.1 16.0 22.7 .598 .612 .458 .566 .559

Public end-to-end speech translation models

Whisper-large-v3 - - 14.9 - - - - .451 - - - -
OWSM 3.1 EBF - - 0.5 0.0 1.6 0.0 0.5 .176 .153 .147 .095 .143
SeamlessM4T v2 (large) - - 13.2 16.2 6.4 13.9 12.4 .348 .426 .227 .448 .362

Public end-to-end speech translation models after finetuning

Whisper-large-v3 ✓ - 17.9 11.7 13.1 14.3 14.2 .496 .413 .433 .523 .466
Whisper-large-v3 - ✓ 33.2 26.1 14.5 14.8 22.2 .611 .605 .363 .500 .520
Whisper-large-v3 ✓ ✓ 33.0 25.5 17.3 16.3 23.1 .614 .603 .458 .549 .560
OWSM 3.1 EBF - ✓ 25.8 18.7 11.9 8.5 16.2 .541 .463 .377 .360 .435
SeamlessM4T v2 (large) ✓ - 19.3 14.4 6.1 4.3 11.0 .468 .488 .234 .261 .363
SeamlessM4T v2 (large) - ✓ 35.4 26.8 18.8 16.4 24.4 .618 .603 .482 .494 .549
SeamlessM4T v2 (large) ✓ ✓ 34.7 25.9 19.1 12.9 23.1 .617 .605 .470 .426 .529

Table 6: Comparison of baseline scores, cascaded systems, off-the-shelf end-to-end models and finetuned end-to-end
models.

ments, this causes the training data to be often
corrupted. Whisper, on the other hand, is trained
on 30-second chunks of speech that fit typically
several lines of subtitles, and the proper subtitle
timing is not as important.

Apart from a few outliers, the performance of
SeamlessM4T and Whisper are similar, especially
in terms of BLEURT scores. This confirms our
speculation that Whisper can be finetuned to trans-
late into other directions than it was originally
trained for. The performance of OWSM 3.1 EBF
is however noticeably lower than for other models
after finetuning on synthetic data and in order to
save compute time we didn’t even finetune it on
other datasets.

Since the differences between the BLEU scores

from applying different models are relatively small,
we used the Wilcoxon signed-rank test to assess
whether the difference between the scores was sta-
tistically significant. We used BLEU scores of
individual evaluation files as input to the paired
test. Table 7 compares the difference between three
systems: cascaded system involving Whisper and
Google Translate and Whisper and SeamlessM4T
end-to-end models, both finetuned using synthetic
speech translation data. It can be seen that the best
overall performance is achieved by the finetuned
SeamlessM4T model, since no other model is sig-
nificantly better in any of the directons, while it
outperforms both the cascaded system and fine-
tuned Whisper in the Estonian-Russian direction.

Although we haven’t performed proper human
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Model Whisper + Google Translate Whisper-large-v3 ft. SeamlessM4T ft.

est-eng est-rus eng-est rus-est est-eng est-rus eng-est rus-est est-eng est-rus eng-est rus-est

Whisper + Google Translate - - - -
Whisper-large-v3 (finetuned) - - - -
SeamlessM4T (finetuned) - - - -

Table 7: Statistically significant differences between systems, based on BLEU scores: if one of the models is
significantly better than the other, the corresponding cell is colored using the corresponding color.

evaluation of the MT outputs, subjective evalua-
tion by the authors suggests that our best Estonian-
English and Estonian-Russian models produce
translations that are accurate, fluent and there-
fore usable in many practical situations (see a
translated TV news broadcast at https://www.
youtube.com/watch?v=rZPqauCYfXI). For the
opposite direction, the translations have a substan-
tially lower quality by subjective evaluation. These
findings correlate with BLEURT scores in Table 6.

5 Conclusion

In this study, we demonstrated the effectiveness of
finetuning end-to-end models for Estonian conver-
sational speech translation using synthetic and web-
scraped data. Our experiments revealed that syn-
thetic data derived from ASR training corpora sig-
nificantly enhances model performance, especially
for Whisper and SeamlessM4T models. While all
three evaluated models benefited from additional
training data, SeamlessM4T worked the most con-
sistently in all directions, indicating its robustness
in handling conversational speech translation tasks.
The best finetuned models are already usable for
Estonian-English and Estonian-English directions
for real-world speech data.

The future direction of our research is exper-
imenting with simultaneous speech translation
where using end-to-end models is crucial.
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