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Abstract

Assessing the performance of machine trans-
lation systems is of critical value, especially
to languages with lower resource availability.
Due to the large evaluation effort required by
the translation task, studies often compare new
systems against single systems or commercial
solutions. Consequently, determining the best-
performing system for specific languages is of-
ten unclear. This work benchmarks publicly
available translation systems across 4 datasets
and 26 languages, including low-resource lan-
guages. We consider both effectiveness and ef-
ficiency in our evaluation. Our results are made
public through BENG—a FAIR benchmark-
ing platform for Natural Language Generation
tasks.

1 Introduction

The Machine Translation (MT) task is increasingly
relevant in today’s connected world as accessibil-
ity enables knowledge transfer. Hence, MT sys-
tems are recognized as prime tools in the Natural
Language Processing (NLP) domain (Goyal et al.,
2022). In recent years, Neural Machine Transla-
tion (NMT) (Bahdanau et al., 2015) has led the
field as it achieves state-of-the-art performance for
many language pairs (Gulcehre et al., 2017). How-
ever, NMT systems can become computationally
demanding and the abundance of new systems also
complicates a cross-system comparison. As a re-
sult, newly-released systems often compare their
performance against single systems (NLLB Team
et al., 2022; Tang et al., 2020). Furthermore, re-
cent system analyses also focus on assessing the
capability of commercial translation solutions (Zhu
et al., 2023). To the best of our knowledge, no
work exclusively considers open-source translation
systems. Thus, leading to a lack of clarity when
determining the best-performing and when identi-
fying shortcomings among existing translation sys-
tems, an especially critical task for Low-Resource

Languages (LRLs). While the translation task is
vital to progress in general, it is still largely un-
feasible to the 7, 000+ languages in the world.1

From these, only close to 2, 500 are represented
in the NLP field, with 88% considered to be low-
resource. LRLs have a minimal resource availabil-
ity that causes them to be largely untouched by
the benefits of language technology (Joshi et al.,
2020). With our work, we aim to contribute to a
more complete picture of the current state of the
art of machine translation with a focus on LRLs.

We compare four open-source NMT systems—
LibreTranslate2, Opus MT (Tiedemann and Thot-
tingal, 2020), NLLB (NLLB Team et al., 2022),
and mBART50 (Tang et al., 2020)—on four par-
allel machine-translation benchmark datasets—
OPUS100 (Zhang et al., 2020), Europarl (Koehn,
2005), IWSLT2017 (Cettolo et al., 2017), and
FLORES-200 (NLLB Team et al., 2022). Our
evaluation comprises data from 26 different lan-
guages. Our results suggest that using languages
with lower resource availability does not necessar-
ily translate to lower system performance. How-
ever, we did observe more substantial variations in
the systems’ performance for these languages. Our
analysis also showed that LibreTranslate had the
highest token throughput among the evaluated sys-
tems. Some systems showed proficiency in certain
languages, while others performed better according
to a certain dataset. Our experiments are shared via
BENG (Moussallem et al., 2020), an open-source
benchmarking platform that improves the accessi-
bility of experiment results according to the FAIR
data principles (Wilkinson et al., 2016).3

1https://www.ethnologue.com/
2https://libretranslate.com/
3https://beng.dice-research.org/gerbil
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2 Preliminaries and Related Work

Machine Translation (MT) is the process of trans-
lating from a source language into a target lan-
guage autonomously, i.e., without human interven-
tion (Kenny, 2018; Bhattacharyya, 2015). This can
be achieved through different approaches. Wang
et al. (2022) divide MT techniques into rule-
and corpus-based approaches. Corpus-based ap-
proaches can be further divided into example-based,
statistical, and, more recently, neural approaches.
In this work, we evaluate approaches of the latter
category with a focus on low-resource languages.
We describe both further within this section, along
with relevant MT tools and platforms.

2.1 Low-Resource Languages

There are more than 7, 000 human languages, with
the vast majority being classified as low-resource
languages (LRLs) (Magueresse et al., 2020). In
contrast to high-resource languages (HRLs), LRLs
have a low density of computational corpora (Cieri
et al., 2016). However, it is often challenging to
identify languages as low- or high-resource as the
distinction is often difficult to quantify.

Joshi et al. (2020) propose a language taxon-
omy based on the quantities of labeled and unla-
beled data available in each language. The labeled
data is measured through the LDC catalog and the
ELRA Map repositories, and the unlabeled data is
based on Wikipedia articles.4 The taxonomy sep-
arates languages into six types of languages: The
Left-Behinds (0), The Scraping-Bys (1), The Hope-
fuls (2), The Rising Stars (3), The Underdogs (4),
and The Winners (5). Simplified, class 0 languages
have neither labeled nor unlabeled data; class 1-4
languages have unlabeled data available, but whose
labeled data amount ranges from virtually non-
existent to high; and class 5 languages have both
high volumes of labeled and unlabeled data.

Hedderich et al. (2021) classify low-resource
based on the availability of three data types: 1)
task-specific labeled data that supports supervised
NLP approaches, 2) unlabeled data that supports
unsupervised learning, and 3) auxiliary data that
supports learning by proxy. When both labeled and
unlabeled data are insufficient in either quantity or
quality, other methods can be used to bridge the
gap, e.g., transfer learning, data augmentation tech-
niques, distant supervision, and others (Burlot and

4LDC catalog: https://catalog.ldc.upenn.edu/;
ELRA Map: https://catalog.elra.info/en-us/.

Yvon, 2018; Gibadullin et al., 2019). Similar statis-
tical studies revealed that more languages should
benefit from the availability of NLP tools.

Simons et al. (2022) introduce an automatic ap-
proach to measure Digital Language Support for
every language by measuring a language’s pres-
ence across 143 digital tools. Digital support is
measured by analyzing different categories of a
language’s digital presence, such as the level of
content provision in a language, system encodings,
surface-level tools for text processing, localized
user interfaces, text meaning processing, speech
processing, and the existence of virtual assistants.
The languages are then classified as either still,
emerging, ascending, vital, or thriving according
to their level of digital support.

2.2 Neural Machine Translation Systems

In recent years, Neural Machine Translation (NMT)
has transformed the MT task. By leveraging the
currently available large parallel corpora, the MT
task has been able to improve translation quality
significantly thanks to recent developments in lan-
guage models. However, large parallel corpora
are not available for LRLs, making it difficult to
tailor classic NMT models towards LRLs. Open-
source translation toolkits like OpenNMT (Klein
et al., 2017) and Marian NMT (Junczys-Dowmunt
et al., 2018) also provide different neural archi-
tecture implementations, forming the backbone of
many open-source systems. Below are some ex-
amples of open-source NMT systems that cater to
LRLs.

LibreTranslate is an open-source NMT service
that supports the translation across 46 languages in-
cluding LRLs.5 The tool relies on the open-source
Argos Translate library to train a transformer-based
model from OpenNMT (Klein et al., 2017).6

Fairseq (Ott et al., 2019) provides pre-trained
convolutional and transformer-based MT models
for the English, French, German, and Russian lan-
guages with English as source or target language.
It is also a development toolkit for NMT tools.

Opus MT (Tiedemann and Thottingal, 2020) is
an MT tool trained on the OPUS data (Zhang et al.,
2020) based on Marian NMT (Junczys-Dowmunt
et al., 2018). Opus MT is a transformer-based NMT
system with 6 self-attention layers in the encoder

5https://libretranslate.com/
6Argos Translate: https://github.com/

argosopentech/argos-translate
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and the decoder network, with 8 attention heads in
each layer.

mBART50 (Tang et al., 2020) is an extension of
mBART (Liu et al., 2020) to demonstrate that mul-
tilingual translation models can be created through
multilingual fine-tuning. mBART is a sequence-
to-sequence generative pretraining model that in-
corporates languages by concatenating data. While
mBART was trained on 25 mainly high-resource
languages, Tang et al. (2020) enlarge the embed-
ding layers and combine the monolingual data of
the original 25 languages with additional languages
to extend the model to more than 50 languages—
including LRLs—without requiring to retrain from
scratch.

NLLB (No Language Left Behind) (NLLB
Team et al., 2022) is a collection of language mod-
els created to fill the void left in MT for LRLs.
NLLB aims to narrow the performance gap be-
tween low and high-resource languages. The model
is developed based on a sparsely gated mixture of
experts trained on data obtained with novel data
mining techniques tailored for LRLs. The model’s
performance was evaluated across 40, 000 transla-
tion directions on the human-translated benchmark
dataset FLORES-200.

ALMA (Advanced Language Model-based
Translator) (Xu et al., 2024) is a language model
based on LLaMA-2 (Touvron et al., 2023) built
specifically for machine translation. ALMA intro-
duces a new fine-tuning scheme to improve trans-
lation in a zero-shot scenario. It first fine-tunes
the model on monolingual data and then fine-tunes
it on a parallel corpus. It currently supports 10
language pairs.

With the recent drive of using language mod-
els for machine translation, studies such as Zhu
et al.’s have emerged to assess the machine transla-
tion quality of language models. Zhu et al. (2023)
compared 10 different language models across 102
languages, with three languages, English, French,
and Chinese, as either source or target language
translations. The study provides a good reference
point for translation for commercial solutions, as
gate-kept models often performed better than open-
source solutions. However, due to the large eval-
uation effort, and the cost of using commercial
APIs, the study was only conducted on the first
100 sentences of one dataset: Flores-101 (Goyal
et al., 2022). Furthermore, the language models are
assessed in an in-context learning setting, where in-
structions are provided in addition to the translation

as context. The authors also observed the influence
of different instructions in 6 language pairs.

2.3 Translation Evaluation

The increasing demand for more and better MT
tools led to the development of frameworks to sim-
plify their usage. Multiple frameworks streamline
the building and training process of language mod-
els for translation and offer efficiency. These tools
standardize evaluation procedures and enable the
user to either tune the models per their require-
ments or use them as-is. The user trades off fine-
grained control over the models for simplicity of
use.

2.3.1 Metrics
BLEU (Bilingual Evaluation Understudy) (Pap-
ineni et al., 2002) is an n-gram-based metric used
to evaluate text generation systems, mostly chosen
due to its low computational cost. In MT, BLEU
correlates to human evaluation—the current gold
standard—over the entire output. BLEU focuses on
the precision between the n-grams in the generated
text against those in a reference text. BLEU NLTK
is an implementation of BLEU from the NLTK li-
brary7 with smoothing applied to sentence-level
BLEU scores.

METEOR (Banerjee and Lavie, 2005) is an MT
metric that measures the harmonic mean between
precision and recall of unigram matches, assign-
ing a higher weight to recall. The word-to-word
matching also considers synonyms via the WordNet
synset. METEOR scores correlate to human evalu-
ation at the sentence level, in contrast to BLEU.

chrF++ (Popović, 2015) is a variant of the chrF
score where the F-score is calculated for both the
character n-grams and the word n-grams with the
default order being 6 and 2, respectively. chrF is
a character-based n-gram F-score metric for MT.
It also shows sentence and document-level correla-
tion with human evaluation.

TER (Translation Edit Rate) (Snover et al.,
2006) measures the minimum number of edits re-
quired to make an output match the corresponding
reference. The edits include insertions, deletions,
substitutions, word reordering, capitalization, and
punctuation. Thus, making the method computa-
tionally expensive. The TER score is calculated
by computing the number of edits divided by the
average referenced words.

7https://www.nltk.org/
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2.3.2 Benchmarking Frameworks

Systematic evaluations can be a key factor in a
research field as they allow a clean comparison be-
tween the performance of different approaches over
a set of tasks. Benchmarking frameworks support
such evaluations and aim to standardize the evalu-
ation for a specific task, including a common task
definition, implementation of metrics, and the set
of data that is used throughout the evaluation. In
the past, different benchmarking frameworks have
been proposed for the MT task. The majority of
them are local frameworks, i.e., these frameworks
compute a set of metrics over the system’s output
locally. sacreBLEU (Post, 2018) is such a frame-
work and calls for reproducible BLEU scores in
the community. Despite its name, it not only sup-
ports the BLEU metric, but also chrF, chrF++, and
TER. COMET (Rei et al., 2020) trains multilingual
MT evaluation models. It allows the user to either
train a metric or use the available default models to
score the translation output with its COMET-score.
Appraise (Federmann, 2018) and HOPE (Gladkoff
and Han, 2021) are local human-centric evaluation
frameworks. They rely on human intervention due
to the low agreement between human quality eval-
uation and automatic evaluation metrics for MT.
Moussallem et al. (2020) propose BENG, an on-
line benchmarking platform for natural language
generation that abides by the FAIR data princi-
ples (Wilkinson et al., 2016).8 BENG allows for
the submission of multiple systems to be checked
against a reference dataset and returns a unique
experiment URI with the results. It computes the
BLEU, METEOR, chrF++, and TER scores.

3 Evaluation

3.1 Experimental setup

We evaluated the performance of four NMT tools—
LibreTranslate9, Opus MT (Tiedemann and Thot-
tingal, 2020), NLLB (NLLB Team et al., 2022), and
mBART50 (Tang et al., 2020). We chose NMT ap-
proaches that are open-source, locally deployable,
and support several languages, including LRLs. We
executed our experiments using the Naïve Entity
Aware Machine Translation (NEAMT) tool intro-
duced by Srivastava et al. (2023). This framework
was originally implemented as a step in a multilin-
gual knowledge graph question-answering pipeline.

8https://beng.dice-research.org/gerbil/
9https://libretranslate.com/

It supports a combination of named entity recogni-
tion, entity linking, and MT systems. We’ve used
NEAMT for the standard MT pipelines without any
of the entity-awareness features as it allows modu-
lar and local deployments of new components and
serves them through an API10.

We measured both the quality of the systems’
translation and the inherent time cost. Our first ex-
periment compared the system performance across
multiple languages. However, some datasets were
small and offered limited support for LRLs. So in
our second experiment, we compared the perfor-
mance in languages across the largest datasets and
considered 26 languages from all language classes
of the taxonomy proposed by Joshi et al. (2020).
All of our experiments consider the target language
to be English.

3.2 Datasets

We considered four parallel machine-translation
benchmark datasets OPUS100 (Zhang et al., 2020),
Europarl (Koehn, 2005), IWSLT2017 (Cettolo
et al., 2017), and FLORES-200 (NLLB Team et al.,
2022). The statistics of the datasets are in Table 1
in the form of token and parallel pair counts. All
the datasets have the same number of parallel pairs
across languages, except for IWSLT2017. In this
case, we averaged the number of pairs for the lan-
guages considered in this experiment.

OPUS100 (Zhang et al., 2020) is a parallel trans-
lation dataset randomly sampled from the OPUS
corpus (Tiedemann, 2012) that covers 100 lan-
guages, focused on English. The represented do-
mains in the dataset were not balanced, but sam-
pling filters were applied to ensure no cross-lingual
data leakage. This also means that the dataset is not
sentence-aligned across languages, i.e., the test sets
have different content w.r.t. the language, despite
having the same document size.
Europarl (Koehn, 2005) is a parallel translation
dataset from the Proceedings of the European Par-
liament that covers 11 languages. We used the
common-test-set, a cross-lingual sentence-aligned
split, as presented by Koehn (2005) in our experi-
ments.
IWSLT2017 (Cettolo et al., 2017) is a parallel
dataset based on TED talks introduced for the
IWSLT 2017 multilingual translation task evalua-
tion with language pairs from 5 languages. IWSLT

10The MT models were deployed on a system with Intel(R)
Xeon(R) CPU E5-2695 v3 @ 2.30GHz, 128 GB RAM, and
Debian GNU/Linux 11.
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Datasets

OPUS100 Europarl IWSLT2017 FLORES-200

LC Language \ Parallel pairs 2 000 11 369 4 835 1 012

To
ke

n
co

un
t

5
French (FR) 60 497 470 159 233 492 38 842
German (DE) 43 834 482 529 198 713 36 321
Japanese (JA) 24 617 – 244 772 44 660

4

Dutch (NL) 37 636 479 949 40 413 36 769
Finnish (FI) 34 806 540 970 – 41 844
Hindi (HI) 61 235 – – 51 218
Italian (IT) 39 612 444 961 38 468 37 577
Korean (KO) 26 310 – 261 553 40 255
Russian (RU) 53 537 – – 41 700

3

Bengali (BN) 63 760 – – 56 407
Bulgarian (BG) 30 210 – – 44 817
Estonian (ET) 44 883 – – 41 940
Hebrew (HE) 28 239 – – 40 810
Indonesian (ID) 23 755 – – 33 015
Lithuanian (LT) 76 771 – – 43 636
Romanian (RO) 31 144 – 47 187 43 676
Thai (TH) 48 232 – – 78 226
Ukrainian (UK) 31 266 – – 44 289

2
Irish (GA) 92 241 – – 54 910
Xhosa (XH) 62 678 – – 53 541

1

Macedonian (MK) 37 718 – – 45 400
Malayalam (ML) 47 946 – – 75 526
Nepali (NE) 25 228 – – 54 488
Norwegian Bokmål (NB) 46 924 – – 36 110
Telugu (TE) 26 491 – – 61 108

0 Sinhala (SI) 15 369 – – 23 886

Table 1: Dataset statistics of the test corpora. The token counts were measured with the cased BERT multilingual
base model tokenizer (Devlin et al., 2019).

also introduced an unofficial bilingual task to fol-
low previous editions of the venue that extended
the English-centric dataset to 4 other languages.
The content and the document size of each test set
differ for each language.
FLORES-200 (NLLB Team et al., 2022) is a man-
ually curated dataset that covers 204 languages,
based on Wikinews, Wikijunior, and Wikivoyage.
The translations were done by professional transla-
tors and followed a series of automatic and manual
quality review processes. All documents have the
same content. As the test set of the dataset is kept
blind, in our experiments we evaluated the perfor-
mance on the devtest split.

3.3 Results
The results of the FLORES-200 and OPUS100
are listed in Table 2. NLLB performed better
in the FLORES-200 dataset for 20 of the 26 lan-
guages with a statistically significant difference
to the second-best system.11 Likewise, Opus
MT performed better in the OPUS100 for 19 of
the 26 tested languages. The results of the Eu-
roparl and IWSLT2017 are in Table 3. Libre-
Translate performed best in the Europarl dataset,
while mBART50 performed better in IWSLT2017.
Language-wise, LibreTranslate performed well in
Russian and Estonian, mBART50 in Japanese,

11The significance tests were performed with paired boot-
strap resampling (Post, 2018) with a 95% confidence interval.
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LC Language
FLORES-200 OPUS100

Libre OPUS NLLB mBART Libre OPUS NLLB mBART

5
FR 42.10 41.93 42.42 39.60  34.45 38.94 32.84 36.04

DE 36.22 40.73 41.49 40.48  33.63 36.55 27.01 35.22

JA 13.48 10.67 22.91 23.93  03.93 16.00 13.33 10.72

4

NL 29.51 29.67 31.04 25.89  23.78 34.92 30.80 27.29

FI 24.71 29.55 30.41 26.04  18.29 28.58 24.70 22.74

HI 26.97 09.90 38.37 32.46  12.30 33.78 25.44 25.46

IT 28.70 29.94 33.36 27.35  34.37 38.20 33.55 30.12

KO 14.31 15.80 25.33 20.70  05.60 21.12 14.59 12.91

RU 36.88 30.15 33.29 31.78  37.28 36.84 31.13 34.18

3

BN 16.03 16.16 32.85 09.25  22.42 28.58 20.96 07.33

BG 35.28 34.35 38.11 –  34.25 34.52 32.03 –

ET 38.83 32.03 32.71 31.08  42.14 39.83 28.63 33.80

HE 32.53 34.02 38.19 30.41  26.69 39.74 35.74 29.70

ID 28.44 33.44 40.56 30.36  21.26 41.33 34.59 26.99

LT 26.63 26.58 29.13 28.49  49.43 50.06 37.83 37.74

RO 39.77 39.96 42.39 36.85  39.11 40.24 36.51 30.65

TH 15.28 01.06 25.69 09.25  20.48 08.55 20.35 07.44

UK 27.98 24.26 36.79 27.57  11.11 33.37 26.31 21.73

2
GA 30.52 12.11 34.74 –  57.98 58.35 46.46 –

XH – 02.28 32.78 12.21  – 25.41 23.48 08.47

1

MK – 33.75 39.49 28.02  – 42.37 30.55 24.62

ML – 00.38 32.87 23.98  – 02.86 18.21 19.90

NE – 00.99 37.32 29.66  – 63.92 15.20 49.14

NB 38.25 24.27 38.35 –  35.36 45.15 35.37 –

TE – 00.54 36.40 15.39  – 59.13 25.88 60.98

0 SI – 06.52 30.15 23.50  – 33.89 21.68 23.31

Table 2: BLEU scores of the evaluation for the 17 LRLs and 9 HRLs of the FLORES-200 and OPUS100 datasets.
The corresponding URIs are linked with the experiment’s BLEU, METEOR, chrF++, and TER scores. The results
in bold mark the system with the best BLEU value on a dataset and a statistically significant difference to the
second-placed system. The underlined values are the best BLEU values without a significant difference to the next
highest value on that dataset.

Opus MT in Romanian, and NLLB in French and
German.

3.4 Discussion

We observe a tendency of NLLB and Opus MT
towards achieving a better performance on the eval-
uation part of the dataset on which they have been
trained on in comparison to their overall perfor-
mance. Especially Opus MT seems to be overfit-
ting to its training data, which is reflected by its
performance on the FLORES-200 dataset. Opus
MT achieves high BLEU scores for the languages
Hindi, Irish, Xhosa, Nepali, Telugu, and Sinhala in
the OPUS100, but very low scores for the same lan-

guages in the FLORES-200 dataset. For the NLLB
system, this phenomenon was only observed for
the Nepali language.

As expected, the results indicate that some lan-
guages are supported better than others. This is un-
derlined by Figure 1, which summarizes the BLEU
scores of all four systems on the FLORES-200
dataset. However, the diagram also shows that the
evaluated systems do not always perform better
on class 5 languages when compared to languages
in lower classes. All four systems perform well
when translating French and German to English.
However, the translation of Japanese is not well
supported by all four of them. Instead, all four
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LC Language
Europarl IWSLT2017

Libre OPUS NLLB mBART Libre OPUS NLLB mBART

5
FR 28.38 25.95 23.43 25.97  39.95 42.34 43.06 42.38

DE 25.19 22.18 20.33 22.15  33.76 37.17 38.49 38.08

JA - - - - - 6.39 8.50 15.60 17.03

4

NL 14.16 21.54 19.14 18.93  35.01 40.15 39.96 43.13

FI 19.78 22.17 18.48 21.89  - - - -
IT 26.71 24.52 21.47 20.93  33.19 36.14 36.84 39.48

KO - - - - - 9.38 23.44 20.91 23.95

3 RO - - - - - 37.98 38.94 37.87 34.59

Table 3: BLEU scores of the evaluation of the Europarl and IWSLT2017 datasets. The experiment URIs are linked
with the corresponding BLEU, METEOR, chrF++, and TER scores. The results in bold mark the system with the
best BLEU value on a dataset and a statistically significant difference to the second-placed system. The underlined
values are the best BLEU values without a significant difference to the next highest value on that dataset.
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Figure 1: BLEU scores of all four systems and their average on the FLORES-200 dataset for 9 HRLs and 17
LRLs. The languages are sorted by their class from class 5 on the left to class 0 on the right. Within their class, the
languages are sorted by the average system performance (orange).

systems perform better when translating the class 3
language Romanian than on Japanese or any class
4 language we look at in our evaluation. Simi-
larly, LibreTranslate performs better on Estonian,
Opus MT and NLLB better on Indonesian, He-
brew, and Ukrainian, when compared to Italian
or Dutch. This even includes class 1 languages
like Macedonian or Norwegian Bokmål for which
the four systems achieve better performance than
for most class 4 languages. As counter-examples,
Thai, and Xhosa are not well supported by the ma-
jority of translation systems. Hence, our results
suggest that freely available NMT systems can
show a high BLEU score even on LRLs. At the
same time, this result raises the question, which
features of languages influence the performance
of the NMT systems. It seems reasonable that
an NMT system achieves a similar performance
for similar languages, e.g., languages that origi-
nate from the same language family. However,

although Romanian, French, and Italian belong
to the group of Romance languages and the two
latter even to the smaller group of Italo-Western
languages, the performance of all four systems was
significantly lower on Italian than on French or
Romanian data. Similarly, German and Dutch be-
long to the group of languages but lead to quite
different BLEU scores. Other language families
like West Germanic (Dutch, German), Midlands
Indo Aryan (Hindi, Nepali), and Neva (Estonian,
Finnish) show similar results in our evaluation,
while the languages of the families East Slavic
(Russian, Ukrainian) and Macedo-Bulgarian (Bul-
garian, Macedonian) let to similar BLEU scores
within the families. Although our results point into
this direction, the set of languages in our evaluation
is too small to refute the hypothesis that families or
groups of languages influence the performance of
NMT systems. Hence, answering these questions
remains future work.
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Figure 2 shows a comparison of the effective-
ness and efficiency of the single systems during
all experiments that have been carried out within
our evaluation. LibreTranslate shows the highest
throughput in most experiments measured in to-
kens per second. Opus MT and NLLB achieve
similar runtimes while mBART50 had the lowest
throughput in most experiments. At the same time,
we couldn’t find a big difference between LRLs
and HRLs concerning efficiency.

Figure 3 shows the average standard deviation
per language sorted by language class. We observe
increased deviations for LRLs when compared to
HRLs. Despite the models being trained on LRLs-
based data and the systems’ language support for
LRLs, the performance on these languages is still
inconsistent. The Telugu, Malayalam, and Nepali
languages are class 1 languages and show the high-
est deviation. While Bulgarian, a class 3 language,
shows the lowest, followed by French and German,
two class 5 languages. Hindi, a class 4 language,
also shares an increased deviation following other
Middle-Modern Indo-Aryan languages like Ben-
gali and Nepali. Malayalam and Telugu are two
South Dravidian languages with higher variations
as well. This hints at systems having difficulties
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Figure 3: Average standard deviation of BLEU scores
per language over all datasets sorted by language class.
The values have been normalized using the highest stan-
dard deviation (22.06). The orange ring marks the aver-
age value over all languages.

processing languages from these families. No other
family tree in this experiment presented higher devi-
ations, e.g., Romance, Germanic, Slavic, or Finnic
families.

4 Conclusion

We compared four open-source NMT systems on
high and low-resource languages regarding their
effectiveness and efficiency, filling a gap in the
literature that focused on the evaluation of single
systems or the comparison of commercial solutions.
Our experiments show that open-source systems
can perform well on LRLs, showcasing the NLP
community’s efforts in bridging the gap. How-
ever, the performance of the systems in these lan-
guages remains variable. Assessing the impact
of the domain and genre of the training datasets
on the translation quality remains a question for
future work. Despite the existence of numerous
evaluation frameworks for MT, we used BENG to
share the evaluation data via a common space and
hope that it boosts comparability across systems
and datasets. The influence of language families
and writing systems on the translation consistency
of these systems requires further investigation.
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