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Abstract
Recently, multimodal named entity recognition (MNER) has emerged as a vital research area within named
entity recognition. However, current MNER datasets and methods are predominantly based on text and a single
accompanying image, leaving a significant research gap in MNER scenarios involving multiple images. To
address the critical research gap and enhance the scope of MNER for real-world applications, we propose a novel
human-annotated MNER dataset with multiple images called MNER-MI. Additionally, we construct a dataset named
MNER-MI-Plus, derived from MNER-MI, to ensure its generality and applicability. Based on these datasets, we
establish a comprehensive set of strong and representative baselines and we further propose a simple temporal
prompt model with multiple images to address the new challenges in multi-image scenarios. We have conducted
extensive experiments to demonstrate that considering multiple images provides a significant improvement
over a single image and can offer substantial benefits for MNER. Furthermore, our proposed method achieves
state-of-the-art results on both MNER-MI and MNER-MI-Plus, demonstrating its effectiveness. The datasets and
source code can be found at https://github.com/JinFish/MNER-MI.
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1. Introduction

Recently, multimodal named entity recognition
(MNER) has emerged as a vital research area
within NER, as it can improve text-based NER by
incorporating accompanying images as additional
contextual information (Xu et al., 2022b). This fu-
sion of text and images has shown promising po-
tential to enhance the accuracy and scope of entity
recognition in various real-world scenarios. Current
MNER approaches focus on obtaining better text
and image representations (Yu et al., 2020; Wang
et al., 2022d), establishing better text-image interac-
tion (Zhang et al., 2021; Chen et al., 2022), and re-
ducing the hindrance caused by image noise (Sun
et al., 2021; Xu et al., 2022b).

With the proliferation of user-generated content
in social media, posts containing both text con-
tent and multiple images are becoming increas-
ingly common, with over 42% of tweets containing
more than one image according to (Zhang et al.,
2018). However, current MNER datasets (Lu et al.,
2018; Zhang et al., 2018; Wang et al., 2022c) and
methods are predominantly based on text and a
single accompanying image, leaving a significant
research gap in real MNER scenarios involving
multiple images. This limitation highlights the ur-
gent need for novel datasets and approaches that
can better address multi-image scenarios, enabling
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Figure 1: Two examples of multimodal named entity
recognition with multiple images. Considering only
one image may incorrectly determine the type of
entity. The first example is shown on the left and
the second on the right.

more accurate and robust MNER across diverse
social media content.

Moreover, the current works underestimate the
importance of multiple images and overlook the
necessity of considering multiple images to under-
stand multi-image posts in real-world applications
fully. For instance, during the annotation process
of WikiDiverse (Wang et al., 2022c), only the first
image is retained in instances containing multiple
images, disregarding the valuable information pro-
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vided by the other images. To illustrate the ad-
vantages of considering multiple images for under-
standing multi-image posts, we present the follow-
ing examples: (1) Posts with multiple images can
help alleviate the ambiguity present in posts with
only one image. As shown in the first example in
Figure 1, it is challenging to determine the type of
Chloe with only the text and the first image, as it
is unclear whether Chloe corresponds to a person
or a dog in the first image. However, with the as-
sistance of multiple images, the third and fourth
images reveal that its type is MISC, resolving the
ambiguity. (2) Posts with multiple images provide
abundant information that can be utilized to iden-
tify more entities in the text. As illustrated in the
second example shown in Figure 1, with only the
text and the first image, we can only determine
that the type of Kim Kardashian is Person, and
the type of Domo remains undetermined. Neverthe-
less, by incorporating multiple images, we obtain
additional evidence to classify the type of Domo is
Miscellaneous.

To bridge the critical research gap in multi-
ple images at MNER and enhance the scope of
MNER for real-world applications, we introduce a
novel human-annotated dataset, named MNER-MI
(Multimodal Named Entity Recognition with Multiple
Images). The MNER-MI dataset comprises 8,576
instances collected from Twitter and each instance
contains at least 2 images and at most 4 images
(the maximum number of images on Twitter). Both
text and image information are considered in the
annotation process, and the annotation is only per-
formed for the text. To further enhance the gener-
ality and applicability of our dataset, we extend
MNER-MI with the TWITTER-2017 dataset (Yu
et al., 2020), which consists of instances containing
only one image. The extended dataset is called
MNER-MI-Plus, which provides a collection of both
single and multiple image instances.

To comprehensively evaluate the performance
of baselines and our methods on MNER-MI and
MNER-MI-Plus, we establish a diverse and rep-
resentative set of baselines, including text-based
NER methods, MNER methods, and large lan-
guage models. In addition, we compare the per-
formance of the single-image MNER methods on
our proposed datasets with that of the single-
image MNER datasets. We find that the current
single-image MNER methods perform well in single-
image scenarios but poorly in multi-image scenar-
ios, which highlights the fact that the existing single-
image MNER methods are not directly applicable
to multi-image scenarios, as well as the complexity
and challenges in our proposed dataset.

Although utilizing multiple images provides a
wealth of contextual information, it also brings new
challenges. One of the main challenges is effi-

ciently representing these multiple images. To ad-
dress this challenge, we further propose a simple
yet powerful model called the Temporal Prompt
Model with Multiple Images (TPM-MI). We treat
multiple images as frames in a video, which allows
us to exploit temporal information to establish re-
lationships between the images and understand
the interplay between them. Additionally, we cou-
ple the multiple images as prompts with the text,
enabling effective interaction between the images
and the text. Note that we propose the model for
demonstrating a reasonable level of performance,
and future works can be improved and explored
based on it.

Our main contributions are summarized as fol-
lows:

• We introduce a novel and challenging human-
annotated dataset, MNER-MI, to bridge the re-
search gap in MNER and enhance the scope
of MNER for real-world applications. To ensure
the generality and applicability of our dataset,
we extend it with the TWITTER-2017, resulting
in MNER-MI-Plus. To the best of our knowl-
edge, we are the first to propose the limitations
of MNER in multi-image scenarios and intro-
duce a multi-image MNER dataset.

• We establish a comprehensive set of strong
and representative baselines on MNER-MI and
MNER-MI-Plus. Experimental results demon-
strate that utilizing multiple images significantly
enhances model performance in multi-image
scenarios compared to using a single image
alone, which demonstrates the potential of mul-
tiple images in facilitating a better understand-
ing of multimodal content. Additionally, we
observe that the current single-image MNER
methods perform poorly on our datasets, which
highlights the challenges and difficulty of our
proposed datasets.

• To address the challenges in multiple images,
we propose a temporal prompt model with mul-
tiple images (TPM-MI), which models multi-
ple images as frames in a video and couples
the multiple images as prompts with the text
for interaction between the images and the
text. Experimental results demonstrate that
the proposed method and its variants achieve
state-of-the-art results on both MNER-MI and
MNER-MI-Plus, which demonstrates the effec-
tiveness of our method.
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2. Related Work

2.1. Multimodal Named Entity
Recognition

Multimodal named entity recognition (MNER) intro-
duces additional modalities as extra information on
top of text, including visual contents (Moon et al.,
2018), acoustic contents (Sui et al., 2021), which
can effectively improve the performance of text-
based named entity recognition. In this paper, we
focus on MNER for images and text. The current
MNER methods focus on the representation of text
and images, the interaction of text and images, and
the reduction of the effect of image noise.

Regarding the representation of text and images,
most of the early works (Moon et al., 2018; Lu et al.,
2018; Zhang et al., 2018) directly use text encoder
and image encoder to obtain respective represen-
tations. Subsequently, (Yu et al., 2020; Wang et al.,
2022d) use a more advanced text encoder for ob-
taining a better text representation, and (Wu et al.,
2020) propose to use the objects in the image as
the image representation. In addition, (Wang et al.,
2022b) propose to use the image objects, image
caption and text in the image as the image repre-
sentation.

In terms of the interaction of text and images,
current methods are mainly based on the attention
mechanism. Specifically, (Zhang et al., 2021) use
a graph-based method to achieve the interaction
between the image and the text, and (Yu et al.,
2020) use the mechanism of attention to establish
a bi-directional relationship between text and image.
Recently, (Chen et al., 2022), (Wang et al., 2022d)
and (Xu et al., 2023) project image representation
as the prompts to allow the image representation
to interact with each layer of the text encoder.

For the reduction of the effect of image noise, the
core idea of the current approaches is to train a text-
image matching classifier for determining whether
an image can help text for named entity recognition.
Specifically, (Sun et al., 2021), (Xu et al., 2022b)
and (Xu et al., 2022a) propose the use of exoge-
nous supervised datasets, a self-supervised ap-
proach and a reinforcement learning approach to
learn the text-image matching classifier, respec-
tively.

In addition, (Wang et al., 2022a) extract knowl-
edge of text and images to help MNER, and (Jia
et al., 2022) propose a machine reading compre-
hension framework to locate regions in images
more accurately.

2.2. Datasets for Multimodal Named
Entity Recognition

To the best of our knowledge, there are currently
four public MNER datasets: SNAP (Lu et al., 2018),

TWITTER-2015 (Zhang et al., 2018), TWITTER-
2017 (Yu et al., 2020), and WikiDiverse (Wang
et al., 2022c). Specifically, TWITTER-2015 and
TWITTER-2017 are two widely used datasets in
the social media domain. WikiDiverse is a mul-
timodal entity linking dataset constructed on the
basis of Wikinews, which contains entity spans and
entity labels that can be used for MNER.

However, the current datasets are predominantly
based on text and a single accompanying image,
leaving a significant research gap in scenarios in-
volving multiple images. To address this issue and
fully exploit multi-image posts in social media, we
propose the multi-image MNER dataset MNER-MI
and MNER-MI-Plus.

3. Datasets

In this paper, we introduce two novel MNER
datasets, namely MNER-MI and MNER-MI-Plus.

Dataset Collection. Since the links to tweets
provided by TWITTER-2015 are often mixed with
other links in the tweets, and TWITTER-2017 and
SNAP do not provide direct links to the original
posts, it is difficult for us to extend the existing
MNER datasets on social media. We follow (Lu
et al., 2018) to collect tweets from Twitter 1, and
different from the two widely used MNER datasets
on social media (TWITTER-2015 and TWITTER-
2017), we do not pick certain topics and do not
only take data from a fixed number of months in
one given year. We collect tweets from each month
in the years 2019, 2020, 2021, and 2022 to pro-
vide a more diverse and unbiased dataset, which
also makes it more challenging. Firstly, we filter
out non-English tweets, repeated tweets, tweets
with a text length of less than 3, and tweets with
less than 2 images. Then, we save the original
links corresponding to each Tweet data, allowing
future works to easily extend our dataset and help
with MNER through information other than tweet
text and images (e.g., meta-information: author
bios, comments, etc.). Finally, we get the 10K+
tweets for annotation, where each tweet contains
up to 4 images (the maximum number of images
on Twitter).

Human Annotation. We employ three graduate
students with backgrounds in named entity recog-
nition to annotate the tweets. After ensuring that
all annotators understand the annotation require-
ments, the annotators use an annotation tool called
doccano 2 to annotate the tweets. Each annotator
can see the text and all the images in the tweet
during the annotation process and uses both the
text and all the images to identify the entity as well

1https://archive.org/ details/twitterstream
2https://github.com/doccano/doccano
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as determine the category of the entity. The anno-
tators follow the BIO2 (Sang and Veenstra, 1999)
annotation standard to annotate the tweets and en-
compass the same four types of named entities as
the SNAP, TWITTER-2015, and TWITTER-2017:
Person, Location, Organization, and Miscellaneous.
We aggregate the annotations using majority voting.
In addition, if any of the annotators think that the
tweet reveals personal information, or that there is
sensitive or harmful information, then the tweet is
discarded. We adopt Fleiss Kappa (Fleiss, 1971) to
measure the annotation agreement, and the Fleiss
score between the three annotators is K = 0.87,
indicating a substantial annotation agreement. Fi-
nally, we get 8,576 tweets as our dataset called
MNER-MI.

Extension of MNER-MI. Considering that
MNER-MI only contains multi-image tweets, we
propose to extend it with a dataset containing single-
image tweets to obtain an MNER dataset contain-
ing both single-image tweets and multiple-image
tweets, allowing for the evaluation of the perfor-
mance of a model in both single-image scenarios
and multi-image scenarios. There are two widely
used public single-image MNER datasets on social
media: TWITTER-2015 (Zhang et al., 2018) and
TWITTER-2017 (Yu et al., 2020). Since TWITTER-
2015 contains more noisy data (e.g., labeling incon-
sistency), we only chose TWITTER-2017 to com-
bine with MNER-MI to obtain the dataset, named
MNER-MI-Plus.

An alternative approach for evaluating model per-
formance in single-image and multi-image scenar-
ios is to train separate models on the single-image
MNER dataset and the multi-image MNER dataset.
However, this would lead to two different models,
one of which is trained for single-image scenarios
and the other for multi-image scenarios, and this
approach does not allow us to determine the robust-
ness of a model, i.e., we cannot determine whether
a single model can handle both single-image and
multi-image scenarios. To avoid this problem, we
choose to merge a single-image MNER dataset,
which allows us to evaluate the model in both single-
image scenarios and multi-image scenarios.

Dataset Analysis. As shown in Table 1, MNER-
MI comprises 8,576 tweets and 11,862 named en-
tities, divided into training, development, and test
sets containing 6,856, 860, and 860 tweets, re-
spectively. On average, each tweet in MNER-MI
contains around 3 images. MNER-MI-Plus merges
the training set, development set, and test set of
MNER-MI with the training set, development set,
and test set of TWITTER-2017, respectively. It con-
tains a total of 13,395 tweets and 20,586 named
entities. The training, development, and test sets of
MNER-MI-Plus contain 10,229, 1,583, and 1,583
tweets, respectively, with each tweet having an av-

erage of approximately 2 images due to the inte-
gration of single-image tweets. The named entity
type statistics are also shown in Table 1.

MNER-MI MNER-MI-Plus
Type Train Dev Test Train Dev Test

Person 4,529 573 439 7,472 1,199 1,060
Location 1,878 210 156 2,609 383 334
Organization 1,273 165 92 2,947 540 487
Miscellaneous 2,054 260 233 2,755 410 390

Total 9,734 1,208 920 1,5783 2,532 2,271

# One Image 0 0 0 3,373 723 723
# Two Images 3,711 446 455 3,711 446 455
# Three Images 814 110 135 814 110 135
# Four Images 2,331 304 270 2,331 304 270
# Images per Tweet 2.799 2.835 2.785 2.206 1.997 1.970

# Tweets 6,856 860 860 10,229 1,583 1,583

Table 1: Statistics of MNER-MI and MNER-MI-Plus.

We compare MNER-MI and MNER-MI-Plus with
four existing MNER datasets in Table 2. Compared
with existing datasets, MNER-MI contains more an-
notated samples, and more images, and is the first
MNER dataset for multi-image scenarios. MNER-
MI-Plus further extends MNER-MI for both single-
image scenarios and multi-image scenarios, en-
abling the evaluation of the performance of a model
in both single-image scenarios and multi-image sce-
narios, and becoming the largest MNER dataset
that we know of so far. In summary, MNER-MI and
MNER-MI-Plus offer valuable resources for the re-
search community in MNER, and these datasets
address the limitations of the existing datasets and
better align with real-world multimodal content and
aim to foster advancements in MNER, especially in
the context of contemporary social media platforms
with diverse multimedia information.

Dataset Size # Images Scenarios

SNAP 6.8K 6,882 SI
WikiDiverse 7.9K 7,969 SI

TWITTER-2015 8.3K 8,357 SI
TWITTER-2017 4.8K 4,819 SI

MNER-MI 8.5K 24,201 MI
MNER-MI-Plus 13.3K 29,020 SI + MI

Table 2: A comparison with other MNER datasets.
SI and MI represent that this dataset is used for
single-image scenarios and multi-image scenarios,
respectively.

4. Method

In this section, we first formulate our problem, mul-
timodal named entity recognition with multiple im-
ages, and then introduce our proposed method:
TPM-MI, and finally describe the main components
in the proposed model: (1) Multi-Image Represen-
tation, (2) Projection, (3) Text Representation.
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Figure 2: Overall framework of TPM-MI.

4.1. Problem Formulation
Given a text S and its associated images
{I1, I2, ..., Im} as input, where m is the maximum
number of images (m = 4 in this paper). The
objective of MNER with multiple images is to ex-
tract the named entities from S and assign them
to one of the pre-defined types. In line with pre-
vious existing work on MNER, we approach the
task as a sequence labeling problem. Let S =
(s1, s2, ..., sn) denote a sequence of input words,
and y = (y1, y2, ..., yn) represent the correspond-
ing label sequence, where yi ∈ Y and Y is the pre-
defined label set with the BIO2 tagging schema.

4.2. Overall Framework
Our overall framework of TPM-MI is shown in Fig-
ure 2, and the overall process is as follows.

For multi-image representation, we first input mul-
tiple images into ViT (Dosovitskiy et al., 2020) to
obtain a representation of each image separately,
then we add a learnable positional embedding for
each image to indicate the temporal order, and next
input all images representation into a Transformer
Encoder (Vaswani et al., 2017) to obtain the over-
all representation of multiple images. Then, we
project the representation of the multiple images
as prompts through projection for subsequent inter-
action with the text. For text representation, we first
input the text into the Embedding layer of BERT to
obtain a representation of each token, then we in-
put the prompts with the representation of the token
into the BERT to obtain the final text representation.

Finally, we input the final text representation into a
conditional random field layer (Lafferty et al., 2001)
to obtain prediction results.

4.3. Multi-Image Representation

We use ViT (Dosovitskiy et al., 2020) as the image
encoder for obtaining the representation of each
image in m input images and use the Transformer
Encoder to establish relationships between the im-
ages. The entire process is described as follows.

Firstly, we follow (Dosovitskiy et al., 2020) and
resize every image to 224× 224 pixels, then feed
them into the ViT, which splits every image into
a sequence of 14 × 14 = 196 non-overlapping
patches with a pixel size of 16 × 16, which are
then linearly embedded to get each path represen-
tation (z1, z2, ..., z196). Then, a learnable special
token [CLS] with the same dimensions as these
patches is added at the beginning of them to get
([CLS], z1, z2, ..., z196). Next, we use the represen-
tation of the activation at [CLS] token in the last
layer of ViT to obtain the representation of the i-th
image vi ∈ Rdv and get the representation of m
images V = (v1, v2, ..., vm) ∈ Rdv×m, where dv is
the dimension of the image representation. If the
number of images is less than m, we use the zero
vectors to fill it up to m images.

Then, to indicate the positional and temporal in-
formation of multi-images (e.g. the first image usu-
ally contains more information and words indicating
the location of an image may appear in the text),
we further add learnable temporal positional encod-
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ing T = (t1, t2, ..., tm) onto V: C = V +T, where
ti ∈ Rdv is the positional embedding of the i-th
image and C ∈ Rdv×m is the multi-images repre-
sentation with position information. This temporal
positional encoding is not just an additional feature
in our model, it can provide prior knowledge to help
our model to dynamically capture these patterns
(e.g., which image is the first image).

Finally, to establish relationships between the
multi-images for a more global image represen-
tation, we model the multi-images as frames
in a video, and feed C into a Transformer En-
coder (Vaswani et al., 2017) following (Ju et al.,
2022) to obtain the final multi-images representa-
tion U = (u1, u2, ..., um) ∈ Rdv×m using its own
self-attention mechanism.

4.4. Projection

Inspired by multimodal prompt learning (Liang et al.,
2022; Li et al., 2023; Khattak et al., 2023) and re-
cent MNER methods (Wang et al., 2022d; Chen
et al., 2022; Xu et al., 2023), projecting image rep-
resentations as prompts can better guide text rep-
resentations during subsequent interactions with
the text. We project U as prompts for subsequent
interaction with each Transformer layer of the text
encoder:

Pl = Wl
pU, 1 ≤ l ≤ L (1)

where L is the number of layers of Transformer
in the text encoder, Pl ∈ Rdt×m is the prompts
corresponding to the l-th Transformer layer, Wl

p ∈
Rdt×dv is the weight metric corresponding to the l-
th Transformer layer, dt is the dimension of the text
representation. Projecting the image as a different
prompts for each layer in the text encoder can have
a better guiding effect on the text.

4.5. Text Representation

We use BERT (Devlin et al., 2019) as the text en-
coder and feed prompts and text into BERT for
interaction. The entire process is described as fol-
lows.

Firstly, we follow (Devlin et al., 2019) and add a
[CLS] token and a [SEP] token at the beginning and
end of the text input as S

′
= (s0, s1, ..., sn, sn+1),

where s1 to sn is the original input text. Then we
feed the S

′ to the Embedding Layer of BERT to get
the text representation of the 0-th Transformer layer
H0 = (h0

0, h
0
1, ..., h

0
n, h

0
n+1) ∈ Rdt×(n+2), where dt

is the dimension of the text representation.
Then, we input the text representation of the (l-

1)-th layer Hl−1 with Pl into the l-th Transformer
layer in BERT to obtain the representation of l-th
layer Hl. Specifically, we first project the Hl−1 as
the ‘queries’ Ql, ‘keys’ Kl and ‘values’ Vl of the

l-th layer:

Ql = Wl
QHl−1;Kl = Wl

KHl−1;Vl = Wl
VHl−1

(2)
where {Wl

Q,Wl
K,Wl

V} ∈ Rdt×dt are the weight
matrices. Next, we follow (Chen et al., 2022) and
project Pl as additional ‘keys’ Kl

p and ‘values’ Vl
p

for interaction with (l-1)-th text representation:

Kl
p = ϕl

kP
l;Vl

p = ϕl
vP

l (3)

Hl = Softmax(
(Ql)T [Kl

p;K
l]

√
dt

)[Vl
p;V

l]T (4)

where {ϕl
k,ϕ

l
v} ∈ Rdt×dt are the weight matri-

ces, Hl ∈ R(n+2)×dt , and after L layers of Trans-
former, we obtain the final text representation HL ∈
R(n+2)×dt .

4.6. CRF Decoder

Following (Chen et al., 2022), we adopt the con-
ditional random field (CRF) (Lafferty et al., 2001)
decoder to perform the NER task, and we feed the
final text representation HL into a standard CRF
layer, which predicts the probability of a sequence
of predictions y through the HL as follows:

p(y|HL) =
exp(

∑n
i=1 Ehi,yi

+
∑n

i=0 Thi,yi+1)

Z(HL)
(5)

Z(HL) =
∑
y∈Y

exp(

n∑
i=1

Ehi,yi
+

n∑
i=0

Thi,yi+1)) (6)

where Ehi,yi is the emission score of label yi for
the i-th token, Thi,yi+1 is the transition score from
label yi to label yi+1, Y represents the pre-defined
label set with the BIO tagging schema. To train the
module, we use the log-likelihood loss as our loss
function, which is defined as follows:

Lner = − 1

|Dner|

N∑
j=1

log(p(y|HL)) (7)

where Dner is the batch of training examples and
N is the batch size.

5. Experiments

In this section, we conduct various experiments to
comprehensively evaluate the performance of our
proposed datasets MNER-MI and MNER-MI-Plus.
Following many recent works (Chen et al., 2022;
Xu et al., 2023), we use the precision (P), recall (R)
and F1 score (F1) as evaluation metrics.
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5.1. Baselines
Text-based models: For text modality, we ex-
plore several well-known models commonly used
in named entity recognition tasks. Specifically, we
consider BiLSTM-CRF (Huang et al., 2015), which
utilizes a bidirectional LSTM with a CRF layer. Build-
ing upon BiLSTM-CRF, we also investigate CNN-
BiLSTM-CRF (Ma and Hovy, 2016) and HBiLSTM-
CRF (Lample et al., 2016), which incorporate ad-
ditional character-level word representations us-
ing CNN and LSTM, respectively. Additionally, we
include BERT (Devlin et al., 2019), a powerful
transformer-based text encoder, and BERT-CRF,
which combines BERT with a CRF-based decoder.

Multimodal named entity recognition mod-
els: For our multimodal experiments involving
both text and image modalities, we use the cur-
rent representative MNER models as baselines.
Specifically, GVATT-HBiLSTM-CRF (Lu et al., 2018)
and AdaCAN-CNN-BiLSTM-CRF (Zhang et al.,
2018) use the attention mechanism to combine text
and images based on HBiLSTM-CRF and CNN-
BiLSTM-CRF, respectively. UMT (Yu et al., 2020)
proposes a multimodal interaction module for es-
tablishing bi-directional relationships between text
and images. OCSGA (Wu et al., 2020) uses an
object detector to extract the objects in the image
and use the text labels of these objects as the im-
age representation. UMGF (Zhang et al., 2021)
proposes an approach based on a graph model
to establish the relationship between text and im-
ages. MAF (Xu et al., 2022b) proposes a general
matching and alignment framework to align text and
image representations as well as to alleviate the
impact of image noise. ITA (Wang et al., 2022b)
extracts the objects, caption, and text in the image
as the image representation. promptMNER (Wang
et al., 2022d), HVPNeT (Chen et al., 2022) and
VisualPT-MoE (Xu et al., 2023) all project image
representations as prompts to achieve interaction
with each layer of the text encoder. All of the above
methods are single-image MNER methods that use
information from the first image only.

For a fair comparison, we stitch the images into a
single image, which allows single-image methods
can use the information of multiple images. We
apply this approach for UMT, UMGF, and VisualPT-
MoE, resulting in UMT-MI, UMGF-MI, and VisualPT-
MoE-MI, respectively. TPM-MI is the approach we
propose in this paper.

Large language models: Considering the ad-
vancements in large language models that can per-
form various tasks in a zero-shot manner. We use
a large language model GPT4 and a multimodal
large language model MiniGPT-4 (Zhu et al., 2023)
as a baseline for studying the performance of large
language models on this task.

For the prompts used in ChatGPT, we fol-

lows (Qin et al., 2023) and improve upon it: ‘Please
identify Person, Organization, Location and Mis-
cellaneous Entity from the given text, and respond
to the result in JSON format that contains the fol-
lowing keys: Person, Organization, Location and
Miscellaneous. Text: [Text Input]’. Since MiniGPT-
4 impairs the generative capacity of the language
model during training, we provide a more detailed
prompt for it: ‘Your task is to perform Named Entity
Recognition through the given text and an attached
image, in which the named entities exist only in the
text. There are four types: Person, Organization,
Location and Miscellaneous. You should reply with
the results in JSON format containing the follow-
ing keywords: Person, Organization, Location, and
Miscellaneous. The text you should perform named
entity recognition on is [Text Input]’.

5.2. Experimental Settings
All experiments are conducted on NVIDIA GeForce
RTX 3090 GPUs with PyTorch 1.7.1, and the pa-
rameters settings of our model and baselines are
as follows:

• We use BERT-base 3 and ViT-base-patch16 4

as the text encoder (except BiLSTM-based
methods) and image encoder for all methods,
respectively.

• We use the AdamW (Loshchilov and Hutter,
2018) as the optimizer and use the gird search
in the development set to find the learning rate
within [1e−5, 7e−5], the batch size within [8, 32].
The framework uses mini-batch backpropa-
gation for training. We select the model that
performs best on the development set and eval-
uate it on the test set.

5.3. Performance Comparison
As shown in Table 3, we first compare all text-based
methods. We find that the BERT-based model sig-
nificantly outperforms the BiLSTM-based model on
both datasets, demonstrating the advantage of pre-
trained language models. In addition, we find that
GPT4 fails to achieve satisfactory results compared
to fine-tuning methods, and this phenomenon is
also found by (Qin et al., 2023), which indicates
that the current large language model still faces
challenges in NER.

Next, we compare multimodal methods of using
the first image with the text-based methods. We
find that almost all multimodal models significantly
outperform their corresponding text-based models
on both datasets, such as GVATT-HBiLSTM-CRF

3https://huggingface.co/bert-base-uncased
4https://huggingface.co/google/vit-base-patch16-

224
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Modality Model MNER-MI MNER-MI-Plus
P R F1 P R F1

Text Only

BiLSTM-CRF 64.03 65.91 64.96 73.65 70.74 72.17
CNN-BiLSTM-CRF 64.89 66.89 65.87 73.71 71.97 72.83
GPT4 64.28 67.91 66.05 63.76 69.12 66.33
HBiLSTM-CRF 64.51 68.55 66.47 72.19 74.34 73.25
BERT 69.04 73.54 71.22 77.35 79.19 78.26
BERT-CRF 70.78 75.05 72.85 80.15 78.52 79.33

Text + Single Image

MiniGPT4 59.87 62.37 61.09 62.22 64.27 63.23
GVATT-HBiLSTM-CRF 67.83 67.19 67.51 76.31 73.11 74.68
AdaCAN-CNN-BiLSTM-CRF 67.89 68.24 68.06 75.67 73.85 74.75
OCSGA 75.75 72.04 73.85 81.44 79.13 80.27
UMT 74.23 74.03 74.13 81.71 79.50 80.59
MAF 74.91 73.60 74.25 80.17 81.29 80.73
UMGF 73.74 75.30 74.51 82.31 79.65 80.96
ITA 74.95 74.21 74.58 79.64 81.46 80.54
promptMNER 75.80 73.46 74.61 81.13 81.39 81.26
VisualPT-MoE 74.77 75.01 74.89 82.72 80.64 81.67
HVPNeT 74.93 75.28 75.10 81.88 80.94 81.41

Text + Multiple Images

UMT-MI 76.56 75.90 76.23 82.26 82.96 82.61
UMGF-MI 75.88 77.14 76.50 82.55 82.25 82.40
VisualPT-MoE-MI 76.87 76.38 76.62 82.61 82.79 82.70
TPM-MI 77.45 77.19 77.32† 83.66 83.18 83.42†

Table 3: Performance comparison on MNER-MI and MNER-MI-Plus. The marker † refers to significant
test p-value < 0.05 when compared with VisualPT-MoE-MI.

vs. HBiLSTM-CRF, AdaCAN-CNN-BiLSTM-CRF
vs. CNN-BiLSTM-CRF, and other MNER methods
(except MiniGPT4 vs. BERT-CRF). This indicates
that image information in social media posts con-
tributes to named entity recognition. In addition,
we find that MiniGPT-4 does not perform better
than GPT4, probably because the multimodal large
language models are weaker at understanding in-
structions than text-based large language models.

Finally, we compare multimodal methods of using
multiple images. We find that methods using mul-
tiple images always perform better than their cor-
responding single-image methods, indicating that
the use of multiple images in multi-image scenar-
ios provides a better understanding of multimodal
content and aids MNER. In addition, we find that
our proposed methods TPM-MI significantly out-
perform the other methods, which demonstrates
that the image position information and the rela-
tionship between images can help obtain a better
multi-image representation.

5.4. Performance Comparison on
Different Datasets

In Figure 3, we show the performance of models un-
der the multi-image MNER dataset MNER-MI and
the single-image MNER dataset TWITTER-2017.
We find the models perform well on TWITTER-2017
(each model performs above 85.0), but poorly on
MNER-MI. The maximum performance degrada-

tion of the model is more than 10 points despite
the use of multiple images, indicating that current
single-image MNER methods are not directly suit-
able for multi-image scenarios, and that simply
transferring existing methods to multi-image sce-
narios does not achieve satisfactory results, as well
as highlighting that our dataset exists with different
challenges than the single-image MNER dataset.

Figure 3: Performance comparison on different
datasets. First Image means that the model uses
only the representation of the first image, and Mul-
tiple Images means that the model uses the repre-
sentation of all images.
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Sentence and Images Whole Image Gold VisualPT-MoE VisualPT-MoE-MI TPM-MI

Elon Musk is considering bringing back Vine

Elon Musk (PER)
Vine (ORG) Elon Musk (PER) Elon Musk (PER)

Vine (ORG)
Elon Musk (PER)

Vine (ORG)

After months of being sold out, I finally managed to get
myself a Nessie! She favors a wingman.

Nessie (MISC) Nessie (PER) Nessie (MISC) Nessie (MISC)

Early mornings in the garden with Raffi.

Raffi (MISC) Raffi (PER) Raffi (PER) Raffi (MISC)

Table 4: A case study for visually showing the effectiveness of multiple images, where the column of the
whole image represents the result of stitching multiple images into one whole image.

5.5. Case Study

To more visually show the effectiveness of using
multiple images in a multi-image scenario, we con-
duct a case study and compare the different meth-
ods as shown in Table 4.

Specifically, we can observe that: the use of mul-
tiple images helps to identify the additional entity
Vine in the first example and removes the ambi-
guity contained in the single image in the second
example, as well as accurately identifying the type
of Nessie, which demonstrates the multiple im-
ages can provide more information and can help
models to better understand the multimodal content
compared the single image. In addition, we find
that VisualPT-MoE-MI incorrectly predicts the type
of Raffi as PER in the third example, which may
be due to the pixel size of the image being reduced
and the information of the image being lost in order
to stitch the images. TPM-MI can obtain more infor-
mation about the image by using multiple images
directly, which can accurately identify the type of
Raffi as MISC.

Overall, this case study highlights the benefits
of using multiple images for NER, showing how it
helps identify additional entities and removes am-
biguities from a single image.

6. Conclusion

In this paper, in order to address the research gaps
in MNER as well as to expand the scope of MNER
for real-world applications, we propose a multi-
image MNER dataset MNER-MI and extend an
MNER dataset MNER-MI-Plus up on it. Based on
both datasets, we establish a comprehensive set
of representative baseline methods and propose a
novel temporal prompt model for the challenges of
MNER with multiple images. We have conducted
extensive experiments to demonstrate that multi-
ple images can provide more information to better
help MNER compared to a single image, and the

effectiveness of our method.
In the future, we plan to further investigate the

representation of multiple images. Although we
model multiple images as frames in a video in this
paper, we recognize the need for more efficient
representations to fully capture the unique char-
acteristics of multiple images. In addition, we are
aware of the limitations of our approach: we treat
each image equally, while in reality, different im-
ages have different importance in understanding
the post, and we plan to explicitly establish the
weight of each image in the future.
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