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Elon Musk is considering bringing back Vine

Elon Musk (PER)
Vine (ORG) Elon Musk (PER) Elon Musk (PER)

Vine (ORG)
Elon Musk (PER)

Vine (ORG)

After months of being sold out, I finally managed to get
myself a Nessie! She favors a wingman.

Nessie (MISC) Nessie (PER) Nessie (MISC) Nessie (MISC)

Early mornings in the garden with Raffi.

Raffi (MISC) Raffi (PER) Raffi (PER) Raffi (MISC)

Table 4: A case study for visually showing the effectiveness of multiple images, where the column of the
whole image represents the result of stitching multiple images into one whole image.

5.5. Case Study

To more visually show the effectiveness of using
multiple images in a multi-image scenario, we con-
duct a case study and compare the different meth-
ods as shown in Table 4.

Specifically, we can observe that: the use of mul-
tiple images helps to identify the additional entity
Vine in the first example and removes the ambi-
guity contained in the single image in the second
example, as well as accurately identifying the type
of Nessie , which demonstrates the multiple im-
ages can provide more information and can help
models to better understand the multimodal content
compared the single image. In addition, we find
that VisualPT-MoE-MI incorrectly predicts the type
of Raffi as PER in the third example, which may
be due to the pixel size of the image being reduced
and the information of the image being lost in order
to stitch the images. TPM-MI can obtain more infor-
mation about the image by using multiple images
directly, which can accurately identify the type of
Raffi as MISC.

Overall, this case study highlights the benefits
of using multiple images for NER, showing how it
helps identify additional entities and removes am-
biguities from a single image.

6. Conclusion

In this paper, in order to address the research gaps
in MNER as well as to expand the scope of MNER
for real-world applications, we propose a multi-
image MNER dataset MNER-MI and extend an
MNER dataset MNER-MI-Plus up on it. Based on
both datasets, we establish a comprehensive set
of representative baseline methods and propose a
novel temporal prompt model for the challenges of
MNER with multiple images. We have conducted
extensive experiments to demonstrate that multi-
ple images can provide more information to better
help MNER compared to a single image, and the

effectiveness of our method.
In the future, we plan to further investigate the

representation of multiple images. Although we
model multiple images as frames in a video in this
paper, we recognize the need for more efficient
representations to fully capture the unique char-
acteristics of multiple images. In addition, we are
aware of the limitations of our approach: we treat
each image equally, while in reality, different im-
ages have different importance in understanding
the post, and we plan to explicitly establish the
weight of each image in the future.
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