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Abstract
The effective use of monolingual and bilingual knowledge represents a critical challenge within the neural machine
translation (NMT) community. In this paper, we propose a modular strategy that facilitates the cooperation of these
two types of knowledge in translation tasks, while avoiding the issue of catastrophic forgetting and exhibiting superior
model generalization and robustness. Our model is comprised of three functionally independent modules: an
encoding module, a decoding module, and a transferring module. The former two acquire large-scale monolingual
knowledge via self-supervised learning, while the latter is trained on parallel data and responsible for transferring
latent features between the encoding and decoding modules. Extensive experiments in multi-domain translation
tasks indicate our model yields remarkable performance, with up to 7 BLEU improvements in out-of-domain tests
over the conventional pretrain-and-finetune approach. Our codes are available at https://github.com/NLP2CT/MoNMT.
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1. Introduction

The Neural Machine Translation (NMT) models
have exhibited impressive performance in trans-
lation tasks (Vaswani et al., 2017), yet their effec-
tiveness is heavily dependent on the availability of
bilingual data. To address this limitation, recent
research has started to exploit monolingual knowl-
edge derived from Pretrained Language Models
(PLMs) (Rothe et al., 2020; Zhu et al., 2020; Liu
et al., 2020, 2021b; Üstün et al., 2021; Zhu et al.,
2023; Liu et al., 2023; Pang et al., 2024a). 1 Mono-
lingual data can be effortlessly amassed for dif-
ferent domains and languages, whereas bilingual
data consists of one-to-one translation examples
that are indispensable in improving the translation
models. Although recent research has demon-
strated some translation capabilities in Large Lan-
guage Models using large-scale monolingual data,
they are prone to off-target translation, hallucina-
tion, and monotonic errors, and may exhibit perfor-
mance gaps in comparison to strong supervised
models (Zhu et al., 2023; Pang et al., 2024b). The
conventional method for utilizing both monolingual
data and bilingual data is the pretrain-and-finetune
(PF) paradigm, which has proven effective in en-
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1This paper primarily focuses on the monolingual
usage of PLMs. Back-translation is another option that
requires a qualified reverse-translation model.

hancing the performance of translation models (Liu
et al., 2020; Lewis et al., 2020). However, the fine-
tuning step involves adjusting the entire network by
completely or partially updating model parameters.
This can erase domain-specific and cross-lingual
monolingual knowledge acquired by the model, re-
sulting in a translation model susceptible to insuf-
ficient generalization and robustness capabilities,
commonly referred to as catastrophic forgetting
(French, 1999; Thompson et al., 2019; Yang et al.,
2020). Hence, a natural question arises on how
to successfully synergize monolingual and bilin-
gual knowledge to further enhance the translation
capacity of NMT models.

To approach this problem, we shift our attention
to the translation process of the human being. The
human translator does not "forget" language un-
derstanding and generation abilities while learning
new translation tasks. This stems from that the
human brain has a hierarchical modular organiza-
tion and is able to functionally learn and memorize
different tasks (Graziano and Aflalo, 2007; Zhang
et al., 2023). On the contrary, the current NMT
model is a functional coupling system. Although its
encoder-decoder abstraction is conceptually func-
tional independent (Sutskever et al., 2014; Vaswani
et al., 2017), the translating function is coupled
with the encoding and decoding functions. There-
fore, learning each of the monolingual and bilin-
gual knowledge affects and covers the other at the
training time. Inspired by the human translator, a
potential solution to this problem is to decompose
the NMT model into function-specific modules.

https://github.com/NLP2CT/MoNMT
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Accordingly, we propose a Modular Neural
Machine Translation model (MoNMT), which
makes the encoding, transferring, and decoding
functions contribute to the translation task indepen-
dently. Our model consists of three modules: 1)
The encoding module (Enc) is to encode source
text into source-oriented representations; 2) The
transferring module (Trans) is responsible for trans-
ferring them into target-oriented representations;
and 3) The decoding module (Dec) generates the
target sentence. A major challenge is how to link
up the three modules well, especially when they
are not jointly optimized. To approach this issue,
we first choose the monolingual sentence denois-
ing as the training objective of Enc and Dec rather
than the other self-supervised learning methods.
The two modules are therefore more in line with
the sequence-to-sequence task and Dec can gen-
erate sentences conditional to the source features.
Then, we build Trans upon Enc, and train it to gen-
erate target-oriented representations by feeding
the source ones. Trans is trained on the paral-
lel corpus and optimized by assigning translation
cross-entropy loss with freezing Enc and Dec, for
which we also propose an optimization alternative
with an auxiliary loss in the ablation study.

To evaluate the efficacy of MoNMT in leverag-
ing both monolingual and bilingual knowledge, our
study encompasses in-domain and out-of-domain
translation tasks to assess the model’s perfor-
mance. During the training phase, we initially
train the Enc and Dec modules using multi-domain
monolingual data, followed by training the Trans
module with domain-specific bilingual data. Our
findings consistently demonstrate the exemplary
performance of MoNMT in both in-domain and
out-of-domain translation tasks. Notably, when
exclusively trained on bilingual knowledge from
the Subtitles domain, the model shows a substan-
tial improvement of up to 7.0 BLEU in German-
to-English multi-domain tasks, showcasing its en-
hanced generalization and robustness. Moreover,
MoNMT exhibits effectiveness across diverse cor-
pus sizes and translation directions, and shows
an approximate 1.0 BLEU enhancement in low-
resource translation tasks. Beyond improving trans-
lation abilities, MoNMT offers several desirable
practical features:

• Simple: The proposed method is straightfor-
ward and readily implementable, utilizing the
existing NMT architecture with minimal alter-
ations required. Additionally, the training pro-
cess for each module remains uncomplicated.

• Parameter-Efficient: The reusability of en-
coding and decoding modules for subsequent
tasks significantly improves the efficiency of
computational resources in the practical de-

ployment of a translation system.

• Scalable: The scalability of each module can
be dynamically adjusted to accommodate data
volume requirements. Rather than fine-tuning
the entire model, users can tailor the capacity
of the transfer module based on the bilingual
dataset size, thereby preventing overfitting or
underfitting issues. This results in a more ro-
bust and customized approach.

2. Related Works

Monolingual data can be utilized for pretraining
language models (PLMs), thus facilitating the de-
velopment of enhanced translation models. PLMs
are trained on large volumes of monolingual text us-
ing self-supervised training objectives (Devlin et al.,
2019; Brown et al., 2020; Lewis et al., 2020; Liu
et al., 2020), which equips these models with sig-
nificant linguistic and domain knowledge. However,
recent studies have indicated that large language
models (LLMs) trained without parallel data may
exhibit translation errors such as Off-target transla-
tion, Hallucination, and Monotonic translation, and
potentially underperform compared to supervised
methods (Zhu et al., 2023; Pang et al., 2024b). Ad-
ditionally, Jiao et al. (2023) discovered that Chat-
GPT, a powerful LLM, lacks domain robustness
when it comes to translation tasks.

The pretrain-and-finetune (PF) method, which
combines both monolingual and bilingual knowl-
edge, is a conventional approach that effectively
enhances in-domain tasks (Liu et al., 2020, 2021a).
However, directly fine-tuning the entire model using
in-domain bilingual data may result in catastrophic
forgetting, leading to the loss of monolingual knowl-
edge and poor performance in out-of-domain sce-
narios (Thompson et al., 2019). In addition, ex-
isting research in the multilingual machine trans-
lation field employs strategies such as integrat-
ing adapters into encoders and decoders. These
approaches, however, continuously merge trans-
lation functions into encoding and decoding pro-
cesses by adding new parameters to original net-
works, aligning with traditional NMT models (Guo
et al., 2020; Üstün et al., 2021). Consequently,
fine-tuning adapters may alter encoder output dis-
tribution and potentially disrupt pretrained mono-
lingual knowledge, similar to the PF method. For
instance, Üstün et al. (2021) fine-tune adapters
and cross-attention networks of decoders on par-
allel data to accommodate translation functions,
whereas our method exclusively trains the trans-
ferring module. This distinction highlights our ap-
proach’s ability to separate translation functions
from encoding and decoding processes, facilitating
a more efficient and flexible use of monolingual
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and bilingual knowledge. Moreover, our study’s pri-
mary contribution lies in proposing a novel modular
NMT framework featuring relatively independent
functional components, rather than solely concen-
trating on multilingual translation models.

3. Modular Neural Machine
Translation

Given a translation pair sentence {x, y}, a trans-
lation model is to model the joint probability
p(x, y), which maximizes the log-likelihood, ȳ =
argmax logP (y|x), of a target sequence y con-
ditioned on a source sequence x. The con-
ventional NMT model is an encoder-to-decoder
framework and couples the translating capabil-
ity within both the encoder and decoder. In con-
trast to coupling functions, we propose a novel ap-
proach called Modular Neural Machine Translation
(MoNMT) model, which comprises three function-
independent modules. First of all, we introduce two
latent semantic variables for the source sentence
and the target sentence, zx and zy, and rewrite the
joint probability of a translation pair as follows,

p(x, y, zx, zy)

= p(y|zy, zx, x)p(zy|zx, x)p(zx|x)p(x)
∝ p(zx|x)︸ ︷︷ ︸

encode

p(zy|zx)︸ ︷︷ ︸
transfer

p(y|zy)︸ ︷︷ ︸
decode

,
(1)

where zy is the sole guidance for generating tar-
get sentences. By then, the joint probability of
the translation model is composed of three con-
ditional probability distributions, which are for the
Enc (encode), Trans (transfer), and Dec (decode),
respectively. In that case, the Enc and Dec are
responsible for encoding and decoding functions,
integrating the translation capacity into the Trans.

Specifically, the Enc and Dec are conditional to
the monolingual knowledge distribution. Rather
than respectively denoting them by Masked Lan-
guage Modeling (MLM) like BERT (Devlin et al.,
2019) and Casual Language Modeling (CLM) like
GPT (Brown et al., 2020), we denote them together
by Denoising Auto-Encoding (DAE) (Lewis et al.,
2020) for the reasons of 1) DAE is in line with
sequence-to-sequence learning; 2) its decoder is
conditional to the encoder outputs, which meet
the need of the Dec; and 3) with a denoising de-
coder as the Dec, the Trans only needs to transfer
the source-oriented representations into the target-
oriented representation, then the Dec generates
the translation hypothesis in a denoising manner.
With zx and zy, we reformulate DAE as follows:

p(x, x̂, zx) = p(x|zx, x̂)p(zx|x̂)p(x̂)
∝ p(zx|x̂)︸ ︷︷ ︸

encode

p(x|zx)︸ ︷︷ ︸
decode

, (2)

p(y, ŷ, zy) = p(y|zy, ŷ)p(zy|ŷ)p(ŷ)
∝ p(zy|ŷ)︸ ︷︷ ︸

encode

p(y|zy)︸ ︷︷ ︸
decode

, (3)

where x̂ and ŷ are the noising version of x and y,
respectively. By then, the probability distributions
of p(zx|x) and p(y|zy) are determinant, Equation 1
is further reformulated as:

p(x, y, zx, zy) ∝ p(zy|zx)︸ ︷︷ ︸
transfer

,
(4)

where the translation process is modeled by trans-
ferring latent variables zx to zy. By integrating the
translating function into the Trans module, our ap-
proach enables the retention of monolingual knowl-
edge in the Enc and Dec modules while acquiring
bilingual knowledge in Trans.

4. A Modularized Learning Strategy

This section illustrates the modularized training
strategy for MoNMT as indicated in Figure 1. Given
two languages x and y, we denote the monolingual
sentences as xmono and ymono, the translation pairs
as xpara and ypara and the model parameters as Θ.

4.1. Encoding and Decoding Modules

Given language x, we firstly apply the noising func-
tion on xmono and get the noise sentence x̂mono
following the default setting of Lample et al. (2017).
Then, an encoder-to-decoder model is trained to
recover the corrupted sentence x̂mono with cross-
entropy loss, of which the encoder and the decoder
are adopted as the Enc and Dec of language x. So
does the language y. The learning objectives are:

(5)
Θx

enc,Θ
x
dec

= argmax
Θx

enc,Θ
x
dec

logP (xmono|x̂mono, (Θ
x
enc,Θ

x
dec)),

(6)
Θy

enc,Θ
y
dec

= argmax
Θy

enc,Θ
y
dec

logP (ymono|ŷmono, (Θ
y
enc,Θ

y
dec)),

where Θ∗
enc and Θ∗

dec are the Enc and the Dec of
an arbitrary language ∗. Note that both modules
include the embedding layer.
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Encoding 
Module

Decoding 
Module

Decoding 
Module

Encoding 
Module

Hi , guys , _ are you ? [En]

Hi, guys, how are you ? [En]

Darf ich mich vorstellen ? [De]

Darf _ mich vorstellen ? [De] [De] Darf ich mich vorstellen ?

[En] Hi , guys , how are you ?

Encoding 
Module

Das ist eine gute Idee . [De]

Decoding 
Module

This is a good idea . [En]

[En] This is a good idea .

! !

! ! ❄ ❄
Transferring 

Module!

Encoding 
Module

How are you ? [En]

Decoding 
Module

Wie geht es euch ? [De]

[De] Wie geht es euch ?

❄ ❄
Transferring 

Module!

Training the Encoding and Decoding Modules Training the Transferring Module 

!Trainable ❄ Frozen

Modular Neural Machine Translation

Motivation: Modularity is an important organizing principle that a system could be divided into functionally specialized modules  and composed with them for a complex task. 
The modularity of the translation system is an unexplored filed in the community of machine translation.  


Main idea: Traditional NMT explicitly includes source language encoding and target sentence generating processes in a sequence-to-sequence framework, while the process of 
translation from source to target is explicitly integrated into the entire model. In our work, we decompose the translation model based on these three processes, which results in 
an encoding module, a translating module and a generating module, and propose the modular neural machine translation model. 

Figure 1: The training strategy for the Modular Neural Machine Translation model. The encoding
module (Enc) and decoding module (Dec) are pretrained on large-scale monolingual data (left), while
the transferring module (Trans) is trained on bilingual data (right). Modules with the same function are
depicted using the same color.

In our implementation, we share the Enc and
Dec of each translation language pair for both x-
to-y and y-to-x translation directions. According to
Equation 5 and 6, the DAE model (Θenc, Θdec) is
optimized by the following reconstruction loss:

Lossdae =− log p(xmono|x̂mono)

− log p(ymono|ŷmono).
(7)

At this point, the Enc and Dec are ready for the
encoding and decoding functions, respectively.

4.2. Transferring Module

Trans is an extra network connected in series upon
the Enc, which transfers zx to zy in Equation 4.
Given the frozen Enc Θx

enc and Dec Θy
dec, we train

Trans Θx2y
trans with bilingual data {xpara,ypara} for the

x-to-y translation direction:

Θx2y
trans

= argmax
Θx2y

trans

logP (ypara|xpara, (Θ
x
enc,Θ

x2y
trans,Θ

y
dec)),

(8)

so does the y-to-x translation direction.
In our implementation, The Trans consists of K

stacked layers, which are similar to the encoder
layer of the Transformer model (Vaswani et al.,
2017). By incorporating with the Frozen Θenc and
Θdec, the Trans Θtrans is optimized by the cross-
entropy loss as follows:

Lossmt = − log p(ypara|xpara), (9)

then we combine these three modules for the x-to-y
MoNMT model.

Optimization: Gram matrix loss. To further re-
veal the potential of MoNMT, we study an optimiz-
ing alternative by employing the existing method,
Gram matrix loss (Gatys et al., 2016), as an aux-
iliary term for training the Trans. In primary, the
hidden size and sentence length are denoted as
H and L, respectively.

The Gram matrix represents the covariance of a
feature map and is used for transferring styles be-
tween two images in the computer vision commu-
nity (Gatys et al., 2016; Li et al., 2017). In MoNMT,
the Trans is expected to output representations,
denoted as AH×Ls , that are close to the real target-
oriented representations, denoted as BH×Lt , so
that Dec may simply recover the target sentence as
the denoising process of DAE. However, the length
of a source sentence Ls is usually different from
that of its target sentence Lt, so it is intractable
to directly compute the difference between AH×Ls

and AH×Lt . As an alternative, we imitate the style
transfer process and consider the sentence repre-
sentations as "images", then reduce the difference
of Gram metrics between AH×Ls and BH×Lt , ex-
pecting to assist in training the Trans, as follows:

(10)Lossgram = MSE(AAT, BBT),

(11)Loss = Lossmt + λLossgram,

where MSE is the mean square error following
Gatys et al. (2016) and λ is a weight. Thus, we
directly fit the transferred features to the real target-
oriented features to assist in training the transfer-
ring module. An ablation study conducted in sec-
tion 6.5 shows how MoNMT is improved by fitting
additional Gram matrix loss using Equation 11.
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News Medical Law Koran IT Subtitles

RD PF Ours RD PF Ours RD PF Ours RD PF Ours RD PF Ours RD PF Ours

News 33.0 33.4 33.9⇑ 7.2 8.1 17.4⇑ 12.0 13.0 20.3⇑ 1.4 3.6 7.3⇑ 7.8 17.3 18.2⇑ 14.5 19.1 23.3⇑

Medical 34.8 36.4 37.7⇑ 51.1 52.6 52.5 18.6 24.6 29.1⇑ 0.0 1.0 6.9⇑ 10.8 24.4 26.9⇑ 4.9 13.1 24.4⇑

Law 39.9 41.1 41.4⇑ 18.6 24.6 29.1⇑ 57.3 58.2 57.2 0.6 1.4 6.7⇑ 7.2 17.4 18.8⇑ 4.2 7.9 18.4⇑

Koran 12.5 12.7 15.1⇑ 2.7 2.7 6.5⇑ 3.2 3.5 6.9⇑ 13.7 20.9 21.3⇑ 3.4 9.0 9.4⇑ 6.7 8.6 11.1⇑

IT 31.1 31.8 32.1⇑ 10.0 11.2 22.5⇑ 11.6 14.7 23.0⇑ 0.6 1.5 4.5⇑ 39.7 41.8 42.7⇑ 6.1 8.7 18.6⇑

Subtitles 22.3 22.9 23.1⇑ 3.2 3.6 8.7⇑ 4.0 4.2 7.4⇑ 1.5 3.0 4.8⇑ 8.4 15.1 14.3 30.7 32.2 31.2

Average 28.9 29.7 30.6 14.8 16.0 22.5 17.8 19.7 24.0 3.0 5.2 8.6 12.9 20.9 21.7 11.2 13.9 21.2

(a) The BLEU scores for German-to-English on multi-domain translation tasks.

News Medical Law Ted

RD PF Ours RD PF Ours RD PF Ours RD PF Ours

News 31.0 35.9 36.3⇑ 5.5 7.2 16.6⇑ 8.8 10.1 20.6⇑ 14.5 20.9 25.4⇑

Medical 21.6 30.3 33.6⇑ 82.5 82.3 83.1⇑ 13.3 16.1 24.8⇑ 6.1 14.3 22.1⇑

Law 33.2 39.3 40.6⇑ 12.6 17.0 26.3⇑ 61.2 63.4 62.5 7.3 7.4 19.2⇑

Ted 22.6 28.5 29.0⇑ 4.1 4.5 11.8⇑ 6.3 7.5 13.5⇑ 19.1 41.9 42.5⇑

Average 31.0 33.4 34.9 26.2 27.6 34.5 22.7 24.3 30.4 16.8 21.1 27.3

(b) The BLEU scores for Romanian-to-English on multi-domain translation tasks.

Table 1: Main Results, where the methods are the Transformer model with a random initialization (RD),
the pretrain-and-finetune paradigm (PF), and the MoNMT model (Ours). Noted that All the models are
trained on training sets in the first row and tested on the test sets in the first column. Bold entries denote
the best average performance. ⇑ denotes statistically significant differences with p ≤ 0.05 in the paired
bootstrap resampling test compared to the baselines (Koehn, 2004).

5. Experiment

5.1. Settings

Data As for monolingual knowledge, we use the
monolingual data from the public-available News-
Crawl corpus, 36M (millions) for Romanian and
Turkish, 100M for English and German.2 Then,
we add and upsample the English-side texts of
multi-domain datasets into the monolingual data
(Hu et al., 2019). As for bilingual knowledge, we
include the multi-domain datasets (Medical, Law,
IT, Koran, and Subtitles) for German-to-English
translation (Koehn and Knowles, 2017; Aharoni
and Goldberg, 2020), and the dataset from OPUS
(Medical, Law, and Ted) for Romanian-to-English
translation (Tiedemann, 2012). Besides, we further
employ four widely-used benchmarks of translation
tasks, which are WMT14 English-French (En-Fr),
WMT14 English-German (En-De), WMT16 English-
Romanian (En-Ro), and WMT18 English-Turkish
(En-Tr), and consist of 36M, 4.5M, 600k, and 200k
training pairs, respectively. Note that the datasets
of En-De and En-Ro are adopted as the News
domain datasets in the multi-domain tasks.

Model Following Vaswani et al. (2017), we adopt
the Transformer architecture for all the models. We
control the layer number of the Trans for training
bilingual data of different sizes. Specifically, we

2https://data.statmt.org/news-crawl/

set it to 1 for the MoNMT model of Koran, which
only contains around 18k training pairs. Unless
specified otherwise, each module of the MoNMT
consists of 6 layers. For all language pairs, we
apply subword-nmt to learn bpe subwords and form
a joint dictionary (Sennrich et al., 2016b).3 tDuring
the training process, we use Adam (Kingma and
Ba, 2015) to optimize the model parameters, with
β1 = 0.9, β2 = 0.98, and ϵ = 10−9. For the Enc
and Dec, we train them on monolingual corpus
about 10 epochs. The transferring module, Trans,
is trained on parallel data with 8192 max tokens
(<200k) for small-size datasets and 32k max tokens
for large-size datasets (>500k). Unless otherwise
specified, Equation 7 and Equation 9 are adopted
for optimizing Enc/Dec and Trans, respectively. The
training procedure of all translation tasks is early-
stop with 20 patience and 300k max steps. All
the experiments are conducted on 4 Nividia Tesla
V100 32GB GPUs.

Baselines 1) Transformer models (RD): We in-
clude the Transformer model with a random ini-
tialization without pretraining for each translation
task. To obtain the best non-pretrained model per-
formance, for a dataset size larger than 500k, we
use the Transformer-Big architecture. Otherwise,
we use the Transformer-Base architecture. 2) The
pretrain-and-finetune paradigm (PF): is a widely
employed and influential technique applied in var-

3https://github.com/rsennrich/subword-nmt

https://data.statmt.org/news-crawl/
https://github.com/rsennrich/subword-nmt
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ious studies. In our experiments, we adopt the
Transformer-Big architecture (Vaswani et al., 2017)
for all translation tasks. The PF model is first pre-
trained on the same monolingual data as MoNMT,
then finetuned on the parallel datasets.

5.2. Main Results

Results in Table 1 show our method (Ours) consis-
tently outperforms other competing approaches
across multi-domain translation tasks, as evi-
denced by the higher BLEU scores it achieves.
These findings highlight that the MoNMT model
successfully synergizes monolingual and bilingual
knowledge, and improves generalization and ro-
bustness.

Comparison to the RD method. Our approach
surpasses the RD method by achieving improve-
ments ranging from 1 to 20 BLEU scores across
multiple tasks. This provides strong evidence of
the effective utilization of monolingual knowledge
from extensive monolingual data in our method.

Comparison to the PF method. In comparison
to the PF method, our approach demonstrates su-
perior performance in out-of-domain tasks and sim-
ilar performance in in-domain tasks, showcasing
enhanced domain generalization and robustness.
This is attributed to PF’s susceptibility to the catas-
trophic forgetting problem and its tendency to over-
shadow monolingual knowledge when employed
for translation tasks, ultimately resulting in subop-
timal performance (McCloskey and Cohen, 1989;
Kirkpatrick et al., 2017; Chen et al., 2020). Our
method avoids this problem by modularly training
monolingual and bilingual data.

Comparison on in-domain tests. In both
the German-to-English and Romanian-to-English
translation directions, results show that both the PF
method and the MoNMT model outperform the RD
method, while also possessing comparable per-
formance to each other. This highlights the value
of leveraging monolingual knowledge from large-
scale datasets to improve translation proficiency.
The distinction between the PF method and the
MoNMT model barely exceeds a difference of 1
BLEU score, signifying that integrating bilingual
knowledge into the transferring module is a viable
alternative for machine translation, without compro-
mising the importance of monolingual knowledge
acquisition during parallel data training.

Comparison on out-of-domain tests. The
MoNMT method exhibits superior performance
compared to the RD and PF methods in out-of-
domain tasks, with improvements ranging from 1

to 20 BLEU scores across various domains, under-
scoring its domain robustness and generalization
capabilities. For example, in German-to-English
translation, our method shows a noteworthy im-
provement of 12.5 and 11.3 BLEU scores in the
medical domain compared to the RD and PF meth-
ods, respectively, as demonstrated in Table 1a.
Similarly, in Romanian-to-English translation, our
method achieves up to 7.7 and 7.3 BLEU scores
above the RD and PF methods, respectively, in
the medical domain, as shown in Table 1b. Note
that the PF method generally outperforms the RD
method. These results provide convincing evi-
dence that 1) pretraining models on large-scale
monolingual data can effectively enhance the do-
main robustness of translation models, and 2) our
approach, MoNMT, effectively exploits both mono-
lingual and bilingual knowledge by training dedi-
cated function-independent modules for the encod-
ing, transferring, and decoding functions.

6. Analysis

In this section, we begin our evaluation of the
MoNMT model by conducting translation tasks
across various language directions and dataset
sizes. Following this, we provide a comprehensive
analysis with a strong focus on evaluating the im-
pact of monolingual and bilingual data volumes, as
well as model dimensions. Ultimately, we present
an interpretability analysis that aims to offer valu-
able insights into the inner workings of the model.

6.1. Influence of Bilingual Data Scales

To assess the effectiveness of our model across
varying dataset sizes, we conduct evaluations on
several translation tasks: En-Fr, En-De, En-Ro,
and En-Tr. Our experimental results, presented in
Table 2, show that the MoNMT-big model performs
commendably in both translation directions across
all four benchmarks. In scenarios where resources
are abundant, we observe that MoNMT-Big com-
petes favorably with the PF-Big method, lagging
only 0.3 BLEU in English-to-French translation, a
negligible variation. Conversely, the MoNMT-base
model is not as successful, lagging about 2.0 BLEU
compared to the PF-Base. This is owing to the in-
sufficient capacity of a Trans model, with only 19M
parameters, to train 36M bilingual pairs. Moreover,
in cases where data is scarce, a significant chal-
lenge as far as machine translation is concerned,
both MoNMT-base and MoNMT-big demonstrate
significant improvement, with a rise of 1.6 BLEU
score in English-to-Turkish translation. These find-
ings suggest that our model has the capacity to
tackle the data scarcity issue and improve its per-
formance in low-resource settings. Collectively, our
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Model WMT14 En ⇔ Fr WMT14 En ⇔ De WMT16 En ⇔ Ro WMT18 En ⇔ Tr #Trained
ParametersEn ⇒ Fr Fr ⇒ En En ⇒ De De ⇒ En En ⇒ Ro Ro ⇒ En En ⇒ Tr Tr ⇒ En

RD-Base 40.9 36.9 27.3 31.9 33.9 29.8 9.4 15.3 61M
PF-Base 41.3 37.4 27.9 32.5 35.4 34.5 11.1 17.6 61M
MoNMT-Base 39.7 35.9 27.9 32.2 36.2 35.3 12.7 19.3 19M

RD-Big 42.2 38.4 27.9 33.0 34.2 31.0 1.3 3.8 211M
PF-Big 42.6 38.7 29.1 33.4 37.4 35.9 13.0 20.7 211M
MoNMT-Big 42.3 38.8 29.4 33.9 37.6 36.3 13.8 20.9 76M

Table 2: Results on common-used translation tasks. "Base" and "Big" indicate that the model layer
settings are the same as those of Transformer-Base and Transformer-Big (Vaswani et al., 2017). The
high- and low-resource tasks are arranged in a left-to-right manner for ease of comparison.

MoNMT model exhibits strong robustness and gen-
eralization while handling different dataset sizes
and language directions for translation tasks.

6.2. Influence of Monolingual Data
Scales
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Figure 2: BLEU scores on WMT14 En-De with
different sizes of monolingual data.

As shown in Figure 2, we conduct an experiment
to evaluate the impact of different sizes of mono-
lingual data on translation tasks. Specifically, we
utilize the newstest2014 dataset. The Enc and
Dec are trained on varying data volumes of 1M,
5M, 20M, and 100M, while the Trans is trained on
WMT14 En-De. Our results indicate that our model
performs worse than the PF method when trained
with data volumes of 1M, 5M, and 20M. This can be
attributed to the fact that the PF method fine-tunes
the entire model on bilingual datasets, enhancing
its encoding and decoding abilities, whereas our
Enc and Dec are trained only on insufficient mono-
lingual data. However, with a data volume of 100M,
our MoNMT method surpasses the performance of
the PF method, achieving BLEU scores of 29.4 for
en2de and 33.9 for de2en. This suggests that the
success of the MoNMT relies on the performance
of both Enc and Dec, in addition to Trans.

6.3. Influence of Model Sizes

In Table 2, the final column displays the number of
parameters trained for downstream tasks. Both the
base and big architectures of the MoNMT model
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Figure 3: BLEU score on WMT14 En-De with vari-
ous layer numbers of the transferring module

only require training of the Trans, which comprises
one-third of the parameters in the baseline models.
Despite this, the MoNMT model consistently deliv-
ers excellent performance. Notably, the MoNMT-
big model has 76 million parameters for the Trans,
which is similar to the Base model (61M) and con-
siderably less than the Big model (211M). The re-
sults demonstrate that the MoNMT-Big model sig-
nificantly outperforms the PF-Base models, pre-
senting an improvement of over 2.0 BLEU points.

In Figure 3, we conduct an investigation into the
effect of model capacity on the Trans architecture
by manipulating the number of layers from 1 to
10, while keeping the Enc and Dec architectures
constant. To ensure sufficient encoding and de-
coding abilities, we employ the large Transformer
architecture and train it on a corpus of 100M mono-
lingual data. Our research presents two translation
curves, one for German-to-English (de2en) and
another for English-to-German (en2de). Our find-
ings show that a single-layer Trans performs com-
parably to the large RD-Big model (as presented
in Table 2), achieving a BLEU score of 27.6 with
just 13M parameters for fitting translation tasks.
When increasing the number of layers to two, the
performance is nearly equivalent to the PF-Big
method, thus demonstrating the effectiveness of
our MoNMT model for users with limited computing
resources. Additionally, our results reveal that peak
performance is achieved when using 7 layers for
both translation directions.
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(b) Correlation between the Enc output source represen-
tations and Trans output target representations.

Figure 4: Heap maps of word-level correlation coefficient metrics of a German-to-English translation case.

6.4. Interpretability

To delve deeper into the functionality of Trans on
MoNMT, we undertake a thorough case study fo-
cusing on the word-level correlation between the
representations of source and target sentences.
Specifically, we calculate the correlation coefficient
for each word pair across the two sentences, re-
sulting in a correlation matrix represented as heat
maps in Figure 4. Figure 4a depicts the correlation
between the Enc output representations of source
and target sentences, while Figure 4b demon-
strates the correlation between the Trans output
representations of the source sentence and the
Enc output representations of the target sentence.
Our findings demonstrate that the Enc output rep-
resentations of the source and target sentences
exhibit the correct correlation for words with similar
semantic meanings, such as "Only" and "Nur". This
indicates that the model trained with nonparallel
data is capable of aligning the semantic information
of two distinct languages. This finding aligns with
prior studies (Conneau et al., 2020; Chi et al., 2021;
Tan et al., 2022). Furthermore, we observe that
the word-level correlations are enhanced for words
with similar semantic meanings after the source
sentence is processed by Trans, as evidenced by
the deeper colors in Figure 4b. This finding sug-
gests that the Trans effectively generates sentence
representations that closely approximate the Enc
output representations of the target sentence, mak-
ing it possible that the Dec generates a translation
in a denoising manner.

In order to further confirm our observation, we
utilize an English-to-German bilingual word align-
ment test set (Vilar et al., 2006) for quantitative
analysis. This test set is comprised of 508 sen-

tence pairs along with their corresponding ground
truth word alignments. The evaluation metric uti-
lized in this analysis is the Alignment Error Rate
(AER). For the sake of simplicity, we refer to the
setting illustrated in Figure 4a as "enc2enc" and
the setting depicted in Figure 4b as "enc2trans".
In these two settings, we employ the prediction of
the word alignment that possesses the highest cor-
rection score. Consequently, the AER scores for
enc2enc and enc2trans are recorded as 28.0% and
24.6%, respectively. It is worth noting that lower
scores indicate better performance in alignment
(Vilar et al., 2006). Evidently, there is a noticeable
difference of 3.4% between the results of enc2enc
and enc2trans. This discrepancy suggests that the
Trans enhances the alignment information.

6.5. Ablation Study

To enhance optimization, we incorporate the Gram
matrix loss (in Equation 10) and the cross-entropy
loss (in Equation 9) as the final loss (in Equa-
tion 11) to train the Trans. In our settings, the Gram
matrix loss is weighted by 1e3. These modifications
enable us to achieve 29.7 BLEU scores for English-
to-German translation and 34.2 BLEU scores for
German-to-English translation in the newstest2014,
which signifies a noteworthy improvement com-
pared to the results obtained by the MoNMT-Big
model (in Table 2). This observation suggests that
MoNMT could be further improved by directly opti-
mizing the output feature distribution of the trans-
ferring module, such as latent space regularization
(Zhang et al., 2016), distribution transformation (Liu
et al., 2022; Mahajan et al., 2020; Li et al., 2022)
and so on, in future research.



11568

7. Conclusion

This paper introduces a novel modular neural
machine translation (MoNMT) model, modularly
leveraging monolingual and bilingual knowledge.
Distinct from traditional models, our method em-
ploys separate modules for utilizing monolingual
and bilingual data, effectively addressing catas-
trophic forgetting of pretrained monolingual knowl-
edge. Experimental results demonstrate that our
approach achieves outstanding performance in
both in-domain and out-of-domain tasks, showcas-
ing superior model robustness and generalization.
Furthermore, it proves highly effective in enhanc-
ing translation quality in low-resource scenarios.
Notably, the MoNMT model is easy to implement,
parameter-efficient, and scalable for practical ap-
plications. Future research should consider train-
ing unified encoding and decoding modules and
extending our method to multilingual and multi-
domain translation tasks. For industry applications,
users can develop a translation system requiring
fewer computational resources, as the encoding
and decoding modules are reusable.

8. Ethics Statement

The main contributions of this research are method-
ological. We propose the Modular Neural Machine
Translation model (MoNMT) along with its modular
training strategy. Our experimental results offer
compelling evidence for the effectiveness of our
approach in enhancing model robustness and gen-
eralization. However, it is worth noting that the
datasets employed in our experiments, although
publicly accessible, may contain certain gender
and social biases. We acknowledge these poten-
tial concerns that our work may encounter. Conse-
quently, we recommend that users exercise caution
and take appropriate measures to mitigate these
risks according to their specific requirements.
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A. Appendix

A.1. Evaluation Details

The metric of BLEU scores (Papineni et al., 2002)
is adopted to evaluate the model performance for
all our tasks. The details are as follows:

• X-to-English and English-to-Turkish: we adopt
the Sacrebleu to calculate the BELU scores.4

• English-to-German: Following (Vaswani et al.,
2017), we adopt the fairseq toolkit script the
compute the BELU score for German texts.5

• English-to-Romanian: we follow (Liu et al.,
2020) to post-process the Romanian text with
Moses tokenization and normalization.6

• English-to-French: We use Moses language
tokenizer to tokenize the texts, and calculate
the tokenized BLEU scores.7

A.2. Back-Translation Versus
Multi-Domain Translation Tasks

Back-Translation (BT) improves the translation
model by enriching the bilingual data with synthetic
pseudo bitexts, which requires a reverse translation
model (Sennrich et al., 2016a). To evaluate BT on
multi-domain translation tasks, we design two set-
tings, one consists of 3M English-side multi-domain
monolingual data from the multi-domain datasets
and German News-Crawl monolingual data, and
the other includes 8M monolingual data which in-
cludes 5M additional News-Craw data for both lan-
guages. Results are shown in Table 4. Specifically,
the BT method trains the models on a small dataset
of the Medical domain (about 250k) and the syn-
thetic bitexts. In this instance, the reverse transla-
tion model utilized by the BT method is constricted
by the scarcity of bilingual data, resulting in poor
quality of synthetic pseudo bitexts (Edunov et al.,
2018). Results show that both BT-3M and BT-8M
consistently underperform the base model which
is trained on the Medical training set. Besides, the
performance degenerates as the monolingual data
increases from 3M to 8M, about 2.5 BLEU lower in
Average (AVG). On the other hand, our proposed
MoNMT model demonstrates consistent improve-
ments in the translation quality of out-of-domain
tasks. Specifically, it achieved an increase of about
8.9 and 10.1 BLEU scores in the IT domain test
for MoNMT-3M and MoNMT-8M, respectively. On
the other hand, MoNMT consistently improves the

4nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp
5https://github.com/facebookresearch/fairseq/

blob/main/scripts/compound_split_bleu.sh
6https://github.com/rsennrich/wmt16-script
7https://github.com/moses-smt/mosesdecoder

translation quality of out-of-domain tasks, such as
increasing by about 8.9 and 10.1 BLEU in the IT
domain test of MoNMT-3M and MoNMT-8M, re-
spectively. And its performance is improved as
the data size increases for both in-domain and
out-of-domain tests, resulting in favorable average
performance. In a nutshell, the performance de-
generation informs that the BT synthetic data is too
detrimental for this brittle low-resource translation
task, as the low-resource reverse translation model
is not capable of producing qualified bitexts.

A.3. LLMs Versus Multi-Domain
Translation Tasks

Table 5 presents three commonly used Language
Model Machines (LLMs) and their respective per-
formance in multi-domain translation tasks. The
prompts used for LLMs are listed in Table 3. The
results indicate that the Prompts LLMs still lag be-
hind the supervised method, as claimed by Zhu
et al. (2023). Among the three LLMs, ChatGPT out-
performs Bloomz and Alpaca-LoRA significantly, in-
dicating LLMs are heavily influenced by the model
size and the training data However, although it
is not a fair comparison, as a translation model,
LLMs underperform our supervised method in the
average performance, which only consists of 0.3B
parameters compared to the 175B parameters of
ChatGPT. Besides, Jiao et al. (2023) find that Chat-
GPT lacks domain robustness compared to exist-
ing translation systems.

Bloomz Given the following source text in
{src}: {src sentence}, a good {tgt}
translation is:

Alpaca-LoRA Translate the following {src} text
into {tgt}: {src sentence}

ChatGPT You are a faithful translator.
Please translate the {src} sen-
tence into {tgt}. [{src}]: {src
sentence}\n[{tgt}]:

Table 3: Prompts used for LLMs, where src and tgt
represent the source and target language.

A.4. Pearson Correlation Coefficient

Figure 4 presents the correlation of sentence rep-
resentations as heat maps. The Correlation Coeffi-
cient is calculated between each word pair of the
source sentence and the target sentence, in turn,
using Equation 12:

Pxy =
Σ(xi − x̄)(yi − ȳ)√

(Σ(xi − x̄)2)(Σ(yi − ȳ)2)
, (12)

where x and y present the word vectors of the
source and target sentence representations.

https://github.com/facebookresearch/fairseq/blob/main/scripts/compound_split_bleu.sh
https://github.com/facebookresearch/fairseq/blob/main/scripts/compound_split_bleu.sh
https://github.com/rsennrich/wmt16-script
https://github.com/moses-smt/mosesdecoder
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News Medical Law Koran IT Subtitles Average

base 7.2 51.1 18.6 2.7 10.0 3.2 15.5
+BT-3M 6.7 49.4 13.1 1.7 9.1 2.4 13.7
+BT-8M 2.3 45.7 9.9 0.6 6.9 1.8 11.2

MoNMT-3M 8.1 49.1 24.2 3.4 18.9 6.4 18.3
MoNMT-8M 13.7 50.3 25.7 4.5 20.1 7.3 20.3

Table 4: The BLEU scores of models trained with Medical training sets on multi-domain translation tasks.
#M means the model is additionally trained with # millions synthetic bitexts or monolingual data. The
performance degeneration indicates the negative effect of BT synthetic bitext for the translation models.

Model German-to-English Romanian-to-English #Model
ParametersNews Medical Law Koran IT Subtitles Average News Medical Law Ted Average

Bloomz 20.8 28.0 20.9 8.6 15.6 17.3 18.5 12.0 16.6 16.3 5.4 12.6 7B
Alpaca-LoRA 29.4 31.5 26.0 13.0 26.0 20.8 24.5 31.4 30.3 28.3 22.1 28.0 7B
ChatGPT 35.2 38.9 35.7 16.3 31.5 28.1 31.0 39.6 36.5 37.4 32.0 36.4 175B

Ours 33.9 52.5 57.2 21.3 42.7 31.2 39.8 36.3 83.1 62.5 42.5 56.1 0.3B

Table 5: Results of LLMs on multi-domain translation tasks. Ours contains the results in Table 1a and 1b.
These results indicate the LLMs still lag behind the strong supervised methods.
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