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Abstract
Morphemes serve as a strong linguistic feature to capture lexical semantics, with higher coverage than words and
more natural than sememes. However, due to the lack of morpheme-informed resources and the expense of manual
annotation, morpheme-enhanced methods remain largely unexplored in Computational Linguistics. To address
this issue, we propose the task of Morpheme Sense Disambiguation (MSD), with two subtasks in-text and in-word,
similar to Word Sense Disambiguation (WSD) and Sememe Prediction (SP), to generalize morpheme features on
more tasks. We first build the MorDis resource for Chinese, including MorInv as a morpheme inventory, MorTxt
and MorWrd as two types of morpheme-annotated datasets. Next, we provide two baselines in each evaluation;
the best model yields a promising precision of 77.66% on in-text MSD and 88.19% on in-word MSD, indicating
its comparability with WSD and superiority over SP. Finally, we demonstrate that predicted morphemes achieve
comparable performance with the ground-truth ones on a downstream application of Definition Generation (DG). This
validates the feasibility and applicability of our proposed tasks. The resources and workflow of MSD will provide new
insights and solutions for downstream tasks, including DG as well as WSD, training pre-trained models, etc.
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1. Introduction

Previously, Natural Language Processing usually
considered words as the central unit. Due to the
inherent ambiguity of words, Word Sense Disam-
biguation (WSD) has become critical for accurate
language understanding and has proven effective
in various downstream tasks, including Informa-
tion Extraction (Barba et al., 2021), Test Summa-
rization (Kouris et al., 2021) and Machine Trans-
lation (Pu et al., 2018; Campolungo et al., 2022),
etc. WSD often requires a word inventory. While
supervised WSD approaches have achieved rela-
tively high accuracy, they face limitations related
to the coverage of the word inventory, apart from
others. Especially for Chinese, as a paratactic lan-
guage, new words can be composed by simply
combining characters, and their word senses are
continuously emerging. For instance, by combining
the character "白(white)" with characters denoting
entities, one can create numerous words such as
"白云(white cloud)", "白墙(white wall)", etc. Ex-
isting resources cannot encompass entries for all
these combinations, bringing challenges for WSD
to handle.

On the other hand, the new era of pre-trained
models demands understanding at a smaller unit
level, as word-based tokenization faces issues

*corresponding author
Our code and resources are available at https:

//github.com/COOLPKU/MSD_task.

from the vast lexicon and out-of-vocabulary (OOV)
words. Models like BERT (Devlin et al., 2019) and
GPT (Brown et al., 2020) use subword-based tok-
enization, emphasizing sub-words’ importance in
language understanding. For Chinese, tokeniza-
tion in pre-trained models predominantly relies on
characters, the basic independent units within the
language.

In light of these challenges, solutions involving
sememes have been proposed. Sememes, defined
as the atomic semantic units for languages (Bloom-
field, 1926), are smaller than words. For Chinese
(and partially English), HowNet (Dong and Dong,
2003) employs sememes to define words. To fa-
cilitate sememe-enhanced methods, multiple stud-
ies (Xie et al., 2017; Jin et al., 2018; Lyu et al., 2021)
have explored the task of Sememe Prediction (SP)
to annotate sememes based on it automatically.
However, sememes are not designedly tied to char-
acters or linguistically composed, and current SP
methods can solely handle words with their defini-
tions in knowledge-bases, making it challenging to
apply them in training pre-trained models.

To address these issues, a linguistics-based ap-
proach that is tied to characters may be neces-
sary. In Chinese, morphemes are defined as the
smallest semantic and sound-bearing units (Zhu,
1982), representing different usages and mean-
ings of characters (Lv, 1979). As shown in Table 1,
the character "白" holds three morphemes, each
delineating a specific use case. Chinese usually

https://github.com/COOLPKU/MSD_task
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follows a hierarchical structure, from morphemes
to words, phrases, and sentences. Despite the
vast and dynamic Chinese lexicon, the number
and meaning of morphemes remain relatively sta-
ble. Statistics show that an overwhelming major-
ity (93%) of Chinese morphemes can be repre-
sented by a single character (Yuan and Huang,
1998), and 99.48% of the corpora can be covered
by 14,291 morphemes represented by 3,500 fre-
quently used characters (Fu, 1988). One Chinese
character may represent different morphemes. Mor-
phemes are highly productive in forming words, and
their senses are closely related to the word sense.
As denoted in Table 1, "白玉(white jade)" is formed
by "白1 (the color of snow)" and "玉(jade)". Fig-
ure 1 further illustrates how morphemes dictate the
meaning of the polysemous word "白饭". It is also
similar in other languages, such as English, where
the word "goldfish" is formed by the morphemes
or sub-words with their specific senses "gold (a
color)" and "fish (aquatic animal)". This again indi-
cates that morphemes play a fundamental role in
word-formation.

Morph Morpheme sense Example

白1
像雪的颜色 白玉
the color of snow white jade

白2
无附加物的；空白 白卷
without additional items; blank blank paper

白3
免费；无回报 白食
for free; without reward free food

白4
无效；徒劳 白费
ineffectively; vainly waste

Table 1: Examples of morphemes for the character
"白".

Figure 1: The word-formation process in Chinese.
The polysemous word "白饭" holds two meanings
"白2饭2" and "白3饭3", which are composed by us-
ing different morphemes.

To compare sememes with morphemes, the for-
mer form a manually curated set of atomic se-
mantics used to define words, while the latter rep-
resents different usage and meanings of charac-
ters that morphologically compose words. Se-
meme annotation for words can be subjective,
whereas morpheme annotations are objective and
unique. Take "减肥(reduce weight)" for example,

the original sememe annotation in HowNet is "变
形状(AlterForm)" and "瘦(bony)", whereas cases
of "减少(BecomeLess)" and "重量(weight)" or oth-
ers may also represent the same meaning. When
it comes to morphemes, it provides a unique de-
composition of "减1 (reduce)" and "肥1 (fat)", the
sequence of morphemes, respectively. This evi-
dences that morphemes are more natural, effective,
and easier for computing and understanding.

Morpheme features have been proven effica-
cious in tasks such as Chinese Word Embeddings
Generation (Lin and Liu, 2019), Definition Gener-
ation (DG) (Zheng et al., 2021a), etc., which vali-
dates that morphemes can serve as a strong lin-
guistic feature for capturing word senses. How-
ever, these studies entail labor-intensive manual
morpheme annotation for each character without
providing a unified annotation framework. Their
generalizability is, therefore, limited. Due to re-
source constraints, morpheme-enhanced methods
are narrowly explored in Computational Linguistics.

Recognizing these limitations, to expand the ap-
plicability of morphemes, we propose the task of
Morpheme Sense Disambiguation (MSD) to an-
notate morphemes in both scenarios of text and
word automatically. As an initial step, this paper
provides the MorDis resource for Chinese and
two baseline models. We first introduce a mor-
pheme inventory, MorInv. Then, we construct two
morpheme-annotated datasets, MorTxt and Mor-
Wrd. We provide two baseline models for each typ-
ical disambiguation case and finally demonstrate
the predicted morpheme senses in the downstream
task of DG. We believe the resources and work-
flow of MSD will provide new insights and solutions
for various downstream tasks and can also be ex-
panded to other languages.

In summary, this paper is committed to promoting
the applicability of morphemes as a strong linguistic
feature in modeling lexical semantics. The main
contributions are as follows:

(1) We propose the task of MSD and provide
the MorDis resource for Chinese, including
morpheme inventory (MorInv) and morpheme-
annotated datasets (MorTxt and MorWrd), for
future use;

(2) We implement two baseline models for MSD
in both scenarios of text (in-text) and word (in-
word) and achieve promising results compared
to WSD and SP, which show the feasibility of
the task;

(3) We demonstrate the predicted morpheme
senses in the application of DG and obtain com-
parable results with ground-truth ones, proving
the applicability of predicted morpheme senses
after the task.
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2. Related Work

Word Sense Disambiguation: Recent supervised
neural WSD methods achieve remarkable perfor-
mance by leveraging lexical knowledge-bases. For
example, incorporating definitional (Luo et al., 2018;
Huang et al., 2019; Blevins and Zettlemoyer, 2020),
relational (Bevilacqua and Navigli, 2020; Barba
et al., 2021; Zhang et al., 2022), formational (Zheng
et al., 2021), and conceptual (Raviv and Markovitch,
2021) knowledge. Su et al. (2022) further im-
prove performance on rare and zero-shot senses
by Z-reweighting. These methods require copious
sense-annotated resources, and their capacity is
largely determined by data coverage.
Sememes and Sememe Prediction: In linguis-
tics, sememes are defined as atomic semantic units
of human languages. HowNet (Dong and Dong,
2003), a most famous sememe knowledge-base,
uses 2540 manually extracted sememes (origi-
nated from Chinese) to define words. Sememes
are proven effective in multiple tasks, including
Word Similarity (Dai et al., 2008), WSD (Zhang
et al., 2005), Sentiment Analysis (Fu et al., 2013),
etc. To equip more methods with the feature of se-
memes, Xie et al. (2017) first present the SP task
with collaborative filtering and matrix factorization-
based models. The following research explores
word definitions (Li et al., 2018; Du et al., 2020),
character components (Jin et al., 2018) and knowl-
edge graphs (Lyu et al., 2021) for performance
improvement.
Chinese Morpheme-Related Resources: For
morpheme inventory, Yuan and Huang (1998) in-
troduce a morpheme knowledge-base by manu-
ally describing 17,470 morphemes for 6,763 char-
acters used for word-formation analysis. Kang
et al. (2004) further connect these morphemes to
Cilin (Mei et al., 1983), a Chinese thesaurus. Lin
and Liu (2019) describe morphemes with part-of-
speech and inter-morpheme relations, covering a
comprehensive set of 20,855 morphemes for 8,515
characters. Based on it, for morpheme-informed
datasets, Zheng et al. (2021a) manually annotate
morphemes for 45,311 words in DG. All the above
resources are manually constructed and used for
the specific task.
Chinese Morpheme-Enhanced Methods: In pre-
vious works, Tian and Liu (2016) apply mor-
pheme features to detect and describe (OOV)
words. Lin and Liu (2019) create morpheme-based
pseudo-corpora to enhance Chinese embeddings.
Zheng et al. (2021a) leverage morpheme and word-
formation features for DG. Zheng et al. (2021b)
incorporate morpheme features to improve word-
formation prediction. These researches evidence
the effectiveness of utilizing morpheme features,
but the morpheme-informed datasets are manu-

ally constructed, thus limiting the generalizability of
methods.

3. Resources

In this section, for the MorDis resource targeting
Chinese, we first introduce the morpheme inven-
tory, which contains a list of morpheme senses
for each character as the universal set. Then, we
construct two morpheme-annotated datasets for
evaluation and application.

3.1. Morpheme Inventory
For the Chinese morpheme inventory, we provide

MorInv, which includes morphemes with their part-
of-speech (PoS) and senses.

Following the previous works (Lin and Liu, 2019;
Zheng et al., 2021a), we further explore mor-
phemes with their PoS and senses from the Con-
temporary Chinese Dictionary (CCD) published by
the Commercial Press, one of the most influen-
tial Chinese dictionaries. As dictionaries primar-
ily serve humans, the senses in CCD can be too
complex and potentially distractive in computing ap-
plications. Besides, CCD is unavailable for public
research, which makes it difficult to obtain.

To tackle this issue of usage, we adopt Chat-
GPT to further paraphrase and simplify the senses.
Figure 2 shows a sample prompt for ChatGPT para-
phrasing and its result.

Figure 2: A sample prompt and its result for para-
phrasing one of the sense definitions of ’和’, which
is "和11" in CCD.

To ensure data quality, three mother-tongue re-
viewers manually check the paraphrased senses
and revise the inappropriate ones. They also mark
some representative paraphrase results, which are
subsequently examined by another reviewer. We
thus generate a definition template for morpheme
senses in the same category proposed by Liu et al.
(2018) based on each of them. This simplifies and
systematizes the definitions of morpheme senses
in MorInv, which is beneficial for computing appli-
cations.
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Character Morpheme Morpheme sense Context

白

白1
像雪的颜色 一场雪把大地变成了银白世界
the color of snow A snowfall turned the earth into a silver-white world

白2
无附加物的；空白 再喝半口温或冷的白开水
without additional items; blank Take another sip of warm or cold plain water

白3
免费；无回报 这些东西不能白送给你
for free; without reward These things can’t be given to you for free

白4
无效，徒劳 时间白白浪费了
ineffectively; vainly Time was wasted in vain

Table 2: Examples of entries with the target character "白" in MorTxt.

Character Morpheme Morpheme sense Word Word sense

白

白1
像雪的颜色 乳白 像奶汁的颜色
the color of snow milky-white a color like milk

白2
无附加物的；空白 白卷 没有写答案的考卷
without additional items; blank blank-paper an exam paper without written answer

白3
无附加物的；空白 白食 免费得到的食物
for free; without reward free-food food obtained for free

白4
无效，徒劳 白费 徒然耗费
ineffectively; vainly vainly-spend spend in vain

Table 3: Examples of entries with the target character "白" in MorWrd.

It is worth noting that there also exist multi-
character morphemes in Chinese, such as "葡
萄(grape)" and "咖啡(coffee)", which account for
less than 7% of all morphemes (Yuan and Huang,
1998). For computational convenience, we inten-
tionally decompose a multi-character morpheme
into single-character ones and equally transfer its
meaning to them. For example, "葡萄(grape)" is
split into "葡" and "萄", each with the same sense
"用于’葡萄’(used for ’grape’)".

The final MorInv contains 20,856 morphemes
for 8,516 characters. Table 4 shows examples of
morphemes for the character "白" in MorInv.

Morpheme PoS Morpheme sense

白1
形 像雪的颜色

adj. the color of snow

白2
形 无附加物的；空白

adj. without additional items; blank

白3
副 免费；无回报

adv. for free; without reward

白4
副 无效，徒劳

adv. ineffectively; vainly

Table 4: Examples of morphemes for the character
"白" in MorInv. Due to the space limit, we only give
3 out of 15 morpheme senses for it.

3.2. Morpheme-Annotated Datasets
For Chinese MSD in context, we provide two

datasets, MorTxt and MorWrd, which include mor-

pheme sense annotations in the scenario of text or
word, respectively.

Each entry in MorTxt contains (1) the target char-
acter, (2) the context (a sentence containing the
target character), and (3) the morpheme and mor-
pheme sense for the target character in the context.

We derive the context annotations from two
sources: (1) Filter the FiCLS dataset by the previ-
ous work (Zheng et al., 2021) and keep only the
portion targeting individual characters, with 8,935
entries gathered; (2) Collect word entries contain-
ing polysemous characters in the dataset by Zheng
et al. (2021a) and extract their contexts from CCD,
with 18,145 entries gathered.

The final MorTxt contains 27,080 entries, total-
ing 10,567 morphemes for 3,240 polysemous char-
acters, representing a majority of frequently used
ones, with an average of 7.25 sense candidates
per entry. Table 2 shows examples of entries with
the target character "白" in MorTxt.

Each entry in MorWrd contains (1) the target char-
acter, (2) a word containing the target character, (3)
a specific sense of the word, and (4) morpheme
and morpheme sense for the target character in
the word. We extract the words and word senses
from the previous work (Zheng et al., 2021a) and
keep only entries containing polysemous charac-
ters in the dataset. Similar to the above procedure,
the word sense definitions are also paraphrased.
The final MorWrd contains 98,065 entries, totaling
11,874 morphemes for 4,974 polysemous charac-
ters, covering both frequently and infrequently used
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ones, with an average of 6.85 sense candidates
per entry. Table 3 shows examples of entries with
the target character "白" in MorWrd.

4. Experiments

Inspired by WSD and SP and enabled by the new
resources introduced in Section 3, we can then ex-
pand Chinese disambiguation from word level to
character level. In this section, we propose two sub-
tasks of MSD, in-text and in-word, and provide two
baselines for each subtask based on BEM (Blevins
and Zettlemoyer, 2020) and ChatGPT.

4.1. In-Text MSD

In-text MSD is designed to select the specific
morpheme sense for the target character in the text,
which seems similar to WSD. We use MorInv as
inventory and MorTxt as the dataset. The dataset is
randomly divided into training, validation, and test
sets by 8:1:1. The model is expected to annotate
one suitable morpheme in the entry. Specifically,
the task is defined as follows: Given a character c∗
and its context con = c0, c1, . . . , c∗, . . . cn, MSD is a
function f such that f(c∗, con) = si, where si ∈ Sc∗ ,
and Sc∗ represents all candidate morpheme senses
of the character c∗ within the MorInv.

4.1.1. BEM Baseline

Despite differences between WSD and MSD, we
adopt one of the top-performing WSD models, BEM,
as the MSD baseline1.

Following BEM, we use a bi-encoder model to
independently embed (1) the target character with
its context and (2) the morpheme senses. The over-
all architecture is shown in Figure 3. The model
consists of two independent encoders: context en-
coder Gc encoding the target character, and mor-
pheme encoder Gs encoding the definition text for
each morpheme sense. Each encoder is a deep
transformer (Vaswani et al., 2017) initialized with
BERT.

Specifically, we flatten the context con and char-
acter c∗ into a character sequence q with BERT-
specific prediction token [CLS] and the sentence
boundary indicator [SEP]. The encoder Gc takes
the character sequence as input and produces the
ith representation output for c∗:

rc∗ = Gc(q)[i].

1Other top-performing WSD models, such as
EWISER (Bevilacqua and Navigli, 2020) and Con-
SeC (Barba et al., 2021), require special word features
that are unavailable for morphemes.

Figure 3: An Illustration of the BEM baseline of
in-text MSD.

The morpheme encoder Gs takes a morpheme
sense as input and outputs the morpheme repre-
sentation rsi as:

rsi = Gs(s
i)[0],

where we take the first representation of [CLS] as
a global representation of si.

We then rank candidate senses s ∈ Sc∗ for the
target character by the cosine similarity sim(·) of
rsi and rc∗ . The cross-entropy loss is used to train
the model as:

L(c, si) =− sim(rc∗ , rsi)

+ log

|Sc|∑
j=0

exp(sim(rc∗ , rsj )).

Evaluation Metric: Following the previous WSD
works, we report the overall precision results on
MSD across five part-of-speech (PoS) categories:
noun, verb, adjective, adverb, and functional (in-
cluding conjunction, preposition, pronoun, etc.)
morphemes.
Experimental Configurations: We tune hyper-
parameters for optimal performance on the vali-
dation set. Each encoder is initialized with BERT-
base-Chinese (Cui et al., 2021) and optimized with
Adam (Kingma and Ba, 2017). The random seed is
42, the initial learning rate is 1e-5, and the warm-up
phase is 10,000 steps. The context batch size is
4, and the morpheme sense batch size is 32. We
train for up to 20 epochs and stop the training pro-
cess once the performance does not improve for 5
epochs.



11610

Valid Test
ALL N. V. Adj. Adv. Func. ALL N. V. Adj. Adv. Func.

GPT-exact 51.62 53.28 52.61 54.71 51.09 29.94 52.58 52.74 54.40 56.19 50.37 31.33
GPT-fuzzy 52.95 55.21 53.65 55.76 51.82 31.74 53.77 53.41 55.66 57.47 51.85 33.73
BEM-con 68.64 65.64 70.78 68.93 67.65 66.86 69.83 67.11 70.76 72.22 73.53 66.28
BEM-con+PoS 78.21 73.59 75.82 86.95 91.18 86.98 77.62 74.67 75.43 83.33 88.24 85.47
BEM-con+PoS+chr 78.03 75.00 75.74 85.38 89.71 82.84 77.66 73.21 76.59 82.07 91.18 84.30

Table 5: Evaluation results (%) for in-text MSD. The best results are shown in bold. The "Func." type of
morphemes include conjunctions, prepositions, pronouns, etc.

4.1.2. ChatGPT Baseline

Large Language Models (LLMs) have recently
demonstrated remarkable performance across var-
ious tasks, with ChatGPT as one of the top-
performing models. Therefore, we use ChatGPT
as one of the baselines for the MSD task. We pro-
vide context con, target character c, and candidate
senses Sc∗ in the prompt and require ChatGPT to
select from the candidate senses the appropriate
meaning of the target character in the context. Fig-
ure 4 shows a sample prompt.

Figure 4: A sample prompt for in-text GPT baseline.

Evaluation Metrics: Polysemy is quite common
for Chinese characters, and there is no consensus
on partitioning their space of senses. Dictionar-
ies tend to have more fine-grained granularity for
language learners, which may be unnecessary for
computation. Additionally, due to ChatGPT’s in-
ability to precisely control the output format, it may
occasionally generate multiple options. Therefore,
we set up two evaluation metrics with different lev-
els of difficulty:

• Exact Matching: This metric enforces models
to select the same single choice, thereby ruling
out the generation of multiple-choice answers;

• Fuzzy Matching: The generated results would
be deemed correct as long as they include the
golden answer, regardless of other choices.

When a model generates text instead of a stan-
dardized answer, we adopt specific strategies for

automatic answer extraction. These strategies are
optimized based on the models’ performance.

Similar to the BEM baseline, we report the overall
exact and fuzzy precision results on MSD across
different PoS categories.
Experimental Configurations: To mitigate the
impact of the randomness in ChatGPT’s output
results, We employ a temperature of 0 for a greedy
search. Considering LLMs’ sensitivity to prompts,
ten different prompts are designed and tested on
the validation set. Details of the prompts are shown
in Appendix A. We choose the one that maximizes
the average accuracy of exact and fuzzy on the
validation set for the GPT baseline.

4.1.3. Results and Analysis

Table 5 shows the evaluation results for in-text
MSD. The former two lines represent the GPT base-
line, where the model name denotes the evaluation
metric. The latter three lines represent the BEM
baseline, where the model name denotes the fea-
tures adopted: "con" for context, "PoS" for part-of-
speech, and "chr" for character. From the table, we
have the following observations:

(1) The best-performing baseline model is BEM-
con+PoS+chr, achieving a test score of 77.66,
which validates the feasibility of MSD;

(2) PoS features significantly enhance the pre-
diction results since adding the PoS tags de-
creases the number of candidate senses;

(3) BEM outperforms ChatGPT significantly in
MSD. This is due to BERT’s bidirectional na-
ture, which better captures word and sentence
meanings, compared to GPT’s unidirectional
nature;

(4) ChatGPT struggles with functional morphemes,
achieving less than half the accuracy of BEM.
This is attributed to the role of functional mor-
phemes in connecting different sentence com-
ponents. GPT, being unidirectional, only con-
siders left-side context, leading to a limited un-
derstanding of these morphemes.
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To obtain an in-depth error analysis for future
improvements, we randomly selected 100 sam-
ples wrongly predicted by the best-performing BEM
model. The observations are as follows:

(1) Low-frequency morpheme senses are more
likely to be wrongly predicted as high-frequency
morphemes due to fewer examples. For ex-
ample, in the sentence ’钻钱眼儿(digging for
money)’, the character ’眼(eye/hole)’ holds the
morpheme sense ’眼2(hole)’, but wrongly pre-
dicted as the most frequent sense ’眼1(eye)’.
Observations reveal that 46% of the error in-
stances involve lower-frequency morphemes
being predicted as the most frequent mor-
phemes for the target character.

(2) When the target morpheme is wrapped within
a polysemous word, misinterpretation of the
word can easily lead to a misunderstanding
of the morpheme. It is similar to the above
point, as polysemous words are more likely
to be interpreted as the most frequent word
sense. For example, in the sentence ’他说的
话里有很大水分(There is a lot of exaggeration
in what he said)’, the word ’水分(water con-
tent/exaggeration)’ holds the word sense ’水
分2’(exaggeration) instead of frequently used
’水分1(water content)’. Therefore, character ’水’
is misunderstood as ’水1(water)’.

(3) From the perspective of linguistic evolution,
some morpheme senses are derived from
other morpheme senses. For example, in
the sentence ’对咖啡豆的风味偏好有所不
同(Preferences for the flavor of coffee beans
varies)’, the character ’豆(bean/something
looks like a bean)’ holds the morpheme sense
‘豆4 (something looks like a bean)’, which is de-
rived from the original sense ‘豆3 (bean)’. The
models are more likely to wrongly predict the
derivative senses as the original sense.

(4) The semantic spaces of different morpheme
senses are not necessarily non-overlapping.
Sometimes, they differ only in granularity. For
example, character ’囡(kid/little girl)’ holds two
senses ‘囡1(kid)’ and ‘囡2(little girl)’. The for-
mer includes the latter, with a coarser semantic
granularity. Predicting a fine-grained sense as
a coarse-grained sense may not be considered
wrong in linguistics, but it is incorrect in accu-
racy assessment.

4.1.4. Comparison with WSD

The subtask of in-text MSD parallels WSD but
targets different linguistic units for disambiguation.
Notably, in WSD, Zheng et al. (2021) build word
inventory from CCD, with the same source of our

dataset. Therefore, we can compare the experi-
mental results of previous WSD with MSD.

Zheng et al. (2021) achieve an accuracy of 88.74
in WSD, 11.08 points higher than our WSD task.
However, this result is not surprising. Since poly-
semous morphemes generally have more senses
than polysemous words (7.25 senses vs. 2.88
senses on average), the difficulties of disambiguat-
ing them are different. To a certain degree, MSD
is a more challenging task compared to WSD. As
for MSD, it is linguistically tied to characters and
offers full coverage of Chinese, whereas WSD can-
not achieve and may benefit from this new feature
afterward.

4.2. In-Word MSD
In-word MSD is designed to select the specific

morpheme sense for the target character in a word,
which seems similar to SP. Due to the potential
ambiguity of words by themselves, word sense is
also needed to be provided along with the word
for disambiguating morphemes. We use MorInv as
inventory and MorWrd as the dataset.

Specifically, the task is defined as follows: Given
a character c∗ a word w and its word sense def-
inition def = d0, d1, . . . , dn, MSD is a function f
such that f(c∗, w, def) = si, where si ∈ Sc∗ , and
Sc∗ represents all candidate senses of the char-
acter c∗ in the MorInv. Note that the target char-
acter c∗ is a component of a word, as denoted by
w = [c0, . . . , c∗, . . . cn].

4.2.1. BEM Baseline

The BEM baseline model for in-word MSD is
similar to that of in-text MSD, except that we re-
place the context encoder Gc with a word encoder
Gw. Specifically, we flatten the word w and word
sense definition def into a character sequence q
with BERT-specific prediction token [CLS] and the
sentence boundary indicator [SEP]. The encoder
Gw takes the character sequence as input and pro-
duces the ith representation output for c∗:

rc∗ = Gw(q)[i].

Figure 5: Word encoder Gw of the BEM baseline
of in-word MSD.

The architecture of word encoder Gw is shown
in Figure 5. The evaluation metrics and experimen-
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Valid Test
ALL N. V. Adj. Adv. Func. ALL N. V. Adj. Adv. Func.

GPT-exact 60.21 62.89 62.37 54.56 61.76 31.61 60.62 64.14 61.67 55.97 56.20 29.95
GPT-fuzzy 61.62 64.75 63.55 55.59 62.18 32.12 61.90 65.74 62.82 57.11 56.59 29.95
BEM-con 83.58 84.76 83.04 82.70 82.35 79.53 83.24 84.79 81.64 82.86 82.17 82.14
BEM-con+PoS 88.20 87.23 86.90 91.15 95.80 94.82 88.19 88.26 86.09 89.76 96.12 95.60

Table 6: Evaluation results (%) for in-word MSD. The best results are shown in bold. The "Func." type of
morphemes include conjunctions, prepositions, pronouns, etc.

tal configurations remain the same with the in-text
BEM baseline in section 4.1.1.

4.2.2. ChatGPT Baseline

The ChatGPT baseline model for in-word MSD
is similar to that of in-text MSD, except that ten
different prompts for in-word MSD are designed.
We provide the target word w, word sense definition
def , target character c, and candidate senses Sc∗

in the prompt. Figure 6 shows a sample prompt.

Figure 6: A sample prompt for in-text GPT baseline.

The evaluation metrics and experimental config-
urations remain the same with the in-text ChatGPT
baseline in section 4.1.2. Details of the prompts
are shown in Appendix A.

4.2.3. Evaluation Results

Table 6 shows the evaluation results for in-word
MSD. The former two lines represent the GPT base-
line, where the model name denotes the evaluation
metric. The latter three lines represent the BEM
baseline, where the model name denotes the fea-
tures adopted, "con" for context, and "PoS" for part-
of-speech. From the table, we have the following
observations:

(1) The results as stated in section 4.1.3 still hold
true;

(2) The best model achieves a high accuracy of
88.19 on the test set, and all models exhibit an av-
erage accuracy improvement of 10.04 compared

to in-text MSD due to the addition of word sense
information. This indicates that word sense infor-
mation can help in MSD, suggesting that WSD and
MSD may enhance each other to some extent.

4.2.4. Comparison with SP

The subtask of in-word MSD parallels SP but
employs different atomic semantics: morphemes
vs. sememes. Notably, in SP, Du et al. (2020)
also used word senses from CCD, with the same
source of our dataset. Therefore, we can compare
the experimental results of SP with MSD.

Du et al. (2020) achieves a SOTA mean aver-
age precision of 69.19 in SP. However, this is still
significantly lower than our BEM baseline, which
achieves an accuracy of 83.24, 14.05 points higher
than SP even without PoS information and using
stricter evaluation metrics.

Since sememes are not linguistically tied to char-
acters, SP involves selecting from a universal set
of over 2,000 sememes. In contrast, morphemes
are linguistically tied to characters, and MSD only
needs to focus on the morphemes of the target char-
acter. This makes morphemes more natural and
easier for computing and understanding. There-
fore, the superiority of MSD over SP is evident,
and downstream applications may benefit from it
afterward.

5. Applications

The resource and workflow of MSD have the
potential to be applied in a variety of downstream
tasks, including Definition Generation (DG), WSD,
training pre-trained models, LLM Evaluation, OOV
word recognition, semantic prediction, etc., pro-
viding new insights into and solutions for future
applications.

To evaluate the practical value of the MSD re-
sources and workflow, specifically, we are inter-
ested in the following questions:

(a) How does adopting different Chinese mor-
pheme inventories, MorInv or CCD, influence
task performance?
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(b) How does using the predicted morpheme
senses compare to using ground-truth ones
in a downstream task?

(c) To what extent do the predicted morpheme
senses improve downstream tasks compared
to random ones?

Among these downstream tasks, DG, which in-
volves automatically generating definitions for given
words based on lexical information, is an appro-
priate and natural way to evaluate the quality of
predicted morphemes. It has previously been
used to evaluate the quality of word vector gen-
eration (Noraset et al., 2017) and semantic word-
formation (Wang et al., 2023), offering intuitive and
well-explainable results.

We choose the DeFT model of DG (Zheng
et al., 2021a), which incorporates ground-truth
Chinese morphemes and thus parallels our pre-
dicted morphemes. We follow their experimen-
tal settings by substituting the ground-truth mor-
pheme senses with (1) paraphrased ground-truth
morpheme senses in MorInv, (2) morpheme senses
predicted by BEM-con and BEM-con+PoS from the
in-word MSD experiment in Section 4.2, (3) ran-
domly selected morpheme senses in MorInv. The
results for DG are shown in Table 7.

Annotation BLEU ∆

ground-truth 27.04 -
predicted-BEM-con 25.85 1.19↓
predicted-BEM-con+PoS 25.52 1.52↓
random-BEM-con 22.60 4.44↓
random-BEM-con+PoS 22.41 4.63↓

Table 7: DG results using ground-truth, predicted,
or random morpheme senses. ∆ indicates the drop
in performance.

To answer question (a), we compare the results
trained by ground-truth Chinese morpheme senses
in MorInv and CCD. The model trained by the mor-
pheme senses in the former achieves a BLEU of
27.04, 2.35% higher than that in the latter, which is
reportedly 26.42 (Zheng et al., 2021a). This demon-
strates that our paraphrased and simplified MorInv
is better suited for computing and understanding.

To answer question (b), we compare the results
trained by ground-truth morpheme senses and pre-
dicted ones. We observe that the predicted mor-
phemes achieve comparable results, with BLEU
decreasing by only 1.19 and 1.52 for BEM-con and
BEM-con+PoS, respectively. This indicates that
the wrongly predicted morpheme sense can some-
how distract downstream tasks, and MSD remains
valuable in such tasks.

To answer question (c), we construct a random
test set and examine it on the models trained with

predicted morpheme senses. Table 7 shows that
BLEU for the random test set is significantly lower
than the predicted ones, dropping by 4.44 and 4.63
for BEM-con and BEM-con+PoS, respectively. This
again validates the applicability and effectiveness
of MSD.

In addition, we believe MSD could assist in WSD,
as exposed in the above analysis. The predicted
morphemes after MSD can serve as one of the
important features used in WSD. Combining it with
other linguistic features, such as word-formation,
can facilitate a deeper understanding of lexical se-
mantics.

The utilization of this resource and the work-
flow of MSD may also be beneficial in training pre-
trained models. For example, in Chinese, in the
case of "吃白饭(eat plain rice/eat free meal)" as
demonstrated in Figure 1, the character "白" can
be interpreted as a morpheme of "白2:空白(plain)"
or "白3:免费(free)" in a broader context. In model
training, when the input contains "吃[MASK]饭",
the model may choose an appropriate morpheme
sense of "白" by leveraging the resource, which pre-
vious WSD could not do. Therefore, this approach
could enhance computing and understanding the
language at character level.

6. Conclusion

Inspired by the traditional WSD and SP, we pro-
pose a new task of MSD with two typical subtasks,
namely in-text and in-word, to automatize mor-
pheme annotations. We build the MorDis resource
for Chinese, which includes a morpheme inven-
tory and two morpheme-annotated datasets for the
task. We also provide two baseline models for each
subtask. Evaluation and applications together vali-
date its feasibility and applicability. We believe the
resource and workflow of MSD will provide new in-
sights and solutions for various downstream tasks,
including but not limited to DG, WSD, training pre-
trained models, etc.

In the near future, we plan to enlarge the
morpheme-annotated datasets and expand them
to other languages, incorporate inter-morpheme
knowledge to continuously enhance MSD perfor-
mance, and apply it to the aforementioned down-
stream tasks, thereby contributing to a deeper un-
derstanding of languages.
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A. Prompts for GPT baseline

Figure 7, 8, 9 shows all 10 prompts for the GPT
baseline of in-text MSD. Prompt 4 achieves the
highest accuracy on the valid set. Figure 10, 11, 12
shows all 10 prompts for the GPT baseline of in-
word MSD. Prompt 2 achieves the highest accuracy
on the valid set.

Figure 7: Prompt 1 for the GPT baseline of in-text
MSD.

Figure 8: Prompts 2-7 for the GPT baseline of in-
text MSD.
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Figure 9: Prompts 8-10 for the GPT baseline of
in-text MSD.

Figure 10: Prompts 1-2 for the GPT baseline of
in-word MSD. Figure 11: Prompts 3-8 for the GPT baseline of

in-word MSD.
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Figure 12: Prompts 9-10 for the GPT baseline of
in-word MSD.
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