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Abstract
The task of text2motion is to generate human motion sequences from given textual descriptions, where the model
explores diverse mappings from natural language instructions to human body movements. While most existing
works are confined to coarse-grained motion descriptions, e.g., “A man squats.”, fine-grained descriptions specifying
movements of relevant body parts are barely explored. Models trained with coarse-grained texts may not be able
to learn mappings from fine-grained motion-related words to motion primitives, resulting in the failure to generate
motions from unseen descriptions. In this paper, we build a large-scale language-motion dataset specializing in
fine-grained textual descriptions, FineHumanML3D, by feeding GPT-3.5-turbo with step-by-step instructions with
pseudo-code compulsory checks. Accordingly, we design a new text2motion model, FineMotionDiffuse, making
full use of fine-grained textual information. Our quantitative evaluation shows that FineMotionDiffuse trained on
FineHumanML3D improves FID by a large margin of 0.38, compared with competitive baselines. According to the
qualitative evaluation and case study, our model outperforms MotionDiffuse in generating spatially or chronologically
composite motions, by learning the implicit mappings from fine-grained descriptions to the corresponding basic
motions. We release our data at https://github.com/KunhangL/finemotiondiffuse.

Keywords: text2motion, fine-grained textual descriptions, prompt engineering, language-motion dataset, complex
motion generation

1. Introduction

While most works in human motion generation
from textual descriptions (text2motion) are de-
voted to designing various prediction models
(Ahuja and Morency, 2019; Guo et al., 2022b;
Ghosh et al., 2021; Guo et al., 2022a; Athanasiou
et al., 2022; Petrovich et al., 2022; Zhang et al.,
2022; Tevet et al., 2022; Kim et al., 2022; Zhang
et al., 2023), the datasets they use only involve
coarse-grained expressions, e.g., the short 4-word
sentence in Figure 1. However, in real-world appli-
cations, we not only describe motions in high-level
coarse-grained language, but also fine-grained
instructions. For instance, a humanoid robot
needs details about movements of relevant body
parts, so as to precisely perform the target motions.
We find that models trained on coarse-grained de-
scriptions cannot handle fine-grained ones. From
this perspective, available datasets exhibit a bottle-
neck in improving the text2motion performance.

At the least, we expect the fine-grained descrip-
tions to: 1) Be in time order; 2) Specify spatial
changes of relevant body parts; 3) Discard un-
necessary details regarding muscle tension and
human feelings; 4) Conform to human body con-
straints. For the last expectation, a bad example is
that the arms are raised in the previous sentences,
but the next sentence assumes that the arms rest
on both sides of the body.

To alleviate the data problem, a simple idea is to
expand existing coarse-grained descriptions into
fine-grained ones. However, it would be costly

for humans to rewrite comprehensive descriptions
meeting our expectations to cover a diverse range
of motions. A few works attempted to utilize GPT-
3 (Brown et al., 2020) to automatically generate
fine-grained descriptions (Kalakonda et al., 2022;
Athanasiou et al., 2023). Inspired by them, we
hypothesize that large language models (LLMs)
learn pertinent knowledge about human bodies
and physical motions, which we aim to utilize
through appropriately designed prompts 1.

For the choice of prompts used to query the
LLM for fine-grained descriptions, we manually de-
sign a set of prompt templates and evaluate their
performance on multiple testing texts. The final
prompt instructs the LLM to generate fine-grained
descriptions while summarizing them into pseudo-
codes. We find that this pseudo-code compulsory
check greatly enhances the stability of the LLM’s
generation of new descriptions. With this method,
we utilize GPT-3.5-turbo to remake HumanML3D
(Guo et al., 2022b) into a new language-motion
dataset with fine-grained texts, FineHumanML3D.
To the best of our knowledge, this is the first large-
scale language-motion dataset specializing in fine-
grained textual descriptions.

In Figure 1, we exhibit an example motion
with its original coarse-grained description and
the newly generated fine-grained version. Our
fine-grained texts are explicitly split into steps,

1According to our pilot study, open-source LLMs like
LLaMA perform worse than GPT-turbo-3.5-0301, so we
decide to use this closed-source LLM.
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Figure 1: An example motion sequence with a coarse-grained description and its fine-grained version.

but the current text2motion models do not de-
sign specific mechanisms to match this property.
One of the best-performing models, MotionDiffuse
(Zhang et al., 2022), uses CLIP (Radford et al.,
2021) with an input length limit of only 77 tokens
to pre-process texts, which appears short for most
of our new descriptions. Inspired by this, we pro-
pose FineMotionDiffuse, which takes fine-grained
descriptions of various lengths as input, without
losing any textual information due to input trunca-
tion. We also incorporate coarse-grained descrip-
tions into FineMotionDiffuse, in order to make use
of their high-level instruction-like information.

Our contributions are summarized as follows:
• By applying pseudo-code compulsory checks,

our final prompt elicits step-based fine-
grained motion descriptions, which maintain
strict chronological order while specifying
movements of related body parts with appro-
priate granularity.

• By feeding our prompt into GPT-3.5-turbo, we
build FineHumanML3D, the first large-scale
language-motion dataset specializing in fine-
grained textual descriptions.

• We propose FineMotionDiffuse, a new
text2motion model that takes in both our
fine-grained descriptions and the original
coarse-grained descriptions, to take advan-
tage of both fine textual features encoding
strict step order, and coarse textual features
encoding high-level instruction-like infor-
mation. The quantitative evaluation shows
that FineMotionDiffuse trained on FineHu-
manML3D improves FID by a large margin of
0.38, compared with the baseline. Moreover,
human evaluation shows that FineMotionDif-
fuse has the smallest gap from seen basic
motions to unseen composite motions (0.52
compared with 0.56 for MotionDiffuse with
coarse-grained descriptions and 0.80 for
MotionDiffuse with fine-grained descriptions).

2. Related Work

As the same motion can be described in various
ways, large-scale language-motion datasets with
high-quality annotations play a crucial role in solv-
ing the text2motion task. The first relevant dataset
is KIT-ML (Plappert et al., 2016), but it is small in
scale, with rough language descriptions and lim-
ited motion types. In comparison, HumanML3D
(Guo et al., 2022b) is larger in size, with a wide
variety of motion types and multiple descriptions
provided for each motion. However, the language
descriptions of HumanML3D still tend to be coarse-
grained. While there are various composite mo-
tions, their descriptions are mostly concatenations
of short verb phrases that summarize each basic
motion, e.g., the figure leans down to the right,
straightens, and then leans to the left.

Action-GPT (Kalakonda et al., 2022) uses GPT-
3 (Brown et al., 2020) to expand the original
coarse-grained texts, but they only use rough zero-
shot prompts that elicit fine-grained texts with large
amounts of unnecessary details. SINC (Athana-
siou et al., 2023) mines the body parts involved
in multiple motion descriptions using GPT-3, and
fuses their motion sequences with such informa-
tion. To generate new training data, they further
synthesize the corresponding composite descrip-
tions with conjunction words. They find the newly-
trained model obtains the ability of spatial com-
positionality, that is, given a description involving
multiple actions of different body parts, the model
is able to generate the corresponding motion se-
quence simultaneously performing these actions.

However, the two works do not fully explore
to what extent an LLM can understand, from a
coarse-grained motion description, the details of
time, space and human bodies. In other words,
the LLM’s ability to expand motion descriptions
from coarse-grained to fine-grained ones still re-
mains unknown. Moreover, we lack a large-
scale language-motion dataset with high-quality
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fine-grained descriptions. While we expect the
LLM to free humans from the laborious work of writ-
ing new annotations, it is inevitable to get imper-
fectly aligned fine-grained descriptions and golden
motions. Therefore, we are curious about whether
the LLM is able to complement enough descriptive
details, so that the text2motion model trained on
such noisy data still appropriately learns mappings
from fine-grained motion-related descriptions to
motion primitives.

For the text2motion model, the current main-
stream is to map natural language expressions
and motions to the same embedding space. On
the one hand, works such as TM2T (Guo et al.,
2022a), TEACH (Athanasiou et al., 2022), TEMOS
(Petrovich et al., 2022) and T2M-GPT (Zhang et al.,
2023) use VAE-based architectures. On the other
hand, benefiting from the recent progress of diffu-
sion models in generation tasks, models such as
MotionDiffuse (Zhang et al., 2022), MDM (Tevet
et al., 2022) and FLAME (Kim et al., 2022) suc-
cessfully apply such model architectures.

Of all these models, MotionDiffuse gains im-
pressive improvements compared with previous
works. It uses the multimodal model CLIP (Rad-
ford et al., 2021), which fuses information from
language and images by large-scale contrastive
pretraining, to initialize its text embeddings. How-
ever, CLIP only enables input texts with up to 77
tokens, so the original text encoder of MotionDif-
fuse cannot fully encode fine-grained descriptions.
We intend to overcome this problem. Furthermore,
it remains unknown whether incorporation of both
coarse and fine-grained texts would help improve
the text2motion model’s performance, which we
aim to explore in this paper.

3. Fine-grained Language-motion
Dataset Construction

We expect the LLM to properly expand motion
descriptions from coarse-grained to fine-grained
ones. An ideal fine-grained description is sup-
posed to state in chronological order, specify
spatial changes of relevant body parts, avoid
unnecessary details and conform to human
body constraints. We carefully design 8 prompts
and keep the best-performing one for final dataset
construction. More details about these prompts
and our pilot study are in Appendix A.

3.1. Prompt Engineering
Pilot Prompts. The simplest prompt, P1, is a
zero-shot prompt that asks the LLM to expand
the given coarse-grained description in time or-
der, and specify spatial position changes (includ-
ing angle changes) of relevant body parts. The

second prompt P2 does not require the LLM to
specify anything related to muscles, and gives one
instance that includes an example coarse-grained
description and its fine-grained version. P3 asks
the model to give a thinking process before gener-
ating the expanded descriptions. In P4, the LLM
is instead required to explicitly mark the number of
steps in order, i.e., <step n>...</step n>. P4
further explicitly requires the LLM not to mention
anything related to muscles.

The last prompt performs the best among the
four. The descriptions it elicits are concise, with-
out unnecessary details like muscle tension, fin-
gertip movements, the agent’s feelings, etc. Ben-
efiting from the step marks, these descriptions are
in strict time order. Surprisingly, we find the in-
volved movements highly conform to body con-
straints. However, this prompt is not stable enough
to assign step marks.
Promising Prompts. Based on the best pi-
lot prompt P4, we expand step marks of
P5 to specify step names in angle brackets,
e.g., <step 1:beginning pose>...</step
1:beginning pose>. As the LLM is trained on
large amounts of codes, which is believed to in-
crease its reasoning ability (Chen et al., 2023), we
further design P6 asking the LLM to summarize
each step into a pseudo-code sequence. Prompt
P7 and P8 are two-shot versions of P6. They
share the instance of P6, differing in that the sec-
ond instance of P7 is similar to the instance of
P6, while the second instance of P8 includes more
code variants in pseudo-codes.

We choose 30 coarse-grained texts to test the
4 promising prompts. The main findings are that
while keeping the advantages of P4, they split
steps and assign step marks more accurately. Fur-
ther, we conduct a human evaluation on the quality
of returned fine-grained descriptions and pseudo-
codes 2 (Table 8 in Appendix A). Results show that
the incorporation of pseudo-codes surprisingly im-
proves the quality of returned textual descriptions.
The two 2-shot prompts, P7 and P8, are proven to
perform best. But a further comparison between
their worse cases shows that P7 tends to elicit
pseudo-codes in formats not from the instances,
a sign of uncontrollability. Therefore, we select
P8 as our final prompt. An example input and
response elicited by P8 is shown in Figure 2.

To summarize, our key findings are: 1) The LLM
tends to mention muscle tension even if we do
not specify this requirement, but muscles cannot
be reflected in motion sequences. Therefore, we
should explicitly ask the LLM not to mention any-
thing related to muscles; 2) We can require the

2In all our human evaluations, evaluators are NLP
researchers with an adequate understanding of this task,
and we reach an agreement on the criteria.
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Figure 2: A fine-grained description along with its pseudo-codes acquired through P8.

Dataset #Motions #Descriptions #Vocabulary AveLen #Verbs #Nouns #Adpositions #Pronouns

HumanML3D 29,232 89,940 5,371 12.3 189,832 264,355 127,514 30,744

FineHumanML3D 29,228 85,646 8,311 111.7 1,431,013 2,358,655 1,287,520 1,546,554

Table 1: Dataset statistics for HumanML3D and our FineHumanML3D.

LLM to describe the motion step by step, and add
named step marks to instances, which proves to
be more useful than adding a general thinking pro-
cess before expansion; 3) We can require the LLM
to further summarize the fine-grained descriptions
into pseudo-codes, which increases the quality of
textual descriptions; 4) We should append two di-
verse instances instead of one or none.

3.2. Our FineHumanML3D Dataset
The original HumanML3D dataset has 44,970
coarse-grained textual descriptions for 14,616 3D
human motions. The data is augmented through
motion imaging and word replacement (e.g., re-
placing left with right), resulting in 89,940 descrip-
tions for 29,232 motions.

With the selected prompt template, we expand
all coarse-grained motion descriptions from Hu-
manML3D to fine-grained ones. We delete in-
valid responses 3. For each response, we discard
pseudo-codes and only keep fine-grained descrip-
tions with named step marks.

We follow Guo et al. (2022b) to pre-process the
returned detailed descriptions, and pair each mo-
tion sequence with the fine-grained texts corre-
sponding to its original coarse-grained ones. The

3Most are sorry-like responses, e.g., I’m sorry, but the
description you provided is not detailed enough.... The
rest do not conform to our predefined formats, e.g., <p>
marks are used instead of named step marks.

final FineHumanML3D dataset has 85,646 fine-
grained textual descriptions for 29,228 motions.

As shown in Table 1 4, our FineHumanML3D
is rich in vocabulary, and the average descrip-
tion length is nearly 10 times that of HumanML3D.
There are significantly more verbs, nouns and
pronouns, indicating the appearance of more ac-
tions and body parts. Moreover, the large number
of adpositions reflects more frequent interactions
among body parts.

3.3. Human Evaluation of
FineHumanML3D

Although P8 shows the strong ability to elicit from
the LLM fine-grained descriptions with appropriate
spatial details of body parts in strict chronologi-
cal order, the automatically expanded texts are not
guaranteed to perfectly align with the ground-truth
motions. In order to assess and uncover this po-
tential disparity, we carry out a human evaluation
on a sample of FineHumanML3D, i.e., 100 ran-
domly sampled ground-truth motions along with
their fine-grained descriptions.

We classify all text-motion pairs into three cat-
egories — zero, partial and perfect alignment,
whose counts turn out to be 2 : 68 : 30. Details
of partial alignment are shown in Table 2 5. The

4We use the tokenizer and POS tagger of spaCy 3.5
(https://spacy.io/usage/v3-5) to calculate the statistics.

5Each text-motion pair might have several errors.

https://spacy.io/usage/v3-5
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Error / # Type / #

inversion / 26 -

mismatch / 32 -

redundancy / 22 beginning pose / 8
ending pose / 12

deficiency / 11 insufficient repetition / 5
Table 2: Errors in Partial Alignment.

errors in partial alignment are categorized into in-
version (e.g., left leg in the text, right leg in the mo-
tion), mismatch (partial texts not matching motion
clips), redundancy (stating more than the motion
performs), and deficiency (lacking descriptions of
motion clips). We also show noticeable error types
in redundancy and deficiency. The beginning pose
type denotes the motion does not follow the begin-
ning pose description, so for the ending pose error
type. The insufficient repetition type denotes that
the textual description does not repeat a single mo-
tion clip as shown by the motion, e.g., when the
motion performs squatting several times, the text
only describes it once.

While only 30 out of 100 motions are perfectly
aligned with the fine-grained descriptions, perfect
alignment is an exceptionally high bar. In the ma-
jority of cases, partial alignment indeed captures
the correct time order and relationships among
core motions. Issues like redundancy or defi-
ciency are often trivial in nature. Substantive er-
rors rarely occur outside of very complicated mo-
tions, e.g., juggling while doing the moonwalk.
Therefore, despite the partial disagreement be-
tween fine-grained descriptions and golden mo-
tions, we aim to verify the usefulness and effective-
ness of our data generation method through the
performance of the downstream text2motion task.

4. Our Model

We design a new text2motion model, FineMotion-
Diffuse, which is composed of a fine-text encoder,
a step-aware self-attention block, a coarse-text en-
coder, a fine-coarse cross-attention block, and a
diffusion block, to conduct training and inference
on FineHumanML3D. An overview of our FineMo-
tionDiffuse model is shown in Figure 3.

The fine-text encoder takes fine-grained motion
descriptions with named step marks as input, and
outputs step embeddings encoding the full fea-
tures of each step. In order to better capture the
order among steps, we propose a new step-aware
self-attention, which adds hard positional embed-
dings to the step embeddings and then passes
them through one self-attention block. The coarse-
text encoder digests the coarse-grained descrip-

tion and outputs the corresponding token embed-
dings. Outputs from the fine-text and coarse-text
encoder are then put into the fine-coarse cross-
attention block. For the diffusion block, We uti-
lize the diffusion model architecture from Zhang
et al. (2022) to fuse textual and motion features,
and conduct training and inference.
Fine-text Encoder. We manage to overcome the
input length limit of CLIP by respectively encoding
each step. In the fine-text encoder, we first extract
the text of each step from fine-grained descriptions
(STEPk), pass it through CLIP, and acquire the
step embedding (step_embs[k]) by averaging all to-
ken representations.

step_embs[k] = Ave(CLIP (STEPk)) (1)

Step-aware Self-Attention. Given step embed-
dings, our step-aware self-attention mechanism
adds hard positional embeddings (PE) to them
through sine and cosine functions from Vaswani
et al. (2017), and feeds these position-encoded
step embeddings into a self-attention Transformer
block (SelfAtt) to get fine-grained textual features
(f_feas). This mechanism helps better capture
the temporal relationships among steps, and im-
prove the quality of fine-text features through inter-
actions among step embeddings.

f_feas = SelfAtt(PE(step_embs)) (2)

Coarse-text Encoder. A coarse-grained descrip-
tion summarizes key points of the whole motion, so
we also intend to use such high-level instruction-
like information. We pass it through CLIP, and ac-
quire coarse-grained textual features with starting
and ending token embeddings.
Fine-coarse Cross-Attention. Now we get both
fine and coarse textual features. Coarse fea-
tures encode short instructions summarizing key
points of the whole motion sequence, while fine
features encode detailed step-based descriptions
along with explicit time information for each step.
We then feed the two types of features into our fine-
coarse cross-attention Transformer block to align
and combine their information, followed by an FFN
to get the final text embeddings.
Diffusion Block. The diffusion process is com-
posed of a sequence of diffusion steps, each of
which is in need of a diffusion step embedding
to combine with the diffusion sequence number
t. Therefore, we directly use the embedding cor-
responding to token [E] of the coarse text in text
embeddings, as shown in Figure 3. Equipped with
the text embeddings and diffusion step embedding,
we simply feed them into the diffusion model block,
and conduct training and inference similar to Mo-
tionDiffuse (Zhang et al., 2022).
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Figure 3: An overview of our FineMotionDiffuse model. In the diffusion block (right), blue lines indicate training
flow, and brown lines for inference.

5. Experiments

We design our experiments to answer the fol-
lowing questions: 1) What are the benefits of
different blocks and mechanisms in FineMotion-
Diffuse? 2) What advantages does FineMotion-
Diffuse (trained on FineHumanML3D) own over
MotionDiffuse (trained on HumanML3D)? 3) Can
FineMotionDiffuse deal with spatially or chronolog-
ically composite motions?

5.1. Settings

Datasets. We use the 85,646 fine-grained motion
descriptions along with the 29,228 motions from
our FineHumanML3D dataset. For coarse-grained
motion descriptions, we use the counterparts of
our fine-grained descriptions in the original Hu-
manML3D dataset, counting to 85,646. The train-
ing dataset consists of 23,966 motions with 70,222
descriptions, while the testing dataset consists of
5,262 motions with 15,424 descriptions.

Evaluation Metrics. Following Guo et al. (2022b),
we pre-train a text-motion contrastive model on
the training set of FineHumanML3D for evalua-
tion purposes. With the text encoder and motion
encoder from this model, we apply three evalua-
tion metrics. 1) Frechet Inception Distance (FID):
The generated motion and its ground-truth motion
are passed through the motion encoder, and FID
is the distance between the two encoded motion
sequences. 2) R-precision: For one text and its
generated motion sequence, 31 mismatched texts
are sampled from the testing set. The motion se-
quence is encoded by the motion encoder, and
32 texts are encoded by the text encoder. The
top-k (k=1,2) accuracy is calculated by checking
whether the true text falls into the top-k nearest
texts from the motion. 3) Diversity: All generated
motion sequences in the testing set are randomly

split into pairs, and the average joint difference is
calculated as the diversity metric.

Baseline. We build on MotionDiffuse (Zhang
et al., 2022) to propose MotionDiffuse_AddFC as
our baseline model, following an intuitive idea to
fuse fine-grained textual features by simply adding
tensors of each step embedding. It first respec-
tively encodes the coarse-grained description and
each step in the fine-grained description with CLIP,
which results in 1 + n tensors of the size (con-
text_length, token_embedding_dim). Then we di-
rectly add the tensors at each token position, re-
sulting in one fine-coarse feature tensor.

Implementation Details. In our text encoder,
CLIP ViT-B/32 (Radford et al., 2021) is applied
to encode both fine-grained and coarse-grained
descriptions. The self-attention block and fine-
coarse cross-attention block are both composed
of four Transformer encoder layers, and the latent
dimensions remain 256. We run the main experi-
ments on 8 A100-PCIE-40GB with the total batch
size of 2048. Zhang et al. (2022) run 100K itera-
tions on MotionDiffuse, which would be expensive
in our case. Therefore, the total number of our iter-
ations is 5.2K. The rest parameter settings remain
the same as MotionDiffuse.

5.2. Main Results

As shown in Table 3, while the two models are com-
parable in R-precision, FineMotionDiffuse signifi-
cantly improves FID by 0.38. This indicates the hi-
erarchical attention architecture helps FineMotion-
Diffuse produce more accurate motion sequences,
aligning more precisely with the ground-truth mo-
tions. Additionally, FineMotionDiffuse’s improve-
ment in Diversity shows its stronger ability to rec-
ognize details from fine-grained descriptions.
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Methods FID↓ R-precision↑ Diversity→Top 1 Top 2

Real motions 0.002±.000 0.469±.002 0.666±.002 9.819±.055

MotionDiffuse_AddFC 1.768±.031 0.383±.002 0.572±.002 9.447±.115

FineMotionDiffuse 1.389±.020 0.379±.002 0.567±.002 9.608±.107

Table 3: Quantitative evaluation results. While ↑ and ↓ respectively mean the higher the better and the lower the
better, → means results are better when closer to those of the real motions. For a fair comparison, each evaluation
is run 20 times with ± denoting the 95% confidence interval.

5.3. Ablation Study
For the ablation study, we investigate the following
variants of our method: 1) Unfreezing the CLIP pa-
rameters; 2) Different choices of step representa-
tions; 3) The effect of fine-coarse cross-attention;
4) Truncating input step texts.

Due to high GPU consumption when training
and evaluating the whole dataset, we take 2,046
motions for training from the whole training set,
and 878 motions for evaluation from the whole test-
ing set. Table 4 reports quantitative evaluation re-
sults of these ablated variants, where FID is taken
for comparison.

Methods FID↓

FineMotionDiffuse 1.645±.084

+ CLIP_unfrozen 1.777±.067

ave→[E] 2.140±.080

− cross-attention 2.839±.129

delFirstLast 2.193±.093

delInner 2.228±.138

delFirstLastinput 1.511±.104

delInnerinput 3.117±.075

Table 4: Quantitative evaluation results of ablation
experiments. Each evaluation is run 10 times with ±
denoting the 95% confidence interval.

Model Ablation. After we unfreeze parameters in
CLIP (+ CLIP_unfrozen), FID increases by 0.13.
We guess that freezing these parameters pre-
serves the generalization ability of the model.

Next, we take the embedding of [E] token of
each step (ave→[E]), instead of averaging along
all token embeddings. FID increases by 0.5, show-
ing the advantage of acquiring a step embedding
by taking the average. Further, we remove the
cross-attention with coarse-grained descriptions
(− cross-attention), and find that FID increases
by a large margin of 1.2. This proves that the
cross-attention between fine-grained and coarse-
grained descriptions greatly helps the model gen-
erate more precise motions.
Input Ablation. To specify the roles of fine-
grained descriptions of each step, we conduct two

groups of ablation experiments. For the first group:
1) We train and test using truncated data by remov-
ing the first and last steps (referred to as delFirst-
Last); 2) We train and test using the first and last
steps only (referred to as delInner). Their perfor-
mance drops in FID show that the integrity of fine-
grained descriptions in training data is important
for the model performance.

For the second group, we directly use our orig-
inally trained FineMotionDiffuse, but make some
modifications when testing: 1) We remove the first
and last steps (referred to as delFirstLastinput),
and it is quite surprising to find that FID improves
by 0.13; 2) We keep the first and last steps only
when testing (referred to as delInnerinput), and
find that it suffers from severe performance drops.
Careful investigation into the fine-grained descrip-
tions reveals that the first and last steps usually
describe beginning and ending poses, which are
mostly motionless states compared with actions in
those inner steps, and do not vary much across dif-
ferent motions. Therefore, we think that FineMo-
tionDiffuse trained on FineHumanML3D is more
sensitive to rich actions in the inner steps, and its
generalization ability tends to be disturbed by the
relatively uninformative first and last steps.

5.4. Qualitative Analysis

We aim to compare motions generated by FineMo-
tionDiffuse and MotionDiffuse, by investigating: 1)
How well they conform to the input descriptions;
2) How well motion details are performed, e.g.,
whether feet slide on the ground, whether body
parts shake frequently, etc. Therefore, we col-
lect 30 coarse-grained motion descriptions (9 for
seen basic motions and 21 for unseen composite
motions), and expand them into fine-grained ones
with the LLM, using our prompt template.

For each motion type, we generate three mo-
tion sequences with three methods: 1) Feeding
the fine-grained description along with the coarse-
grained one into FineMotionDiffuse; 2) Feed-
ing the coarse-grained description into MotionDif-
fuse (MotionDiffuse_coarse); 3) Feeding the fine-
grained description (named step marks removed)
into MotionDiffuse (MotionDiffuse_detailed), with
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the texts being truncated due to the 77-token input
length limit of CLIP.

We conduct human evaluation on all generated
sequences. Each sequence is scored from 1 to
5, with 0.5 as a unit. We respectively calculate the
average scores of all motion sequences, basic mo-
tion sequences, and composite motion sequences
for each method. Additionally, we also report the
score drops from basic to composite motions (∆).
Results are shown in Table 5.

Methods all↑ basic↑ composite↑ ∆ ↓

FineMotionDiffuse 3.97 4.33 3.81 0.52
MotionDiffuse_coarse 3.55 3.94 3.38 0.56
MotionDiffuse_detailed 2.55 3.11 2.31 0.80

Table 5: Human evaluation on 30 motions.

Looking into the scores, we find that MotionDif-
fuse_detailed performs the worst, displaying its fail-
ure in adapting to fine-grained descriptions. To be
more concrete, when fed with fine-grained descrip-
tions, MotionDiffuse performs poorly in recogniz-
ing appropriate body parts and movements.

Meanwhile, FineMotionDiffuse performs better
than MotionDiffuse_coarse, which proves motion
details are more effectively learned during its
training. Furthermore, FineMotionDiffuse has the
smallest score drop from basic to composite mo-
tions, showing a stronger generalization ability to
deal with unseen composite motion descriptions.

5.5. Case Study
Here we investigate model performance on com-
posite motions from two dimensions, spatial and
chronological compositionality. Spatial composi-
tionality denotes the model’s ability to simultane-
ously perform two basic motions, and chronolog-
ical compositionality indicates performing two ba-
sic motions in a sequential manner. We choose
two groups of cases for qualitative analysis. Full
details of the input descriptions are in Appendix B.
Spatial Compositionality. While FineMotionDif-
fuse respectively learns how to slightly squat (Fig-
ure 4(a)) and raise both arms above the head (Fig-
ure 4(b)), it is able to compose the corresponding
composite motion that simultaneously performs
the two basic motions (Figure 4(c)). In contrast,
MotionDiffuse fails to handle the motions of arms
when dealing with fine-grained texts (Figure 4(d)).
Taking the coarse-grained texts as input, Motion-
Diffuse does not show the process of squatting
down in the beginning (Figure 4(e)).
Chronological compositionality. While FineMo-
tionDiffuse respectively learns how to walk (Figure
5(a)) and kick with one leg (Figure 5(b)), it suc-
cessfully composes the corresponding composite
motion that concatenates the two basic motions in

(a) FineMotionDiffuse, ”A person slightly squats.”(C+F )

(b) FineMotionDiffuse, ”A man raises both arms above
head.”(C + F )

(c) FineMotionDiffuse, ”A man slightly squats with both
arms raised above head.”(C + F )

(d) MotionDiffuse, ”A man slightly squats with both arms
raised above head.”F

(e) MotionDiffuse, ”A man slightly squats with both arms
raised above head.”C
Figure 4: Example motions with spatial composition-
ality. C denotes inputting coarse-grained texts, F de-
notes inputting fine-grained texts, and C + F denotes
inputting both texts. Due to space limits, we only display
coarse-grained descriptions here. Fine-grained descrip-
tions are shown in Appendix B.

time order (Figure 5(c)). In contrast, MotionDiffuse
fails to kick when dealing with fine-grained texts
(Figure 5(d)). Taking the coarse-grained texts
as input, MotionDiffuse fails to make the agent
walk (Figure 5(e)).

Analysis. In the two groups of cases, FineMo-
tionDiffuse successfully shows the ability of han-
dling spatial and chronological compositionalities,
while MotionDiffuse fails. On the one hand, Mo-
tionDiffuse trained on large amounts of coarse-
grained texts does not learn mappings from fine-
grained motion-related descriptions to motion prim-
itives, which explains its failure in spatial and
chronological composition when dealing with fine-
grained texts. On the other hand, when inputs are
coarse-grained composite descriptions, MotionDif-
fuse cannot show the whole motions. It might only
learn how to map a seen coarse text into a single
motion, but fails in acquiring the ability to generate
an unseen composite motion from the combination
of seen coarse texts.
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(a) FineMotionDiffuse, ”A man walks.”(C + F )

(b) FineMotionDiffuse, ”A man kicks with one leg.”(C+F )

(c) FineMotionDiffuse, ”A man walks, then kicks with one
leg.”(C + F )

(d) MotionDiffuse, ”A man walks, then kicks with
one leg.”F

(e) MotionDiffuse, ”A man walks, then kicks with
one leg.”C

Figure 5: Examples with chronological composition-
ality. Fine-grained descriptions are in Appendix B.

6. Conclusion

In this paper, we drive the LLM to build FineHu-
manML3D, the first large-scale language-motion
dataset specializing in fine-grained textual descrip-
tions, paving the road to investigate fine-grained
text2motion. We find that a step-by-step instruc-
tion with a pseudo-code compulsory check can
greatly improve the quality of generated descrip-
tions. We propose FineMotionDiffuse to make
the best of both fine- and coarse-grained descrip-
tions. Both quantitative and qualitative evalua-
tions show that FineMotionDiffuse trained on Fine-
HumanML3D can better learn the mappings from

fine-grained descriptions and exhibit stronger gen-
eralizability compared to previous state-of-the-art
models, especially when dealing with spatially and
chronologically composite motions. In the future,
we hope to build on such methods to scale towards
increasingly complex human behaviors.

Limitations

Dataset. The fine-grained descriptions in Fine-
HumanML3D come from an LLM pretrained on ex-
tensive texts and codes. Although the LLM learns
lots of knowledge about human bodies and phys-
ical motions, the direct expansion from coarse-
grained motion descriptions unavoidably deviates
from the golden motion sequences, which, to
some degree, leads to the misbehavior of newly
trained FineMotionDiffuse. We expect future work
to automatically check and correct the generated
descriptions, so that they conform to the ground-
truth motions. Also, large pre-trained multimodal
models like GPT-4 (OpenAI, 2023) can be used
for dataset construction. Even more, the golden
motions may be converted to some kinds of LLM-
friendly inputs, so that LLM directly receives ex-
act motion information, which helps generate more
high-quality fine-grained descriptions.
Model. The current diffusion-based model archi-
tecture is very slow in both training and infer-
ence, which hinders its application in real-world
scenarios. Therefore, several acceleration meth-
ods (Yang et al., 2022; Ulhaq et al., 2022) can
be adopted to alleviate this problem. Moreover,
as some VAE-based models (Zhang et al., 2023)
are reported to acquire comparable performance
to diffusion-based ones, our method also shows
potential in application to such architectures.

Ethics Statement

The original dataset we use, HumanML3D,
is not published directly, due to the distri-
bution policy of one of its origins, AMASS
dataset. Therefore, we follow the official in-
structions from the builders of HumanML3D
(https://github.com/EricGuo5513/HumanML3D) to
reproduce this dataset. Throughout the work,
we only call OpenAI’s public API for GPT-3.5-
turbo-0301. All experiments along with the
dataset construction cost less than $350. The
text tokenizer and POS tagger we use come
from an open-source Python package spaCy 3.5
(https://spacy.io/usage/v3-5). We recruit our col-
leagues to conduct human scoring and fairly pay
them with more than $10 per hour.

https://github.com/EricGuo5513/HumanML3D
https://spacy.io/usage/v3-5
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A. Our Prompts and Evaluation

Table 6: Our prompts

Prompts Contents

P1 [system] Please provide a detailed expansion of the following action description.
The new description should be in chronological order. It should specify spatial
position changes (including angle changes) of relevant body parts and muscle
tension.
[user] {THE USER TEXT}

P2 [system] Please provide a detailed expansion of one coarse-grained motion de-
scription. The new description should be in chronological order. It should specify
spatial position changes (including angle changes) of relevant body parts.
[example user] A person squats down then jumps.
[example assistant] The person begins in a standing position with his feet
shoulder-width apart and his arms at his sides. He initiates the squat by bending
his knees and lowering his hips towards the ground. As he descends, his torso
remains upright and his arms swing back behind them for balance. To initiate
the jump, the person pushes through his feet and extends his legs and hips ex-
plosively. As he leaves the ground, his arms swing forward and upward to help
propel them upward. His legs remain relaxed in the air. He lands on the balls of
his feet and then gradually lowers his heels to the ground, absorbing the impact
with a slight bend in his knees.
[user] {THE USER TEXT}

P3 [system] Please provide a detailed expansion of the following action description.
The new description should be in chronological order. It should specify spatial
position changes (including angle changes) of relevant body parts. Here is one
example. You should first generate thinking, then the paraphrased description.
[example user] A person squats down then jumps.
[example assistant] Thinking: This is an action without tools. It consecutively
uses “squat” and “jump”. To expand it, detailed explanations of the two actions
and how the person converts from “squat” to “jump” should be specified.
The paraphrased description: The person begins in a standing position with his
feet shoulder-width apart and his arms at his sides. He initiates the squat by
bending his knees and lowering his hips towards the ground. As he descends,
his torso remains upright and his arms swing back behind them for balance. As
he reaches the bottom of the squat, his thighs remain parallel to the ground. To
initiate the jump, the person pushes through his feet and extends his legs and
hips explosively. As he leaves the ground, his arms swing forward and upward
to help propel them upward. His legs remain relaxed in the air. He lands on the
balls of his feet and then gradually lowers his heels to the ground, absorbing the
impact with a slight bend in his knees.
[user] {THE USER TEXT}

P4 [system] Please provide a detailed expansion of one coarse-grained motion de-
scription. The new description should be in chronological order and step by step.
It should specify spatial position changes (including angle changes) of relevant
body parts.
[example user] A person squats down then jumps.
[example assistant] <step 1>The person begins in a standing position with
his feet shoulder-width apart and his arms at his sides. He initiates the squat
by bending his knees and lowering his hips towards the ground. As he de-
scends, his torso remains upright and his arms swing back behind them for
balance.</step 1> <step 2>To initiate the jump, the person pushes through his
feet and extends his legs and hips explosively. As he leaves the ground, his
arms swing forward and upward to help propel them upward. His legs remain
relaxed in the air.</step 2> <step 3>He lands on the balls of his feet and then
gradually lowers his heels to the ground, absorbing the impact with a slight bend
in his knees.</step 3>
[user] {THE USER TEXT}

Continued on the next page



11637

Table 6 (continued)

Prompt Name Contents

P5 [system] Please provide a detailed expansion of one coarse-grained motion de-
scription. The new description should be in chronological order and step by step.
It should specify spatial position changes (including angle changes) of relevant
body parts.
[example user] A person squats down then jumps.
[example assistant] <step 1: beginning pose>The person begins in a standing
position with his feet shoulder-width apart and his arms at his sides.</step 1: be-
ginning pose> <step 2: squat down>He initiates the squat by bending his knees
and lowering his hips towards the ground. As he descends, his torso remains
upright and his arms swing back behind them for balance.</step 2: squat down>
<step 3: jump>To initiate the jump, the person pushes through his feet and ex-
tends his legs and hips explosively. As he leaves the ground, his arms swing
forward and upward to help propel them upward. His legs remain relaxed in the
air.</step 3: jump> <step 4: ending pose>He lands on the balls of his feet and
then gradually lowers his heels to the ground, absorbing the impact with a slight
bend in his knees.</step 4: ending pose>
[user] {THE USER TEXT}

P6 [system] In the first paragraph, please provide a detailed expansion of one
coarse-grained motion description. The new description should be in chronolog-
ical order and step by step. It should specify spatial position changes (including
angle changes) of relevant body parts. It should not specify any information re-
lated to muscles. In the second paragraph, please convert the description in the
first paragraph into a pseudo-code format.
[example user] A person squats down then jumps.
[example assistant] <step 1: beginning pose>The person begins in a standing
position with his feet shoulder-width apart and his arms at his sides.</step 1: be-
ginning pose> <step 2: squat down>He initiates the squat by bending his knees
and lowering his hips towards the ground. As he descends, his torso remains
upright and his arms swing back behind them for balance.</step 2: squat down>
<step 3: jump>To initiate the jump, the person pushes through his feet and ex-
tends his legs and hips explosively. As he leaves the ground, his arms swing
forward and upward to help propel them upward. His legs remain relaxed in the
air.</step 3: jump> <step 4: ending pose>He lands on the balls of his feet and
then gradually lowers his heels to the ground, absorbing the impact with a slight
bend in his knees.</step 4: ending pose>
<step 1: beginning pose>stand(feet shoulder-width apart, arms at sides)</step
1: beginning pose> <step 2: squat down>squat(bending knees, lowering
hips towards the ground, torso remaining upright, arms swinging back for bal-
ance)</step 2: squat down> <step 3: jump>jump(pushing through feet, extend-
ing legs and hips explosively, arms swinging forward and upward, legs remain-
ing relaxed in the air)</step 3: jump> <step 4: ending pose>land(landing on the
balls of his feet, lowering heels to the ground, slight bending in knees.)</step 4:
ending pose>
[user] {THE USER TEXT}

Continued on the next page
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Table 6 (continued)

Prompt Name Contents

P7 [system] In the first paragraph, please provide a detailed expansion of one
coarse-grained motion description. The new description should be in chronolog-
ical order and step by step. It should specify spatial position changes (including
angle changes) of relevant body parts. It should not specify any information re-
lated to muscles. In the second paragraph, please convert the description in the
first paragraph into a pseudo-code format.
[example user] A person squats down then jumps.
[example assistant] <step 1: beginning pose>The person begins in a standing
position with his feet shoulder-width apart and his arms at his sides.</step 1: be-
ginning pose> <step 2: squat down>He initiates the squat by bending his knees
and lowering his hips towards the ground. As he descends, his torso remains
upright and his arms swing back behind them for balance.</step 2: squat down>
<step 3: jump>To initiate the jump, the person pushes through his feet and ex-
tends his legs and hips explosively. As he leaves the ground, his arms swing
forward and upward to help propel them upward. His legs remain relaxed in the
air.</step 3: jump> <step 4: ending pose>He lands on the balls of his feet and
then gradually lowers his heels to the ground, absorbing the impact with a slight
bend in his knees.</step 4: ending pose>
<step 1: beginning pose>stand(feet shoulder-width apart, arms at sides)</step
1: beginning pose> <step 2: squat down>squat(bending knees, lowering
hips towards the ground, torso remaining upright, arms swinging back for bal-
ance)</step 2: squat down> <step 3: jump>jump(pushing through feet, extend-
ing legs and hips explosively, arms swinging forward and upward, legs remain-
ing relaxed in the air)</step 3: jump> <step 4: ending pose>land(landing on the
balls of his feet, lowering heels to the ground, slight bending in knees.)</step 4:
ending pose>
[example user] A person standing with his arms out leans backwards into a
bridge styled pose.
[example assistant] <step 1: beginning pose>The person begins standing
upright with his feet shoulder-width apart, arms extended straight out to
sides.</step 1: beginning pose> <step 2: lean backwards>The person shifts
his weight onto his heels and slowly leans his entire body backwards, allowing
his arms to fall backward.</step 2: lean backwards> <step 3: bridge pose>As
his arms touch the ground, he lifts his hips upward, creating a ”bridge” with his
body. His legs remain straight and his feet remain flat on the ground.</step 3:
bridge pose> <step 4: ending pose>The person holds the bridge position for a
few seconds before slowly lowering his hips back to the ground and straighten-
ing his body to the starting position.</step 4: ending pose>
<step 1: beginning pose>stand(feet shoulder-width apart, arms extended
straight out to sides)</step 1: beginning pose> <step 2: lean back-
wards>lean_backwards(shifting weight onto heels, slowly leaning entire body
backwards, arms falling backwards)</step 2: lean backwards> <step 3: bridge
pose>bridge_pose(lifting hips upward creating a bridge, legs remaining straight,
feet remaining flat on the ground)</step 3: bridge pose> <step 4: ending
pose>lower(lowering hips back to the ground, straightening body back to start-
ing position)</step 4: ending pose>
[user] {THE USER TEXT}

Continued on the next page



11639

Table 6 (continued)

Prompt Name Contents

P8 [system] In the first paragraph, please provide a detailed expansion of one
coarse-grained motion description. The new description should be in chronolog-
ical order and step by step. It should specify spatial position changes (including
angle changes) of relevant body parts. It should not specify any information re-
lated to muscles. In the second paragraph, please convert the description in the
first paragraph into a pseudo-code format.
[example user] A person squats down then jumps.
[example assistant] <step 1: beginning pose>The person begins in a standing
position with his feet shoulder-width apart and his arms at his sides.</step 1: be-
ginning pose> <step 2: squat down>He initiates the squat by bending his knees
and lowering his hips towards the ground. As he descends, his torso remains
upright and his arms swing back behind them for balance.</step 2: squat down>
<step 3: jump>To initiate the jump, the person pushes through his feet and ex-
tends his legs and hips explosively. As he leaves the ground, his arms swing
forward and upward to help propel them upward. His legs remain relaxed in the
air.</step 3: jump> <step 4: ending pose>He lands on the balls of his feet and
then gradually lowers his heels to the ground, absorbing the impact with a slight
bend in his knees.</step 4: ending pose>
<step 1: beginning pose>stand(feet shoulder-width apart, arms at sides)</step
1: beginning pose> <step 2: squat down>squat(bending knees, lowering
hips towards the ground, torso remaining upright, arms swinging back for bal-
ance)</step 2: squat down> <step 3: jump>jump(pushing through feet, extend-
ing legs and hips explosively, arms swinging forward and upward, legs remain-
ing relaxed in the air)</step 3: jump> <step 4: ending pose>land(landing on the
balls of his feet, lowering heels to the ground, slight bending in knees.)</step 4:
ending pose>
[example user] A person is moving and making gestures as if in a boxing ring.
[example assistant] <step 1: beginning pose>The person begins in a standing
position with his feet shoulder-width apart and his arms at his sides.</step 1:
beginning pose> <step 2: left punch>He throws a left punch, extending his left
arm straight forward while twisting his torso to the left and pivoting his left foot.
His right arm remains at his side.</step 2: left punch> <step 3: right punch>He
quickly follows with a right punch, extending his right arm straight forward while
twisting his torso to the right and pivoting his right foot. His left arm remains at his
side.</step 3: right punch> <step 4: left and right hooks>He then throws a left
hook, pivoting on his left foot and swinging his left arm in a semi-circular motion,
aiming for an imaginary target to his left. He quickly follows with a right hook,
pivoting on his right foot and swinging his right arm in a semi-circular motion,
aiming for an imaginary target to his right.</step 4: left and right hooks> <step 5:
duck>He ducks down, bending his knees and lowering his torso to avoid an imag-
inary punch.</step 5: duck> <step 6: end pose>He steps back and repeats the
sequence, alternatively throwing punches and hooks while changing his stance
and defensive movements as if in a boxing match.</step 6: end pose>
<step 1: beginning pose>stand(feet shoulder-width apart, arms at sides)</step
1: beginning pose> <step 2: left punch>left_punch(throwing left arm straight for-
ward, twisting torso to left, pivoting left foot, right arm remaining at sides)</step
2: left punch> <step 3: right punch>right_punch(throwing right arm straight for-
ward, twisting torso to right, pivoting right foot, left arm remaining at sides)</step
3: right punch> <step 4: left and right hooks>left_hook(pivoting on left foot,
swinging left arm in a semi-circular motion); right_hook(pivoting on right foot,
swinging right arm in a semi-circular motion)</step 4: left and right hooks> <step
5: duck>ducking(bending knees, lowering torso)</step 5: duck> <step 6: end
pose>repeat(steps 2-5)</step 6: end pose>
[user] {THE USER TEXT}
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Prompts Pros Cons

P1 - Too many details other than body move-
ments;
Too free text formats;
Cannot promise time order;

P2 More concise;
Mostly in time order;

May exist movements that do not conform
to the body constraints;
May appear unnecessary statements like
the agent’s feelings;

P3 Stronger time order; May sometimes be too detailed (e.g., finger
tips);
May exist movements that do not conform
to the body constraints;
May appear unnecessary statements like
the agent’s imagination;

P4 Much more concise, barely with unneces-
sary statements;
Almost totally in time order;
Movements highly conform to body con-
straints;

Random in splitting steps;
May add a useless comment of the whole
motion without step marks at the end;

Table 7: The pilot prompts we test for text expansion from coarse-grained motion descriptions to fine-grained ones.
We test each of them on 10 example coarse-grained descriptions, evaluate fine-grained descriptions returned by GPT-
3.5-turbo-0301, and give a qualitative analysis of pros and cons. The pros of each prompt come from comparisons
with all prompts above it.

Prompts Averaged Description Level Averaged Code Level

P5 1.57 -

P6 1.3 1.43
P7 1.2 1.13
P8 1.2 1.13

Table 8: The promising prompts we test. Each one of them is tested on 30 coarse-grained texts. For each response
from LLM, we score its Description Level (1 for best, 2 for worse, 3 for worst) based on the quality of the returned
fine-grained description. We score its Code Level (1 for best, 2 for worse, 3 for worst), except responses from P5,
based on how well the pseudo-codes conform to the fine-grained description in the response, and whether they
omit unnecessary words. For each prompt, its Averaged Description Level is acquired by averaging description
levels of all fine-grained descriptions scored by humans, so is the Averaged Code Level. Averaged Description
Level denotes the overall quality of returned fine-grained descriptions, and Averaged Code Level denotes the overall
quality of returned pseudo codes based on the returned fine-grained descriptions. For both metrics, lower values
denote better performance.
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B. Input Texts for Case Study

[C] for coarse-grained texts; [F ] for fine-grained texts.

Spatial Compositionality
[C] A man raises both arms above his head.
[F ] <step 1: beginning pose>The man begins in a
standing position with his arms at his sides.</step
1: beginning pose> <step 2: raise arms>He lifts
both arms up simultaneously, his hands moving
upwards towards the ceiling. His shoulders
and elbows straighten as his arms reach their
maximum height straight above his head.</step
2: raise arms> <step 3: end pose>He holds this
position momentarily before lowering his arms
back down to his sides.</step 3: end pose>

[C] A person slightly squats.
[F ] <step 1: beginning pose>The man begins
standing upright with his feet hip-width apart and
his arms relaxed at his sides.</step 1: beginning
pose> <step 2: slight squat>He bends his knees
slightly, lowering his hips and shifting his weight
slightly towards his heels. His torso remains up-
right, and his feet remain flat on the ground.</step
2: slight squat> <step 3: end pose>He holds this
slightly squatted position.</step 3: end pose>

[C] A man slightly squats with both arms raised
above head.
[F ] <step 1: beginning pose>The man begins in
a standing position with his feet shoulder-width
apart and his arms at his sides.</step 1: beginning
pose> <step 2: squat>He slightly squats down,
bending his knees and lowering his hips a few
inches towards the ground. His torso remains
upright and his arms are raised straight above his
head, palms facing each other.</step 2: squat>
<step 3: end pose>He holds this position for a
moment before standing back up again to the
starting position with his feet shoulder-width apart
and arms at his sides.</step 3: end pose>

Chronological Compositionality
[C] A man walks.
[F ] <step 1: beginning pose>The man stands
upright with his feet together.</step 1: beginning
pose> <step 2: lift foot>He lifts his left foot off
the ground and swings it forward while simultane-
ously shifting his weight onto his right foot.</step
2: lift foot> <step 3: place foot>He plants his
left foot on the ground and transfers his weight
onto it while simultaneously lifting his right foot
off the ground.</step 3: place foot> <step 4:
swing foot>He swings his right foot forward while
simultaneously shifting his weight onto his left

foot, as he prepares to take another step.</step 4:
swing foot> <step 5: end pose>He repeats steps
2-4, alternating between his left and right foot, to
continue walking.</step 5: end pose>

[C] A man kicks with one leg.
[F ] <step 1: beginning pose>The man begins
standing with his feet shoulder-width apart and his
arms at his sides.</step 1: beginning pose> <step
2: lift leg>He lifts one leg, bending at the knee and
bringing his foot up towards his buttocks.</step 2:
lift leg> <step 3: extend leg>He then extends his
leg forward, kicking with the foot while keeping
the rest of his body stable. His arms remain at his
sides for balance.</step 3: extend leg> <step 4:
lower leg>After the kick, he lowers his leg back to
the ground, returning to his starting position.</step
4: lower leg>

[C] A man walks, then kicks with one leg.
[F ] <step 1: beginning pose>The man begins in
a standing position with his feet together and his
arms at his sides.</step 1: beginning pose> <step
2: taking a step>He lifts his right foot and takes
a step forward with it, placing it on the ground
in front of him.</step 2: taking a step> <step 3:
kicking>He then swings his left leg forward in a
kicking motion, keeping it straight and extending
it towards an imaginary target. As he kicks, he
leans his torso back slightly for balance.</step
3: kicking> <step 4: end pose>He then lowers
his left leg back to the ground and resumes the
standing position with his feet together and his
arms at his sides.</step 4: end pose>
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