
LREC-COLING 2024, pages 1136–1146
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

1136

An LLM-Enhanced Adversarial Editing System
for Lexical Simplification

Keren Tan1, Kangyang Luo1, Yunshi Lan1*, Zheng Yuan2, Jinlong Shu1
1School of Data Science & Engineering, East China Normal University, Shanghai, China

2Department of Informatics, King’s College London, U.K.
{tankeren1020, 52205901003}@stu.ecnu.edu.cn, yslan@dase.ecnu.edu.cn,

zheng.yuan@kcl.ac.uk, jlshu@admin.ecnu.edu.cn

Abstract
Lexical Simplification (LS) aims to simplify text at the lexical level. Existing methods rely heavily on annotated
data, making it challenging to apply in low-resource scenarios. In this paper, we propose a novel LS method
without parallel corpora. This method employs an Adversarial Editing System with guidance from a confusion loss
and an invariance loss to predict lexical edits in the original sentences. Meanwhile, we introduce an innovative
LLM-enhanced loss to enable the distillation of knowledge from Large Language Models (LLMs) into a small-size
LS system. From that, complex words within sentences are masked and a Difficulty-aware Filling module is crafted
to replace masked positions with simpler words. At last, extensive experimental results and analyses on three
benchmark LS datasets demonstrate the effectiveness of our proposed method.

Keywords: Lexical simplification, Adversarial editing, Large language models

1. Introduction

Text Simplification (TS) is the process of simpli-
fying a sentence while retaining its semantics as
much as possible. It enables to lower the difficulty
level of the entire sentence and helps people with
cognitive disabilities to understand by making the
text more readable (Paetzold and Specia, 2017b).
As a special category of TS tasks, Lexical Simplifi-
cation (LS) restricts the simplification at the lexical
level via replacing complex words with alternative
simpler words, thus minimising the revision to the
original sentences.

Conventional LS tasks broadly consist of two
sub-tasks, namely Complex Word Identification
(CWI) and Substitute Generation (SG), which fo-
cus on detecting complex words and generating al-
ternative words, respectively. So far, a panoply of
efforts work on addressing the said LS tasks. For
example, early LS systems leverage a set of rules
for identifying and substituting complex words with
frequent synonyms from external databases (e.g.,
WordNet (Miller et al., 1990), but these methods
suffer from limited flexibility and adaptability (Kaji-
wara et al., 2013). Recently, popular LS systems
first train a model to detect the complex words in
a sentence, and then use another model to pre-
dict the alternative words, collaborating together
to eventually produce a simplified sentence (Qiang
et al., 2021; Seneviratne et al., 2022; Wilkens et al.,
2022). However, the mentioned two-stage ap-
proaches have a heavy reliance on the annota-
tion of CWI and SG sub-tasks, thereby impairing

* Corresponding author.

Complex Sentence
“A committee of the institute appoints the laureates for

the Nobel Prize in Physiology or Medicine.”

LLMs

“A committee ... the winners for ... in Physiology ...”
“A committee ... the honorees for ... in Physiology ...”
“A committee ... the prizewinners for ... in Physiology ...”

Adversarial
Editing System

“A committee of the institute appoints the honorees
for the Nobel Prize in Physiology or Medicine.”

Simple Sentence

Figure 1: The motivation of our LLM-enhanced
Adversarial Editing System, that is, distilling the
knowledge from LLMs to our small-size Adversar-
ial Editing System. In the complex sentence, cor-
rect complex words are in italic bold fonts, and red
bold signifies differences between generated and
original sentences.

their applications. In real-world scenarios, acquir-
ing parallel corpora for LS tasks is a costly en-
deavor, not to mention the annotation of CWI and
SG. As such, we aim to develop an LS system with-
out parallel corpora in this work, but we are also
confronted with the following challenges: (1) In the
absence of annotated data, the above-mentioned
supervised training approaches are inapplicable,
making it considerably challenging to ensure the
accuracy of simplification. (2) Constructing the
previous two-stage system for LS tasks without
parallel corpora is problematic, as in such scenar-
ios, models struggle to learn the transformation
from complex sentences to simplified ones.

Inspired by existing study in style transfer (Wang
et al., 2022), we develop an Adversarial Editing
System to conduct lexical edits to the original sen-
tence with the help of non-parallel corpora, where

1137

complex words are masked by the editing sys-
tem, and the substitutions are generated via a
cloze model following the two-stage approaches.
Nonetheless, striking a balance between seman-
tic preservation and simplification degree remains
a challenging endeavor. For example, in Figure 1,
non-stylistic words “Physiology” can be acciden-
tally masked and it is hard to distinguish if “laure-
ates” is a complex word.

To this end, as the first attempt to LS without par-
allel corpora, we bring forward a new LS method
dubbed as LAE-LS (LLM-Enhanced Adversarial
Editing System for Lexical Simplification), which
involves two modules: Adversarial Editing and
Difficulty-aware Filling. Concretely, we employ an
Adversarial Editing module to train an Edit Predic-
tor for predicting lexical edits, which can be used
to identify complex words within sentences. To bal-
ance the preservation of semantics and the level of
simplification, we introduce a confusion loss and
an invariance loss to confuse the discriminator and
preserve the semantics of the original sentence, re-
spectively. Particularly, an LLM-enhanced loss is
tailored to extract supervision signals from Large
Language Models (LLMs) (e.g., ChatGPT) (Brown
et al., 2020; Zhang et al., 2022; Touvron et al.,
2023). To be specific, we intricately design instruc-
tions to guide LLMs in identifying complex words
within sentences, rather than directly command-
ing them to rewrite the original sentences, which
can bypass changes to the sentence syntax. With
this loss, high-quality knowledge from LLMs can
be distilled into our Edit Predictor. To avoid the
overwhelming domination of the LLM-enhanced
loss, we combine the above losses with weights
when training. Eventually, the Difficulty-aware Fill-
ing module is crafted to fill in the masked positions
with alternative simple words.

In summary, we highlight our contributions as
follows:

• We propose a novel LS method LAE-LS that is
capable of making lexical edits to the original
sentences without parallel corpora, thus ren-
dering it feasible to perform LS tasks in low-
resource scenarios.

• To achieving tradeoff between the simplifica-
tion degree and semantic preservation, we in-
clude confusion loss and invariance loss. Fur-
thermore, the LLM-enhanced loss is devised,
enabling the distillation from LLMs to a small-
size LS system.

• Our method achieves SOTA results on three
well-known LS datasets and yields competi-
tive results to GPT-3.5-turbo even with a
significantly smaller parameter size.

2. Related Work

Lexical Simplification. The early methods for the
LS task either resorted to threshold-based strate-
gies (Keskisärkkä and Jönsson, 2012) or relied
on dictionaries to identify complex words within
sentences (Kajiwara et al., 2013), and took ad-
vantage of external resources (e.g., synonym dic-
tionaries (Lesk, 1986), WordNet (Devlin, 1998),
word embeddings (Mikolov et al., 2013)) to pro-
vide substitutions for complex words. However,
these methods suffer from limited flexibility and
adaptability (Paetzold and Specia, 2017b). Shortly
thereafter, a panoply of modifications for CWI and
SG respectively have been proposed to alleviate
said issues. For CWI, Gooding and Kochmar
(2018) shifts it towards training classifiers using su-
pervised training with significant demand for fea-
ture engineering. Recently, some works have
achieved significant success by treating the CWI
task as a sequence labeling task (Qiang et al.,
2021; Gooding and Kochmar, 2019). For SG, the
recent methods leverage the contextual compre-
hension capabilities of pre-trained models to gen-
erate substitutions for complex words. For exam-
ple, LSBert (Qiang et al., 2021) predicts alterna-
tive words for complex words by the BERT (De-
vlin et al., 2019) model. SimpleBART (Sun et al.,
2023) augments pre-trained models through fine-
tuning, enabling the effectively prediction for sim-
pler words. ParaLS (Qiang et al., 2023) fine-tunes
a paraphraser to generate substitute candidates
for complex words using two novel decoding strate-
gies. The said methods approach remarkably per-
formance for the LS task, but they rely heavily on
supervised training or a substantial amount of ex-
ternal linguistic resources. On this account, our
study is inspired by the aforementioned pitfalls.
Adversarial Network and LLM. With the intro-
duction of Generative Adversarial Networks (GAN)
(Goodfellow et al., 2020), adversarial learning has
become ubiquitous in unsupervised training (Shen
et al., 2017; Wang et al., 2022). For example,
KiS (Laban et al., 2021) extends Seq2Seq mod-
els to unparallel corpora scenarios where the de-
coder serves as the generator, and a component,
which assesses whether a sentence is simplified
or not, acts as the discriminator. However, this
method cannot guarantee that the syntax of the
original sentence remains unchanged. Accord-
ingly, given the outstanding performance of LLMs
(Zhang et al., 2022; Brown et al., 2020) in various
linguistic tasks (Liang et al., 2023; Lan et al., 2023),
a stream of efforts has been explored the use of
LLMs in TS, yielding promising results (Feng et al.,
2023; Chi et al., 2023; Sun et al., 2023). Never-
theless, due to high resource consumption, time-
intensive inference and over-simplification results,

1138

applying LLMs directly to LS is not practical. Yet,
we argue that using LLMs as an enhancement tool
or component remains a viable option. To the best
of our knowledge, how to distil knowledge from
LLMs for augmenting LS tasks is unexplored.

3. Method

3.1. Task Definition and Overview
In this paper, we define the LS task, which com-
bines the procedure of CWI and SG, as follows:
The goal of LS is to build a system that can con-
vert a complex text Xi labeled by sx to a simple
text Yi labeled by sy via replacing certain words
with simpler words. Of note, we leverage non-
parallel corpora, which is denoted as Dx = {Xi}
and Dy = {Yi}, to build an LS system, thereby by-
passing parallel corpora.

Our proposed method LAE-LS, which performs
lexical simplification, involves two modules: Ad-
versarial Editing and Difficulty-aware Filling.
The overall architecture of our method is displayed
in Fig. 2. Specifically, the Adversarial Editing mod-
ule is an edit-based generative adversarial net-
work designed to make lexical edits, which can
be used to mask the complex words in complex
sentences. Built upon the well-trained Adversar-
ial Editing module, a Difficulty-aware Filling mod-
ule is used to fill in the masked position with sim-
ple words. Remarkably, unlike the previous filling
model (Qiang et al., 2021), the Difficulty-aware Fill-
ing module, which is a cloze model, not only con-
siders original sentences as clues but also main-
tains an awareness of producing simpler words.

3.2. Adversarial Editing
In this subsection, we detail the Adversarial Editing
module. Compared to existing efforts (Laban et al.,
2021; Zhao et al., 2020; Surya et al., 2019), which
directly model the text simplification from Xi to Yi,
our module formulates the lexical simplification as
an editing task, the goal of which is to predict lex-
ical edits. As shown in Fig. 2, we aim to train an
Edit Predictor to perform the said procedure.

3.2.1. Edit Predictor and Discriminator

Before proceeding formally, we give notations for
descriptive convenience as well as present Edit
Predictor and Discriminator. We add a special
token “[CLS]” at the beginning of the sentence
and denote a sentence by Xi = [ti,1, ti,2, ..., ti,L],
where ti,l (l ∈ [L]) is l-th token in Xi and L is the
length of the sentence. For Edit Predictor, given
that Xi, its output is Gi = [gi,1, gi,2, ..., gi,L], where
gi,l ∈ {K,M} (l ∈ [L]) is the edit operation for ti,l in
Xi. Note that “K” indicates the current token is not

a stylistic token or is already a simple token, and
“M” indicates the current token should be replaced
by a mask token. For example, the edit operation
for a complex sentence “[Much, of, the, water, car-
ried, by, these, streams, is, diverted, .]” is “[K, K,
K, K, K, K, K, K, K, M, K]”. In our experiments, the
Edit Predictor is built upon a BERT (Devlin et al.,
2019) encoder. To be specific, given that Xi, we
encode them with a sequence of hidden represen-
tations and then predict the edit labels via a Multi-
layer Perceptron (MLP) as follows:

wl = wtok
l + wtyp

l + wpos
l (l ∈ [L]),

H = [h1,h2, · · · ,hL] = BERT(w1,w2, ...,wL),

PG = softmax(WH + A), (1)

where wtok
l , wtyp

l , wpos
l represent the word embed-

ding, token type embedding, and position embed-
ding of l-th token, respectively. W and A are learn-
able parameters, PG is a sequence of probabilities
for a sentence. Each element represents the “K /M”
probability for a certain token.

For the discriminator, we still leverage BERT to
encode it and use the first token in the last layer to
represent the sentence, i.e., h1. A fully connected
layer is employed to help the model identify the
style of the sentence:

PD = Classifier(h1) = softmax(Vh1 + b), (2)

where V and b are learnable parameters, PD is
the predicted probability of style {sx, sy}. As the
traditional adversarial network, the objective of the
discriminator is to predict the style of the sentences
in corpora correctly:

LD = −ED,u∼{Dx,Dy}[logPD
(su|u)], (3)

where u is the sentence sampled from Dx or Dy

and su is the true label for u. Note that the discrim-
inator needs to be trained in advance, and will be
frozen in subsequent training.

3.2.2. Training

Regarding traditional training (Surya et al., 2019)
for adversarial generation, given a complex sen-
tence Xi, the output of the generator is the sim-
plified version, denoted as Ŷi. In this case, the
discriminator tries to distinguish whether the sen-
tence is simple or not, and the generative network
is trained to fool the discriminator, making it diffi-
cult to differentiate between simple and complex.
However, the above loss is not applicable in our
framework due to the following two issues:

1. It is not feasible to include the raw output of
the Edit Predictor for adversarial training as
“K” and “M” cannot be directly encoded by the
discriminator.

1139

Edit Predictor LLMs

prompt

Nevertheless , Estudiantes obtained the title ...
Complex Sentence

LLM-enhanced
Loss

[K /M] [K /M] [K /M] [K /M] ...

[Nevertheless, obtained]

[M] [K] [K] [M] [K] [K] [K] ...

Adversarial Editing

…water carried these streams is diverted .

Difficulty-aware Filling

Complex Sentence (Testset)

... [K] [K] [K] [K] [K] [M] [K]
Edit Predictor

[CLS] ...water carried these streams is diverted .
[SEP] The simpler version of the previous sentence is:
...water carried by these streams is [MASK] . [SEP]

Masked Sentence

Filling Module

turned, redirected, switched, changed, ...

Substitute
Generation

Simple Sentence
…water carried these streams is turned.

Confusion
Loss

Invariance
Loss

BertEmbedding

BertEncoder

Discriminator

MLP

 Tunable
 Frozen

Figure 2: The overall architecture of LAE-LS. Left panel: Adversarial Editing module, where an Edit
Predictor predicts lexical edits guided by confusion loss, invariance loss, and LLM-enhanced loss. Right
panel: Difficulty-aware Filling module, in which a Filling Module combines complex sentences and
lexical edits into masked sentences as well as generates substitutions for the masked positions, aiming
to simplify sentence.

2. It is vital to control the predicted edits and
maintain the syntax for lexical simplification.
However, existing methods usually ignore this
and lead to unexpected changes to the origi-
nal sentences.

To solve the above issues, we elaborate the
objective of Edit Predictor with respect to confu-
sion loss, invariance loss, and LLM-enhanced loss.
In other words, the training of the Edit Predic-
tor is guided with the consideration of measuring
the confusion degree to the well-performing pre-
trained discriminator (confusion loss), semantic in-
variance to the original sentence (invariance loss)
and similarity to the LLMs’ signals (LLM-enhanced
loss), respectively.
Confusion Loss. To commence, we investigate
guiding Edit Predictor in editing complex tokens
within a sentence. We aspire to integrate the out-
put of Edit Predictor into the discriminator. To
achieve it, we can characterize the sentence rep-
resentation with the edit labels. Specifically, we
multiply the token embedding with the probability
of “K” predicted by the Edit Predictor, and assume
a sentence without a stylistic token will confuse the
discriminator by producing a moderate judgement
of the transferred sentence.

Formally, the said operation can be represented
as:

wl = wtok
l · pKl + wtyp

l + wpos
l (l ∈ [L]),

Hconf = BERT(w1,w2, ...,wL),

PD = Classifier(hconf
1), (4)

where pKl is the predicted probability of “K” derived

from Equation (1), and hconf
1 is the first token em-

bedding. If a token has a low probability of “K”, the
semantic information of the token will be removed
from the sentence. For this purpose, we frame a
confusion loss Lconf

G is defined below:

Lconf
G = (PD − α)2. (5)

Here, α is a hyper-parameter that we set as an
unconfident score. We assume a masked sen-
tence would confuse the discriminator by showing
an unconfident score around α instead of {0, 1}.
Invariance Loss. Regarding the second issue, we
incorporate an invariance loss. This additional loss
function serves as a reference, encouraging the
Edit Predictor to focus on preserving the underly-
ing semantic information of the sentence. The in-
variance loss, denoted as Linv

G , is computed using
the Cosine Similarity metric as outlined below.

Linv
G = 1− cos(h1,hconf

1). (6)

As we can see, when the semantics of the sen-
tences are preserved, the loss tends towards 0,
otherwise, it approaches 1.
LLM-enhanced Loss. Large Language Models
(LLMs) (Brown et al., 2020), such as ChatGPT or
OPT (Zhang et al., 2022), have proven highly ef-
fective. A series of approaches manage to lever-
age LLMs to provide external knowledge for vari-
ous NLP tasks, such as Question Answering and
Information Retrieval (Lan et al., 2023; Guo et al.,
2023; Kojima et al., 2022; Wei et al., 2022; Trivedi
et al., 2023). As shown in Fig. 2, given the sen-
tence “Nevertheless , Estudiantes obtained the ti-
tle at the end of the Apertura 2006 .”, LLMs help to

1140

annotate complex words “Nevertheless” and “ob-
tained” serving as signals for the Edit Predictor.
Motivated by this, we introduce LLM knowledge
into the Adversarial Editing System by prompting
LLMs, extracting the supervision signals from the
responses, and fusing them into the adversarial
training procedure.

However, as mentioned above, LLMs are likely
to make unexpected edits to the syntax of the sen-
tences. To circumvent over-edit to the original
sentences, instead of rewriting the sentences, we
prompt LLMs with the instruction as follows:

Prompt:
Please identify the complex words in

the following sentence.↪→

Sentence:
{Input Sentence}

Output format:
[w1, w2, ...]

In light of the above instruction, LLMs are required
to produce complex tokens. Thus, LLM pseudo
label loss (termed LLM-enhanced Loss) takes the
form:

LLLM
G = − 1

L

∑
wl∈Xi

[logPG
(g∗l |wl)], (7)

where g∗l is the pseudo gold edit of token wl gen-
erated by LLMs.

Eventually, the overall loss function for the edit
predictor is:

LG = λ1Lconf
G + λ2Linv

G + λ3LLLM
G , (8)

where λ1, λ2 and λ3 are tunable hyperparame-
ters for balancing different loss items. There is an
advantage of distilling the knowledge from LLMs
to the Edit Predictor instead of directly leveraging
LLMs to make the prediction. That is, LLMs have
the risk of over-editing, taking their outputs as the
supervision signals play the effect of distilling high-
quality knowledge to the small-size models, which
can effectively restrain the over-fitting issue (Gou
et al., 2021).

3.3. Difficulty-Aware Filling
On top of the well-trained Edit Predictor, which gen-
erates a sequence of edit operations, we keep the
tokens with “K” unchanged and mask the tokens
with “M”. In the example shown in Fig. 2, we obtain
“[Much, of, the, water, carried, by, these, streams,
is, M]” via Edit Predictor. We denote it as X̃i.

The next procedure is to replace the “M” labels
with simplified tokens. Existing studies leverage
pretrained models to fill in the slots based on the
context (Wang et al., 2022; Sun et al., 2023). How-
ever, for text simplification, merely including the

masked sentences X̃i makes the pretrained mod-
els ignore the semantic meaning of the complex
tokens in the original sentences. Recent effort
(Qiang et al., 2021) inputs both Xi and X̃i as a
pair and feed them into the pre-trained models to
predict the tokens at the “M” positions in X̃i. This
facilitates pre-trained models to generate tokens
with the same semantic meaning as the original
complex tokens.

Inspired by this, we introduce a Difficulty-aware
Filling module by placing the prompt “The simpler
version of the previous sentence is: ” in between
Xi and X̃i to encourage the pre-trained model to
be aware of the change of the difficulty level. The
prompt for the Difficulty-aware Filling module is
shown below.

Difficulty-aware Filling Prompt:
[CLS] Original sentence [SEP] The

simpler version of the previous
sentence is: Masked sentence [SEP]

↪→

↪→

Example:
[CLS] much of the water carried these

streams is diverted . [SEP] The
simpler version of the previous
sentence is: much of the water
carried by these streams is [MASK] .
[SEP]

↪→

↪→

↪→

↪→

↪→

By virtue of the mentioned procedure, we feed
the input into the BERT model and let the model
predict the words at mask positions. Intuitively, we
denote the module as:

Ŷi = Filling_Module(X̃i). (9)

We extract the predicted sentence followed by
the instruction as the final simplified sentence Ŷi.

4. Experiments

4.1. Experimental Settings
Datasets. To gauge the effectiveness of our
proposed approach, we employ three commonly
used datasets for the LS task, namely LexMTurk
(Colby Horn and Kauchak, 2014), BenchLS (Paet-
zold and Specia, 2016a), and NNSeval (Paetzold
and Specia, 2016b). These three datasets con-
tain 500, 929, and 239 testing samples, respec-
tively. Also, each sentence in the datasets is an-
notated with complex words, and multiple alterna-
tive simplified words are provided. It is notewor-
thy that we work on the LS task without parallel
corpora thus tap WikiSmall (Zhu et al., 2010) as
the non-parallel corpus, i.e., Dx and Dy, which en-
compasses 84, 296 complex sentences and 84, 296
simple sentences, respectively.
Baselines. We compare our method with a wide
range of baselines for CWI, SG, and LS tasks.

1141

1) Evaluation on CWI: Following previous
work (Yimam et al., 2017), we use Character,
Syllable, Vowel, Frequency features and identify
complex words via setting a threshold. Moreover,
Attention (Wang et al., 2022) from a well-trained
discriminator can be utilized as it usually assigns
more scores to the complex tokens. Additionally,
LSBert (Qiang et al., 2021) employs BERT as a se-
quence labeling model and undergoes supervised
training on the CWI 2018 dataset (Yimam et al.,
2018).

2) Evaluation on SG: A line of methods is given
complex words and simply predicts the simplified
words. Early methods like Paetzold-CA (Paet-
zold and Specia, 2016), Paetzold-NE (Paetzold
and Specia, 2017a), and REC-LS (Gooding and
Kochmar, 2019) utilize word embeddings and rely
heavily on parallel corpora or WordNet for assis-
tance. Recently, LSBert (Qiang et al., 2021),
BART (Lewis et al., 2020) and SimpleBART (Sun
et al., 2023) leverage the mask word prediction ca-
pability of pretrained models.

3) Evaluation on LS: Due to the lack of LS meth-
ods that integrate CWI and SG, we design several
baselines (e.g., Character-LSBert, Syllable-
LSBert, Vowel-LSBert, Frequency-LSBert,
Attention-LSBert) for the two stages, building
upon LSBert (Qiang et al., 2021).
Evaluation Metrics. To fairly compare the perfor-
mance of different methods, we follow the stan-
dard evaluation metrics to measure the CWI and
SG (Qiang et al., 2021). Also, we introduce an
evaluation metric to evaluate the performance of
varying LS systems, which takes two-stage ac-
curacy into consideration. Concretely, we iden-
tify a correct prediction when both the complex
and top-ranked simplified words are predicted cor-
rectly. Hence, we calculate the Precision, Recall
and F1 for each sentence and compute the aver-
age scores for each test set.
Implementation Details. Unless otherwise
stated, we set λ1, λ2 and λ3 all to 1. We fix the
unconfident score α = 0.5 as default. For Discrim-
inator, we train it with the whole WikiSmall dataset
and yield a well-performing Discriminator, which
achieves an accuracy of 96.44% on the develop-
ment set and will be frozen in subsequent train-
ing. For Edit Predictor, only complex sentences
from the WikiSmall dataset are leveraged. For
the Difficulty-aware Filling module, we remove non-
English characters and the morphological deriva-
tions of the complex words and choose the top
10 words as the substitution following(Qiang et al.,
2021). All the models are trained for 30 epochs
with batch size of 32. We use Adam optimizer
(Kingma and Ba, 2014) with learning rate of 1e-5.
Similar with the setting of prior work (Omelianchuk
et al., 2021), we freeze the BERT layer weights

during the first four epochs of training, and perform
early stopping after 3 epochs account for the per-
formance on the development set. We obtain the
SG results of Paetzold-CA, Paetzold-NE, REC-LS,
LSBert from (Qiang et al., 2021) and BART, Sim-
pleBART from (Sun et al., 2023), while the remain-
ing models are re-implemented by us.

4.2. Experiment Results

4.2.1. Results Comparison

Comparison with Baselines. We study the per-
formance of different methods for CWI, SG and
LS tasks on LexMTurk, BenchLS and NNSeval
datasets, as shown in Table 1. The results show
that: (1) For the CWI task, which assesses the
abilities of models to identify complex words within
sentences, LAE-LS achieves the best results on
the LexMTurk and NNSeval datasets and demon-
strates competitive performance on the BenchLS
dataset. One can see that using features (e.g.,
word character length and syllables) as the simple
factors for identifying complex words does not yield
satisfactory results. It’s worth noting that LSBert
is under supervised training, while LAE-LS sur-
passes it without any annotated parallel corpora.
(2) In the SG task, our method outperforms all
baselines on the three datasets, thus validating the
effectiveness of the Difficulty-aware Filling mod-
ule. Compared with LSBert, which solely takes
a pair of original and masked sentences as the
input, LAE-LS exhibits significantly superior per-
formance. This verifies that placing prompts be-
tween sentence pairs helps the model be aware of
the difficulty for words. (3) Regarding the LS task,
our method consistently outperforms the baselines
when we integrate CWI and SG together. It is re-
markable that there is a performance decrease in
terms of F1 for the LS task, compared to CWI and
SG tasks. This is because we identify a correct
prediction only when complex words are correctly
identified and simplified simultaneously, thereby
increasing the difficulty of the task. Moreover, we
observe that the precision is low for all methods
since these methods typically predict more com-
plex words, even though only one is labeled. As
such, how to augment the precision in the LS task
is challenging.
Comparison with LLMs. Here, we explore the
performance of our method and popular LLMs with
more parameter size in terms of F1 over LexMTurk
dataset. In this end, we select three LLMs with dif-
ferent parameter sizes, including ChatGLM2 (Du
et al., 2021)1, llama2 (Touvron et al., 2023)2,

1https://huggingface.co/THUDM/chatglm2-6b
2https://huggingface.co/meta-llama/Llama-2-13b-

chat-hf

1142

Methods LexMTurk BenchLS NNSeval

Precision Recall F1 Precision Recall F1 Precision Recall F1

Complex Word Identification

Character 0.122 0.780 0.211 0.111 0.755 0.194 0.105 0.716 0.183
Syllable 0.140 0.606 0.228 0.117 0.526 0.191 0.100 0.456 0.163
Vowel 0.132 0.764 0.226 0.117 0.727 0.201 0.108 0.678 0.186
Frequency 0.078 0.632 0.139 0.072 0.623 0.129 0.054 0.456 0.096
Attention 0.064 0.512 0.114 0.062 0.448 0.109 0.058 0.435 0.103
LSBert 0.136 0.795 0.231 0.136 0.788 0.231 0.121 0.707 0.207
LAE-LS (ours) 0.135 0.810 0.232 0.128 0.813 0.221 0.126 0.824 0.218

Substitute Generation

Paetzold-CA 0.177 0.140 0.156 0.180 0.252 0.210 0.118 0.161 0.136
Paetzold-NE 0.310 0.142 0.195 0.270 0.209 0.236 0.186 0.136 0.157
REC-LS 0.151 0.154 0.152 0.129 0.246 0.170 0.103 0.155 0.124
LSBert 0.306 0.238 0.268 0.244 0.331 0.281 0.194 0.260 0.222
BART 0.192 0.183 0.188 0.196 0.178 0.192 - - -
SimpleBART 0.287 0.282 0.285 0.280 0.276 0.278 - - -
LAE-LS (ours) 0.340 0.264 0.297 0.262 0.355 0.301 0.202 0.269 0.231

Lexical Simplification

Character-LSBert 0.080 0.540 0.139 0.061 0.434 0.107 0.044 0.318 0.078
Syllable-LSBert 0.090 0.410 0.148 0.064 0.299 0.105 0.042 0.201 0.069
Vowel-LSBert 0.087 0.528 0.149 0.063 0.412 0.110 0.045 0.293 0.077
Frequency-LSBert 0.047 0.440 0.085 0.036 0.364 0.066 0.023 0.226 0.042
Attention-LSBert 0.039 0.350 0.070 0.031 0.243 0.054 0.020 0.167 0.036
LSBert 0.097 0.564 0.166 0.075 0.454 0.129 0.056 0.335 0.095
LAE-LS (ours) 0.097 0.582 0.167 0.077 0.489 0.133 0.058 0.381 0.101

Table 1: CWI, SG and LS evaluations on three benchmark datasets.

Size F1-CWI F1-SG F1-LS

ChatGLM2 6B 0.027 0.250 0.048
llama2 13B 0.115 0.264 0.085
GPT-3.5-turbo 175B 0.221 0.296 0.200
LAE-LS (ours) 220M 0.232 0.297 0.167

Table 2: Comparison with various LLMs on LexM-
Turk Datasets in term of parameter size and F1.

F1-CWI F1-SG F1-LS

LAE-LS (baseline) 0.232 0.297 0.167

w/o LLM-enhanced Loss 0.094 0.297 0.066
w/o Confusion Loss 0.078 0.297 0.135
w/o Invariance Loss 0.089 0.297 0.153
w/o Difficulty-aware Filling 0.232 0.268 0.162

Table 3: Ablation Study of LS on LexMTurk
Datasets w.r.t. F1.

GPT-3.5-turbo (Brown et al., 2020)3. Note that
we either employ API or download the checkpoints
to do the prediction, and take the responses from
the LLMs as the prediction.

3https://openai.com/

Specifically, we construct the following prompts
for the CWI task:

Please identify the complex words in
the following sentence. Sentence:
{Input Sentence}.

↪→

↪→

Similarly, we construct the following prompts for
the SG task:

Please provide 10 simplified
alternative words for the word
{Complex Word} in the sentence.
Sentence: {Input Sentence}.

↪→

↪→

↪→

For the LS task, we regard concatenating the re-
sults from the two sub-tasks (including CWI and
SG) as it results. The results are displayed in Ta-
ble 2.

As we can see from the table, LAE-LS, which
has a smaller parameter size, can achieve com-
petitive results comparing with the powerful LLMs.
For both CWI and SG tasks, LAE-LS trumps all
LLMs in terms of F1, indicating that its domina-
tion in identifying complex words within sentences
and predicting substitutes for each complex word.
For the LS task, with respect to F1, LAE-LS leads
ChatGLM2 and llama2, but falls slightly behind

1143

Methods Sentence

Sent (1) Triangles ... be classified according to their internal angles, measured here in degrees.
Candidates {called, labeled, divided, coded, defined, listed, categorized, named, organized, described...}

LSBert squares ... be categorized according to their external triangles, here in metric.
GPT-3.5-turbo Triangles ... be categorized according to their inner corners, calculated here in units.
LAE-LS (ours) Triangles ... be categorized according to their internal angles, measured here in degrees.

Sent (2) Stone floor tiles tend to ... ceramic tiles and somewhat more prone to breakage...
Candidates {liable, easier, probable, subject, susceptible, disposed, likely, inclined, vulnerable, apt...}

LSBert Stone floor tiles tend to ... porcelain tiles and somewhat more susceptible to cracking...
GPT-3.5-turbo Stone floor tiles tend to ... clay tiles and somewhat more prone to damage...
LAE-LS (ours) Stone floor tiles tend to ... ceramic tiles and somewhat more likely to breakage...

Table 4: Case study of LS on LexMTurk Datasets. Complex words are highlighted in bold. Candidates
indicate the list of annotated simple words for the corresponding complex words in the dataset. Differ-
ences between generated and original sentences are in bold.

GPT-3.5-turbo. This is because when we com-
pute the F1 score of LS tasks, only the top ranked
substitute is taken into consideration while top 10
substitutes are used to measure the F1 score for
SG tasks. This indicates that GPT-3.5-turbo
has the advantage of generating the accurate sub-
stitute with top 1 prediction. To sum up, LAE-LS
manages to achieve competitive results with a con-
siderably smaller number of parameters compared
to GPT-3.5-turbo.

4.2.2. Ablation Study

In this section, we systematically delve into the ef-
fect of the components in our method by perform-
ing the leave-one-out test. Specifically, we itera-
tively remove the loss functions defined in our Ad-
versarial Editing module. Also, we look into the ef-
fectiveness of the Difficulty-aware Filling module.
The results are shown in Table 3. From the ex-
perimental results, it is evident that removing any
of these loss functions leads to performance drop,
suggesting that they are vital for the training of Edit
Predictor. As we have introduced in Section 3.2.2,
they measure the prediction from different aspects.
Of note, LLM-enhanced loss plays the most crucial
role for training of Edit Predictor. This means that
it is effective to distill the knowledge from LLMs
to models with smaller size, especially in the ab-
sence of annotated data. Moreover, we replace
the Difficulty-aware Filling module with LSBert and
the results show there is a notable decrease on
the F1 score of the SG task. The above results
indicate that our proposed Difficulty-aware Filling
module indeed guides the pretrained model to gen-
erate accurate words rather than words that do
not preserve the original meaning or not simple
enough.

4.2.3. Case Study

To further go into the virtue of LAE-LS, we present
multiple case studies in Table 4. For sentence
(1), we can observe that all models successfully
identify “classified” as a complex word and re-
place it correctly with “categorized”. However, in
the case of LSBert, it identifies “triangles” as a
complex word, which is inaccurate because “tri-
angles” is a non-stylistic word that holds the se-
mantic information of the sentence. We suspect
that LSBert is trained on supervised CWI data, fo-
cusing on the inherent difficulty of words and ig-
noring the semantic meaning of them in the sen-
tence. In contrast, our Edit Predictor is measured
by the invariance loss, which preserves the seman-
tic information of the original sentence effectively.
Notably, compared with GPT-3.5-turbo, which
tends to identify more complex words and over-
simplify the sentence, LAE-LS incorporates adver-
sarial training, which enables to more accurate
complex words identification and prevents exces-
sive modifications in the sentence. For sentence
(2), apart from GPT-3.5-turbo, both LAE-LS
and LSBert accurately identify this complex word,
though LSBert tends to label many other words
as complex words. Significantly, LSBert simplifies
”prone” to ”susceptible,” while LAE-LS simplifies it
with a much simpler word “likely”. This suggests
that our method considers not only the semantic
meaning of the context but also the complexity of
the generated words, thus leading to a more desir-
able prediction.

5. Conclusion

In this paper, we propose an LLM-enhanced Ad-
versarial Editing System to address the lexical
simplification task without parallel corpora, which
consists of an Adversarial Editing module and a

1144

Difficulty-aware Filling module. Adversarial Edit-
ing module is guided by a confusion loss and an
invariance loss to make lexical edits with a consid-
eration of semantic preservation and simplified ra-
tio. Meanwhile, we craft an LLM-enhanced loss to
distill knowledge from LLMs, thus further augment-
ing the Adversarial Editing module. From that, the
Difficulty-aware Filling module combines the orig-
inal sentences and lexical edits to mask complex
words within sentences and fill in the masked po-
sitions with simpler words. The extensive experi-
mental results on three LS datasets demonstrate
that our method is effective. That is, our method
not only advances lexical simplification in the ab-
sence of parallel corpora but also showcases the
potential for leveraging the capabilities of large lan-
guage models to enhance the simplification pro-
cess.

Ethics Statement

This is a study about Lexical Simplification. It does
not have any data privacy issues. We did not col-
lect any personal information. This is a task that
involved no risk as the participants were not ex-
posed to any harmful material or asked to perform
any risky tasks.

Acknowledgements

The authors would like to thank the anonymous re-
viewers for their insightful comments. This work
was supported by Joint Key Project (Project No.
U23A20298) and Young Scientists Project (Project
No. 62206097) of National Natural Science Foun-
dation of China, Shanghai Pujiang Talent Pro-
gram (Project No. 22PJ1403000) and East China
Normal University (Project No. 2022ECNU—
WHCCYJ-31).

Bibliographical References

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, Amanda Askell, et al. 2020. Language mod-
els are few-shot learners. Advances in neural in-
formation processing systems, 33:1877–1901.

Alison Chi, Li-Kuang Chen, Yi-Chen Chang, Shu-
Hui Lee, and Jason S Chang. 2023. Learning
to paraphrase sentences to different complexity
levels. arXiv preprint arXiv:2308.02226.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of

deep bidirectional transformers for language un-
derstanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186.

Siobhan Devlin. 1998. The use of a psycholinguis-
tic database in the simplification of text for apha-
sic readers. Linguistic databases.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2021.
Glm: General language model pretraining with
autoregressive blank infilling. arXiv preprint
arXiv:2103.10360.

Yutao Feng, Jipeng Qiang, Yun Li, Yunhao Yuan,
and Yi Zhu. 2023. Sentence simplification
via large language models. arXiv preprint
arXiv:2302.11957.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi
Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio.
2020. Generative adversarial networks. Com-
munications of the ACM, 63(11):139–144.

Sian Gooding and Ekaterina Kochmar. 2018.
Camb at cwi shared task 2018: Complex word
identification with ensemble-based voting. In
Proceedings of the Thirteenth Workshop on In-
novative Use of NLP for Building Educational Ap-
plications, pages 184–194.

Sian Gooding and Ekaterina Kochmar. 2019. Re-
cursive context-aware lexical simplification. In
Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Process-
ing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 4853–4863.

Jianping Gou, Baosheng Yu, Stephen J Maybank,
and Dacheng Tao. 2021. Knowledge distillation:
A survey. International Journal of Computer Vi-
sion, 129:1789–1819.

Jiaxian Guo, Junnan Li, Dongxu Li, Anthony
Meng Huat Tiong, Boyang Li, Dacheng Tao,
and Steven Hoi. 2023. From images to textual
prompts: Zero-shot visual question answering
with frozen large language models. In Proceed-
ings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10867–
10877.

Tomoyuki Kajiwara, Hiroshi Matsumoto, and
Kazuhide Yamamoto. 2013. Selecting proper
lexical paraphrase for children. In Proceed-
ings of the 25th Conference on Computational

1145

Linguistics and Speech Processing (ROCLING
2013), pages 59–73.

Robin Keskisärkkä and Arne Jönsson. 2012. Au-
tomatic text simplification via synonym replace-
ment. SLTC 2012, page 47.

Diederik P Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid,
Yutaka Matsuo, and Yusuke Iwasawa. 2022.
Large language models are zero-shot reason-
ers. Advances in neural information processing
systems, 35:22199–22213.

Philippe Laban, Tobias Schnabel, Paul Bennett,
and Marti A Hearst. 2021. Keep it simple: Un-
supervised simplification of multi-paragraph text.
arXiv preprint arXiv:2107.03444.

Yunshi Lan, Xiang Li, Xin Liu, Yang Li, Wei Qin,
and Weining Qian. 2023. Improving zero-shot
visual question answering via large language
models with reasoning question prompts. In Pro-
ceedings of the 31st ACM International Confer-
ence on Multimedia, pages 4389–4400.

Michael Lesk. 1986. Automatic sense disambigua-
tion using machine readable dictionaries: how to
tell a pine cone from an ice cream cone. In Pro-
ceedings of the 5th annual international confer-
ence on Systems documentation, pages 24–26.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. Bart: Denoising sequence-to-sequence
pre-training for natural language generation,
translation, and comprehension. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7871–7880.

Yuanyuan Liang, Jianing Wang, Hanlun Zhu, Lei
Wang, Weining Qian, and Yunshi Lan. 2023.
Prompting large language models with chain-of-
thought for few-shot knowledge base question
generation. arXiv preprint arXiv:2310.08395.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

George A Miller, Richard Beckwith, Christiane
Fellbaum, Derek Gross, and Katherine J Miller.
1990. Introduction to wordnet: An on-line lexical
database. International journal of lexicography,
3(4):235–244.

Kostiantyn Omelianchuk, Vipul Raheja, and Olek-
sandr Skurzhanskyi. 2021. Text simplification by
tagging. arXiv preprint arXiv:2103.05070.

Gustavo Paetzold and Lucia Specia. 2017a. Lex-
ical simplification with neural ranking. In Pro-
ceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Compu-
tational Linguistics: Volume 2, Short Papers,
pages 34–40.

Gustavo H Paetzold and Lucia Specia. 2016. Un-
supervised lexical simplification for non-native
speakers. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, pages
3761–3767.

Gustavo H Paetzold and Lucia Specia. 2017b. A
survey on lexical simplification. Journal of Artifi-
cial Intelligence Research, 60:549–593.

Jipeng Qiang, Yun Li, Yi Zhu, Yunhao Yuan, Yang
Shi, and Xindong Wu. 2021. Lsbert: Lexical sim-
plification based on bert. IEEE/ACM Transac-
tions on Audio, Speech, and Language Process-
ing, 29:3064–3076.

Jipeng Qiang, Kang Liu, Yun Li, Yunhao Yuan,
and Yi Zhu. 2023. ParaLS: Lexical substitution
via pretrained paraphraser. In Proceedings of
the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Pa-
pers), pages 3731–3746. Association for Com-
putational Linguistics.

Sandaru Seneviratne, Elena Daskalaki, and
Hanna Suominen. 2022. Cils at tsar-2022
shared task: Investigating the applicability of
lexical substitution methods for lexical simplifi-
cation. In Proceedings of the Workshop on
Text Simplification, Accessibility, and Readabil-
ity (TSAR-2022), pages 207–212.

Tianxiao Shen, Tao Lei, Regina Barzilay, and
Tommi Jaakkola. 2017. Style transfer from non-
parallel text by cross-alignment. Advances in
neural information processing systems, 30.

Renliang Sun, Wei Xu, and Xiaojun Wan. 2023.
Teaching the pre-trained model to generate sim-
ple texts for text simplification. arXiv preprint
arXiv:2305.12463.

Sai Surya, Abhijit Mishra, Anirban Laha, Parag
Jain, and Karthik Sankaranarayanan. 2019. Un-
supervised neural text simplification. In Proceed-
ings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 2058–
2068. Association for Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay

https://doi.org/10.18653/v1/2023.acl-long.206
https://doi.org/10.18653/v1/2023.acl-long.206
https://doi.org/10.18653/v1/P19-1198
https://doi.org/10.18653/v1/P19-1198

1146

Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, et al. 2023. Llama 2: Open
foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288.

Harsh Trivedi, Niranjan Balasubramanian, Tushar
Khot, and Ashish Sabharwal. 2023. Interleav-
ing retrieval with chain-of-thought reasoning for
knowledge-intensive multi-step questions. In
Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 10014–10037. As-
sociation for Computational Linguistics.

Jiarui Wang, Richong Zhang, Junfan Chen, Jaein
Kim, and Yongyi Mao. 2022. Text style trans-
ferring via adversarial masking and styled filling.
In Proceedings of the 2022 Conference on Em-
pirical Methods in Natural Language Processing,
pages 7654–7663.

Jason Wei, Xuezhi Wang, Dale Schuurmans,
Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. 2022. Chain-of-thought
prompting elicits reasoning in large language
models. Advances in Neural Information Pro-
cessing Systems, 35:24824–24837.

Rodrigo Wilkens, David Alfter, Rémi Cardon, Is-
abelle Gribomont, Adrien Bibal, Watrin Patrick,
Marie-Catherine de Marneffe, and Thomas
François. 2022. Cental at tsar-2022 shared task:
How does context impact bert-generated substi-
tutions for lexical simplification? In Proceedings
of the Workshop on Text Simplification, Accessi-
bility, and Readability (TSAR-2022), pages 231–
238.

Seid Muhie Yimam, Chris Biemann, Shervin Mal-
masi, Gustavo H Paetzold, Lucia Specia, Sanja
Štajner, Anaïs Tack, and Marcos Zampieri.
2018. A report on the complex word iden-
tification shared task 2018. arXiv preprint
arXiv:1804.09132.

Seid Muhie Yimam, Sanja Štajner, Martin Riedl,
and Chris Biemann. 2017. CWIG3G2 - complex
word identification task across three text genres
and two user groups. In Proceedings of the
Eighth International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Pa-
pers), pages 401–407. Asian Federation of Nat-
ural Language Processing.

Susan Zhang, Stephen Roller, Naman Goyal,
Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Vic-
toria Lin, et al. 2022. Opt: Open pre-trained
transformer language models. arXiv preprint
arXiv:2205.01068.

Yanbin Zhao, Lu Chen, Zhi Chen, and Kai Yu.
2020. Semi-supervised text simplification with
back-translation and asymmetric denoising au-
toencoders. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, pages 9668–
9675.

Zhemin Zhu, Delphine Bernhard, and Iryna
Gurevych. 2010. A monolingual tree-based
translation model for sentence simplification.
In Proceedings of the 23rd International Con-
ference on Computational Linguistics (Coling
2010), pages 1353–1361.

Language Resource References

Colby Horn, Cathryn Manduca and David
Kauchak. 2014. Learning a lexical simplifier
using Wikipedia. Association for Computational
Linguistics.

Gustavo Paetzold and Lucia Specia. 2016a.
Benchmarking Lexical Simplification Systems.
European Language Resources Association
(ELRA).

Gustavo Paetzold and Lucia Specia. 2016b. Un-
supervised lexical simplification for non-native
speakers. AAAI Conference on Artificial Intelli-
gence.

https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557

	Introduction
	Related Work
	Method
	Task Definition and Overview
	Adversarial Editing
	Edit Predictor and Discriminator
	Training

	Difficulty-Aware Filling

	Experiments
	Experimental Settings
	Experiment Results
	Results Comparison
	Ablation Study
	Case Study

	Conclusion

