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Abstract
As a fresh way to improve the user viewing experience, videos of time-sync comments have attracted a lot of interest.
Many efforts have been made to explore the effectiveness of time-sync comments for various applications. However,
due to the complexity of interactions among users, videos, and comments, it still remains challenging to understand
users’ behavior on time-sync comments. Along this line, we study the problem of time-sync comment behavior
prediction with considerations of both historical behaviors and multi-modal information of visual frames and textual
comments. Specifically, we propose a novel Multi-modal short- and long-Range Temporal Convolutional Network
model, namely MRT. Firstly, we design two amplified Temporal Convolutional Networks with different sizes of receptive
fields, to capture both short- and long-range surrounding contexts for each frame and time-sync comments. Then,
we design a bottle-neck fusion module to obtain the multi-modal enhanced representation. Furthermore, we take
the user preferences into consideration to generate the personalized multi-model semantic representation at each
timestamp. Finally, we utilize the binary cross-entropy loss to optimize MRT on the basis of users’ historical records.
Through comparing with representative baselines, we demonstrate the effectiveness of MRT and qualitatively verify the
necessity and utility of short- and long-range contextual and multi-modal information through extensive experiments.

1. Introduction

With the advancement of social media, online
videos have become an essential part of human
daily lives. Indeed, merely watching videos no
longer suffices people’s requirements; they would
also like to express their opinions and engage in
discussions through comments. Recently, a new
kind of dynamic comment, named “time-sync com-
ments” (He et al., 2017), has become increasingly
popular, especially among young people. As il-
lustrated in Figure 1, users send time-sync com-
ments (e.g. “sneak attack” and “naughty guy”)
when watching two cats playing, which appear like
bullets across the screen simultaneously. In fact,
these comments not only enhance the semantic
content of the video but also provide a more engag-
ing and interactive experience for users.

As far as we are concerned, several studies
have attempted to explore the effectiveness of the
time-sync comments for various applications, such
as event detection (Li et al., 2016), spoiler de-
tection (Yang et al., 2019b) and comment gen-
eration (Wang et al., 2020). Besides, some re-
search works utilized time-sync comments to gen-
erate video tags (Lv et al., 2016). In recent years,
using time-sync comments for video popularity
prediction (He et al., 2016b), video recommenda-
tion (Ping, 2018), and video analysis (Pan et al.,
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Figure 1: An example of time-sync comment video.

2022) has become a hot topic. However, existing
research on users’ time-sync comment behavior
has not been fully explored, limiting the potential to
enhance users’ interactive experience of watching
videos. In fact, accurately predicting users’ time-
sync comment behavior is essential for enhanc-
ing content recommendations, thereby improving
users’ interactive experience. This enhanced ex-
perience can, in turn, encourage users to produce
more time-sync comments, enriching the video’s
quality and boosting overall engagement. Thus, a
comprehensive understanding of user time-sync
comment behavior is of utmost importance.

However, there are several technical challenges
to this problem. Specifically, 1). Short- and long-
range of semantics: The semantics represented by
the time-sync comment visual frame at each times-
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tamp are not independent, while instead, related to
different ranges of the surrounding contexts, which
is intuitive that the contents of the visual frames are
continuous and the time-sync comments are also in-
teractive with each other. However, different ranges
of contexts can correspond to inconsistent seman-
tic relationships. Here, we take a toy example as
shown in Figure. 1. In this video, the time-sync
comment “Is he teasing him” is not only relevant
with the short-range comment “yes”, but also has a
correlation with the long-range comment “fat cats”,
which refers to the word “him”. Therefore, it’s neces-
sary to distinguish the short-range and long-range
surrounding information and extract the different
semantics for both visual frames and time-sync
comments; 2). The limitation of the single modal-
ity: The presented contents by the visual frame or
time-sync comment at each timestamp are insuffi-
cient to infer the complete semantics dependently
since it lacks coherence or prior knowledge. Conse-
quently, how to fuse the multi-modal information of
visual frames and textual time-sync comments for
generating the enhanced representations at each
timestamp is a non-trivial problem; 3). Personal-
ized semantic representation: There’s a common
phenomenon on the video platform that users often
have different comment behaviors, such as some
users would like to interact immediately with current
contents, while others tend to summarize previous
parts to present the conclusive comments finally. It
means that different users focus on different ranges
of semantic content, and behavior preferences play
an important role in personalized semantic repre-
sentation for different users.

Along this line, we present a focused study on
the problem of time-sync comment behavior predic-
tion with considerations of both historical behavior
records and multi-modal information of textual time-
sync comments and visual frames. We propose a
novel Multi-modal short- and long- Range Temporal
Convolutional Network model, namely MRT. To be
specific, we leverage the amplified Temporal Con-
volutional Network with different sizes of receptive
fields, to capture the short-range and long-range se-
mantics of the surrounding contextual information
for each frame and time-sync comment, respec-
tively. Then, considering the mutual correlations
between visual frames and textual time-sync com-
ments, we introduce a bottle-neck double-short
(long) fusion module to integrate these two ranges
of multi-modal information with novel bottle-neck
and scale-dot attention mechanisms. Moreover,
to capture user preferences, we introduce a Per-
sonalized Two-range Multi-modal Information Fu-
sion module to integrate both ranges of informa-
tion while considering user behavior preference,
creating personalized semantic representations at
each timestamp. Subsequently, given the historical

behavior records and final generated representa-
tions at each timestamp in videos, we utilize the
binary cross-entropy loss to optimize our proposed
MRT model. In addition, we demonstrate the ef-
fectiveness of our proposed MRT by comparing it
with several representative baselines on a large
real-world dataset, and conduct complete ablation
studies with several variants of MRT to verify not
only the utility of each component but also the ne-
cessity of the short- and long-range contextual and
multi-modal information.

2. Related Work
2.1. Time-sync video comment
Time-sync comments, offering enhanced real-time
user engagement, have garnered increasing atten-
tion in research. Early efforts primarily concen-
trated on annotating videos or video segments.
Wu et al. (Wu et al., 2014) extracted time-sync
video tags by leveraging crowdsourced comments,
solving user bias and sparse comments through a
temporal and personalized topic model. Yang et
al. (Yang et al., 2017b) proposed SW-IDF, an un-
supervised video tag extraction algorithm, leverag-
ing semantic association graphs derived from time-
sync comments to differentiate meaningful com-
ments from noise. Lv et al. (Lv et al., 2016) intro-
duced a framework that assigned temporal labels to
highlighted video shots by representing time-sync
comments and recognizing video highlights via se-
mantic vectors in a supervised manner. Lately, ef-
forts on additional applications utilizing time-sync
comments have emerged. Ping et al. (Ping and
Chen, 2017) focused on video highlight detection
using concept-mapped lexical chains for lag calibra-
tion, modeling video highlights based on comment
intensity and emotion-concept concentration. Li
et al. (Li et al., 2016)proposed a model for event
detection using Time-Sync comments, extracting
features from comments, and analyzing user be-
havior relevance. Yang et al. (Yang et al., 2019b)
designed the Similarity-Based Network with Interac-
tive Variance Attention (SBN-IVA) to classify time-
sync comments as spoilers or not. Xu et al. (Xu and
Zhang, 2017) generated temporal descriptions of
videos using crowdsourced time-sync comments,
addressing the challenge of informal and noisy com-
ments by selecting representative ones based on a
temporal summarization model. Bai et al. (Bai et al.,
2021) addressed the task of aligning time-sync
video comments to narrative video storylines, uti-
lizing variational auto-encoders to map comments
and storylines into latent spaces and applying dy-
namic programming for global optimal outputs. Hu
et al. (Hu et al., 2022) proposed a method for classi-
fying time-sync comment videos by combining the
BERT model with a machine-learning classifier to
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analyze TSCs and titles. (Pan et al., 2022) focused
on temporal information capture in affective video
content analysis by leveraging time-synchronized
comments as auxiliary supervision. Further usages
of the time-sync comment were proposed, such as
video recommendation (Ping, 2018; Zhao et al.,
2023), comment generation (Ma et al., 2019; Wang
et al., 2020) and video emotion analysis (Cao et al.,
2022).

2.2. User behavior analysis in videos
Understanding users’ behaviors when watching on-
line videos is crucial to the design of online video
platforms. Early work focused on user behaviors,
content access patterns, and their implications on
the design of online video systems (Yu et al., 2006;
Mongy et al., 2005). Along this line, Qiu et al. (Qiu
and Cui, 2010) extended this research to the micro
level of the individual and categorized the viewers’
behaviors of watching online videos into seven pat-
terns. Recently, researchers have concentrated on
predicting the popularity of videos. For example,
Chen et al. (Chen et al., 2018) proposed a fine-
grained video attractiveness prediction using multi-
modal deep learning on a large real-world dataset,
and Huang et al. (Huang et al., 2018) made a fo-
cused study on user behavior analysis and video
popularity prediction. With the advancement of
recommendation system technology, an increasing
number of works utilize user behavioral character-
istics for information filtering (Wang et al., 2019;
Wu et al., 2019b; Yang et al., 2019a; Wang et al.,
2021), leading to a diverse range of applications in
the video domain. Yang et al. (Yang et al., 2017a)
explored modeling user preferences across multi-
ple video websites, proposing a Multi-site Proba-
bilistic Factorization (MPF) model to capture both
cross-site and site-specific interests based on view-
ing records from a large ISP. Jiang et al. (Jiang
et al., 2020) proposed an end-to-end Multi-scale
Time-aware user Interest Modeling Network (MTIN)
for micro-video recommendation. Wu et al. (Wu
et al., 2019c) proposed to project both users and
items into a latent collaborative space and a visual
space for the personal key frame recommendation.
Chen et al. (Chen et al., 2021) took the diversity of
users’ interests into account and proposed a user
preference reasoning method to predict frame-level
preferences. However, as far as we are concerned,
few works considered studying the behavior predic-
tion problem of sending time-sync comments from
the perspective of multi-modal modeling.

3. Problem Definition

We denote U = {u1, ..., uM} as a set of users and
H = {h1, ..., hN} as a series of videos on the ser-
vice platform, where M and N indicate the number

of users and videos, respectively. Specifically, each
video hj consists of multiple frames and multiple
time-sync comments, hj = (Aj , Cj), where Aj , Cj

stands for the frames set and the time-sync com-
ments set of j-th video. Aj = {a(t)j }Tt=1, where a

(t)
j

denotes the frames at different time t in Aj , and ev-
ery frame a

(t)
j is especially associated with a list of

time-sync comments {c(t)l|j }
L
l=1 of length L at the cor-

responding time t. Since the length of each video
and time-sync comments per frame are not exactly
the same, the number of video timestamps T and
time-sync comments L will vary in different videos.
Besides, the service platform also collects lots of
user history behaviors R

(t)
ij , where the element of

records is a binary value. R
(t)
ij = 1 indicates that

user ui has previously commented on the t-th frame
a
(t)
j of video hj , and vice versa. To this end, the

problem of this paper can be formulated as follows:

Definition 1 Given the users U , videos H contain-
ing frames A and time-sync comments C, and user
history behaviors R

(t)
ij , we study a novel time-sync

comment behavior prediction problem in this paper,
which aims to predict the user behaviors R̂

(t)
ij on

non-interactive videos.

4. Technical Details

In this section, we will introduce the architecture of
our proposed model (MRT) shown in Figure 2.

4.1. Initial Multi-modal Feature Extraction

As depicted in Figure 2, the input contains the data
from two modalities: visual frames and textual com-
ments. Following previous works (Badamdorj et al.,
2021; Chen et al., 2021), we extract initial repre-
sentations of visual frames and textual comments
with the pre-trained models, ResNet (He et al.,
2016a) and BERT (Devlin et al., 2018), denoted as
A = {at}Tt=1 andC = {cLt }Tt=1 respectively. Consid-
ering the variable length L of time-sync comments
{c(t)l|j }

L
l=1 at different timestamps a

(t)
j , we first pad

the lengths of all time-sync comments to the same
size. Then, we convert the aligned time-sync com-
ments tensor C ∈ RT×L×d to matrix C ∈ RT×(L×d),
which will speed up the mini-batch training proce-
dure. To maintain the uniqueness of each frame
while facing the feature content lost, we concate-
nate the frame ID embedding matrix with the vi-
sual frames matrix A and the time-sync comments
matrix C, respectively. Especially, a linear trans-
formation layer is leveraged to unify the feature
dimension. In this way, the visual frames and tex-
tual time-sync comments will be transformed into
representation matrix A ∈ RT×d and C ∈ RT×d,
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Figure 2: The framework of Multi-modal short and long Range Temporal Convolutional Network (MRT).

where the notation d indicates the corresponding
embedding dimensions.

4.2. Short- and Long-range Information
Modeling

Videos with time-sync comments are a form of dy-
namic streaming data, leading to the following two
phenomena. First, the video content is continu-
ous, with a complete segment being collectively
expressed by a range of frames. Therefore, the
content of each frame is interrelated with the sur-
rounding frames. Second, the semantics of each
frame rely on both short- and long-range informa-
tion. Short-range is immediate and tied to times-
tamps, whereas long-range offers a general and
contextual background. It’s crucial to integrate
these different ranges for complete understanding
of both time-sync comments and visual frames.

To address these issues, we design two modified
Temporal Convolutional Networks (TCN) (Bai et al.,
2018; Lea et al., 2017), named Short TCN and
Long TCN, which are tailored to capture the specific
ranges of information for both single-modal time-
sync comments and frames. Along this line, we
employ different sizes of dilated convolution factors
to obtain different receptive fields efficiently and
define the dilated convolution operation on each
element e of the input sequence x ∈ Rn with a
convolution filter f : {0, ..., k − 1} → R as:

Conv(e) = (x∗bf)(e) =

k−1∑
i=0

f(i) · xe−b·i , (1)

where k denotes the kernel size, subscript e− b · i
accounts for the direction of the past, and b de-
notes the factor of dilation. The architecture of
Short (Long) TCN contains a series of blocks, each
block consists of one dilated convolution layer with
a ReLU activation layer, a dropout layer, and a sub-
sequent 1×1 convolution layer with the same ReLU
and dropout layer. For the short-range information,
as illustrated in Figure 3, we utilize a small kernel

size with a dilation factor b of 1 for each dilation
layer to emphasize instance-level semantics. For
the long-range information, as shown on the right
side of Figure 3, we take a larger kernel size at
the first dilation convolution layer, and follow-up
reduces the kernel size but increases the dilation
factor b exponentially with the depth of the network.
Then, we stack numbers of blocks with residual
connections to formalize the final short-range and
long-range TCNs and TCNl, obtaining representa-
tions of different range contexts by:

Cs = TCNC
s (C), (2)

Cl = TCNC
l (C). (3)

In this way, we generate two different representa-
tions Cs and Cl for the time-sync comments. Note
that, we finely design the kernel size and the dila-
tion factor to make sure the largest receptive fields
of the short-range TCN are smaller than the mini-
mum receptive field of the long-range TCN. Here,
Cs mainly focuses on specific and detailed supple-
ments to the current timestamp, while Cl consid-
ers the long-range that represents more general or
high-level semantic information, since TCNl has
larger receptive fields than TCNs.

Furthermore, we adopt a similar architecture to
obtain representations of short-range and long-
range contextual information for the visual frame:

As = TCNA
s (A), (4)

Al = TCNA
l (A). (5)

Finally, we could derive the short-range and long-
range representations As, Cs, Al, and Cl for both
visual frames and time-sync comments for a video
from Eq. 2 ∼ Eq. 5.

4.3. Bottle-Neck Multi-modal Information
Fusion

In time-sync comment videos, users often com-
ment on semantic contents that aligns with their
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interests. However, these semantic contents, such
as plot and story logic, can be intricate and abstract,
presenting a significant challenge for representa-
tion using single-modal information. As time-sync
comments are typically brief and concise, visual
information could provide additional contexts for
the mentioned contents, while the detailed informa-
tion within time-sync comments could enrich the
semantics of frames that are difficult to extract di-
rectly from visual observations. Therefore, after
deriving short- and long-range representations for
both visual frames and time-sync comments, we in-
tend to integrate them to generate comprehensive
representations of contents at each timestamp.

To this end, we propose a Bottle-Neck Double-
Short (Long) Fusion Module to integrate multi-
modal information, inspired by the bottle-neck
mechanism (Nagrani et al., 2021), we compress
two single-modal information flows through a tight
bottle-neck, which forces the model to condense
information from each modality. Specifically, for
the aforementioned short-range representations of
visual frames and time-sync comments, we initially
combine them together and project into a lower di-
mension co-representation space, which is defined
as the following CO-Matrix Ms:

Ms = [As ⊕ Cs]W
s
M , (6)

where ⊕ denotes the concatenation of two vectors,
W s

M ∈ R2d×dbottle refers to trainable parameters,
d is the feature dimension size, and dbottle is the
compress dimension with the bottle-neck mecha-
nism. Note that, we set a smaller dimension size
of dbottle to compress the single-modal informa-
tion flow for extracting condensed information from
each modality. Next, we introduce the scale-dot
attention mechanism (Vaswani et al., 2017) to de-
sign an elaborated fusion, which incorporates the
compressed information to generate more compre-
hensive representations, illustrated as:

KA
Ms

= MsW
A
K ,KC

Ms
= MsW

C
K , (7)

V A
Ms

= MsW
A
V , V C

Ms
= MsW

A
V . (8)

Here, the notations WA
K ,WC

K ,WA
V ,WA

V ∈ Rd×dbottle

are trainable parameters. Different from pairwise or
cross attention mechanism using the concatenated
feature Ms as the Query vector, we take the com-
pressed information to obtain the Key and Value

vectors in the scale-dot attention mechanism, to cal-
culate the attention scores between single-modal
information As, Cs and the multi-modal information
Ms, respectively. Then, we get the multi-modal in-
formation enhanced representation Aattn

s and Cattn
s

by the weight accumulation operation as follows:

QA
s = AsW

A
Q , QC

s = CsW
C
Q ,

Aattn
s = softmax(

QA
s (K

A
Ms

)T
√
d

)V A
Ms

,

Cattn
s = softmax(

QC
s (K

C
Ms

)T
√
d

)V C
Ms

.

(9)

The WA
Q ,WC

Q ∈ Rd×d are the linear projection
matrix which convert the input vector As and CS

into the Query Matrix QA
s and QC

s . After getting the
enhanced representation Aattn

s and Cattn
s , we feed

them into a feed-forward network, and define the
mathematical calculation as follows:

A
′

s = FFN(Aattn
s ), (10)

FFN(x) = max(0, xW1 + b1)W2 + b2, (11)

where W1,W2 ∈ Rd×d and b1, b2 ∈ R1×d are train-
able parameters in the feed-forward network. With
this designed combination of the bottle-neck and
scale-dot mechanism, we promote the condensed
vector to retain the most meaningful information
and abort the irrelevant or redundant information
in a single modality. Subsequently, we bolster the
scale-dot mechanism with the condensed vector to
produce improved representations of short-range
information. After stacking several blocks, we con-
catenate the enhanced features Ae

s and Ce
s to ob-

tain the final fusion representation Hs of both short-
range visual frames and time-sync comments as:

Hs = ReLU([Ae
s ⊕ Ce

s ]W
s
H), (12)

where ReLU is a non-linear activate function, and
W s

H ∈ R2d×d is the trainable parameters.
Similarly, for long-range information, we adopt

the same architecture as defined in the short-range
information fusion to generate the comprehensive
representation Hl at each timestamp.

4.4. Personalized Two-range Multi-modal
Information Fusion

After obtaining the comprehensive representations
of multi-modal Hs and Hl, the next step is to com-
bine them together to represent the content se-
mantics at each timestamp. However, a common
phenomenon on the video platform is that different
users have different behavior preferences. Some
users would like to comment on a specific con-
text based on a certain frame, while others tend to
summarize multiple previous timestamp content to
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Figure 4: Bottle-Neck Double-Short (Long) Fusion.

express conclusive opinions. Therefore, it is nec-
essary to take the user behavior preferences into
consideration to generate personalized semantic
representations at each timestamp.

To this end, we propose a Personalized Two-
range Multi-modal Information Fusion module,
which combines short-range and long-range infor-
mation while also considering the user behavior
preference, as illustrated in Figure 5. Specifically,
we convert the user embeddings Uemb into differ-
ent Query matrices QU

s and QU
l and formulate the

obtained representations Hs and Hl to the corre-
sponding Key matrices KH

s and KH
l in the scale-

dot mechanism, to distinguish the user behavior
preferences with respect to the short- and long-
range information.

QU
s = UembW

s
Q, Q

U
l = UembW

l
Q, (13)

KH
s = HsW

s
K ,KH

l = HlW
l
K , (14)

V H
s = HsW

s
V , V

H
l = HlW

l
V , (15)

Hattn
s = softmax(

QU
s (K

H
s )T√
d

)V H
s , (16)

Hattn
l = softmax(

QU
l (K

H
l )T√
d

)V H
l , (17)

where W s
Q,W

l
Q,W

s
k ,W

l
K ,W s

V ,W
l
V ∈ Rd×d are the

trainable parameters. With the calculated atten-
tions and weight accumulation defined in Eq. 16
and Eq. 17, we can obtain the personalized en-
hanced representations Hattn

s and Hattn
l of short-

range and long-range at each timestamp. Similar
to the previous bottle-neck module, we also com-
bine the Hattn

s and Hattn
l as the input and compress

them into a compact representation space to filter
out irrelevant parts between the watching users,
short-range and long-range information:

MH = [Hattn
s ⊕Hattn

l ]WH
M , (18)

self-attn self-attn
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Figure 5: The Personalized Two-Range Fusion.

where the trainable WH
M ∈ R2d×dbottle forces to gen-

erate the compress vector MH . Then, the compact
fusion representation is transformed into Key,Value
matrix and associated with Query matrix derived
from the Hattn

s and Hattn
l , to obtain the enhanced

representations for both personalized short-range
and long-range context information respectively,
which has been defined in detail by previous Eq. 7∼
Eq. 11. Therefore, we omit the same formulation
here for brevity and directly denote the two ranges
of calculated personalized enhanced representa-
tions as He

s and He
l , which are naturally combined

together and following with the trainable parame-
ters W comp

H ∈ Rd×d and activation function ReLU
to obtain the final fusion representation Hcomp at
each timestamp in a video as:

Hcomp = ReLU([He
s ⊕He

l ]W
comp
H ). (19)

4.5. Objective Function
Once we obtain the final representations of each
frame in a video Hcomp, we multiply the user em-
bedding vector Uemb with Hcomp and leverage the
Sigmoid function to predict the plausibility score on
the i-th frame of the video as si = σ(Uemb ∗Hcomp),
where si indicates the probability of the user’s time-
sync comment behavior on the target frame. The
final objective function is formulated as:

L =

T∑
i=1

−[rilog(si) + (1− ri)log(1− si)], (20)

where ri ∈ {0, 1} denotes the ground truth of users’
time-sync comment records.

5. Experiments

5.1. Experimental Setting
Dataset. The data provided by Lv et al. (Lv et al.,
2019) is constructed from a real-world time-sync
comment-enabled video-sharing platform. To fit it
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Table 1: The performance of different methods on time-sync comment behavior prediction.

Methods NDCG@1 NDCG@5 NDCG@10 Recall@1 Recall@5 Recall@10 mAP
Random 0.0230 0.0538 0.0823 0.0172 0.0851 0.1696 0.0819
MostPopular 0.0274 0.0652 0.0987 0.0219 0.1016 0.2006 0.0926
PMF 0.0336 0.0720 0.1049 0.0251 0.1109 0.2080 0.0976
BPR 0.0350 0.0755 0.1095 0.0261 0.1170 0.2175 0.1006
JIFR 0.0298 0.0669 0.0988 0.0219 0.1047 0.1989 0.0930
JIFR+T 0.0372 0.0846 0.1289 0.0272 0.1328 0.2640 0.1155
ITF-HEA 0.0402 0.0890 0.1329 0.0308 0.1372 0.2683 0.1204
MRT(Ours) 0.0827 0.1660 0.2217 0.0631 0.2487 0.4126 0.1823

Table 2: The ablation models for comparison.
Target Module Acronym Replacement
Personalized Two-range NoRaFu simple concatenate operation
Multi-modal Information RaSeFu self attention architecture
Fusion RaUsFu user attention architecture
Bottle-Neck Multi-modal NoMuFu simple concatenate operation
Information Fusion MuSeFu self attention architecture
Short-and Long-Range NoShort remove short-range
Information Modelling NoLong remove long-range
Different NoImage remove visual modality
modalities NoText remove textual modality

with the current task, we preprocessed the original
dataset as follows. First, we deleted videos that
were less than 10 minutes. After that, we used
an automatic tool 1 to clip the video into smaller
segments. Without ambiguity, we still refer to these
segments as videos. Due to the uneven distribu-
tion of the time-sync comments, we filtered out
the videos which have less than one comment per
frame on average. To obtain enough information
to model the users’ interactive behaviors, we se-
lected users who have interacted with more than 10
videos. Finally, the preprocessed dataset contains
9,668 users and 10,629 videos, 694,724 frames,
and 1,377,780 time-sync comments. Note that
time-sync comments that are not produced by the
target user are also included since they are helpful
in comprehending the semantics of video frames.
For the target users, we have 236,395 interaction
records, and we randomly split 70% of the data for
training, 10% for validation, and 20% for testing.
Baselines. We adopt two types of baselines for per-
formance comparison. The first category is based
on collaborative filtering, including Random, Most-
popular, PMF (Mnih and Salakhutdinov, 2007), and
BPR (Rendle et al., 2009). In particular, Random
gives randomly sets the probability, while Mostpop-
ular sets the probability positively related to the
historical popularity of the frame. PMF is frequently
adopted for rating-based prediction tasks, and the
BPR is a ranking-based approach for user implicit
feedback modeling. The second category lever-
ages side information for the prediction, including
JIFR, its variant JIFR+T (Wu et al., 2019c), and

1https://screenpy-docs.readthedocs.io/en/latest/

ITF-HEA (Yang et al., 2019a). Specifically, JIFR is
designed for personalized multimedia item and key
frame recommendation, and the JIFR+T is a variant
of JIFR specifically implemented for our experiment,
which represents each frame with the help of the
corresponding time-sync comments. ITF-HEA is a
state-of-the-art model that jointly incorporates the
context-dependent and time-sensitive properties of
both time-sync comments and visual frames.
Evaluation Protocols and Parameter Setting.
We apply three metrics for evaluation: NDCG@K,
Recall@K, and mAP, and take the K values of
{1, 5, 10} for a comprehensive evaluation. We set
the size of the hidden vector d as 128, and the size
of the bottle hidden vector dbottle as 32. The num-
ber of blocks for each fusion module is 2 and the
number of blocks for short and long TCN is 4. The
kernel size of the short TCN is 2 and the dilation
factor is 1 at each block. As for long TCN, we set
the kernel size as 5 and the dilation factor as 1 in
the first block. After that, we set the kernel size as
2 and set the dilation factor as 5 · 2i−1 in the i-th
blocks. During training, we use Adam (Kingma and
Ba, 2014) as our optimizer and set the learning rate
as 0.00005 and the mini-batch size as 32.

5.2. Overall Performance
We present the overall performance in Table 1. We
can obviously find that MRT outperforms all the
baselines by a large margin on all metrics. Among
the baselines, the superiority of MostPopular over
Random provides some degree of corroboration for
the “Herding effect” of the time-sync comment be-
havior, as mentioned in (Yang et al., 2019a). This
suggests that using a set of synchronized com-
ments within a given scope enhances the semantic
representation of the current frame compared to iso-
lated comments. PMF is superior to Random and
MostPopular, as PMF leverages collaborative filter-
ing to extract useful information from user-frame
interaction records. BPR achieves expected re-
sults by directly optimizing pairwise ranking loss, to
enables better capture of the item ranking relation-
ships. However, MRT performs significantly better
than the aforementioned methods, attributed to the
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Figure 6: Evaluation of MRT compared with different ablation models

complex and sparse nature of user-barrage frame
interactions. In summary, MRT provides a new
modeling perspective based on semantic content
rather than only interaction records to better capture
the relationships between users and frames.

However, JIFR, which also focuses on contents,
performs worse than PMF and BPR. This is due to
that users’ commenting behavior does not simply
describe the current video frame, but interacts with
the higher-level semantic information conveyed by
frames. Such high-level semantics are difficult to
obtain solely from the visual modality. In contrast
to JIFR, JIFR-T has achieved a significant improve-
ment and outperformed PMF and BPR models. On
one hand, JIFR-T utilizes textual information to con-
struct the semantic representation, confirming the
effectiveness of the textual modality. On the other
hand, the textual information is inherently more
abstract and is closer to the high-level semantic
information carried by video frames, hence result-
ing in better performance of JIFR-T. However, MRT
outperforms JIFR and JIFR-T, which could be due
to their dependence on extracting semantic infor-
mation solely from individual frames and comments
while falling short of capturing the complex high-
level information conveyed by the frame sequence.

ITF-HEA achieves better performance than other
baselines, likely because of its consideration of the
herd effect in user comment behavior. However,
our MRT model outperforms ITF-HEA, which is
because ITF-HEA simply concatenates two modal-
ities, neglecting the complex interrelationships be-
tween them, while our MRT models the fusion of
text and visual modalities thoroughly, enabling the
capture of more comprehensive information.

5.3. Ablation Study and Model Analysis
To verify the effectiveness of each component in
MRT, we compare it with its variants listed as Ta-

ble 2. All the experiments are conducted 5 times
and the results are the average value. To demon-
strate the effectiveness of each module, we also
take the Welch’s unequal variances t-test for
all results. The results show a strong statistical
significance difference between our model and all
variants with a significance level of 0.05 (p<0.05).

Figure 6a depicts the comparison between the
range fusion module and its variants NoRaFu,
RaSeFu, and RaUsFu. We can find MRT outper-
forms all three variants, indicating that the Person-
alized Two-Range Multi-modal Information Fusion
module can better integrate the short- and long-
range information. Though RaSeFu outperforms
RaUsFu, it is not as effective as MRT, which con-
firms the effectiveness of the bottle-neck mecha-
nism in fusing information from different ranges.

Figure 6b shows the comparison between the
Bottle-Neck Multi-modal Information Fusion module
and its variants, i.e., NoMuFu, MuSeFu. The per-
formance drops a lot when we replace this fusion
module with concatenation or self-attention, this
demonstrates the effectiveness of our module in
integrating the two modalities of information. More-
over, the progressive performance improvement of
the NoMuFu, MuSeFu, and MRT models serves as
further evidence of our motivation that the relation-
ship between the text and visual modalities is highly
intricate and requires a sophisticated model design
to capture the underlying inter-modal relationships.

Figure 6c shows the performance of MRT com-
pared with only utilizing short TCN and long TCN.
By observing the significant performance decrease
when utilizing the single-range TCN, we can ver-
ify the motivation of modeling the semantics of a
video frame together with its surrounding frames
from different ranges. Besides, the performance
improved when using long-range information com-
pared to short-range information. This is because
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Figure 7: Results of MRT with variant dimensions.

long-range one captures broader trends in user
commenting behavior, confirming that the user com-
ments interact with higher-level semantic informa-
tion in the video, going beyond simple descriptions.

Figure 6d shows the comparison between MRT
and different modality inputs NoImage and NoText.
The results confirm the effectiveness of incorpo-
rating multi-modal information compared to relying
solely on single modal. Furthermore, NoImage out-
performs NoText significantly, indicating that textual
information is more effective, which is consistent
with the results obtained by JIFR and JIFR-T. Firstly,
users tend to comment on the high-level semantics
rather than on the low-level visual information. This
is exemplified by the two cats in Figure 1, where
users tend to comment on their state (e.g. fat, cute)
or their behavior (e.g. playing with each other)
rather than just describing their appearance. Ex-
tracting such high-level semantics (e.g. state, be-
havior) from visual features is quite difficult. Sec-
ondly, textual features can be naturally associated
with high-level semantic information due to their
abstractness compared to visual features. Finally,
user comment behavior is more closely related to
the text features since users tend to communicate
with others using time-sync comments.

5.4. Parameter Sensitivity

We conduct an additional study to investigate the
sensitivity of our modal to the embedding size.
Specifically, we compare the performance of our
model using different embedding dimensions in
the set {32, 64, 128, 256}, and the results are pre-
sented in Figure. 7. Our observations reveal that
larger embedding dimensions at the beginning con-
tribute to better performance on all metrics, as they
can retain more information for training. However,
when the dimension exceeds around 128, the per-
formances start to decline, since larger embedding
sizes may introduce more noise that could reduce
the model’s performance.

6. Conclusion

Modeling user time-sync comment behavior is of
great significance for inferring user preference for
video content. We make a focused study on the
user behavior of sending time-sync comments and
proposed a novel Multi-modal short- and long-
Range Temporal Convolutional Network model
(MRT) to solve the prediction problem of time-sync
comment behaviors. First, two temporal convo-
lutional networks with different sizes of receptive
fields are introduced to capture both short- and
long-range contextual. Then, the multi-modal infor-
mation is integrated through a bottle-neck attention
module. After that, the user behavior preferences
are utilized to obtain the personalized semantic
representation at each timestamp. We demon-
strate the effectiveness of MRT on a large real-
world dataset and verified the necessity of short-
and long-range contextual and multi-modal infor-
mation. We hope this work will lead to more future
studies.
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