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Abstract
This paper addresses an existing resource gap for studying complex emotional states when a speaker collaborates
with a partner to solve a task. We present a novel dialogue resource — the MULTICOLLAB corpus — which was
collected in an IRB-approved laboratory experiment where two interlocutors, an instructor and builder, communicated
through a Zoom call while sensors recorded eye gaze, facial action units, and galvanic skin response, in addition
to speech signals that were subsequently carefully transcribed, resulting in a unique, heavily multimodal corpus.
The builder received instructions from the instructor. Half of the builders were privately told to deliberately disobey
the instructor’s directions. After the task, participants watched the Zoom recording and annotated their instances
of frustration. In this study, we both introduce this new corpus and perform computational experiments with time
series transformers, using early fusion through time for sensor data and late fusion for speech transcripts. We
then average predictions from both methods to recognize instructor frustration. Using sensor and speech data
in a 4.5 second time window, we find that the fusion of both models yields 21% improvement in classification
accuracy (with a precision of 79% and F1 of 63%) over a comparison baseline, demonstrating that complex emotions
can be recognized when rich multimodal data from transcribed spoken dialogue and biophysical sensor data are fused.

Keywords: multimodal machine learning, affective computing, computational paralinguistics

1. Introduction

With the increasing availability of sensors in
consumer-grade devices, there is a growing need
for flexible and resource-efficient machine learning
models that can handle multimodal data to support
a range of downstream tasks. Additionally, since
the pandemic, there has been a notable rise in
the use of online meeting technologies. This has
transformed, for example, the education domain.
Students and instructors use applications such as
Zoom (Zoom Video Communications, 2023) which
involve multiple data streams (speech audio, video,
chat logs, etc.). Analysis performed on these data
streams yield latent features that can be used for
downstream inference tasks, such as prioritizing
information discussed (Cohen et al., 2021; Amin
et al., 2022) or identifying user affect (Baltrušaitis
et al., 2018). As human-human interaction devices
and tools become more mature, their integration
of other human-generated modalities, such as eye
gaze and biophysical sensors, will likely become
common-place.

Frustration and confusion are under-explored
emotions in a collaborative context, and both play
a key role in learning (Zeng et al., 2017) as well as
interpersonal interaction (Grafsgaard et al., 2011;
Kaushik et al., 2021; Mince et al., 2022). Identi-
fying and measuring instances of these emotions
can also inform teachers whether their students
are comprehending concepts being taught. We
present a new heavily multimodal corpus, the MUL-

TICOLLAB1 dataset, from a lab-based data collec-
tion experiment designed to elicit frustration from
participants in an online Zoom call (see Figure 1) .
For labeling, the participants provided timestamped
self-annotations which were leveraged later in mod-
eling aimed to recognize their corresponding frus-
tration and confusion during the task. For the scope
of this study, we focus on instances of instructor
frustration, and we propose the following research
questions:

• RQ1: Do high-level or low-level features yield
better average classification accuracy for iden-
tifying instructor frustration?

• RQ2: Does, on average, fusing predictions
improve overall performance when compared
to separate models?

We define low-level features as values extracted
from time series sensor data, and we define high-
level features as word embeddings from the instruc-
tor transcript; with these surrounding the instance
of self-annotated frustration. Inspired by human
cognition, we separate these data types.

2. Related Work

Multimodal Data for Emotion Analysis Human
communication is usually multimodal. In addition

1Instructor data available at:
https://github.com/mp6510/MULTICOLLAB

https://github.com/mp6510/MULTICOLLAB
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Figure 1: Pairs of participants – an instructor (left)
and a builder (right) – completed a block-building
task over Zoom and then watched the recording and
annotated their instances of frustration on a discrete
scale — Not At All Frustrated, Slightly Frustrated,
Very Frustrated, and Extremely Frustrated.

to spoken language, other modalities contribute
to perception and expression of meaning in
context. Interlocutors’ speech prosody, facial
expressions, body posture, and conversational
context convey meaning and affect in interactive
dialogue (Baltrušaitis et al., 2018). The subtlety of
human expression requires modeling to analyze
multiple modalities. When limited to a single
modality without context, such a task is difficult
even for humans (Sham et al., 2023; Hoque
et al., 2012). Affective computing advances
computational methods to recognize or generate
emotions (Poria et al., 2017; Gandhi et al., 2023;
Alm, 2012), yet has mostly focused on unimodal
or bimodal combinations such as audio and video
processing. Recent advancements in computing
power and multimodal machine learning has led to
interest in novel approaches for data fusion (Peña
et al., 2023), with new challenges presented by
combining modalities for time series data (Liang
et al., 2022). However, there is a growing need
for heavily multimodal language resources (Alm,
2022), including for evaluating fusion methods
and for controlled study with computationally less
complex and less costly machine learning methods,
which offer realistic insights for low-power scenar-
ios and privacy-preserving AI on the edge solutions.

Multimodal Affect Analysis with Speech Estab-
lished multimodal affect datasets such as IEMO-
CAP (Busso et al., 2008) feature emotion capture
and speech data for a range of emotions, but that
dataset includes actors engaged in discourse to
generate specific emotions, thus representing less
realistic acted emotional expression. In contrast,
our IRB-approved data collection experiment was
designed to induce frustration in conversation tasks
without the subject’s explicit awareness. Other mul-
timodal affect corpora leverage online data, such as
from YouTube (Wöllmer et al., 2013) or the CMU-

MOSEI (Zadeh et al., 2018c) dataset. However,
these resources rely on other-annotation (Saraf
et al., 2019) by external annotators who were not
involved in generating the emotion data and were
instead interpreting other individuals’ affect states,
resulting in potentially less reliable emotion anno-
tations. In contrast, in our study, participants iden-
tified their instances and level of frustration imme-
diately after completing tasks.

Experiments performed on the CMU-MOSEI
dataset have modeled the relationships between
human-generated modalities (Zadeh et al., 2018a),
and Zadeh et al. (2018b) explored modality rela-
tionships through time, arguing that collapsing data
into an average (rather than preserving their interac-
tions through time) is a weakness in non-sequential
deep learning models. Thus, our corpus captures
a time window surrounding self-annotations, which
also addresses the potential for temporal lags dur-
ing manual annotation.

In affect interpretation, speech may especially
convey emotional arousal (Fagel, 2006). Prior work
focused on inferring affect from multimodal data
have highlighted that linguistic features can be rele-
vant. Kaushik et al. (2021) performed experiments
with online conference tasks with findings suggest-
ing that facial action units and language-derived
features can assist toward inferring complex emo-
tions. Mince et al. (2022) provided similar evidence
for facial expressions and features extracted from
speech transcripts. Saeki et al. (2022) also ex-
amined affect identification in the online conversa-
tion context, but with a single human participant
and a computer agent. Their findings suggested
the utility of eye gaze as a prominent feature. Ex-
tending this insight, our study includes two human
participants engaged in natural spoken dialogue,
both with sensors capturing their corresponding
eye gaze. In addition, we included galvanic skin
response (GSR), a fine-grained temporal measure
of reactions (Sanchez-Comas et al., 2021).

3. Methodology

Participants The study comprised 48 subjects (24
builder-instructor groups). Of the participants, 42%
were female, 56% male, and 2% chose not to dis-
close their gender. Of these 24 groups, 8 of them
were composed of different gendered interactions,
while the remaining 16 had the same gender in-
teractions. The ethnicity distribution of the sub-
jects were as follows: 2.1% Southeast Asian, 8.4%
African-American, 10.5% Hispanic, 39.6% Asian,
and 37.5% Caucasian. The remaining 1.8% chose
not to disclose their race. Additionally, 20.8% were
English L2 speakers, and 79.2% were English L1
speakers, with 3 of the 24 groups being a mix of
L1 and L2 interactions.
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Figure 2: An instructor was tasked with directing a
builder to construct these structures for task 1 (left)
and task 2 (right). The first task was used to famil-
iarize communication between both participants.

Procedure Subject groups worked in pairs, where
one member was given the role of builder and the
other instructor. They communicated through a
Zoom video call. The instructor was given an image
of what the builder was to construct. The builder
would attempt to build the described block structure
under the direction of the instructor. The first struc-
ture was straightforward and used to familiarize
both participants with communicating to each other.
The second structure was more complex, utilizing
more components and blocks. Figure 2 shows the
contrast between both tasks. To induce frustration,
the builder of every even numbered group was pri-
vately told to periodically not cooperate with the
instructor’s commands during the second task. To
ensure ecological validity of the data collection ex-
periment, the intensity of builder disobedience was
left up to their discretion.

While performing the aforementioned tasks,
both instructors and builders wore various sensors
which recorded time series data in addition to the
Zoom conference recording. For the instructor,
these included a galvanic skin response (GSR)
sensor, a screen-based eye tracker, and real-time
facial action units extracted from their webcam.
For the builder, these sensors included a wearable
eye tracker and a full body markerless motion
tracking recording (Cherian et al.). Figure 3
provides a breakdown of the modalities recorded.2
To synchronize these recordings, a movie director
clapboard was used to signify the beginning of
each task. This provided a unified signal across
modalities to align the time series data streams.
The average duration of group video recordings
was 7 minutes and 42 seconds (min: 5 minutes 23
seconds, max: 9 minutes 9 seconds).

2An example video is available at: https://vimeo.
com/839024815. The instructor reported a positive frus-
tration rating while smiling. Smiles have been connected
with frustration (Hoque et al., 2012).

Annotation Using an annotation tool, each
participant then watched the recording of the
experiment and annotated their own levels of
frustration (see Figure 1). This custom-made,
browser-based tool was adapted from prior work
(Mince et al., 2022). It generates a JSON output
file corresponding to timestamps with the partici-
pant’s annotation ratings. The recording played
through one time, and subjects were instructed
to annotate in real-time without the ability to
rewind or fast forward. They were encouraged
to focus their annotations on how frustrated they
personally felt, rather than interpreting their partner.
This personalized self-annotation differs from
datasets discussed in Section 2 which derive
their labels from interpretations of external anno-
tators rather than the participants’ own judgements.

Post-experimental Data Processing After
synchronizing and aligning the data streams with
all modalities and their corresponding labels, we
used up-sampling duplication and down-sampling
averaging to handle the varying sampling rates
across sensors. We used IBM Watson (IBM, 2023)
to provide an initial transcription of the participant
dialogues recorded from their lapel microphones,
obtaining an average Word Error Rate (WER) of
9%. We manually corrected all transcripts. We
used iMotions (2023) to extract facial action units
for the instructor. In addition, FreeMoCap (Cherian
et al.) was used for extracting the body posture
of the builder, and for both participants SBERT
(Reimers and Gurevych, 2019) was used to extract
384-dimensional pre-trained word embeddings
for transcribed spoken words, surrounding times-
tamped labels. Each participant’s sensor data was
Z-score normalized across the entire recording’s
data to allow for comparison across groups and
account for inter-subject variability.

Figure 3: The orange modalities correspond to sen-
sors for the instructor, while the blue correspond to
the builder. The purple represents data recorded
for both. These time series data points are syn-
chronized from a common starting signal, ensuring
annotations align with video and sensor recordings.

https://vimeo.com/839024815
https://vimeo.com/839024815
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Figure 4: After acquiring annotation ratings with
their corresponding timestamps, we sample sensor
values within a specified time window tw and split
samples into time step ts chunks. These values
are then averaged into a single value. This is done
for each modality feature m ∈ {m1,m2, . . . ,mn} so
that values can be concatenated together to form
a single instance.

MULTICOLLAB Dataset In this study, we focused
on the instructor data (since half of the builders
were instructed to not cooperate during the second
task). We employed early fusion for our time se-
ries sensor data with two parameters: time window
tw and time step ts. Time window tw defined how
much sensor data was sampled before and after
the labeled instance of frustration. These sequen-
tial data samples were then split into time step ts
chunks, as shown in Figure 4, and averaged into
a single value across each modality. This allowed
us to retain the temporal information across modal-
ities while also synchronizing sensor values with
disparate polling rates. Our column size was deter-
mined by taking the number of modality features
multiplied by the number of time steps, expressed
formally as |{m1,m2, . . . ,mn}| · ts. We captured
the transcribed words surrounding the instance of
labeled instructor frustration within the specified
time window tw parameter. Each labeled instance
of frustration x was initially represented as columns
of modality values and rows of time steps. We flat-
tened this 2D representation to get a single row for
each instance of instructor frustration annotation.

Table 2 shows a sample of some of the utter-
ances spoken at instances of annotation. To get a
vector representation of utterances from the instruc-
tor transcripts for the downstream classification
task, we used pre-trained 384-dimensional word
embeddings for each utterance. We first selected
all word tokens within time window tw, then concate-
nated them together by delimiting each word token
with a space. This is formally defined in Equation 1,
where

∑∗
is used as a concatenation operation:

U =
∑∗

w∈W

w (1)

Where U represents the union of word tokens de-
limited by spaces for an utterance, W denotes all
of the words spoken surrounding the instance of

Table 1: The modality features used in low-level,
time series transformer model experiments. These
values were Z-score normalized per participant, al-
lowing for commensurate analysis across features.

Voice Features
Intensity (dB) F0 (Hz)
Facial Features
Brow Furrow Chin Raise
Lid Tighten Lip Corner Depressor
Eye Gaze Features
Saccade Duration Saccade Peak Velocity
Fixation Dispersion Fixation Duration
Gaze Velocity
Biophysical Feature
GSR Conductance

annotation, and w represents a word token. Once
combined, we could then extract a single vector to
represent the spoken words surrounding annotation
from the instructor transcript, as formally expressed
in Equation 2:

w = fe (U,Θ) (2)

Where Θ denotes the pre-trained parameters of
the SBERT’s all-MiniLM-L6-v2 model, fe rep-
resents our embedding function, and w represents
the vector representation of the utterance at the
instance of self-annotated instructor frustration.

Feature Extraction and Analysis In addition
to transcribed speech, the features extracted
from the sensor data used in the experiments
are in Table 1. The distribution of frustration
annotations are in Figure 5, showing a nearly
even cooperative and non-cooperative pair counts
for each label. However, we can see there is
an imbalance with these labels, with Slightly
Frustrated composing the majority of annotations.
To address this, we removed instances of Slightly
Frustrated and combined instances of Very
Frustrated and Extremely Frustrated to define a
binary classification task. Combining the latter two
classes is reasonable, as they indicate varying
levels of evident frustration. The right hand side
of Figure 5 shows this binary data distribution,
which was used for our experiments. Figure 6
shows a comparison of Z-score normalized box
plots for Not At All Frustrated vs. the combined
Very Frustrated and Extremely Frustrated classes.
Because we make use of self-annotations for
labeling instructor instances of their own perceived
frustration, inter-rater metrics do not apply.

Ranking Modality Features When considering
data extracted from sensors, quantifying which fea-
tures may contribute most to classification can be
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Table 2: A sample of instructor utterances surrounding timestamped instances of frustration annotation
for a time window of tw = 4500 milliseconds. Each row represents a different group, where C represents
cooperative builders, and NC represents non-cooperative builders.

Timestamp Builder Rating Instructor Utterance
05:55.52 C Not At All Frustrated “super okay now okay now let’s”
06:30.33 C Not At All Frustrated “yeah okay turn your hand counter”
04:25.22 C Very Frustrated “you should see the document”
05:15.68 NC Very Frustrated “not connectors beside the yellow block”
02:39.65 NC Extremely Frustrated “small blue one no”
05:55.95 NC Extremely Frustrated “no no no no the other rectangle yep go back”

Figure 5: The label distribution of instructor frustration ratings. There is an imbalance of labels, with
Slightly Frustrated composing the majority of labels (left). When we remove Slightly Frustrated instances
and combine Very and Extremely Frustrated instances into a single class, we get a more balanced label
set for binary classification (right). We use the latter distribution for our computational experiments.

Figure 6: Box plot distribution of Z-score normalized modality values for instructors in a 400 ms window
from annotation. The left box plots show Not At All Frustrated annotations, with a - sign next to the label.
The right shows show Very Frustrated and Extremely Frustrated annotations combined, with a + sign next
to the label. Certain modality medians stray from the Not At All Frustrated median. Notably, voice intensity
(dB) and F0 (Hz) are higher when the instructors are frustrated.
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Figure 7: Line plots of the average curve values per class for the highest and lowest Mrank modality
features for tw = 4500 and ts = 20. We find that certain voice features, such as F0 (left), can be useful for
classification, while facial action unit features, such as Lip Corner Depressor (right), fails to separate data
points for each class.

accomplished by analyzing the distribution of their
Z-score normalized values - specifically by observ-
ing the overlap between the average values through
time steps as formally expressed in Equation 3:

Mrank =

∣∣∣∣∣
ts∑
t=1

m+
t −

ts∑
t=1

m−
t

∣∣∣∣∣ (3)

Where m+
t represents the average Z-score normal-

ized values for modality m at time step t for the
Very and Extremely Frustrated class, and m−

t for
the Not At All Frustrated class. By measuring the
difference between the approximate area under the
curve for average modality values through time for
each class, we can determine which features show
the greatest divergence. This metric is distinct from
traditional Euclidean distance, as it accounts for
the overlap between both curves. In essence, this
quantifies which modality distribution has the great-
est contrast between the two classes, which can
contribute to improved model performance. Table
3 shows the feature rankings using this metric. Cu-
riously, facial action units appear at the bottom,
suggesting that relying solely on facial expression
might not be an effective method for identifying frus-
tration. Figure 7 visualizes this principle which can
perhaps be attributed to individuals’ tendency to
suppress their facial reactions, aiming to adhere to
social norms and avoid causing embarrassment to
their conversation partner.

4. Results

Computational Experiment The development
and test set split ensured the presence of L1—L1,
L1—L2, and L2—L2 English speakers in each.
We set aside data from 3 of 24 instructors for

Table 3: Ranking each modality feature by Mrank

for tw = 4500 and ts = 20, as expressed in Equa-
tion 3. We find evidence that voice, eye tracking,
and GSR offer useful features for identifying frus-
tration. Conversely, facial action units seem to be
comparatively poor features, as their average val-
ues overlap frequently for the two classes.

Modality Feature Mrank

F0 (Hz) 5.45
Saccade Peak Velocity 3.38
GSR Conductance 3.09
Fixation Dispersion 2.95
Saccade Duration 2.51
Intensity (dB) 2.16
Gaze Velocity 0.92
Chin Raise 0.81
Brow Furrow 0.57
Lid Tighten 0.38
Fixation Duration 0.36
Lip Corner Depressor 0.02

testing and used the remaining 21 for model
development. Our classification experiments were
performed on the binary labels rather than the
imbalanced four class dataset. We first trained
two separate models: one for the low-level sensor
data features combined with early fusion, and
another for the high-level word embeddings. We
used TSAI’s (Oguiza, 2022) implementation of
InceptionTime (Fawaz et al., 2020) as a sequential
time series transformer model on the sensor
data. This required restructuring x to be reshaped
into a 3D vector, with the dimensions reflecting
(instances × modality features × timesteps). We
used an 80-20 validation split for training over
25 epochs. The loss over time for tw = 10000
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Figure 8: The training loss for the InceptionTime
model on low-level sensor data for tw = 10000
milliseconds and ts = 20 for 25 epochs. Despite
training on the development data showing learning
convergence, accuracy remained low when per-
forming predictions on the test set, suggesting that
a large time window can provide conflicting data
points for classification.

milliseconds is shown in Figure 8. For instructor
word embeddings, we used a feed forward neural
network with two fully connected layers and ReLU
and sigmoid activation functions. For both models,
we varied time step and window with the Cartesian
product of the following configurations: tw ∈
{1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000} and
ts ∈ {5, 10, 15, 20}. After generating a model for
each configuration, we performed model fusion.

Model Fusion Each model generated a two dimen-
sional output vector for the corresponding proba-
bility percentage of each class when run against
each test set instance. By averaging these two
vectors, we could then select a final output class
for prediction. Results in Table 4 provide answers
to the research questions posed in Section 1.

5. Discussion

Regarding RQ1, we find that the experiments using
the time series transformer with only low-level
sensor data yielded a higher average accuracy
than the high-level neural network with word
embeddings, Lacc = 54.3 > Hacc = 43.7. For RQ2,
we find that the best performing model was from
fusing predictions from both low and high-level
output probabilities, with an accuracy of 67%
and a corresponding precision of 79% and F1
of 63%. Furthermore, the average accuracies of
both low and high-level models were less than
the fused results, with Facc = 57.3 > Lacc > Hacc.
When we compare the highest ranked fused
accuracy to a baseline (the average of both Lacc

and Hacc at the same tw and ts) we observe

a 21% increase in classification accuracy, i.e.
Facc − mean(Lacc, Hacc) = 21.1, demonstrating
that the incorporation of sensor features can aid in
identifying affect.

6. Conclusion

This study introduced a new, heavily multimodal
corpus — the MULTICOLLAB dataset — which
captures human to human speech interactions with
other modalities and self-annotated instances of
frustration. Inspired by human sensation and per-
ception, we utilized time series transformers for
sensor data (sensation) and a feed forward neural
network for word embeddings (perception). An
analysis on modalities showed that certain eye
tracking, galvanic skin response, and voice values
can be salient features for classification, with facial
action units providing conflicting evidence. On av-
erage, low-level sensor data features had a higher
classification performance when considered sepa-
rately from high-level word embeddings. However,
we demonstrated an improvement in performance
when both models are utilized for final predictions.

Limitations

While the purpose of this study was to demonstrate
the benefits of data fusion for low and high-level
features, there are also limitations such as limited
sample size. Even with the diverse subject popula-
tion described in Section 3, the 24 pairs generated
only 297 labeled instances of instructor frustration.
This becomes even smaller when we restructure
our data to a binary classification problem, leav-
ing 176 labeled instances. Thus, further study is
required to understand if results generalize. Ad-
ditionally, the used SBERT word embeddings are
not optimized for spoken dialogue. Accordingly, the
nuances of utterances may not have been captured
in their embeddings. Future work can explore how
word embeddings derived from spoken dialogue
may influence results. Lastly, human frustration per-
ception can vary and may involve less consistency.
Future research could seek to generate labels di-
rectly from biophysical signals, rather than from
annotation. This may be accomplished by using
labels from, for example, k-means clustering per-
formed on the sensor data.

Ethics Statement

In this IRB-approved study, subjects gave informed
consent before participating. They were given the
option to end the study at any time. During the
setup, each sensor was explained to the partici-
pant before data collection began. After providing
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Table 4: Classification results under different time window tw and time step ts configurations, where Lacc

represents low-level sensor data classification accuracy, Hacc represents high-level word embedding
classification accuracy, and Facc represents fused classification accuracy. Values are sorted by Facc in
descending order, with the highest value bolded in each column. We find that, on average, Facc is higher
than Lacc and Hacc in isolation.

tw(ms) ts Lacc Hacc Facc Precision Recall F1
4500 5 59.1 34.1 67.3 ± 1.7 79.3 51.7 62.6
4500 15 61.4 35.0 66.6 ± 1.0 90.3 40.4 55.8
4000 5 52.3 38.6 64.5 ± 1.1 74.0 49.6 59.4
3500 5 50.0 46.8 63.4 ± 3.0 71.8 49.6 58.6
3000 20 59.1 47.3 63.2 ± 0.9 76.5 42.6 54.7
4000 15 63.6 39.3 62.7 ± 1.1 66.3 58.7 62.2
5000 20 59.1 43.2 62.0 ± 1.8 83.0 34.8 49.0
3000 15 59.1 47.7 61.4 ± 0.0 68.8 47.8 56.4

annotations, both builders and instructors were de-
briefed on the nature of the study, data use, and
whom to contact for any follow-up. Each participant
was compensated $25 USD.

Our study brings attention to the broader issue
of privacy. As sensors in consumer grade devices
continue to mature, we can expect such data to be
leveraged in a variety of downstream tasks. Thus,
there is a motivation to identify the most salient fea-
tures in these data streams to further inform users
of possible privacy compromising data collection.
Our findings indicate that biophysical signals such
as Galvanic Skin Response (GSR) and certain eye
tracking features can be used effectively to corre-
late self-reported instances of frustration. The im-
pact of this research, therefore, calls for informing
users of the potentially sensitive data that devices
could be collecting.
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