@inproceedings{yano-etal-2024-multilingual,
title = "Multilingual Sentence-T5: Scalable Sentence Encoders for Multilingual Applications",
author = "Yano, Chihiro and
Fukuchi, Akihiko and
Fukasawa, Shoko and
Tachibana, Hideyuki and
Watanabe, Yotaro",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1034",
pages = "11849--11858",
abstract = "Prior work on multilingual sentence embedding has demonstrated that the efficient use of natural language inference (NLI) data to build high-performance models can outperform conventional methods. However, the potential benefits from the recent {``}exponential{''} growth of language models with billions of parameters have not yet been fully explored. In this paper, we introduce Multilingual Sentence T5 (m-ST5), as a larger model of NLI-based multilingual sentence embedding, by extending Sentence T5, an existing monolingual model. By employing the low-rank adaptation (LoRA) technique, we have achieved a successful scaling of the model{'}s size to 5.7 billion parameters. We conducted experiments to evaluate the performance of sentence embedding and verified that the method outperforms the NLI-based prior approach. Furthermore, we also have confirmed a positive correlation between the size of the model and its performance. It was particularly noteworthy that languages with fewer resources or those with less linguistic similarity to English benefited more from the parameter increase. Our model is available at https://huggingface.co/pkshatech/m-ST5.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yano-etal-2024-multilingual">
<titleInfo>
<title>Multilingual Sentence-T5: Scalable Sentence Encoders for Multilingual Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chihiro</namePart>
<namePart type="family">Yano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Akihiko</namePart>
<namePart type="family">Fukuchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shoko</namePart>
<namePart type="family">Fukasawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hideyuki</namePart>
<namePart type="family">Tachibana</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yotaro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Prior work on multilingual sentence embedding has demonstrated that the efficient use of natural language inference (NLI) data to build high-performance models can outperform conventional methods. However, the potential benefits from the recent “exponential” growth of language models with billions of parameters have not yet been fully explored. In this paper, we introduce Multilingual Sentence T5 (m-ST5), as a larger model of NLI-based multilingual sentence embedding, by extending Sentence T5, an existing monolingual model. By employing the low-rank adaptation (LoRA) technique, we have achieved a successful scaling of the model’s size to 5.7 billion parameters. We conducted experiments to evaluate the performance of sentence embedding and verified that the method outperforms the NLI-based prior approach. Furthermore, we also have confirmed a positive correlation between the size of the model and its performance. It was particularly noteworthy that languages with fewer resources or those with less linguistic similarity to English benefited more from the parameter increase. Our model is available at https://huggingface.co/pkshatech/m-ST5.</abstract>
<identifier type="citekey">yano-etal-2024-multilingual</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.1034</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>11849</start>
<end>11858</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multilingual Sentence-T5: Scalable Sentence Encoders for Multilingual Applications
%A Yano, Chihiro
%A Fukuchi, Akihiko
%A Fukasawa, Shoko
%A Tachibana, Hideyuki
%A Watanabe, Yotaro
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F yano-etal-2024-multilingual
%X Prior work on multilingual sentence embedding has demonstrated that the efficient use of natural language inference (NLI) data to build high-performance models can outperform conventional methods. However, the potential benefits from the recent “exponential” growth of language models with billions of parameters have not yet been fully explored. In this paper, we introduce Multilingual Sentence T5 (m-ST5), as a larger model of NLI-based multilingual sentence embedding, by extending Sentence T5, an existing monolingual model. By employing the low-rank adaptation (LoRA) technique, we have achieved a successful scaling of the model’s size to 5.7 billion parameters. We conducted experiments to evaluate the performance of sentence embedding and verified that the method outperforms the NLI-based prior approach. Furthermore, we also have confirmed a positive correlation between the size of the model and its performance. It was particularly noteworthy that languages with fewer resources or those with less linguistic similarity to English benefited more from the parameter increase. Our model is available at https://huggingface.co/pkshatech/m-ST5.
%U https://aclanthology.org/2024.lrec-main.1034
%P 11849-11858
Markdown (Informal)
[Multilingual Sentence-T5: Scalable Sentence Encoders for Multilingual Applications](https://aclanthology.org/2024.lrec-main.1034) (Yano et al., LREC-COLING 2024)
ACL