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Abstract
Multimodal large language models (MLLMs) are gaining popularity as partial solutions to the “symbol grounding
problem” faced by language models trained on text alone. However, little is known about whether and how these
multiple modalities are integrated. We draw inspiration from analogous work in human psycholinguistics on embodied
simulation, i.e., the hypothesis that language comprehension is grounded in sensorimotor representations. We show
that MLLMs are sensitive to implicit visual features like object shape (e.g., “The egg was in the skillet” implies a
frying egg rather than one in a shell). This suggests that MLLMs activate implicit information about object shape
when it is implied by a verbal description of an event. We find mixed results for color and orientation, and rule out
the possibility that this is due to models’ insensitivity to those features in our dataset overall. We suggest that both
human psycholinguistics and computational models of language could benefit from cross-pollination, e.g., with the
potential to establish whether grounded representations play a functional role in language processing.
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1. Introduction

Recent advances in Large Language Models
(LLMs) have generated an explosion of inter-
est in their underlying capabilities and limitations
(Thirunavukarasu et al., 2023). One oft-cited limita-
tion of contemporary LLMs is that they are trained
on linguistic input alone (Bender and Koller, 2020),
and thus, unlike humans, lack access to embodied
experience—seen by some as a prerequisite for
language understanding (Bisk et al., 2020; Harnad,
1990; Mollo and Millière, 2023). Multimodal Large
Language Models (MLLMs Driess et al., 2023; Gird-
har et al., 2023; Huang et al., 2023)—which learn to
associate linguistic representations with data from
other modalities—may be a partial solution to this
symbol grounding problem (Harnad, 1990). Yet
despite impressive performance by MLLMs (Doso-
vitskiy et al., 2021), little is known about how dis-
tinct modalities (e.g., language and vision) are in-
tegrated within a model’s representational space,
as they appear to be in humans.

We address this gap by turning to an analogous
debate about the extent to which human seman-
tic representations are grounded in sensorimotor
experience (Barsalou, 1999). The embodied simu-
lation hypothesis (Bergen, 2015; Glenberg, 2010)
argues that language understanding involves the
activation of grounded representations, i.e. that
the same neural tissue recruited to perceive or par-
ticipate in an event (e.g., kicking a soccer ball) is
also engaged to understand language about that
event (e.g., “She kicked the ball”). Indeed, a wide
body of experimental evidence suggests that some
degree of sensorimotor activation occurs during
language processing (Zwaan and Pecher, 2012;

Winter and Bergen, 2012). While there is ongoing
debate about the functional relevance of embodied
simulation (Glenberg et al., 2008; Mahon and Cara-
mazza, 2008; Montero-Melis et al., 2022; Ostarek
and Bottini, 2021), the evidence points to some
degree of cross-talk between linguistic and senso-
rimotor neural systems.

Much of this evidence comes from the sentence-
picture verification task paradigm (Stanfield and
Zwaan, 2001). In this task, participants read a
short sentence (e.g., “He hammered the nail into
the wall”), then see a picture of an object (e.g., a
nail) and must decide whether the object was men-
tioned in the preceding sentence. Crucially, when
the image of the object matches the orientation (or
shape, color, etc.) implied by the sentence (e.g.,
the nail is horizontal rather than vertical), partici-
pants are faster and more accurate in their deci-
sions (Stanfield and Zwaan, 2001; Pecher et al.,
2009; Connell, 2007). Because the object is the
same (e.g., an egg), humans must be inferring vi-
sual features based on properties of the event itself
(e.g., an egg cooking in a skillet).

In the current work, we applied these method-
ological insights to improve our understanding of
MLLMs. We ask whether MLLM’s internal repre-
sentations of linguistic input (e.g., "He hammered
the nail into the wall") are more similar to repre-
sentations of images that match visual features
implied by that input than those that do not. To
address this question, we adapted materials from
three psycholinguistic studies that provide evidence
for simulation of the implied orientation (Stanfield
and Zwaan, 2001), shape (Pecher et al., 2009),
and color (Connell, 2007) of objects. Note that this
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approach differs from a standard classification task:
rather than classifying images on the basis of which
objects they contain (e.g., “a cup of coffee”) or ex-
plicit features of those objects (e.g., “a black cup of
coffee”), we are asking whether the MLLM activates
implicit features that could be inferred from a more
holistic event representation (e.g., “Joanne never
took milk in her coffee” implies that the coffee is
black).

2. Methods

2.1. Materials
We used stimuli from three experiments that mea-
sured visual simulation in human participants.
Items were organized as quadruplets, consisting
of a pair of images and a pair of sentences. Sen-
tence pairs differed by implying that an object had
a certain visual property (shape, color, or orien-
tation). Each of the images in a pair matched the
implied visual feature in one of the sentences (and
therefore mismatched the other, see Figure 1).

60 quadruplets from Pecher et al. (2009) varied
the implied shape of an object. A sentence such
as “There was an egg in the [refrigerator/skillet]” im-
plied that the egg was either in its shell or cracked
open. A pair of black-and-white images of eggs
matched one of these sentences by displaying the
relevant visual feature. Connell (2007) collected 12
quadruplets that vary the implied color of an ob-
ject. “Joanne [never/always] took milk in her coffee”
implies black/brown coffee. The images differed
only in color. Finally, Stanfield and Zwaan (2001)
collected 24 quadruplets of sentences implying dif-
ferent orientations of an item, and line-drawings
that were rotated to match the implied orientation.
For instance “Derek swung his bat as the ball ap-
proached” suggests a horizontal bat, while “Derek
held his bat high as the ball approached” suggests
a vertical bat.

2.2. Model Evaluation
To probe MLLMs, we implemented a computational
analogue of the sentence-picture verification task.
Our primary question was whether a model’s rep-
resentation of a given linguistic input (e.g., "He
hammered the nail into the wall") was more similar
to its representation of an image that matched an
implied visual feature (e.g. horizontal orientation)
compared to an image that did not (e.g. a verti-
cal nail). For each sentence-image pair, we found
the dot product between the MLLM embedding of
the sentence and the image. This value quanti-
fies the similarity between the linguistic and visual
representations within the model. The dot product
values were then passed through a softmax func-

tion, converting them into probabilities of the model
associating eachimage with a given sentence:

pij =
exp(Si · Ij)∑2
k=1 exp(Si · Ik)

where Si is the embedding for sentence i, Ij is
the embedding for image j, and pij is the softmax
probability that sentence i matches with image j.
To statistically evaluate the model’s performance,
we conducted a t-test to compare the probabilities
of matching (e.g., p11 and p22) against mismatching
(e.g., p12 and p21) sentence-image pairs. A signif-
icant result, where the matching probabilities are
greater than mismatching ones, would indicate that
the MLLM’s representations are sensitive to the
visual properties implied by the linguistic input.

2.3. Vision-Language Models

We evaluate four different CLIP-based Vision Trans-
formers with different numbers of parameters and
training regimes in order to test the generalizability
and robustness of implied visual feature effects.

The Vision Transformer (ViT) architecture adapts
the Transformer to handle visual data (Dosovit-
skiy et al., 2021). The ViT divides an image into
fixed-size non-overlapping patches that are then
linearly embedded into input vectors. A classifi-
cation head is attached to the output to produce
the final prediction. Despite their simplicity and
lack of inductive biases (e.g., convolutional layers),
ViTs have achieved competitive performance on
various visual tasks, especially when pre-trained
on large datasets (Dosovitskiy et al., 2021; Schuh-
mann et al., 2022).

CLIP (Contrastive Language–Image Pre-
training) employs contrastive learning to associate
images with text descriptions (Radford et al., 2021).
The model jointly trains a ViT image encoder and
a text encoder to predict the correct pairings of
(image, text) pairs. This allows CLIP to learn a
shared semantic space between images and text.
We evaluate four pre-trained CLIP models:

ViT-B/32: The base model from (Radford et al.,
2021). ViT-B/32 uses a patch size of 32px and has
120M parameters. It was trained on 400 million
224x224 pixel image-text pairs over 32 epochs.

ViT-L/14: The best-performing model from (Rad-
ford et al., 2021, described in the paper as ViT-
L/14@336px). ViT-L/14 uses a patch size of 14px
and has 430M parameters. It was pre-trained in
the same manner as ViT-B/32 and then fine-tuned
at 336px for one additional epoch.

ViT-H/14: A larger model based on the CLIP
architecture (Ilharco et al., 2021). ViT-H/14 has
1B parameters and was trained on the LAION 2B
dataset for 16 epochs (Schuhmann et al., 2022).
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Figure 1: The dataset consisted of pairs of sentences and images, forming quadruplets. Each sentence in
a pair implied that an object had a certain visual property (e.g. brown color). Each implied visual property
was matched by one of the pair of images. The implied visual properties included shape (Left, Pecher
et al., 2009), color (Center, Connell, 2007), and orientation (Right, Stanfield and Zwaan, 2001).

ImageBind: an MLLM that learns a joint em-
bedding across six modalities, including images,
text, audio, depth, thermal, and IMU data (Girdhar
et al., 2023). Internally, a Transformer architecture
is used for all modalities. The image and text en-
coders are based on the ViT-H/14 model.

3. Results

We tested whether MLLMs were sensitive to the
implied visual features in the sentence using a t-
test. The test compared the probability assigned
to images that matched the implied visual features
versus those that did not. All of the models, except
for the smallest (ViT-B/32), showed a significant
effect of shape. ImageBind showed the largest
effect: t(238) = 4.65, p < 0.001. ViT-B/32 showed
an effect in the expected direction but it did not
reach significance: t(238) = 1.81, p = 0.072.

The results for Color were more varied. Neither
the ViT-B/32 and ViT-L/14 models showed a sig-
nificant effect of match between the color implied
by a sentence and the color of an image. Both
ViT-H/14 (t(46) = 2.16, p < 0.05) and ImageBind
(t(46) = 2.85, p < 0.01 demonstrated sensitivity
to implied color properties although these effects
were less robust than for shape.

None of the models showed significant sensitivity
to implied orientation from linguistic cues. The
largest numerical effect was shown by ImageBind:
t(94) = 1.09, p = 0.278 (see Table 4).

3.1. Follow-up Analysis of Explicit
Features

One potential explanation for the null results re-
ported above is that MLLMs are insensitive to the

manipulated visual features like orientation, or that
these features are difficult to identify in the image
stimuli used. To test this possibility, we ran a follow-
up “manipulation check” to determine whether the
MLLMs were sensitive to orientation and color when
they were explicitly mentioned in the text. The anal-
ysis was virtually identical to the primary analysis
above, except that we used a sentence template
that explicitly described specific visual features of
the object in question, e.g., “It was a [COLOR] [OB-
JECT]”. We then asked whether the MLLMs could
successfully match sentences with explicit visual
features (e.g., “It was a red traffic light” vs. “It was
a green traffic light”).

All models tested showed an effect of both color
(p < .01) and orientation (p < .01). That is, mod-
els assigned higher probability to images with visual
features that matched those explicitly mentioned in
the sentence. This indicates that the MLLMs are
sensitive to color and orientation, and that stim-
ulus quality is sufficient to identify these features.

4. Discussion

Our central question was whether MLLMs showed
effects that have been taken as evidence of em-
bodied simulation in humans (Stanfield and Zwaan,
2001). We asked whether MLLMs were sensitive to
specific visual features (shape, color, and orienta-
tion) that were implied but not explicitly mentioned
by a verbal description of an event. We found robust
evidence of simulation for implied shape, mixed
evidence for simulation of implied color, and no
evidence of simulation for implied orientation.

Importantly, none of these visual features were
explicitly mentioned in the sentences. Thus, if an
MLLM exhibits sensitivity to implied shape, it sug-
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Figure 2: Comparison of mean probability values assigned to images that either matched (blue bars) or
did not match (red bars) implied visual features of a sentence. Four Vision Transformer Models (ViT-B/32,
ViT-L/14, ViT-H/14, and ImageBind)), were evaluated across three datasets (Shape, Orientation, and
Color). Error bars denote 95% bootstrapped confidence intervals.

gests that the model is activating event-specific
representations of the objects mentioned in a sen-
tence. In humans, an analogous effect is taken
as evidence of embodied simulation (Stanfield and
Zwaan, 2001; Bergen, 2015). The findings here
suggest that such an effect can be produced via
exposure to large-scale statistical associations be-
tween patterns in images and patterns in text.

Model Shape Color Orientation
ViT-B/32 0.072 0.112 0.965
ViT-L/14 <0.001 0.240 0.510
ViT-H/14 <0.001 0.036 0.323
ImageBind <0.001 0.006 0.278

Table 1: p-values from t-tests measuring the effect
of matching implied visual features between labels
and images. All models except ViT-B/32 show a
significant effect for Shape. ViT-H/14 and Image-
Bind both show significant effects for Color. None
of the models show an effect of Orientation.

It is unclear why MLLMs did not appear to simu-
late orientation (or color, in some cases). Critically,
when either feature was explicit in the text, a match
effect was obtained (see Section 3.1); this suggests
the null effects were not due to overall insensitivity
to those visual features. Instead, MLLMs appear to
activate some implicit visual features more readily
than others. This variation could be driven by noise

in the relationship between images and descrip-
tions. Orientation can be influenced by rotation or
viewpoints and color similarly varies with lighting.
Implicit indications of these features in text labels
may therefore be less reliable than indications of
more invariant features such as shape. Future work
could ask whether color and orientation are less
integrated with linguistic representations in MLLMs,
or simply harder to infer from text descriptions.

Future studies could also explore whether
MLLMs simulate modalities beyond vision. There
is evidence that humans activate other sensorimo-
tor modalities, such as auditory volume (Winter
and Bergen, 2012) and motor action (Fischer and
Zwaan, 2008), though evidence for other modalities
like olfaction is limited (Speed and Majid, 2018).

Finally, there is considerable debate within psy-
cholinguistics over whether embodied simulation
plays a functional role in language comprehension,
or whether it is epiphenomenal (Ostarek and Bot-
tini, 2021; Mahon and Caramazza, 2008; Glenberg
et al., 2008). Future work could contribute to this de-
bate by using MLLMs as “subjects”: specifically, re-
searchers could “lesion” representations of features
like shape and ask whether this causally affects
processing of sentences implying object shape.
This would join the broader “neuroconnectionist”
research program that aims to unify research on
human cognition and on models inspired by cogni-
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tion (Doerig et al., 2023).

5. Conclusion

We found that MLLMs are sensitive to whether vi-
sual features that are implied by a sentence are
matched in an image, a phenomenon taken as evi-
dence of embodied simulation in humans.

6. Ethical Considerations and
Limitations

The study is limited in that it only evaluates Vision
Transformers. Other VLM architectures may pro-
duce different associations between text and im-
ages. The number of items for some of the datasets
was small. Some models may have shown signif-
icant match effects with a larger number of items.
One potential limitation of the study is that the tasks
given to human and LLM participants are not quite
analogous. In the picture-verification task, the par-
ticipant is aware that the implied visual features are
irrelevant: their task is to identify whether the object
was present in the sentence. The models cannot
be so instructed: the measure of association be-
tween the sentence and image representations will
be based on all features that were useful to the
model during CLIP pre-training. Nevertheless, the
results show that models are sensitive to these
implied features even when they are not explicitly
mentioned.
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